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Abstract

As demonstrated by the proprietary Large Lan-
guage Models (LLMs) such as GPT and Claude
series, LLMs have the potential to achieve re-
markable proficiency across a wide range of
domains, including law, medicine, finance, sci-
ence, code, etc., all within a single model.
These capabilities are further augmented dur-
ing the Supervised Fine-Tuning (SFT) phase.
Despite their potential, existing work mainly fo-
cuses on domain-specific enhancements during
fine-tuning, the challenge of which lies in catas-
trophic forgetting of knowledge across other do-
mains. In this study, we introduce VersaTune,
a novel data composition framework designed
for enhancing LLMs’ overall multi-domain ca-
pabilities during training. We begin with detect-
ing the distribution of domain-specific knowl-
edge within the base model, followed by the
training data composition that aligns with the
model’s existing knowledge distribution. Dur-
ing the subsequent training process, domain
weights are dynamically adjusted based on their
learnable potential and forgetting degree. Ex-
perimental results indicate that VersaTune is
effective in multi-domain fostering, with an
improvement of 29.77% in the overall multi-
ability performances compared to uniform do-
main weights. Furthermore, we find that Qwen-
2.5-32B + VersaTune even surpasses frontier
models, including GPT-4o, Claude3.5-Sonnet
and DeepSeek-V3 by 0.86%, 4.76% and 4.60%.
Additionally, in scenarios where flexible expan-
sion of a specific domain is required, VersaTune
reduces the performance degradation in other
domains by 38.77%, while preserving the train-
ing efficacy of the target domain.

1 Introduction

Large Language Models (LLMs) have become a
cornerstone in Artificial Intelligence (AI) (Achiam
et al., 2023; Dwivedi et al., 2021; Lewkowycz et al.,

¶ Corresponding Author.

2022), particularly for Natural Language Process-
ing tasks (Brown et al., 2020; Devlin, 2018; Rad-
ford et al., 2019), reshaping AI research and appli-
cations in domains such as law (Cui et al., 2023),
medicine (Singhal et al., 2023; Thirunavukarasu
et al., 2023), finance (Li et al., 2023b; Wu et al.,
2023), science (Beltagy et al., 2019; Taylor et al.,
2022) and code (Liu et al., 2024b; Roziere et al.,
2023). The success of LLMs stems from their ca-
pabilities to automatically learn and distill hierar-
chical data representations, making them highly
effective for complex tasks (Nie et al., 2023). In
order to further enhance such abilities across these
areas, LLMs typically undergo the supervised fine-
tuning (SFT) stages on domain-specific datasets.

As demonstrated by the robust performances of
state-of-the-art LLMs such as GPT-4 (Achiam et al.,
2023) and Gemini (Team et al., 2023), LLMs have
the potential to master multiple tasks across all
specific domains within a single model. However,
most existing research on supervised fine-tuning
tends to merely concentrate on a single ability of
LLMs (Dong et al., 2023; Xu et al., 2024), with the
multi-domain performance on composite data of
essentially different downstream tasks being less
studied. We try to enhance the overall multitasking
performance of LLMs across various domains by
optimizing data mixing ratios during training:

How to design a data composition strat-
egy during SFT stages that could achieve
overall multi-domain capabilities?

Through analysis, we identified that the chal-
lenges associated with data composition strategies
stem from the following three key aspects:

C1: Catastrophic Forgetting. Given the fun-
damental differences between tasks of various do-
mains, for multi-domain SFT, the sequential train-
ing strategy across multiple phases, where each
phase exclusively utilizes a single-domain dataset
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for training, can easily lead to significant perfor-
mance drop of prior knowledge, which is well-
known as Catastrophic Forgetting (Kaushik et al.,
2021; McCloskey and Cohen, 1989), as depicted
in Table 2 and Figure 6. It hinders the versatile
fine-tuning performance of a model across multiple
domains (De Lange et al., 2021; Dong et al., 2023;
Yuan et al., 2022). Therefore, mixing data from
different domains is crucial for mitigating catas-
trophic forgetting during training, enhancing the
overall performance and adaptability.

C2: Low Efficiency. Existing data composition
research during the supervised fine-tuning phase
for LLMs is still in its initial stages, with most
strategies based on heuristic or manually deter-
mined rules (Wang et al., 2023; Albalak et al., 2024;
Dubey et al., 2024). One of the common baselines
is defining domain weights referring to natural do-
main sizes, which weights all individual data points
equally. Such approaches struggle to optimally bal-
ance different domains, failing to maximize the
overall training effectiveness for multiple abilities.
There lacks a well-defined methodology that effi-
ciently enhances the versatile capabilities of LLMs
across multiple domains during the SFT stage.

C3: Low Flexibility in Domain Expansion. Ex-
isting SFT approaches for specific domain abilities
typically pre-determine the proportions of different
datasets according to prior experience (Azerbayev
et al., 2023; Roziere et al., 2023). Such strategies
lack the flexibility to dynamically adjust the data
mixing ratios of different domains during the train-
ing process, which does not allow for real-time
feedback from LLMs to inform and optimize the
data composition. This static approach hinders the
minimization of performance loss in other domains
as LLMs undergo specialized training.

To address these challenges, we introduce Ver-
saTune, a novel data composition framework to
enhance models’ overall performances across dif-
ferent domains during supervised fine-tuning. We
first detect the proportion distribution of domain
knowledge within the target model (Section 2.1),
followed by data composition based on the exist-
ing distribution for multi-ability enhancement (Sec-
tion 2.2.2) and flexible domain expansion (Sec-
tion 2.2.3). Our contributions are as follows:

• Knowledge Consistency Training. We introduce
the concept of knowledge consistency training
for LLMs’ multi-capability development, which
enables the model to continue learning from

datasets that possess a knowledge distribution
aligned with its pre-existing knowledge feature.

• Multi-Capability Data Composition Framework.
We propose VersaTune, a novel data composition
framework that leverages the model’s intrinsic
domain knowledge distribution to optimize the
training data proportion. VersaTune is designed
to enhance the overall performance across
multiple domains (Section 2.2.2), as well as to
provide flexible expansion for specific domains
while minimizing the performance degradation
in other domains (Section 2.2.3).

• Performance and Effectiveness. Our extensive
evaluations across domains demonstrate that Ver-
saTune can achieve an improvement of 29.77%
in versatile fine-tuning for multiple domains. No-
tably, we find that our Qwen-2.5-32B + VersaT-
une even outperforms frontier models including
GPT-4o, Claude3.5-Sonnet and DeepSeek-V3 by
0.86%, 4.76% and 4.60%. Furthermore, when
focusing on specific-domain expansion, VersaT-
une maintains training effectiveness in the target
domain while reducing performance degradation
in other non-target domains by 38.77%.

2 VersaTune

In this section, we introduce VersaTune, a data com-
position framework designed for multi-capability
training, aiming to effectively compose data from
multiple domains and optimize the data proportion
during training. Figure 1 presents the workflow of
VersaTune, which generally contains two phases.

2.1 Phase 1: Domain Knowledge Detection

Here, we first present a domain mixing strategy
for fine-tuning a LLM that possesses a compre-
hensive multitask capability (Section 2.1.1). This
approach is designed to align with the inherent do-
main knowledge distribution within the base model
waiting for subsequent training. Following this, we
describe the method for detecting domain knowl-
edge proportion of the base model, which is crucial
for informing the fine-tuning process (Section 2.1).

2.1.1 Knowledge Consistency Training
Previous research on data mixing ratios during the
SFT phase for LLMs has predominantly focused on
enhancing capabilities within a specific domain, of-
ten utilizing only data from that domain or employ-
ing heuristic, experience-based data proportions.
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Figure 1: Overview of VersaTune. We begin by probing the knowledge distribution within the base model Mθ,
utilizing a proprietary model MP to estimate the probability of sequences generated by Mθ belonging to various
domains. Throughout the efficient fine-tuning process, we dynamically adjust the data domain ratios in response to
Mθ’s real-time performance feedback, with learnable potential and forgetting degree serving as evaluative metrics.

We argue that such strategies can significantly im-
pair the LLM’s abilities in other domains. In the
fine-tuning stage, maintaining a robust overall ca-
pability across various domains is crucial.

What data mixing strategy effectively boosts the
versatile performance of LLMs across domains dur-
ing the SFT phase? We propose the statement:

Statement 1 An LLM fine-tuned with domain-
specific data proportions PSFT (x) that align with
its pretrained output distributions Pknowledge(x)
will exhibit enhanced and balanced performance
across these domains, compared to a model fine-
tuned with a non-matching data distribution. For-
mally, the relationship can be represented as:

PSFT (x) ≈ Pknowledge(x), ∀x ∈ χ (1)

where χ denotes the set of all possible data points.
The rationale behind this statement is rooted in

the observation that during the pretraining phase,
LLMs develop a general understanding of language
features and domain-specific knowledge. By main-
taining the same distribution of knowledge dur-
ing fine-tuning, the model can build upon this pre-
existing knowledge, thereby enhancing learning
efficiency and robustness.

2.1.2 Knowledge Distribution Detection
Drawing on prior research into knowledge identifi-
cation methods (Gekhman et al., 2024; Zhao et al.,
2023b) and training data inference strategies for
LLMs (Ding et al., 2022; Hayase et al., 2024), we
propose a structured approach to efficiently detect
domain knowledge based on statistics. The method

involves the generation of textual outputs from the
base model Mθ waiting for fine-tuning, followed
by classification into predefined domains referring
to a proprietary model MP . The process is repeated
multiple times to ensure statistical robustness.

Assuming the data corpus contains k distinct do-
mains, as shown in Algorithm 1, we first prompt
the base model poised for fine-tuning Mθ with the
Beginning of Sequence (<BOS>)1 tokens to gener-
ate a set of NS data entries S = {si}NS

i=1 (Line 3).
Subsequently, we employ a proprietary model MP

to infer probabilities that these NS entries belong
to each domain (Line 5-7). We then calculate a
weighted average of the probability distributions
for all data across these domains, thereby deriving
the domain knowledge distribution of the current
base model Mθ (Line 9). To ensure statistical ro-
bustness, the process is iteratively conducted T
times, and we use the mean of these T iterations as
the estimated result for knowledge distribution.

2.2 Phase 2: Fine-Tuning Multi-Ability LLMs
Efficiently

Having detected the distribution of domain knowl-
edge within the base model, we will now utilize
these findings to guide our multi-ability SFT pro-
cess. The approaches are designed to enhance the
overall performance of the fine-tuned model across
a spectrum of multi-domain tasks (Section 2.2.2),

1The <BOS> token serves as a trigger for text genera-
tion, which enables unrestricted generation without biasing
the model toward any specific domain, thereby enabling a reli-
able assessment of the distribution of domains in the model’s
generated outputs. More details can be found in Section A.1.1.
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Algorithm 1 Knowledge Distribution Detection

Input: Base model Mθ, Proprietary model MP ,
Hyperparameters: sample number NS , maximum
iterations T
Parameter: Data samples S generated from Mθ

Output: Domain distribution P⃗
Define p⃗: domain probability distribution of data
sample s

1: for t = 1, 2, . . . , T do
2: /* Step 1: Data Generation */
3: Generate data samples from the base model:

S = {si}NS
i=1 where si = Mθ(< BOS >)

4: /* Step 2: Domain Probability Inference */
5: for each data sample si in S do
6: Provide domain probability of si referring

to the proprietary model MP :
p⃗i = (pij)

k
j=1 ←MP (si)

7: end for
8: /* Step 3: Statistics Aggregation */
9: Estimate domain knowledge distribution:

P⃗ (t) = (P
(t)
j )kj=1 where P

(t)
j = 1

NS

∑NS
i=1 pij

10: end for
11: Return P⃗ = (Pj)

k
j=1 where Pj =

1
T

∑T
t=1 P

(t)
j

as well as to facilitate the flexible expansion of
capabilities in specific domains (Section 2.2.3).

Setting. Our goal is to construct a composite
dataset covering k specific domains, which can be
denoted as Dtrain = {(Dj

train, Pj)}kj=1 with each
tuple representing a specific domain and its cor-
responding proportion, such that training a model
on dataset Dtrain could achieve overall lower loss
on a uniformly distributed composite target vali-
dation dataset Dval = {(Dj

val, 1/k)}kj=1 or meet
the flexible domain expansion while preserving the
performances in other domains. The specialized
capabilities of LLMs are measured using down-
stream tasks related to different domains (e.g., Fin-
Ben (Xie et al., 2024a) for financial performances).

2.2.1 Preliminary: Learnable Potential and
Forgetting Degree of Knowledge

Before formally introducing the effective multi-
task fine-tuning and flexible domain expansion
data composing strategies, we will first provide
an overview of the evaluation metrics used for the
following algorithms in this subsection.

Mastery Ceiling. We first fine-tuned the small
reference model Mref for Tref epochs on each do-
main separately, and identified the epoch with the

lowest average loss during this process as the lower
bound on the minimum loss attainable by the tar-
get model Mθ for the given domain. This value
represents the highest level of domain knowledge
mastery that the model can achieve in the context of
the current specific domain under given conditions.

Learnable Potential. We can observe whether
a domain could be effectively learned by the model
through comparing the difference between the loss
of the target model Mθ and the minimum loss that
the reference model Mref can achieve. Based on
these principles, we propose Equation (2) to score
the learnable potential of domain j:

γj = max{
ℓjθ − ℓjref

ℓjθ
, 0} (2)

where ℓjθ denotes the loss associated with the target
model Mθ for the j-th domain, while ℓjref signi-
fies the corresponding loss for the reference model
Mref within the same domain. To mitigate the
impact of inherent loss variations across different
domains for the model, we have introduced a nor-
malization term into the formula.

Forgetting Degree. When focusing on ex-
panding a model to a specific domain, our objective
is to minimize the loss of the model’s knowledge
regarding other domains. Here we segment the
fine-tuning stage into T distinct checkpoints. We
quantify the degree of knowledge loss, or the for-
getting of the current domain, by measuring the
difference in loss between the t-th and (t − 1)-th
training steps. This difference reflects the model’s
mastery loss for the tasks associated with the cur-
rent domain. Based on this principle, we introduce
Equation (3) to assess the model’s forgetting degree
for domain j at the t-th training step.

φ
(t)
j = max{

ℓj
θ(t)
− ℓj

θ(t−1)

ℓj
θ(t−1)

, 0} (3)

where ℓj
θ(t)

represents the loss at the t-th training
step associated with the target model Mθ for the
j-th domain, while ℓj

θ(t−1) denotes the loss at the
preceding (t− 1)-th iteration for the same domain.
We also incorporated a normalization factor into
the equation to counteract the effects of inherent
loss disparities among domains.

2.2.2 Effective Multi-Ability Fostering
To cultivate the multi-tasking capabilities of a

LLM during the fine-tuning phase, we have aligned
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Algorithm 2 VersaTune Multi-Ability Fine-Tuning
(for Domain Robustness)

Input: Base model to be fine-tuned M
(0)
θ , Domain

reference loss {ℓjref}kj=1, Hyperparameters:
adjustment magnitude σ, training step number T
Parameter: Data proportion {Pj}kj=1 of dataset

Output: Fine-tuned multi-ability model M (T )
θ

Define γ: learnable potential of the current domain

1: Initialize domain proportion {P (0)
j }kj=1 accord-

ing to Equation (1) and Algorithm 1
2: for t = 1, 2, . . . , T do
3: for j = 1, 2, . . . , k do
4: Learnable potential for the j-th domain:

γ
(t)
j = max{

ℓj
θ(t)

−ℓjref

ℓj
θ(t)

, 0}
5: Update domain weights:

P
(t)′

j = P
(t−1)
j (1 + σγ

(t)
j )

6: end for
7: Renormalize domain weights:

P
(t)
j =

P
(t)′
j∑k

i=1 P
(t)′
i

, ∀j ∈ {1, 2, ..., k}

8: Update parameters of fine-tuned model M (t)
θ

9: end for
10: Return Fine-tuned model M (T )

θ

the initial domain distribution in the SFT stage with
the knowledge detection results of the base model
as stated in Equation (1). Furthermore, we dynami-
cally make minor adjustments in the composition
ratios of various domains based on the model’s
real-time feedback at different SFT stages.

As detailed in Algorithm 2, in the pursuit of
balanced domain expertise enhancement, we first
blended the domain proportions in accordance with
the base model’s intrinsic domain knowledge dis-
tribution detected by Algorithm 1 (Line 1). Then at
each training step t, we assigned a learnable poten-
tial score to each domain based on the methodology
outlined in Equation (2). These scores were then
utilized to fine-tune the representation of each do-
main within the composite SFT dataset, ensuring a
balanced development of competencies across all
domains throughout the training process (Line 3-7).
At the same time, the parameters of model Mθ are
updated based on the gradients computed through
backpropagation (Line 8). This adaptive approach
is imperative to harmonize the progression of ca-
pabilities in different domains and to optimize the
model’s performance on multiple tasks.

2.2.3 Flexible Domain Expansion
When conducting fine-tuning on a pretrained
model, there are instances where we aim to particu-
larly enhance models’ performance on specific do-
main tasks. Consequently, our algorithmic frame-
work ought to possess the flexibility to accommo-
date domain expansion and generalize effectively.
Building upon Statement 1, we present the follow-
ing statement tailored for domain expansion:

Statement 2 When fine-tuning a LLM for a spe-
cific capability, increasing the volume of data from
a particular domain De while adjusting other do-
mains (j = 1, 2, ..., k, j ̸= e) according to the
knowledge distribution of the base model, facili-
tates a flexible strategy for domain expansion. For-
mally, the relationship can be represented as:

P
′
SFT (x) ≈

k∑

j=1

A(Dj)PSFT (x|Dj), j = 1, ..., k

(4)
where PSFT (x|Dj) is the data distribution in the
domain Dj , and A(Dj) is the adjustment factor.

Here A(Dj) is determined based on the knowl-
edge distribution of the pre-trained domain. In
particular, when De increases, the other domains
{Dj}kj=1,j ̸=e shrink proportionally as a whole,
which can be expressed as:

A(Dj) =




α, if j = e

β 1∑k
j=1,j ̸=e A(Dj)

, others (5)

where α is the increased adjustment factor, and
β is the original ratio of other domain knowledge
relative to De. Algorithm implementation details
and hyper-parameter settings are provided in Sec-
tion B.1 and Section C.2.1.

3 Experiments and Results

In this section, we describe details of our experi-
mental setup (Section 3.1), the baseline methods
we use for comparison (Section 3.2), and experi-
mental results (Section 3.3).

3.1 Experimental Setup
Datasets. For training, we have collected
datasets spanning 6 domains for SFT, includ-
ing Sonnet3.5 Science Conversations2, Lawyer-

2https://huggingface.co/datasets/jeffmeloy/
sonnet3.5_science_conversations
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Model Method
Law Medical Finance Science Code General

LegalBench LawBench MedQA MedMCQA FinEval FinanceIQ SciEval MMLU-Sci HumanEval MBPP AGIEval HellaSwag

Frontier Models

GPT-4o – 79.00 57.41 81.92 74.60 64.58 66.25 72.54 85.47 88.40 75.50 71.82 90.56
Claude3.5-Sonnet – 77.60 40.73 76.38 68.80 65.90 62.55 68.72 84.24 84.07 80.48 75.63 89.12

DeepSeek-V3 – 65.46 52.25 78.82 74.30 68.15 75.03 69.58 82.90 65.20 75.40 79.60 88.90

Open-Sourced Base Models

LLaMA-2-7B
Uniform Distribution 15.71 30.72 23.45 27.57 33.50 2.71 9.30 42.89 5.67 3.44 20.16 71.40
Inverse Distribution 13.23↓ 26.94↓ 21.38↓ 26.52↓ 32.96↓ 2.53↓ 8.98↓ 39.67↓ 3.47↓ 2.42↓ 18.83↓ 71.33↓

VersaTune 23.18↑ 36.31↑ 35.04↑ 40.75↑ 36.27↑ 29.04↑ 56.75↑ 50.06↑ 15.62↑ 15.68↑ 24.67↑ 71.76↑

Qwen-2-7B
Uniform Distribution 39.05 31.99 35.07 17.73 59.49 14.62 25.30 62.73 53.26 37.82 47.31 73.60
Inverse Distribution 34.01↓ 27.81↓ 23.90↓ 16.31↓ 56.53↓ 11.30↓ 18.57↓ 58.25↓ 50.65↓ 33.63↓ 45.74↓ 73.52↓

VersaTune 50.56↑ 35.54↑ 45.48↑ 41.24↑ 60.95↑ 68.39↑ 51.58↑ 70.42↑ 58.15↑ 47.64↑ 48.02↑ 73.67↑

Qwen-2.5-7B
Uniform Distribution 40.11 31.48 25.17 25.84 59.58 31.66 19.88 65.84 55.64 46.86 45.42 73.69
Inverse Distribution 36.36↓ 26.98↓ 24.16↓ 19.35↓ 57.07↓ 29.25↓ 16.68↓ 62.78↓ 52.97↓ 44.63↓ 45.67↑ 72.92↓

VersaTune 51.65↑ 36.75↑ 34.28↑ 52.09↑ 62.48↑ 69.09↑ 68.14↑ 74.16↑ 60.68↑ 61.25↑ 49.73↑ 73.90↑

LLaMA-3-8B
Uniform Distribution 33.52 31.16 31.03 10.26 34.83 4.97 6.51 50.17 22.94 28.85 23.87 73.26
Inverse Distribution 27.83↓ 27.48↓ 25.51↓ 8.77↓ 33.71↓ 3.31↓ 6.09↓ 46.62↓ 19.67↓ 24.34↓ 23.45↓ 72.40↓

VersaTune 49.67↑ 37.87↑ 42.21↑ 45.72↑ 38.80↑ 43.58↑ 56.67↑ 60.61↑ 28.91↑ 35.65↑ 28.78↑ 73.62↑

LLaMA-2-13B
Uniform Distribution 47.66 34.85 32.98 36.54 37.54 32.85 45.72 50.77 36.54 38.55 36.89 73.50
Inverse Distribution 40.12↓ 30.67↓ 26.27↓ 28.78↓ 36.67↓ 26.76↓ 38.96↓ 48.68↓ 28.78↓ 35.83↓ 36.67↓ 73.11↓

VersaTune 55.87↑ 40.14↑ 45.78↑ 47.67↑ 39.48↑ 55.12↑ 63.87↑ 62.84↑ 47.67↑ 44.62↑ 39.64↑ 74.63↑

Qwen-2.5-14B
Uniform Distribution 50.73 39.49 47.85 38.71 64.72 64.39 39.74 73.45 68.75 72.14 54.92 75.88
Inverse Distribution 46.08↓ 35.36↓ 45.75↓ 32.56↓ 64.88↑ 60.53↓ 27.68↓ 68.22↓ 63.36↓ 68.49↓ 54.87↓ 75.42↓

VersaTune 60.59↑ 46.58↑ 50.24↑ 45.15↑ 65.84↑ 78.68↑ 62.89↑ 82.86↑ 82.64↑ 81.48↑ 55.52↑ 75.98↑

Qwen-2.5-32B
Uniform Distribution 68.86 45.28 72.34 68.18 68.03 75.14 58.30 80.17 78.59 71.04 75.26 84.40
Inverse Distribution 62.93↓ 42.05↓ 68.80↓ 66.09↓ 66.80↓ 73.93↓ 52.94↓ 79.31↓ 74.44↓ 70.71↓ 75.00↓ 83.80↓

VersaTune 75.67↑ 56.76↑ 78.72↑ 72.36↑ 70.50↑ 78.80↑ 70.77↑ 85.23↑ 86.60↑ 79.89↑ 75.81↑ 84.75↑

Open-Sourced Instruct Models

Qwen-2.5-7B
-Instruct

Uniform Distribution 45.56 33.67 33.75 42.83 58.43 38.79 34.64 66.15 59.97 61.48 55.37 71.02
Inverse Distribution 38.42↓ 27.44↓ 30.81↓ 39.67↓ 56.84↓ 35.83↓ 30.72↓ 63.70↓ 57.12↓ 58.96↓ 54.91↓ 71.23↑

VersaTune 54.81↑ 41.43↑ 43.04↑ 58.65↑ 64.97↑ 55.74↑ 60.78↑ 71.85↑ 63.95↑ 69.70↑ 58.33↑ 72.15↑

LLaMA-3-8B
-Instruct

Uniform Distribution 46.48 35.10 40.74 38.65 38.96 22.97 48.68 59.85 44.76 52.94 42.65 69.45
Inverse Distribution 43.96↓ 31.67↓ 37.38↓ 34.82↓ 35.73↓ 20.87↓ 44.84↓ 55.58↓ 40.69↓ 50.66↓ 44.81↑ 68.92↓

VersaTune 56.05↑ 43.76↑ 52.64↑ 50.81↑ 43.17↑ 48.62↑ 68.56↑ 67.74↑ 54.06↑ 59.19↑ 43.58↑ 69.67↑

Qwen-2.5-14B
-Instruct

Uniform Distribution 52.85 46.75 55.94 43.58 64.46 68.89 54.84 75.52 81.69 79.05 60.82 77.17
Inverse Distribution 49.69↓ 44.50↓ 51.78↓ 40.67↓ 62.97↓ 66.98↓ 49.58↓ 74.25↓ 78.45↓ 74.38↓ 60.26↓ 76.71↓

VersaTune 59.87↑ 58.72↑ 64.56↑ 63.85↑ 65.98↑ 77.68↑ 61.38↑ 81.84↑ 85.44↑ 84.90↑ 60.97↑ 77.95↑

Table 1: Results of VersaTune on multi-ability fostering, we compare the performances of several methods across
different models. For each domain, we evaluate the models using two relevant benchmarks. The best results are in
bold. ↑ and ↓ indicate an increase or decrease in downstream scores comparing to the uniform distribution strategy.

Instruct3, the training portion of MedQA (Jin et al.,
2020), Finance Alpaca4, Code Alpaca5 and Al-
paca (Taori et al., 2023), denoted as Dtrain =
{(Dj

train, Pj)}6j=1, to represent SFT datasets with
respect to law, medicine, finance, science, code as
well as general capabilities. In order to prevent do-
main overlap, we curated the Alpaca dataset by ex-
cluding data pertaining to the other specific five do-
mains, keeping only the general domain instances
unrelated to them. More details can be found in
Section C.2. For evaluation, we assess the model
performances on downstream tasks across various
domains, using two relevant benchmarks for each
domain, with details provided in Section C.3.

Models and Implementation. We employ
LLaMA (Dubey et al., 2024; Touvron et al.,

3https://huggingface.co/datasets/Alignment-Lab-
AI/Lawyer-Instruct

4https://huggingface.co/datasets/gbharti/finance-alpaca
5https://github.com/sahil280114/codealpaca

2023a,b) and Qwen (Bai et al., 2023; Yang et al.,
2024) series as our pretrained language models
Mθ, including base models as well as instruction-
tuned models for real-world applications. During
the fine-tuning procedure, we utilized a learning
rate scheduler featuring linear warm-up and cosine
decay, peaking at a learning rate of 2e-5, along-
side a warmup ratio of 0.03, a weight decay of 0.0
and a batch size of 128 for 4 epochs. To main-
tain consistency, the total volume of training data
across domains was controlled to 60,000 per epoch.
We conducted all fine-tuning and evaluation ex-
periments on NVIDIA RTX H800. Details of the
experimental settings can be found in Section C.

3.2 Baselines

We compare VersaTune with the following base-
lines. For the scenario of effective multi-ability
fostering: (1) The simplest baseline is uniform dis-
tribution, where each domain has an equal weight
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proportion. (2) Inverse distribution assigns the
proportionate weights to each domain in an inverse
manner to the detected knowledge distribution. (3)
Frontier models contain GPT-4o (Hurst et al.,
2024), Claude3.5-Sonnet (Anthropic, 2024) and
DeepSeek-V3 (Liu et al., 2024a). Under the case
of flexible domain expansion: (1) 100% specific
domain strategy is a common practice to employ
datasets consisting exclusively of data from a single
domain during the fine-tuning stage. (2) Domain
increase with uniform distribution of remainder
elevates the proportion of a specific domain, while
the remaining domains receive the balance of the
distribution in an evenly distributed manner.

3.3 Results
We conduct evaluations to validate the efficiency
of VersaTune across different open-source models
in scenarios that encompass both effective multi-
ability fostering and flexible domain expansion. We
summarize the observations below.

VersaTune is efficient across different mod-
els in both scenarios. For the scenario of multi-
capability fostering, Table 1 shows that VersaT-
une consistently outperforms other baseline meth-
ods across different models in terms of domain-
specific capabilities. Compared to the uniform dis-
tribution of data across domains, VersaTune en-
hances downstream task performances by 29.77%,
which further underscores the effectiveness of
our data composition strategy for enhancing the
model’s overall multi-domain capabilities dur-
ing the supervised fine-tuning phase. Moreover,
Qwen-2.5-32B + VersaTune has the potential to

surpass frontier models under medical scenarios,
achieving average improvements over GPT-4o,
Claude3.5-Sonnet and DeepSeek-V3 by 0.86%,
4.76% and 4.60%. Since we have not conducted
domain-specific refinement for domains outside
the current five specific domains, the models’ per-
formance gains on general benchmarks are not as
noticeable. For domain expansion scenarios, Ver-
saTune has nearly maintained training efficiency
while reducing the model’s loss of competencies
in other domains by 38.77% comparing to 100%
specific domain fine-tuning, as depicted in Table 8,
where we averaged the experimental results from
Qwen-2.5-7B and Qwen-2.5-14B. Detailed results
and analysis can be found in Section D.

Knowledge consistency training boosts per-
formance. In Table 1, we present the experimental
results of data composition strategies that allocate

Figure 2: Performances of Qwen-2-7B on versatile tasks
across different domains for multi-ability fostering.

domain data in a manner inversely proportional to
the pre-existing knowledge distribution detected
within each domain. As expected, the inverse dis-
tribution strategy yielded even lower↓ performance
compared to the simplest approach of uniform dis-
tribution, which evenly distributes data across all
domains. We have also conducted a comparison
involving the addition of stochastic perturbations
to the detected knowledge distribution, with the re-
sults presented in Table 7. This finding underscores
the importance of aligning domain data ratios with
the inherent knowledge distribution of the model
during training, which proves the efficacy of knowl-
edge consistency training stated in Section 2.1.1.

4 Ablations and Analysis

Previously in Section 3, we have demonstrated the
effectiveness of VersaTune in enhancing multiple
abilities and enabling flexible domain expansion
during the SFT phase. In this section, we perform
an in-depth analysis of VersaTune, where we ablate
the components of (1) dynamic adaptation in Al-
gorithm 2, and (2) the criteria for determining the
upper limit of domain expansion in Algorithm 3.

Dynamic adjustment enhances the robustness.
During the process of cultivating multiple capabil-
ities, we compared VersaTune with fixed domain
weights referring to the knowledge distribution ob-
tained from probing the target model Mθ prior to
supervised fine-tuning, namely VersaTune Con-
stant, to ablate the component of dynamic adap-
tation in Algorithm 2. Table 5, Figure 2, and Fig-
ure 8 demonstrated the high robustness of VersaT-

6652



Domain Increase with Uniform 

Distribution of Remainder (Middle)
VersaTune (Right)

100% Specific Domain (Left)

Training

Epoch

0

1 3 42

Fo
rg

et
ti

ng
M

as
te

ri
ng Law

Medicine
Science

Finance
Code
Others

0.4

0.4

0.8

0.8

0.6

0.2

0.2

0.6

Training

Epoch

0
1 3 42

Ta
sk

 P
er

fo
rm

an
ce

0.2

0.4

0.6

0.8

0.7

0.5

0.3

0.1

(a) Non-Target Domains (b) Target Domain

Figure 3: Domain expansion for medicine domain. We evaluated checkpoints from each epoch. Left (a) presents
the grouped stacked bar chart showing the growth or loss of capabilities in non-target domains compared to the
pre-fine-tuning state. Within each group, the left, center, and right bars represent: (1) 100% specific domain
fine-tuning, (2) domain increase with uniform distribution of remainder, and (3) VersaTune implementation based
on Algorithm 3. Right (b) features the line chart depicting the enhancement of the medicine domain’s capabilities.
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Figure 4: The average scores of models’ performances
across domains during the domain expansion process,
with detailed domain variations provided in Figure 14.

une, which dynamically adjusts domain weights
throughout the training process by continuously
monitoring the learnable potential within each do-
main. In contrast, training with fixed domain
weights exhibits certain fluctuations. A key rea-
son for this phenomenon is the distribution of do-
main knowledge mastered by the model changes
during training, and the learning efficiency varies
among domains. Therefore, dynamically adjusting
domain data weights based on the model’s feed-
back at different stages of training is crucial. More
experimental results can be found in Section D.1.

Establishing proportion thresholds for spe-
cific domains counts during domain expansion.
We consider conducting a comparative analysis be-
tween the outcomes of VersaTune and those imple-

menting an unconditional dynamic increase of the
specific domain, where we remove the implemen-
tation of Line 8 in Algorithm 3. Figure 4 shows
that the criteria for determining the upper limit on
the proportion of a specific domain during domain
expansion, has mitigated the loss of capabilities
in other domains experienced by the target model
Mθ during the fine-tuning process. Concurrently,
it ensures gains in the capacity for the current do-
main of interest. We speculate that it is because
by the later stages of fine-tuning, models’ profi-
ciency in the target domain approaches saturation.
Further increasing the proportion of the current do-
main provides diminishing returns and can lead to
a significant loss of performance in other domains.
Detailed analysis are provided in Section D.2.2.

5 Related Work

Data Reweighting for LLM Training. Data
reweighting maintains full access to the entire
dataset while adjusts the relative importance of
each instance for various target tasks, which is es-
sential for both pretraining and fine-tuning stages of
LLMs (Wang et al., 2023). During the pretraining
stage, DoReMi (Xie et al., 2024b) and DoGE (Fan
et al., 2023) employ lightweight proxy models to
estimate weights for different data sources, which
are subsequently applied to the formal training of
LLMs. Furthermore, Sheared LLaMA (Xia et al.,
2023) implements an online variant of DoReMi.
As for the SFT phase, Dong et al. (Dong et al.,
2023) focus on enhancing the model’s math reason-
ing, coding, and human-aligning abilities through
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a dual-stage mixed fine-tuning strategy. However,
the mixing ratios for different domains rely heavily
on empirical methods, and the covered domains are
not holistic. We provide a comprehensive overview
of the model’s capabilities across domains during
the SFT stage and proposes appropriate and holistic
multi-ability fine-tuning methods.

Knowledge Detection in LLMs. Investigating
the knowledge contained in LLMs is essential for
guiding their subsequent training (Chang et al.,
2024). The knowledge encompasses multiple di-
mensions, such as different domain sources and
task attributes. Existing work on LLM knowledge
detection primarily focuses on prompting and cali-
bration. Directly prompting the model to generate
sequences and extracting confidence scores from
the model (Gekhman et al., 2024; Kadavath et al.,
2022; Kuhn et al., 2023; Manakul et al., 2023) is
a common strategy. However, such approaches
highly depend on prompt design and task selection,
introducing bias into the assessment. Other studies
have attempted to infer the training data mixtures
used in previous training stages (Antoniades et al.,
2024; Hayase et al., 2024; Hu et al., 2022; Ye et al.,
2022). The essence of these studies is to evaluate
the current knowledge state of the models and pro-
vide targeted strategies for data organization and
management in subsequent training phases.

6 Conclusion

In this work, we introduce VersaTune, a noval data
composition framework designed to enhance the
multi-domain capabilities of models during the
supervised fine-tuning phase of LLMs, which is
based on the domain knowledge distribution of the
target model. Experimental results have demon-
strated that VersaTune achieves excellent training
outcomes in both scenarios of overall multi-domain
enhancement and flexible domain expansion.
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Limitations

There are some limitations in our work. Firstly, the
classification framework of vertical domains may

not be comprehensive in scope, and since the classi-
fier relies on advanced language models, it cannot
guarantee absolute accuracy in classification. Ad-
ditionally, when computing the learnable potential
and forgetting degree of knowledge, to balance the
computational cost and effectiveness, we employ a
lightweight proxy model to for calculation, yet it
does not fully represent the performance tendencies
of the target model during actual evaluating.

Ethical Considerations

Integrating Large Language Models (LLMs) into
domain reweighting settings holds potential for im-
proving multi-domain capabilities of models, while
it also brings several ethical considerations that
must be addressed to ensure responsible and ben-
eficial use. VersaTune dynamically adjusts data
distribution based on the model’s existing knowl-
edge to ensure fairness and avoid biases that could
arise from the data composition process. Addi-
tionally, VersaTune adhere to privacy standards by
merely utilizing open-sourced datasets, ensuring
that personal data used in the training process is
anonymized and securely handled to protect indi-
vidual privacy rights.
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A Background and Discussion

In this section, we provide the background information and design motivation for our VersaTune.

A.1 Pretraining and Supervised Fine-Tuning
The training process of Large Language Models (LLMs) generally involves the pretraining and fine-tuning
stages. We have outlined several concepts about LLMs training.

A.1.1 Pretraining
Large Language Models (LLMs) establish basic knowledge abilities, including language understanding
and text generation, during the pretraining stage (Brown et al., 2020). In this stage, LLMs engage in
unsupervised training through the processing of extensive raw text corpora, thereby enhancing their
capabilities in language modeling. For a given sequence x = {x1, x2, ..., xn}, the typical task for LLMs
involves the prediction of the subsequent token xi given the preceding tokens x<i as contextual input. The
goal is to maximize the likelihood function presented in Equation (6):

LPT
LLM (x) =

n∑

i=1

logP (xi|x<i) (6)

Special TokenPretraining

Visible

Self-Attention
<BOS> <EOS> <BOS> <EOS> <BOS>

Large Language Model

Masked

Next Token 
Prediction

<BOS> Beginning of Sequence
<EOS> End of Sequence

Raw Documents

Text Generation

Basic Capability

<BOS>

Pretrained Model

Fine-Tuning

Multi-Ability Enhancement

Figure 5: Illustration of the LLMs training workflow. In
the pretraining phase, raw documents are concatenated
into a sequence using special tokens such as <BOS> (Be-
ginning of Sequence) and <EOS> (End of Sequence),
thereby endowing the LLM with fundamental language
generation capabilities. In the fine-tuning phase, the
model’s abilities in various domains are further enhanced.

Beginning of Sequence (<BOS>) During
the above process, the Beginning of Sequence
(<BOS>) token plays an important role, which
serves as a signal to the model that the input
sequence is starting (Brown et al., 2020; Li et al.,
2023a; Wu et al., 2025). It can be thought of
as a special marker that indicates the start of a
new sequence, allowing the model to reset its
context and begin processing a new piece of text.
In the context of pretraining, the <BOS> token
is used to initialize the input to the model, and
it can be concatenated with the actual text data
to form the input sequence. This token helps the
model to differentiate between the start of a new
input and the continuation of an existing one. It
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is particularly crucial in tasks where the model needs to generate text or understand the beginning of a
new sentence or document, which helps the model to learn the boundaries of text sequences and to better
model the statistical properties of the language data it is trained on. The use of <BOS> tokens, along
with other special tokens like <EOS> (End of Sequence), helps the model to learn the boundaries of text
sequences and to better model the statistical properties of the language data it is trained on.

A.1.2 Supervised Fine-Tuning
The Supervised Fine-Tuning (SFT) stage of a Large Language Model (LLM) involves further training to
refine the model’s task-solving capabilities and ensure greater alignment with human instructions (Zhao
et al., 2023a). While recent research has delved into exploring fine-tuning methods for multi-task
enhancement (Dong et al., 2023; Sanh et al., 2021), they are still in their early stages. However, as shown
by proprietary models such as GPT-4 (Achiam et al., 2023), Gemini (Team et al., 2023), and DeepSeek
series (Liu et al., 2024a), which exhibit outstanding multi-task performance, improving a model’s versatile
capabilities across various domains during the SFT phase is crucial. Therefore, our work systematically
investigates methods to enhance multi-domain performance during the SFT stage to bridge this gap.

A.2 Analysis on Catastrophic Forgetting

Target Domain
Training Step Variations in Comprehensive Domains (%)

Sum. (%)
(Epoch) Law Medicine Finance Science Code Other

Law

1 - ↓18.82 ↑14.71 ↓11.76 ↓11.18 ↓5.00 ↓32.05
2 - ↓12.65 ↑30.59 ↓4.41 ↓5.29 ↓11.76 ↓3.52
3 - ↓17.94 ↑12.35 ↓8.82 ↓23.53 ↓5.00 ↓42.94
4 - ↓5.00 ↓2.06 ↓31.18 ↓21.76 ↓12.65 ↓72.65

Medicine

1 ↓10.29 - ↓3.82 ↑24.12 ↓19.41 ↓7.35 ↓16.75
2 ↓18.82 - ↓6.47 ↑40.00 ↓7.94 ↓17.65 ↓10.88
3 ↓22.35 - ↓8.82 ↑7.94 ↓19.12 ↓10.00 ↓52.35
4 ↓27.94 - ↓11.76 ↓2.35 ↓21.76 ↓12.65 ↓76.46

Finance

1 ↑20.59 ↓7.94 - ↓10.29 ↓12.65 ↓6.47 ↓16.76
2 ↑18.24 ↓9.71 - ↓9.41 ↑5.29 ↓8.82 ↓4.41
3 ↑23.53 ↓9.41 - ↓17.35 ↓14.71 ↓7.94 ↓25.88
4 ↑5.00 ↓9.12 - ↓20.29 ↓12.94 ↓21.76 ↓59.11

Science

1 ↓10.29 ↑17.06 ↓3.82 - ↓4.71 ↓7.35 ↓9.11
2 ↓11.47 ↑12.35 ↓4.71 - ↓5.88 ↓12.94 ↓22.65
3 ↓21.76 ↑7.94 ↓8.82 - ↓4.41 ↓10.00 ↓37.05
4 ↓27.94 ↑2.35 ↓11.47 - ↓12.65 ↓12.59 ↓62.30

Code

1 ↓3.82 ↑7.35 ↓17.35 ↑9.12 - ↓7.29 ↓11.99
2 ↓9.71 ↓6.47 ↓7.94 ↑5.29 - ↓6.18 ↓25.01
3 ↓22.35 ↓8.82 ↓14.12 ↑7.94 - ↓10.02 ↓47.37
4 ↓26.18 ↓7.06 ↓8.82 ↓3.24 - ↓22.65 ↓67.95

Table 2: Variations in models’ performance on non-target
domain tasks when trained on single sourced dataset.↑
and ↓ indicate an increase or decrease in the percentage of
scores (%) compared to the initial state before fine-tuning.

During the SFT phase, it is a typical practice to
employ datasets specific to a particular domain
for the fine-tuning of LLMs, which may lead to
a significant performance drop of knowledge in
non-target domains, a phenomenon commonly
referred to as Catastrophic Forgetting (Kaushik
et al., 2021; McCloskey and Cohen, 1989). We
conducted experiments on open-sourced models
including LLaMA (Dubey et al., 2024; Touvron
et al., 2023a,b) and Qwen (Bai et al., 2023; Yang
et al., 2024) series to assess how the model’s
proficiency in other domains changes when fine-
tuned with data from a single domain, as depicted
in Table 2 and Figure 6. We have regulated the
number of training instances per epoch to a fixed
count of 10,000. More details on training and
evaluation settings can be found in Section 3.1
and Section C. Our findings indicate that when a model is trained exclusively with data from a single
domain, its performance on tasks from other domains tends to degrade progressively over the course of
training. This experimental outcome has provided significant motivation and direction for our work.

Figure 6: Illustration of variations in models’ performance on non-target domain tasks when trained on a single-
domain dataset. The grouped stacked bar chart on the left (a) describes the detailed changes in performance across
various non-target domains as training progresses. Each group of stacked bars, from left to right, represents the use
of training datasets from law, medicine, finance, science, and code, respectively. The line chart on the right (b)
shows the overall performance changes in all non-target domains. The color of each line indicates the domain from
which the training dataset was sourced.
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B Method Details

B.1 Algorithm for Flexible Domain Expansion
Here we provide the detailed algorithm of flexible domain expansion (Section 2.2.3). As outlined in
Algorithm 3, we initially establish the data distribution based on the knowledge detected from the original
pretrained model (Line 1). At each training step t, we calculate the learnable potential and forgetting
degree scores for each domain (Line 4-5), and assign domain weights for the current training phase
following the method from Algorithm 2 (Line 6). A trade-off is necessary between the remaining learning
margin of the domain that requires focused cultivation and the model’s forgetting degree towards other non-
target domains. If the improvement benefit of the specific domain exceeds the average forgetting degree
of the other domains (ratio greater than ε), we increase the data weight of the current specific domain by
δ, and proportionally reduce the weights of the other non-target domains according to Equation (5) (Line
8-9). Otherwise, we maintain the current domain distribution and only perform minor adjustments and
renormalization as described in Algorithm 2 (Line 10-11). Subsequently, we update the parameters of the
target model Mθ (Line 13).

Algorithm 3 VersaTune Multi-Ability Fine-Tuning (for Domain Expansion)

Input: Base model to be fine-tuned M
(0)
θ , Domains that require enhanced cultivation De, Domain

reference loss {ℓjref}kj=1, Hyperparameters: number of training steps T , magnitude of adjustment σ,
extent of domain adjustment δ, variation threshold ε
Parameter: Data proportion {Pj}kj=1 of the SFT dataset

Output: Fine-tuned multi-ability model M (T )
θ

Define γ: learnable potential of the current domain
Define φ: forgetting degree of the current domain

1: Initialize domain proportion {P (0)
j }kj=1 according to Equation (1) and Algorithm 1

2: for t = 1, 2, . . . , T do
3: for j = 1, 2, . . . , k do

4: Learnable potential for the j-th domain: γ(t)j = max{
ℓj
θ(t)

−ℓjref

ℓj
θ(t)

, 0}

5: Forgetting degree for the j-th domain: φ(t)
j = max{

ℓj
θ(t)

−ℓj
θ(t−1)

ℓj
θ(t−1)

, 0}

6: Update domain weights: P (t)′

j = P
(t−1)
j (1 + σγ

(t)
j )

7: end for
8: if 1

k

∑k
j=1,j ̸=e φ

(t)
j < εγ

(t)
e then

9: Update specific domain weight:

P
(t)
j =





P
(t−1)
j + δ, if j = e

P
(t)′
j∑k

i=1,j ̸=e P
(t)′
i

(1− P
(t−1)
j − δ), others

10: else

11: Renormalize domain weights: P (t)
j =

P
(t)′
j∑k

i=1 P
(t)′
i

, ∀j ∈ {1, 2, ..., k}
12: end if
13: Update parameters of fine-tuned model M (t)

θ

14: end for
15: Return Fine-tuned model M (T )

θ
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C Experiments Details

C.1 Knowledge Distribution Detection

During the knowledge distribution detection phase for our target models, we have manually annotated
120 samples (20 samples for each domain) to fine-tune Qwen2.5-72B-Instruct6, and employed the trained
model as the proprietary model MP . For each target model Mθ slated for supervised fine-tuning, we
prompted the generation of 40K data samples using the Beginning of Sequence (< BOS >) token, with
the sample number set at NS = 40, 000. These samples were subsequently assessed by the proprietary
model MP to ascertain their probabilistic affinity for several domains, including law, medicine, finance,
science, code, and others. To ensure the reliability of our statistical outcomes, the entire process was
iterated 5 times, with the maximum number of iterations set at T = 5. The average knowledge distribution
was then computed across these iterations. Empirically, with a dataset of 40K samples, the distribution of
sequences generated by Mθ across domains demonstrated a high degree of consistency, with an overall
variance not exceeding 1.874%. The final domain knowledge distribution for each open-source model is
depicted in the stacked bar chart presented in Figure 7. The pre-existing domain knowledge distribution
varies among different models. Therefore, it is essential to develop a data composition strategy that is
tailored to the specific model being trained.

Domain Knowledge Category

Law Medicine Finance Science Code Other

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

LLaMA-2-7B

Qwen-2-7B

LLaMA-2-13B

Qwen-2.5-7B

Qwen-2.5-14B

Qwen-2.5-32B

LLaMA-3-8B

Figure 7: An illustration of the domain knowledge distribution among models.

C.2 Training Details

Models and Implementation. All experiments were conducted based on full-parameter fine-tuning,
during which we utilized a learning rate scheduler featuring linear warm-up and cosine decay, peaking at a
learning rate of 2e-5, alongside a warmup ratio of 0.03, a weight decay of 0.0 and a batch size of 128 for 4
epochs. For scenarios aimed at fostering multi-ability, we trained and assessed models including LLaMA-
2-7B, LLaMA-3-8B, LLaMA-2-13B, Qwen-2-7B, Qwen-2.5-7B, Qwen-2.5-14B, and Qwen-2.5-32B. In
the context of domain expansion, the training and evaluations were performed using the Qwen-2.5-7B
and Qwen-2.5-14B models. The total number of samples per epoch was set to 60k, with each domain’s
samples being downsampled or upsampled according to the corresponding weights during the mixing
process. Regarding reference models, for the LLaMA series, we used the Sheared-LLaMA-1.3B (Xia
et al., 2023) as a lightweight reference model; as for the Qwen series, we utilized Qwen-2-1.5B and
Qwen-2.5-1.5B as our reference models.

Training Datasets. For training, we selected representative datasets for each domain, which exhibit
significant differences in format, sentence length, and domain-specific content. These differences reflect
the heterogeneity of training data across various domains during the fine-tuning stage. Further details
about these datasets can be found in Table 3. Specifically, for the Alpaca dataset, which we utilize for

6https://huggingface.co/Qwen/Qwen2.5-72B-Instruct
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representing the general domain, we have excluded data related to law, medicine, finance, science, and
code domains to ensure the precision and authenticity of the actual domain weight.

Dataset # Instance Source # Rounds Full

Lawyer-Instruct 9241 Reformatted from LawyerChat Dataset7 1
√

MedQA 10178 Professional Medical Board Exams 1 Training Portion
Finance Alpaca 68912 Alpaca, FiQA, 1.3k Pairs Generated using GPT3.5 1

√

Sonnet3.5 Science Conversations 8835 Scientific Conversations with Sonnet3.5 11.1
√

Code Alpaca 20022 Generate Based on Self-Instruct (Wang et al., 2022) 1
√

Alpaca 49,087 Generate Based on Self-Instruct (Wang et al., 2022) 1 Excluding Samples of Other Domains

Table 3: Details of the training datasets. “Full” indicates whether we utilize the entire data samples of the dataset.

C.2.1 Hyper-Parameters Setting
During the multi-domain task fine-tuning of LLMs, we configured the number of training steps T in
Algorithm 2 and Algorithm 3 to 4 epochs. We experimented with various magnitude of adjustment,
specifically [0.1, 0.3, 0.5, 0.8, 1.0], and observed consistent weight ordering across domains, which far
outperformed our baselines (detailed in Section 3.2). Based on these experimental outcomes, we set the
magnitude of adjustment σ to 0.5. Additionally, in the context of domain expansion, we set the increment
for the target domain δ to 10% per training step, considering the overall domain weight distribution across
models. The variation threshold, denoted as ε, reflects the trade-off between enhancing specific domain
skills and mitigating the loss of capabilities in non-target domains, where we assigned a weight of 1.

C.3 Evaluation Details
We evaluate the performance of the models on downstream tasks across various domains, using two
relevant benchmarks for each domain. Details of the datasets are provided in Table 4. Specifically, for the
MedMCQA dataset, since the standard answers for the test set are not publicly available, we conducted
our evaluations using the validation dataset. For the MMLU dataset, we selected 14 sub-tasks to construct
the MMLU-Sci subset (Zhang et al., 2024) for testing, aiming to ensure a robust and thorough evaluation.

Domain Benchmark # Instance Language N-Shot

Law
LegalBench (Guha et al., 2024) 90,394 (164 sub-tasks) English 1

LawBench (Fei et al., 2023) 10,000 (20 sub-tasks) Chinese 1

Medicine
MedQA (Jin et al., 2020) 1,273 English 1

MedMCQA (Pal et al., 2022) 4,183 English 1

Finance
FinEval (Zhang et al., 2023) 4,661 (34 sub-tasks) Chinese 1

FinanceIQ (Zhang and Yang, 2023) 7,173 (10 sub-tasks) Chinese 5

Science
SciEval (Sun et al., 2024) 15,901 English 1

MMLU-Sci (Hendrycks et al., 2020) 2,999 (14 sub-tasks) English 0

Code
HumanEval (Chen et al., 2021) 164 English 0

MBPP (Austin et al., 2021) 974 English 0

Other (General)
AGIEval (Zhong et al., 2023) 8,062 (20 sub-tasks) English, Chinese 0

HellaSwag (Zellers et al., 2019) 10,003 English 0

Table 4: Details of the benchmarks we employed for evaluation. “N-Shot” indicates that the model is given N
example(s) to understand and perform the task.
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D More Experiment Results

D.1 Multi-Ability Fostering

We present the results of the ablation study along with the raw scores from domain-specific benchmarks. As
shown in Table 5 and Figure 8, VersaTune Constant is implemented with fixed domain weights derived
from the knowledge distribution obtained by probing the target model Mθ prior to fine-tuning, where
we ablate the components of dynamic adaptation in Algorithm 2 for an in-depth analysis. Additionally,
to demonstrate the robustness of the dynamic adjustment more clearly, we compare the domain-level
averaged performance of the VersaTune constant and VersaTune strategies, as depicted in Table 6.

Model Method
Law Medical Finance Science Code General

LegalBench LawBench MedQA MedMCQA FinEval FinanceIQ SciEval MMLU-Sci HumanEval MBPP AGIEval HellaSwag

Open-Sourced Base Models

LLaMA-2-7B

Uniform Distribution 15.71 30.72 23.45 27.57 33.50 2.71 9.30 42.89 5.67 3.44 20.16 71.40
Inverse Distribution 13.23↓ 26.94↓ 21.38↓ 26.52↓ 32.96↓ 2.53↓ 8.98↓ 39.67↓ 3.47↓ 2.42↓ 18.83↓ 71.33↓

VersaTune Constant 21.47↑ 35.55↑ 30.17↑ 36.72↑ 35.89↑ 6.28↑ 49.91↑ 45.87↑ 12.47↑ 14.47↑ 22.31↑ 71.89↑
VersaTune 23.18↑ 36.31↑ 35.04↑ 40.75↑ 36.27↑ 29.04↑ 56.75↑ 50.06↑ 15.62↑ 15.68↑ 24.67↑ 71.76↑

Qwen-2-7B

Uniform Distribution 39.05 31.99 35.07 17.73 59.49 14.62 25.30 62.73 53.26 37.82 47.31 73.60
Inverse Distribution 34.01↓ 27.81↓ 23.90↓ 16.31↓ 56.53↓ 11.30↓ 18.57↓ 58.25↓ 50.65↓ 33.63↓ 45.74↓ 73.52↓

VersaTune Constant 45.86↑ 32.72↑ 40.89↑ 39.13↑ 60.63↑ 40.82↑ 45.93↑ 67.29↑ 56.71↑ 45.87↑ 48.16↑ 72.98↓

VersaTune 50.56↑ 35.54↑ 45.48↑ 41.24↑ 60.95↑ 68.39↑ 51.58↑ 70.42↑ 58.15↑ 47.64↑ 48.02↑ 73.67↑

Qwen-2.5-7B

Uniform Distribution 40.11 31.48 25.17 25.84 59.58 31.66 19.88 65.84 55.64 46.86 45.42 73.69
Inverse Distribution 36.36↓ 26.98↓ 24.16↓ 19.35↓ 57.07↓ 29.25↓ 16.68↓ 62.78↓ 52.97↓ 44.63↓ 45.67↑ 72.92↓

VersaTune Constant 48.78↑ 35.20↑ 30.20↑ 49.71↑ 62.94↑ 48.47↑ 56.04↑ 71.96↑ 59.15↑ 52.10↑ 47.75↑ 73.88↑

VersaTune 51.65↑ 36.75↑ 34.28↑ 52.09↑ 62.48↑ 69.09↑ 68.14↑ 74.16↑ 60.68↑ 61.25↑ 49.73↑ 73.90↑

LLaMA-3-8B

Uniform Distribution 33.52 31.16 31.03 10.26 34.83 4.97 6.51 50.17 22.94 28.85 23.87 73.26
Inverse Distribution 27.83↓ 27.48↓ 25.51↓ 8.77↓ 33.71↓ 3.31↓ 6.09↓ 46.62↓ 19.67↓ 24.34↓ 23.45↓ 72.40↓

VersaTune Constant 47.85↑ 37.75↑ 37.33↑ 30.15↑ 37.93↑ 25.27↑ 54.77↑ 56.04↑ 29.88↑ 33.22↑ 25.62↑ 73.33↑

VersaTune 49.67↑ 37.87↑ 42.21↑ 45.72↑ 38.80↑ 43.58↑ 56.67↑ 60.61↑ 28.91↑ 35.65↑ 28.78↑ 73.62↑

LLaMA-2-13B

Uniform Distribution 47.66 34.85 32.98 36.54 37.54 32.85 45.72 50.77 36.54 38.55 36.89 73.50
Inverse Distribution 40.12↓ 30.67↓ 26.27↓ 28.78↓ 36.67↓ 26.76↓ 38.96↓ 48.68↓ 28.78↓ 35.83↓ 36.67↓ 73.11↓

VersaTune Constant 53.79↑ 38.73↑ 40.69↑ 42.74↑ 39.33↑ 38.47↑ 57.13↑ 55.10↑ 42.74↑ 42.76↑ 37.91↑ 74.27↑

VersaTune 55.87↑ 40.14↑ 45.78↑ 47.67↑ 39.48↑ 55.12↑ 63.87↑ 62.84↑ 47.67↑ 44.62↑ 39.64↑ 74.63↑

Qwen-2.5-14B

Uniform Distribution 50.73 39.49 47.85 38.71 64.72 64.39 39.74 73.45 68.75 72.14 54.92 75.88
Inverse Distribution 46.08↓ 35.36↓ 45.75↓ 32.56↓ 64.88↑ 60.53↓ 27.68↓ 68.22↓ 63.36↓ 68.49↓ 54.87↓ 75.42↓

VersaTune Constant 56.94↑ 45.64↑ 48.11↑ 41.64↑ 65.03↑ 73.24↑ 48.31↑ 78.46↑ 78.72↑ 78.33↑ 55.04↑ 76.45↑
VersaTune 60.59↑ 46.58↑ 50.24↑ 45.15↑ 65.84↑ 78.68↑ 62.89↑ 82.86↑ 82.64↑ 81.48↑ 55.52↑ 75.98↑

Qwen-2.5-32B

Uniform Distribution 68.86 45.28 72.34 68.18 68.03 75.14 58.30 80.17 78.59 71.04 75.26 84.40
Inverse Distribution 62.93↓ 42.05↓ 68.80↓ 66.09↓ 66.80↓ 73.93↓ 52.94↓ 79.31↓ 74.44↓ 70.71↓ 75.00↓ 83.80↓

VersaTune Constant 71.98↑ 54.93↑ 75.42↑ 71.05↑ 69.38↑ 77.07↑ 65.87↑ 82.11↑ 82.38↑ 77.16↑ 74.97↓ 84.82↑
VersaTune 75.67↑ 56.76↑ 78.72↑ 72.36↑ 70.50↑ 78.80↑ 70.77↑ 85.23↑ 86.60↑ 79.89↑ 75.81↑ 84.75↑

Open-Sourced Instruct Models

Qwen-2.5-7B
-Instruct

Uniform Distribution 45.56 33.67 33.75 42.83 58.43 38.79 34.64 66.15 59.97 61.48 55.37 71.02
Inverse Distribution 38.42↓ 27.44↓ 30.81↓ 39.67↓ 56.84↓ 35.83↓ 30.72↓ 63.70↓ 57.12↓ 58.96↓ 54.91↓ 71.23↑

VersaTune Constant 52.63↑ 38.72↑ 40.64↑ 55.82↑ 63.01↑ 50.52↑ 58.60↑ 69.35↑ 63.34↑ 68.48↑ 56.62↑ 72.50↑
VersaTune 54.81↑ 41.43↑ 43.04↑ 58.65↑ 64.97↑ 55.74↑ 60.78↑ 71.85↑ 63.95↑ 69.70↑ 58.33↑ 72.15↑

LLaMA-3-8B
-Instruct

Uniform Distribution 46.48 35.10 40.74 38.65 38.96 22.97 48.68 59.85 44.76 52.94 42.65 69.45
Inverse Distribution 43.96↓ 31.67↓ 37.38↓ 34.82↓ 35.73↓ 20.87↓ 44.84↓ 55.58↓ 40.69↓ 50.66↓ 44.81↑ 68.92↓

VersaTune Constant 54.83↑ 42.35↑ 48.59↑ 44.67↑ 41.65↑ 43.54↑ 62.80↑ 65.81↑ 52.85↑ 57.64↑ 43.96↑ 68.79↓

VersaTune 56.05↑ 43.76↑ 52.64↑ 50.81↑ 43.17↑ 48.62↑ 68.56↑ 67.74↑ 54.06↑ 59.19↑ 43.58↑ 69.67↑

Qwen-2.5-14B
-Instruct

Uniform Distribution 52.85 46.75 55.94 43.58 64.46 68.89 54.84 75.52 81.69 79.05 60.82 77.17
Inverse Distribution 49.69↓ 44.50↓ 51.78↓ 40.67↓ 62.97↓ 66.98↓ 49.58↓ 74.25↓ 78.45↓ 74.38↓ 60.26↓ 76.71↓

VersaTune Constant 56.98↑ 56.68↑ 62.83↑ 60.92↑ 65.52↑ 74.80↑ 60.82↑ 81.07↑ 84.96↑ 84.63↑ 61.41↑ 77.49↑

VersaTune 59.87↑ 58.72↑ 64.56↑ 63.85↑ 65.98↑ 77.68↑ 61.38↑ 81.84↑ 85.44↑ 84.90↑ 60.97↑ 77.95↑

Table 5: Experimental results of VersaTune on multi-ability fostering, we compare the performances of several
methods across different base and instruction-tuned models. For each domain, we evaluate the models using two
relevant benchmarks. The best and second best results are in bold and underlined. Symbols ↑ and ↓ indicate an
increase or decrease in downstream scores comparing to the uniform distribution strategy.

To further strengthen the robustness of VersaTune as well as the support for Statement 1 (Knowledge
Consistency Training), we have conducted experiments on Qwen-2.5-7B and Qwen-2.5-14B with more
baselines, employing Qwen2.5-1.5B as the reference model. The additional baselines are as follows:

• Knowledge Distribution + Stochastic Perturbations: We apply controlled, stochastic perturbations
(±10%, ±15% and ±20%) to the domain weight distributions detected in the base model Mθ.
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• Random Mixing Ratio: Each domain is assigned a random weight during the data sampling procedure
of training.

• DoReMi (Xie et al., 2024b): Domain Reweighting with Minimax Optimization (DoReMi) first trains
a small proxy model using group distributionally robust optimization (Group DRO) over domains to
produce domain weights (mixture proportions) without knowledge of downstream tasks.

• DoGE (Fan et al., 2023): DOmain reweighting with Generalization Estimation (DoGE) is similar to
DoReMi, but focusing more on generalizing to out-of-domain target tasks.

It should be noted that DoReMi and DoGE focus on domain reweighting during pretraining, where
the domains typically include broad categories such as wikipedia, books, news, web, etc. In contrast,
our method is tailored for the SFT scenario and operates under the domain taxonomy including law,
medicine, finance, science, code, etc. To enable a fair comparison, we adapted the domain definitions
used in DoReMi and DoGE to align with our domain categorization framework. Following the setup of
DoReMi and DoGE, we initialize domain weights based on the natural data size of each domain.

Model Method Law Medical Finance Science Code General Avg.

Open-Sourced Base Models

LLaMA-2-7B
VersaTune Constant 28.51↓ 33.45↓ 21.09↓ 47.89↓ 13.47↓ 47.10↓ 31.92↓

VersaTune 29.75 37.90 32.66 53.41 15.65 48.22 36.27

Qwen-2-7B
VersaTune Constant 39.29↓ 40.01↓ 50.73↓ 56.61↓ 51.29↓ 60.57↓ 49.75↓

VersaTune 43.05 43.36 64.67 61.00 52.90 60.85 54.31

Qwen-2.5-7B
VersaTune Constant 41.99↓ 39.96↓ 55.71↓ 64.00↓ 55.63↓ 60.82↓ 53.02↓

VersaTune 44.20 43.19 65.79 71.15 60.97 61.82 57.85

LLaMA-3-8B
VersaTune Constant 42.80↓ 33.74↓ 31.60↓ 55.41↓ 31.55↓ 49.48↓ 40.76↓

VersaTune 43.77 43.97 41.19 58.64 32.28 51.20 45.18

LLaMA-2-13B
VersaTune Constant 46.26↓ 41.72↓ 38.90↓ 56.12↓ 42.75↓ 56.09↓ 46.97↓

VersaTune 48.01 46.73 47.30 63.36 46.15 57.14 51.45

Qwen-2.5-14B
VersaTune Constant 51.29↓ 44.88↓ 34.14↓ 63.39↓ 78.53↓ 65.75↓ 56.33↓

VersaTune 53.59 47.70 72.26 72.88 82.06 65.75 65.71

Qwen-2.5-32B
VersaTune Constant 63.46↓ 73.24↓ 73.23↓ 73.99↓ 79.77↓ 79.90↓ 73.93↓

VersaTune 66.22 75.54 74.65 78.00 83.25 80.28 76.32

Open-Sourced Instruct Models

Qwen-2.5-7B-Instruct
VersaTune Constant 45.68↓ 48.23↓ 56.77↓ 63.98↓ 65.91↓ 64.56↓ 57.52↓

VersaTune 48.12 50.85 60.36 66.32 66.83 65.24 59.62

LLaMA-3-8B-Instruct
VersaTune Constant 48.59↓ 46.63↓ 42.60↓ 64.31↓ 55.25↓ 56.38↓ 52.29↓

VersaTune 49.91 51.73 45.90 68.15 56.63 56.63 54.82

Qwen-2.5-14B-Instruct
VersaTune Constant 56.83↓ 61.88↓ 70.16↓ 70.95↓ 84.80↓ 69.45↓ 69.01↓

VersaTune 59.30 64.21 71.83 71.61 85.17 69.46 70.26

Table 6: Ablation studies on multi-ability fostering, we compare the performances of VersaTune and VersaTune
Constant across different models. The domain performance scores were calculated as the arithmetic mean of
the respective benchmark scores obtained for each domain. “Avg” denotes the average performance across all
domain-specific tasks. ↑ and ↓ indicate an increase or decrease in scores comparing to the VersaTune strategy.

Model Method
Law Medical Finance Science Code General

LegalBench LawBench MedQA MedMCQA FinEval FinanceIQ SciEval MMLU-Sci HumanEval MBPP AGIEval HellaSwag

Qwen-2.5-7B

Knowledge Distribution ±10% 42.51 34.73 28.88 37.64 62.55 42.26 53.77 70.84 59.55 50.07 48.14 73.80
Knowledge Distribution ±15% 43.16 34.27 27.45 32.40 62.75 40.59 54.21 65.42 55.48 50.16 47.89 73.95
Knowledge Distribution ±20% 39.97 31.98 24.97 28.23 61.80 35.13 48.82 66.06 56.05 48.25 44.63 72.67

Random Mixing Ratio 38.17 27.86 25.88 28.14 58.46 36.67 28.53 72.85 58.43 45.62 49.56 72.39
DoReMi 46.64 34.56 25.13 30.05 59.02 40.81 40.84 64.77 53.90 47.47 48.93 73.31
DoGE 43.82 32.71 26.80 34.41 57.73 38.75 45.97 68.39 52.88 48.25 47.62 74.15

VersaTune 51.65 36.75 34.28 52.09 62.48 69.09 68.14 74.16 60.68 61.25 49.73 73.90

Qwen-2.5-14B

Knowledge Distribution ±10% 55.05 41.32 45.61 41.00 65.10 69.85 46.41 79.83 76.24 77.39 55.30 76.37
Knowledge Distribution ±15% 54.96 40.75 47.98 39.15 64.55 65.57 46.04 75.59 72.08 75.60 55.45 75.60
Knowledge Distribution ±20% 51.18 36.38 47.26 37.67 64.90 62.31 41.09 73.64 71.42 74.87 54.98 76.01

Random Mixing Ratio 52.79 38.45 46.93 42.58 64.62 62.98 42.87 70.05 74.96 75.65 54.63 75.86
DoReMi 58.66 44.36 45.24 36.72 64.17 65.46 48.78 71.44 73.74 72.27 54.80 76.25
DoGE 56.47 45.85 47.06 40.09 63.75 64.20 43.76 70.28 70.15 74.23 55.74 75.54

VersaTune 60.59 46.58 50.24 45.15 65.84 78.68 62.89 82.86 82.64 81.48 55.52 75.98

Table 7: Experimental results of VersaTune with additional baselines. For each domain, we evaluate the models
using two relevant benchmarks. The best and second best results are in bold and underlined.
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(a) LLaMA-2-7B (b) LLaMA-3-8B (c) LLaMA-2-13B

(d) Qwen-2.5-7B (e) Qwen-2.5-14B (f) Qwen-2.5-32B

Figure 8: Performances of different models on versatile benchmarks related to various domains under the scenario
of effective multi-ability fostering. The background color of the radar chart signifies the domain to which the current
benchmark belongs, with reference to the color key provided in Figure 1, which includes law, medicine, finance,
science, code, and general fields.

Figure 9: Performance comparison between Qwen-2.5-32B + Ver-
saTune and frontier models acorss multiple domains.

Comparison with Frontier Mod-
els. Furthermore, to demonstrate the
efficacy of VersaTune across diverse
domain tasks, we conducted a com-
parative analysis between Qwen-2.5-
32B + VersaTune and frontier models
across various domain-specific tasks,
with results visualized in Figure 9.
Such experimental results indicate that
Qwen-2.5-32B equipped with VersaT-
une enhances multi-domain perfor-
mance to the state-of-the-art levels,
which even outperforms frontier mod-
els like GPT-4o, Claude3.5-Sonnet
and DeepSeek-V3 by 0.86%, 4.76%
and 4.60% on the overall domain capa-
bilities, respectively. This comparison
underscores the superior performance
of our VersaTune in advancing multi-
domain capabilities.
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D.2 Flexible Domain Expansion
D.2.1 Performance Variations in Target and Non-Target Domains
Here we exhibit the performance of the target domain and other non-target domains under the domain
expansion scenario, as realized by Algorithm 3. Figure 3, Figure 10-13 illustrate the changes in target
domain capabilities and non-target domain capabilities during the fine-tuning process when focused
on a specific domain, providing experimental results for flexible domain expansion. In each figure,
the stacked group bar chart (left) depicts the percentage change in performance for non-target domains
relative to their pre-fine-tuning states, with the positive direction on the y-axis indicating performance
improvement and the negative direction signifying a decline. The line chart (right) represents the overall
change across all non-target domains for three distinct strategies, with color legends corresponding to
those of the line chart on the right. The right-side chart depicts the percentage increase in performance
for the current target domain. We employed the Qwen-2.5-7B and Qwen-2.5-14B models, and the mean
percentage change in model performance when focusing on domain enhancement is presented in both the
stacked group bar chart and the line chart. Three interesting phenomena are observed from the outcomes:

• Absolute Count vs. Proportion. Notably, by the second epoch of training, the performance degradation
across non-target domains tends to be mitigated to some extent, and there is even a positive trend in
capability enhancement in some cases. We attribute this phenomenon to the fact that the absolute
quantity of instances for each domain, relative to the domain distribution, has a predominant influence
on model performance at this stage.

• Domain Interactions. Domains are not entirely orthogonal to each other, and there is a degree of mutual
reinforcement among them: (1) Enhancing capabilities in the medicine domain can boost performance
in the science domain to a certain degree (Figure 3). (2) Models’ capabilities in law and finance are
mutually reinforcing, promoting each other’s development (Figure 10 and Figure 11). (3) Augmenting
the model’s code-related capabilities can also, to some extent, improve its ability to solve scientific
problems, which is likely due to the shared reasoning and logical structuring required across these
domains (Figure 13).

• Domain Mastery Efficiency. From the slope of the target domain performance increase in Figure 3,
Figure 10-13 (b), it is evident that the model’s efficiency in mastering knowledge of a specific domain
diminishes over training. In other words, as training progresses, the model’s grasp of the target domain
approaches saturation, while its performance on non-target domains declines sharply. Consequently,
greater emphasis should be placed on mitigating losses in non-target domains during this phase, aiming
to strike a balance between domain expansion and the salvage of capabilities in non-target domains,
which is also shown in Figure 14.
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Figure 10: Domain expansion results for the law domain, including non-target domains (a) and target domain (b).
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Figure 11: Domain expansion results for finance domain, including non-target domains (a) and target domain (b).
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Figure 12: Domain expansion results for science domain, including non-target domains (a) and target domain (b).
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Figure 13: Domain expansion results for the code domain, including non-target domains (a) and target domain (b).
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Target Domain
Training Step

Method
Variations in Comprehensive Domains (%) Sum. (%)

(Epoch) Law Medicine Finance Science Code Other Target Non-Target

Law

100% Specific Domain ↑5.89 ↓18.82 ↑14.71 ↓11.76 ↓11.18 ↓5.00 ↑5.89 ↓32.05
1 Uniform Distribution of Non-Target Domains ↑5.38 ↓7.35 ↑6.47 ↓6.58 ↓0.05 ↑13.99 ↑5.38 ↓6.48

VersaTune ↑8.25 ↑6.18 ↑12.06 ↓7.65 ↓6.22 ↑17.59 ↑8.25 ↑21.96
100% Specific Domain ↑35.51 ↓12.65 ↑30.59 ↓4.41 ↓5.29 ↓11.76 ↑35.51 ↓3.52

2 Uniform Distribution of Non-Target Domains ↑33.89 ↓7.94 ↑26.47 ↓12.65 ↓7.65 ↑5.00 ↑33.89 ↑3.23
VersaTune ↑35.14 ↑3.53 ↑18.82 ↓6.89 ↑17.06 ↑13.24 ↑35.14 ↑45.76

100% Specific Domain ↑55.84 ↓17.94 ↑12.35 ↓8.82 ↓23.53 ↓5.00 ↑55.84 ↓42.94
3 Uniform Distribution of Non-Target Domains ↑52.89 ↓8.24 ↑15.00 ↓12.06 ↓10.17 ↓5.12 ↑52.89 ↓20.59

VersaTune ↑51.71 ↓4.41 ↑24.71 ↓5.29 ↑4.87 ↑8.42 ↑51.71 ↑29.30
100% Specific Domain ↑62.76 ↓5.00 ↓2.06 ↓31.18 ↓21.76 ↓12.65 ↑62.76 ↓72.65

4 Uniform Distribution of Non-Target Domains ↑58.12 ↓9.71 ↑5.59 ↓9.41 ↓10.14 ↓12.05 ↑58.12 ↓35.72
VersaTune ↑59.08 ↓5.59 ↑13.82 ↓8.82 ↓5.61 ↓6.17 ↑59.08 ↓12.37

Medicine

100% Specific Domain ↓10.29 ↑5.87 ↓3.82 ↑24.12 ↓19.41 ↓7.35 ↑5.87 ↓16.75
1 Uniform Distribution of Non-Target Domains ↓3.82 ↑5.36 ↓5.29 ↑5.59 ↓2.65 ↑6.53 ↑5.36 ↑0.36

VersaTune ↑3.53 ↑8.17 ↓7.65 ↑8.82 ↑16.47 ↓6.17 ↑8.17 ↑15.00
100% Specific Domain ↓18.82 ↑40.44 ↓6.47 ↑40.00 ↓7.94 ↓17.65 ↑40.44 ↓10.88

2 Uniform Distribution of Non-Target Domains ↓7.94 ↑33.68 ↓9.12 ↑20.59 ↑4.98 ↓5.64 ↑33.68 ↑2.87
VersaTune ↑12.35 ↑35.21 ↑7.65 ↑8.84 ↑16.52 ↑12.65 ↑35.21 ↑58.01

100% Specific Domain ↓22.35 ↑58.78 ↓8.82 ↑7.94 ↓19.12 ↓10.00 ↑58.78 ↓52.35
3 Uniform Distribution of Non-Target Domains ↓10.46 ↑55.69 ↓14.98 ↑12.35 ↓4.41 ↓14.18 ↑55.69 ↓31.68

VersaTune ↓3.53 ↑53.85 ↓4.52 ↑17.06 ↑7.64 ↑6.03 ↑53.85 ↑22.68
100% Specific Domain ↓27.94 ↑64.61 ↓11.76 ↓2.35 ↓21.76 ↓12.65 ↑64.61 ↓76.46

4 Uniform Distribution of Non-Target Domains ↓13.82 ↑58.07 ↓11.18 ↑2.35 ↓6.47 ↓18.53 ↑58.07 ↓47.65
VersaTune ↓5.59 ↑59.81 ↓4.27 ↑10.68 ↓5.94 ↓10.26 ↑59.81 ↓15.38

Finance

100% Specific Domain ↑20.59 ↓7.94 ↑5.45 ↓10.29 ↓12.65 ↓6.47 ↑5.45 ↓16.76
1 Uniform Distribution of Non-Target Domains ↑12.05 ↓7.36 ↑8.21 ↓6.74 ↑19.41 ↓8.53 ↑8.21 ↑8.83

VersaTune ↑15.07 ↓4.12 ↑10.46 ↑3.24 ↑17.06 ↓8.55 ↑10.46 ↑22.70
100% Specific Domain ↑18.24 ↓9.71 ↑34.97 ↓9.41 ↑5.29 ↓8.82 ↑34.97 ↓4.41

2 Uniform Distribution of Non-Target Domains ↑20.59 ↓7.94 ↑31.08 ↓4.71 ↓7.69 ↑4.98 ↑31.08 ↑5.23
VersaTune ↑24.70 ↑7.35 ↑33.92 ↓5.02 ↑7.08 ↑10.58 ↑33.92 ↑44.69

100% Specific Domain ↑23.53 ↓9.41 ↑55.87 ↓17.35 ↓14.71 ↓7.94 ↑55.87 ↓25.88
3 Uniform Distribution of Non-Target Domains ↑15.02 ↓8.24 ↑52.41 ↓12.06 ↓10.30 ↓4.98 ↑52.41 ↓20.56

VersaTune ↑24.71 ↓11.18 ↑53.04 ↑5.29 ↑4.44 ↑8.83 ↑53.04 ↑32.09
100% Specific Domain ↑5.00 ↓9.12 ↑62.89 ↓20.29 ↓12.94 ↓21.76 ↑62.89 ↓59.11

4 Uniform Distribution of Non-Target Domains ↑5.88 ↓5.29 ↑56.13 ↓14.09 ↓13.23 ↓20.87 ↑56.13 ↓47.60
VersaTune ↑14.19 ↓8.24 ↑58.47 ↓13.24 ↓8.52 ↓9.41 ↑58.47 ↓25.22

Science

100% Specific Domain ↓10.29 ↑17.06 ↓3.82 ↑6.78 ↓4.71 ↓7.35 ↑6.78 ↓9.11
1 Uniform Distribution of Non-Target Domains ↓6.76 ↑17.64 ↓9.18 ↑5.37 ↑7.05 ↑4.73 ↑5.37 ↑13.48

VersaTune ↓3.53 ↑17.35 ↓7.64 ↑8.35 ↑16.67 ↑6.98 ↑8.35 ↑29.83
100% Specific Domain ↓11.47 ↑12.35 ↓4.71 ↑40.84 ↓5.88 ↓12.94 ↑40.84 ↓22.65

2 Uniform Distribution of Non-Target Domains ↓8.24 ↑20.59 ↑5.68 ↑32.78 ↑9.12 ↓5.85 ↑32.78 ↑21.30
VersaTune ↓12.36 ↑16.17 ↑9.43 ↑36.97 ↑16.89 ↑12.65 ↑36.97 ↑42.78

100% Specific Domain ↓21.76 ↑7.94 ↓8.82 ↑63.20 ↓4.41 ↓10.00 ↑63.20 ↓37.05
3 Uniform Distribution of Non-Target Domains ↓9.98 ↑12.06 ↓15.01 ↑55.78 ↓4.11 ↓14.13 ↑55.78 ↓31.17

VersaTune ↓11.47 ↑11.18 ↓6.76 ↑55.40 ↑16.49 ↑6.81 ↑55.40 ↑16.25
100% Specific Domain ↓27.94 ↑2.35 ↓11.47 ↑66.15 ↓12.65 ↓12.59 ↑66.15 ↓62.30

4 Uniform Distribution of Non-Target Domains ↓13.82 ↑13.53 ↓11.18 ↑58.46 ↓6.57 ↓6.47 ↑58.46 ↓24.51
VersaTune ↓10.12 ↑10.00 ↓4.21 ↑61.30 ↓5.30 ↓6.74 ↑61.30 ↓16.37

Code

100% Specific Domain ↓3.82 ↑7.35 ↓17.35 ↑9.12 ↑10.46 ↓7.29 ↑10.46 ↓11.99
1 Uniform Distribution of Non-Target Domains ↓3.76 ↑5.09 ↓7.80 ↑7.68 ↑5.23 ↑5.65 ↑5.23 ↑6.86

VersaTune ↓5.06 ↑11.82 ↓8.76 ↑8.96 ↑5.98 ↑8.19 ↑5.98 ↑15.15
100% Specific Domain ↓9.71 ↓6.47 ↓7.94 ↑5.29 ↑47.28 ↓6.18 ↑47.28 ↓25.01

2 Uniform Distribution of Non-Target Domains ↓7.90 ↑13.49 ↓9.05 ↑12.03 ↑38.31 ↓17.76 ↑38.31 ↓9.19
VersaTune ↓12.22 ↑15.04 ↑6.78 ↑16.28 ↑39.77 ↑6.14 ↑39.77 ↑32.02

100% Specific Domain ↓22.35 ↓8.82 ↓14.12 ↑7.94 ↑61.95 ↓10.02 ↑61.95 ↓47.37
3 Uniform Distribution of Non-Target Domains ↓9.96 ↓15.07 ↓8.46 ↑5.33 ↑55.62 ↓10.04 ↑55.62 ↓38.20

VersaTune ↓17.39 ↑17.25 ↓9.09 ↑12.31 ↑56.12 ↑6.19 ↑56.12 ↑9.27
100% Specific Domain ↓26.18 ↓7.06 ↓8.82 ↓3.24 ↑64.76 ↓22.65 ↑64.76 ↓67.95

4 Uniform Distribution of Non-Target Domains ↓14.01 ↓13.86 ↓6.57 ↑6.66 ↑58.06 ↓13.93 ↑58.06 ↓41.71
VersaTune ↓5.66 ↑4.42 ↓10.10 ↑9.95 ↑59.71 ↓13.57 ↑59.71 ↓14.96

Table 8: Results of VersaTune on flexible domain expansion, we computed the average percentage change across
various models for each method. “Sum. (%)” denotes the total percentage of performance variations across all
target and non-target domain tasks. Symbols ↑ and ↓ indicate an increase or decrease in the percentage of scores
(%) compared to the initial state before supervised fine-tuning. The current target domain is highlighted using the
corresponding domain color in Figure 1, which includes law, medicine, finance, science, code, and general fields.
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D.2.2 Importance of Proportion Thresholds
Here we describe the significance of establishing proportion thresholds for specific domains during domain
expansion in detail. We compare VersaTune with those implementing an unconditional dynamic increase
of the specific domain, where we remove the implementation of Line 8 in Algorithm 3, to ablate the
component of criteria for determining the upper limit of domain expansion. In Figure 14, we present the
trends in the overall multi-domain performance of the models under specific domain expansion for each
domain. It can be observed that, for the majority of domains, the gap in average multi-task performance
between models trained with VersaTune and those without an upper limit on domain proportion becomes
increasingly pronounced after the second or third epoch. We deduce that this occurs due to the fact that
as training progresses, the models’ ability to learn within the target domain becomes nearly maximized.
Enhancing the emphasis on the current domain beyond this point yields marginal benefits and may even
result in a substantial degradation of performance in other domains. Notably, between the second and
third epochs of supervised fine-tuning, the model reaches a balance where the efficiency of improvement
in the target domain is matched by the rate of performance degradation in non-target domains. The finding
shows that the criteria for determining the upper limit on the proportion of a specific domain during
domain expansion, has mitigated the loss of capabilities in other domains experienced by the target model
Mθ during the fine-tuning process. Moreover, it ensures gains in the capacity for the current domain of
interest.
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Figure 14: Line chart of the multi-task performances of models across different domains during the domain
expansion process. We calculated the average percentage change for both target and non-target domains comparing
to the initial state. Additionally, we highlighted the performance changes of the VersaTune at various checkpoints
using green numerical annotations.

In summary, VersaTune exhibits the following properties:

• Efficient. VersaTune employs distribution consistency training of the domain knowledge proportion
during models’ SFT stage, providing an efficient data composition strategy for enhancing versatile
capabilities (for C2).

• Flexible. VersaTune can be flexibly adapted to scenarios that expand performance on specific domain
tasks while minimizing the degradation of the model’s capabilities in other non-target domains (for
C1, C3).

• Robust. Our strategy achieves significant performance improvements in open-sourced models with
parameter sizes ranging from 7B-32B, adding to the effectiveness of VersaTune (for C1, C2 and C3).
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E Prompts

We present the prompts that are employed throughout our pipeline in VersaTune . Only the English version
is presented due to LaTeX compilation issues with non-English languages.

Prompt: Domain Probability Inference

You are a data domain annotation expert, and you currently have the following six data domains:
law, medical && health care, finance, science, code, and other. Please classify the following
text fragment based on their topic and structure by providing the probability distribution of its
belonging to each category, where the sum of probabilities across all domain categories equals 1,
without additional commentary:

# Text
{text_content}

Output Format:
```json
{

"Law": "",
"Medicine": "",
"Finance": "",
"Sciencee": "",
"Code": "",
"Other": ""

}
'''
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