
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 6527–6540
November 4-9, 2025 ©2025 Association for Computational Linguistics

HD-PiSSA: High-Rank Distributed Orthogonal Adaptation

Yiding Wang∗1,2, Fanxu Meng∗1,3, Xuefeng Zhang1, Fan Jiang1,2,
Pingzhi Tang1,2, Muhan Zhang1,3

1Institute for Artificial Intelligence, Peking University 2Yuanpei College, Peking University
3State Key Laboratory of General Artificial Intelligence, BIGAI

*Equal contribution B Correspondence to muhan@pku.edu.cn

Abstract

Existing parameter-efficient fine-tuning (PEFT)
methods for large language models (LLMs),
such as LoRA and PiSSA, constrain model up-
dates to low-rank subspaces, limiting their ex-
pressiveness and leading to suboptimal perfor-
mance on complex tasks. To address this, we
introduce High-rank Distributed PiSSA (HD-
PiSSA1), a distributed PEFT approach that ini-
tializes orthogonal adapters across different
devices and aggregates their delta updates col-
lectively on W for fine-tuning. Unlike Data
Parallel LoRA or PiSSA, which maintain iden-
tical adapters across all devices, HD-PiSSA
assigns different principal components of the
pre-trained weights to each GPU, significantly
expanding the range of update directions. This
results in over 16× higher effective updated
ranks than data-parallel LoRA or PiSSA when
fine-tuning on 8 GPUs with the same per-device
adapter rank. Empirically, we evaluate HD-
PiSSA across various challenging downstream
tasks, including mathematics, code generation,
and multi-task learning. In the multi-task set-
ting, HD-PiSSA achieves average gains of 10.0
absolute points (14.63%) over LoRA and 4.98
points (6.60%) over PiSSA across 12 bench-
marks, demonstrating its benefits from the extra
optimization flexibility.

1 Introduction

Large Language Models (LLMs) trained on gen-
eral corpora have shown strong language modeling
capabilities and broad generalization across vari-
ous downstream applications (Taori et al., 2023;
Luo et al., 2023). However, adapting these gen-
eral models to specific application scenarios of-
ten requires fine-tuning or additional training on
domain-specific data. While fine-tuning has proven
effective, Full Fine-Tuning (FFT) LLMs are usu-
ally prohibitively expensive in terms of both com-
putation and memory (Dettmers et al., 2024). The

1The code is available at MuLabPKU/HD-PiSSA

0 1000 2000 3000 4000
Singular Value Index

0.00

0.05

0.10

0.15

0.20

Si
ng

ul
ar

 V
al

ue

Delta W - Layer 31 q_proj
conversation
math
code
commonsense
all

Figure 1: The rank analysis of ∆W after Full Fine-
Tuning (FFT) on different datasets. The magnitudes of
the singular values in S provide a measure of the effec-
tive updated rank. Details of this analysis are provided
in Appendix A.2.

cost of updating all model parameters becomes par-
ticularly challenging when working with models
containing billions of parameters. To address this
challenge, Parameter-Efficient Fine-Tuning (PEFT)
(Houlsby et al., 2019) methods have been devel-
oped as more practical alternatives. These methods
significantly reduce the number of trainable param-
eters while maintaining competitive performance,
making them both efficient and scalable.

Among PEFT techniques, Low-Rank Adapta-
tion (LoRA) (Hu et al., 2021) is widely adopted
for its simplicity and efficiency. It approximates
weight updates ∆W with a low-rank decompo-
sition ∆W = AB, based on the assumption
that adaptation occurs in a low-rank subspace.
This design reduces training cost and parame-
ter count without increasing inference latency.
PiSSA (Meng et al., 2024) improves LoRA by ini-
tializing adapters with the top singular vectors of
pre-trained weights, encouraging updates to fol-
low more informative directions. Despite these
improvements, both methods share a fundamental
limitation: they operate under a fixed low-rank con-
straint that restricts update capacity. This limitation

6527

mailto:muhan@pku.edu.cn
https://github.com/MuLabPKU/HD-PiSSA

Residual
Matrix

U[:,$:]𝑆[$:,$:]𝑉[:,$:]&

GPU1 GPU2

GPU3 GPU4

GPU1 GPU2

GPU3 GPU4

Pretrained
Matrix

𝑊 ∈ ℝ'×)

GPU1 GPU2

GPU3 GPU4

(a) Data-parallel PiSSA (b) Intermediate Method (c) HD-PiSSA

𝑊$*+, 𝑊$*+-

𝑊$*+. 𝑊$*+/

U[:,:$]𝑆[:$,:$]
&/(

𝑆[:$,:$]
&/(𝑉[:,:$])

U[:,:$]𝑆[:$,:$]
&/(

𝑆[:$,:$]
&/(𝑉[:,:$])

U[:,:$]𝑆[:$,:$]
&/(

𝑆[:$,:$]
&/(𝑉[:,:$])

U[:,:$]𝑆[:$,:$]
&/(

𝑆[:$,:$]
&/(𝑉[:,:$])

U[:,:$]𝑆[:$,:$]
&/(

𝑆[:$,:$]
&/(𝑉[:,:$])

U[:,$:%$]𝑆[$:%$,$:%$]
'/%

𝑆[$:%$,$:%$]
'/% 𝑉[:,$:%$])

U[:,$%:&%]𝑆[$%:&%,$%:&%]
(/$

𝑆[$%:&%,$%:&%]
(/$ 𝑉[:,$%:&%]*

U[:,&%:+%]𝑆[&%:+%,&%:+%]
(/$

𝑆[&%:+%,&%:+%]
(/$ 𝑉[:,&%:+%]*

U[:,:$]𝑆[:$,:$]
&/(

𝑆[:$,:$]
&/(𝑉[:,:$])

U[:,$:%$]𝑆[$:%$,$:%$]
'/%

𝑆[$:%$,$:%$]
'/% 𝑉[:,$:%$])

U[:,$%:&%]𝑆[$%:&%,$%:&%]
(/$

𝑆[$%:&%,$%:&%]
(/$ 𝑉[:,$%:&%]*

U[:,&%:+%]𝑆[&%:+%,&%:+%]
(/$

𝑆[&%:+%,&%:+%]
(/$ 𝑉[:,&%:+%]*

Figure 2: An illustration of the transition from Data-Parallel PiSSA to HD-PiSSA. PiSSA initializes and updates
identical adapters across GPUs using only the top-r components, leading to a low-rank update limitation. A natural
extension is the Intermediate Method, which increases the updated rank by distributing the top-Kr components
across GPUs to construct orthogonal adapters. However, this approach introduces two key challenges: (1) How can
single-step updates be performed on heterogeneous adapters? (2) Is it necessary to maintain separate copies of the
residual matrix on different GPUs? HD-PiSSA addresses these challenges by introducing Direct Weight Update and
a Muting Mechanism, enabling efficient, high-rank updates without the need for separate residual matrices.

becomes evident when adapting to complex tasks.
As shown in Fig. 1, Full Fine-Tuning (FFT) yields
much higher update ranks on complex tasks such
as code generation and math than on simpler ones
like commonsense or conversation. These observa-
tions suggest that effective adaptation to complex
tasks demands higher update ranks, highlighting
the need for more expressive PEFT approaches.

To address this, we propose HD-PiSSA, which
leverages data parallelism to break through the low-
rank bottleneck. Unlike prior methods that repli-
cate identical adapters across devices, HD-PiSSA
assigns orthogonal adapters initialized from dis-
joint principal components to each GPU, thereby
expanding the effective update subspace. Instead
of updating the adapters directly, we compute and
aggregate their induced updates and apply them
directly to the shared pretrained weights W . Fur-
thermore, to avoid maintaining separate residual
matrices across devices, we introduce a Muting
Mechanism, which enables all devices to share a
single full-rank model while still benefiting from
heterogeneous adapter updates. Fig. 2 illustrates
the transition from standard PiSSA to HD-PiSSA.

As illustrated in Fig. 3, HD-PiSSA overcomes
the rank limitation of PiSSA and closely resem-
bles FFT with smooth full-rank updates. We for-
malize this improvement through a rank analysis
in Section 7. In addition, we evaluate the per-
formance of HD-PiSSA on a wide range of chal-
lenging fine-tuning tasks, including mathematics,

code generation, and multi-task learning. The re-
sults show that HD-PiSSA outperforms LoRA
and PiSSA while maintaining a similar num-
ber of optimizer parameters. We further com-
pare HD-PiSSA with other recent PEFT methods,
like DoRA (Liu et al., 2024) and high-rank up-
dating methods MoRA (Jiang et al., 2024) and
HiRA (Anonymous, 2025) on commonsense rea-
soning tasks. HD-PiSSA outperforms these base-
lines with a significant margin (+2.0). HD-PiSSA
exhibited key characteristics of FFT, including the
ability to perform high-rank or theoretically full-
rank updates, underscoring its potential as an effi-
cient and scalable alternative to Full Fine-Tuning
for complex tasks.

A summary of our contributions is as follows:

• We propose HD-PiSSA, a novel distributed
PEFT method that enables high-rank updates
under data parallel fine-tuning, achieving a
learning capacity resembling FFT without ad-
ditional inference latency over LoRA.

• HD-PiSSA consistently outperforms exist-
ing PEFT methods, including LoRA, PiSSA
and other high-rank updating methods, across
single-task and multi-task fine-tuning settings.

• We provide empirical analysis of update ranks
of FFT, LoRA, PiSSA and HD-PiSSA, reveal-
ing key insights into the learning patterns and
limitations of different PEFT methods.

6528

0 200 400 600 800 1000
LoRA

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Si

ng
ul

ar
 V

al
ue

SVD of Delta W (k_proj) - Layer 31

(a): LoRA

0 200 400 600 800 1000
PiSSA

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Si
ng

ul
ar

 V
al

ue

SVD of Delta W (k_proj) - Layer 31

(b): PiSSA

0 200 400 600 800 1000
HD-PiSSA

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Si
ng

ul
ar

 V
al

ue

SVD of Delta W (k_proj) - Layer 31

(c): HD-PiSSA

0 200 400 600 800 1000
FFT

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Si
ng

ul
ar

 V
al

ue

SVD of Delta W (k_proj) - Layer 31

(d): Full Fine-Tuning

Figure 3: SVD analysis of ∆W after fine-tuning with different methods on the same training set. The rank of ∆W
is bounded by r or 2r for LoRA and PiSSA. (The effective updated rank of PiSSA is also r, and the appearance of
2r is due to its operation of first subtracting the adapter from the pretrained weight and then merging the updates
after fine-tuning.) HD-PiSSA demonstrates a similar smooth full-rank update pattern to Full Fine-Tuning. More
details are included in Appendix A.3.

2 Related Works

2.1 Parameter-Efficient Fine-Tuning (PEFT)

PEFT (Han et al., 2024) methods are designed to
reduce the computational or memory cost of fine-
tuning large-scale models. Broadly, PEFT methods
can be categorized into four groups. The first cate-
gory is partial fine-tuning (Zaken et al., 2021; Xu
et al., 2021), which involves updating only a sub-
set of the original model’s parameters based on a
predefined selection strategy. The second category
is soft prompt fine-tuning, which introduces addi-
tional soft prompt tokens or vectors into the initial
input and fine-tunes only these vectors (Lester et al.,
2021; Li and Liang, 2021). However, these meth-
ods are sensitive to input variations and initializa-
tion, which limits their effectiveness in downstream
tasks. The third category is adapter-based methods.
These methods (Houlsby et al., 2019; Pfeiffer et al.,
2020; He et al., 2021) incorporate additional train-
able modules into original frozen models. While
these methods enhance performance, they come at
the cost of increased inference-time latency.

2.2 Low-rank Adaptation Methods

Low-rank adaptation methods, such as LoRA (Hu
et al., 2021) and its variants, fall into the fourth
category. These methods use low-rank matrices
to approximate weight changes during fine-tuning
and can be merged with pre-trained weights before
inference. They have gained popularity due to their
ability to retain the model’s original architecture
while enabling efficient fine-tuning. Building on
LoRA, O-LoRA (Wang et al., 2023) introduces or-
thogonal regularization to mitigate catastrophic for-
getting, DeltaLoRA (Zi et al., 2023) injects adapter-
informed updates into the original weights, and
DoRA (Liu et al., 2024) decouples weight mag-

nitude and direction. PiSSA (Meng et al., 2024)
initializes low-rank adapters using the principal
components of the original weights and fine-tunes
these components. Despite their efficiency, these
methods are inherently constrained by fixed low-
rank updates, which can limit their expressiveness
on complex tasks. To address this, recent work has
explored high-rank adaptation. Hao et al. (2024) in-
terpret LoRA as a gradient compressor and propose
Flora to enable high-rank updates with reduced
memory. MoRA (Jiang et al., 2024) replaces the
low-rank structure with square matrices to enable
full-rank updates, while HiRA (Anonymous, 2025)
introduces a Hadamard product mechanism to en-
rich the update space. Unlike previous high-rank
PEFT methods that increase capacity by modifying
adapter structures on each device, HD-PiSSA lever-
ages data-parallel training to achieve high-rank
adaptation via distributed and orthogonal updates.
This design retains the efficiency of low-rank meth-
ods while substantially expanding the update space.

3 Background and Motivation

3.1 LoRA Basics

In this paper, we denote the original model’s weight
matrix as W ∈ Rm×n, where m and n repre-
sent the input and output dimensions, respectively.
LoRA approximates the weight update ∆W using
a low-rank decomposition: ∆W = AB, where
A ∈ Rm×r and B ∈ Rr×n with r ≪ min(m,n).
The original weights W are frozen during fine-
tuning, and only the low-rank matrices A and B
are trainable. Typically, A is initialized with Kaim-
ing Uniform initialization, while B is initialized to
zero, resulting in an initial ∆W = 0.

6529

3.2 PiSSA Basics
PiSSA builds upon the low-rank adaptation idea but
introduces a more informed initialization strategy.
Specifically, it first performs Singular Value De-
composition (SVD) on the original weight matrix
W , obtaining: W = UΣV ⊤. where U ∈ Rm×d,
Σ ∈ Rd×d, and V ∈ Rn×d, with d = min(m,n).
PiSSA then selects the top r principal components
from U and V to initialize the low-rank matrices
B and A, respectively. That is,

A = UrΣ
1/2
r , B = Σ1/2

r V ⊤
r ,

The original weight is then replaced by a residual
form Wres = W − AB to preserve the model’s
output consistency. This initialization captures the
key directions of W , offering better fine-tuning
performance than random initialization.

3.3 Distributed High-Rank Adaptation
While data parallelism is a widely used paradigm
for large language model fine-tuning, existing
parameter-efficient tuning methods, including
PiSSA, do not fully exploit its potential. In con-
ventional PiSSA (as shown in Fig. 2a), all devices
fine-tune the same adapters initialized from top sin-
gular components, leading to limited update rank
and underutilization of model capacity.

To address this, we observe that data parallel
training naturally allows each GPU to maintain a
local copy of the model and its adapters. This opens
up the opportunity to assign heterogeneous, non-
overlapping adapter modules to different GPUs.
By distributing distinct subsets of principal compo-
nents across devices, we effectively enlarge the
overall update rank without increasing memory
overhead on any single GPU. This simple yet pow-
erful insight lays the foundation for our method,
HD-PiSSA, which leverages the structure of data
parallelism to scale up the expressiveness of low-
rank updates through adapter heterogeneity, while
keeping computational and memory costs compa-
rable to conventional approaches.

4 Methodology

Building on the insight that data parallelism en-
ables heterogeneous adapters across devices, we
present HD-PiSSA (High-rank Distributed PiSSA),
which enhances update capacity while maintain-
ing efficiency. Specifically, HD-PiSSA introduces
three key modifications to standard PiSSA. First,
we adopt orthogonal adapter initialization: each

GPU is assigned a distinct subset of principal com-
ponents, enabling it to fine-tune a unique set of
adapters. This increases the effective update rank
without incurring extra memory costs. Second, we
employ a direct weight update strategy: instead of
updating A and B, gradients are applied directly to
the original weights W , while keeping the adapters
fixed. Finally, we design a muting mechanism using
a learnable scalar that suppresses adapter outputs
during the forward pass, enabling gradient flow
without modifying model predictions or requiring
subtraction of AB. Together, these designs make
HD-PiSSA a simple, scalable, and efficient solution
for high-rank adaptation in data-parallel training.

4.1 Orthogonal Adapters Initialization
Assuming we are fine-tuning on K devices, HD-
PiSSA begins by applying SVD to each weight
matrix W ∈ Rm×n:

W = USV T ,

where U and V are orthogonal matrices and S con-
tains the singular values. Instead of selecting only
the top-r components as in PiSSA, we select the
top-Kr components and partition them across de-
vices. For each device i ∈ {0, . . . ,K − 1}, we
construct the adapter pair as:

Ai = U[:,ri:ri+1]S
1/2
[ri:ri+1]

, Bi = S
1/2
[ri:ri+1]

V ⊤
[:,ri:ri+1]

,

where ri = i · r, and r denotes the predefined
rank that each device handles locally. Compared
to data-parallel PiSSA, which updates only the top-
rank components using the entire batch of data,
HD-PiSSA initializes adapters in a way that can
distribute the batch data evenly across a larger set
of principal components, thereby exploring more
directions and increasing the fine-tuned parameter
space. Naively, different adapters imply different
residual weights Wres,i = W − AiBi to main-
tain consistent outputs across devices. However,
as we show in the Section 4.3, our muting mech-
anism allows us to avoid this by sharing a single
global weight matrix W across all devices without
compromising correctness. This enables efficient
distributed fine-tuning with heterogeneous adapters
while preserving model consistency.

4.2 Direct Weight Update
With orthogonal adapters distributed across devices,
their gradients lie in distinct subspaces and can-
not be directly averaged, unlike in standard data-

6530

parallel LoRA or PiSSA. To address this, HD-
PiSSA keeps Ai, Bi unchanged and instead trans-
lates their updates into an equivalent update on the
shared weight matrix W .

Specifically, we assume that each device per-
forms forward and backward propagation and ob-
tains the gradients gtAi

∈ Rm×r and gtBi
∈ Rr×n

on its mini-batch data at step t. Then, we are able
to compute the delta update ∆At

i ∈ Rm×r and
∆Bt

i ∈ Rr×n correspondingly, where we temporar-
ily ignore the discussion of optimizers. If we sim-
ply update A and B at each step, the process could
be formalized as follows:

At+1
i = At

i +∆At
i, Bt+1

i = Bt
i +∆Bt

i .

This leads to the following expression for the delta
update U t

i ∈ Rm×n to the product of low-rank
matrices Ai and Bi at step t+ 1:

∆U t
i = ∆At

iB
t
i +At

i∆Bt
i +∆At

i∆Bt
i ,

These deltas are aggregated and then applied to W :

W t+1 = W t +
1

K

K−1∑

i=0

∆U t
i .

where K is the total number of devices.
We refer to this strategy as Direct Weight Up-

date. Through Direct Weight Update, we achieve
joint fine-tuning of the top-Kr principal compo-
nents across different orthogonal directions of the
original weight matrix, significantly increasing the
effective updated rank. Additionally, since the ∆A
and ∆B terms allow arbitrary rotations and trans-
lations according to data, HD-PiSSA not only up-
dates the top-Kr components, but also enables a
theoretically full-rank update. (More details are
included in Section 7.)

4.3 Muting Mechanism
Since we initialize orthogonal adapters on different
devices, and the dot product between A and B
in these adapters is nonzero, following PiSSA’s
forward propagation paradigm

Y = X(Wres,i +AiBi) (1)

would require subtracting the dot product AB from
the original matrix on each device and maintaining
a separate Wres for each GPU. This introduces sig-
nificant operational and computational overhead,
and makes it difficult to scale HD-PiSSA to larger

models, as each device would need to store an in-
dependent copy of the full model. Therefore, we
introduce the muting mechanism, which exploits
the automatic differentiation mechanism and makes
it feasible to store only one shared model W across
devices.

Specifically, we introduce a small constant (1e-
16 in our main experiments), the Mute Scalar
γ. During forward propagation, we multiply this
scalar to eliminate the impact of different adapters
on the output:

Y = X(W + γAiBi).

This operation ensures that 1) the differences
among AiBi are muted in the forward propaga-
tion so that all devices behave the same, and 2) we
can maintain a single model W shared across de-
vices instead of maintaining Wres,i for each device,
thus apply the averaged update only to W .

Although AiBi are muted during forward prop-
agation, their gradients still provide directional
information for update to the combined model
W . Therefore, during backward propagation, we
rescale the gradients on A and B to get:

gAi ←
1

γ

∂L
∂Ai

, gBi ←
1

γ

∂L
∂Bi

,

where ∂L
∂Ai

and ∂L
∂Bi

are the gradients of the loss L
with respect to the adapters Ai and Bi, respectively.
It is easy to prove that the obtained gAi and gBi are
equal to the gradients of Ai and Bi in the normal
forward propagation as in Equation 1. Therefore,
we have recovered the actual gradients while also
saving the need of different Wres,i at the same time
through this smart Muting Mechanism.

5 Experiments

In this section, we comprehensively evaluate HD-
PiSSA. We begin with single-task fine-tuning (Sec-
tion 5.1) on math and code datasets using LLaMA-
2-7B, LLaMA3.1-8B, and Mistral-7B-v0.1, com-
paring against LoRA and PiSSA. In Section 5.2,
we extend to a more challenging multi-task set-
ting that includes math, code, conversation, and
commonsense reasoning. We also benchmark HD-
PiSSA under the popular commonsense evalua-
tion setup from Liu et al. (2024), comparing it to
high-rank PEFT baselines like MoRA, HiRA, and
DoRA. Lastly, we examine HD-PiSSA’s robustness
across different numbers of devices (Section 6.1)
and ranks (Section 6.2).

6531

Table 1: Accuracy comparison of LLaMA-2-7B, LLaMA-3.1-8B, and Mistral-7B-v0.1 with LoRA, PiSSA, and
HD-PiSSA on mathematics and code generation datasets. “Params.” denotes the per-GPU optimizer parameters,
which remain the same across LoRA, PiSSA, and HD-PiSSA.

MODEL METHOD PARAMS. GSM8K MATH HUMANEVAL MBPP AVG.

LLAMA 2-7B LORA 0.59% 44.58 6.16 15.20 33.60 24.89
PISSA 0.59% 49.13 7.46 18.90 37.10 28.15
HD-PISSA 0.59% 52.92 8.38 21.30 37.30 29.98

LLAMA 3.1-8B LORA 0.52% 75.66 25.92 50.60 66.10 54.57
PISSA 0.52% 75.74 27.06 49.40 66.40 54.65
HD-PISSA 0.52% 76.12 28.52 52.40 69.30 56.59

MISTRAL-7B-V0.1 LORA 0.58% 65.81 18.10 41.50 58.70 46.03
PISSA 0.58% 68.46 18.46 41.50 58.30 46.68
HD-PISSA 0.58% 68.68 19.34 42.10 57.90 47.01

5.1 Performance for Single-Task Fine-Tuning

As shown in Fig. 1, we use math and code datasets
to represent complex single-task datasets. Specif-
ically, we use MetaMathQA (Yu et al., 2023) to
fine-tune mathematical problem-solving capabil-
ity and then use GSM8K (Cobbe et al., 2021) and
MATH datasets for evaluation. We use CodeFeed-
back (Zheng et al., 2024) to fine-tune and evaluate
coding proficiency using the HumanEval (Chen
et al., 2021) and MBPP (Austin et al., 2021)
datasets. We evaluate the fine-tuning performance
of HD-PiSSA, compared with LoRA and PiSSA
on three models: LLaMA-2-7B, LLaMA-3.1-8B,
and Mistral-7B-v0.1. These three models cover
common model architectures, with LLaMA-3.1-8B
and Mistral-7B-v0.1 utilizing Group Query Atten-
tion (GQA) (Ainslie et al., 2023). To provide a fair
comparison, we uniformly set the rank r to 16 and
keep the hyper-parameters consistent. More details
are included in Appendix A.4. For each model, we
fine-tune with each method on two training datasets
separately for one epoch and then evaluate their per-
formance on the corresponding test sets. Results
are reported in Table 1.

HD-PiSSA consistently outperforms LoRA and
PiSSA on complex tasks that demand higher adapt-
ability and rank-update, such as mathematics and
code generation. As shown in Table 1, HD-PiSSA
achieves the best results across all models on the
GSM8K, MATH, and HumanEval datasets. On
the GSM8K test set for LLaMA-2-7B, HD-PiSSA
surpasses PiSSA and LoRA by 3.79% and 8.34%,
respectively. Similarly, on HumanEval and MBPP
for LLaMA-3.1-8B, HD-PiSSA exceeds PiSSA by
nearly 3% in both cases. These improvements
demonstrate that, compared to PiSSA and LoRA,
HD-PiSSA effectively utilizes a similar number of

optimizer parameters per device while expanding
the set of update directions. Its higher updated rank
and flexible parameter space significantly enhance
learning capacity, particularly for challenging fine-
tuning scenarios.

5.2 Performance for Multi-Task Fine-Tuning

math

code

BoolQPIQA

SIQA

HS

WG

ARC-e ARC-c

OBQA

20
40

60
80

100

61.2

55.6

67.7

79.8

73.5

88.1

70.6

81.7

63.1

68.6

69.4

62.9

69.8

81.3

77.5

91.7

76.4

84.7

68.2

78.2

69.9

66.8

73.4

85.9

81.8

95.2

85.4

88.2

75.1

88.2

Comparison of LoRA, PiSSA, and HD-PiSSA Across 10 Tasks

LoRA
PiSSA
HD-PiSSA

Figure 4: HD-PiSSA outperforms LoRA and PiSSA
in multi-task fine-tuning setting. The absolute values
of two math evaluation datasets (GSM8K, MATH) and
two code datasets (MBPP, HumanEval) are summed up
to keep value range consistency.

Based on our earlier analysis, we hypothesized
that HD-PiSSA would demonstrate even stronger
performance in more challenging multi-task fine-
tuning settings due to its ability to overcome the
rank limitations of LoRA and PiSSA and update
parameters in a higher-dimensional space. To eval-
uate this hypothesis, we construct a multi-task fine-
tuning dataset by combining data from four do-
mains: mathematics, code generation, common-

6532

Table 2: Accuracy comparison of LLaMA-2 7B with various PEFT methods on eight commonsense reasoning
datasets. Results for ChatGPT, LoRA, and DoRA are sourced from Liu et al. (2024), and results for MoRA and
HiRA are sourced from Anonymous (2025).

MODEL METHOD PARAMS BOOLQ PIQA SIQA HELLA
SWAG

WINO
GRANDE

ARC-E ARC-C OBQA AVG.

CHATGPT - - 73.1 85.4 68.5 78.5 66.1 89.8 79.9 74.8 77.0

LLAMA-2-7B

LORA 0.83% 69.8 79.9 79.5 83.6 82.6 79.8 64.7 81.0 77.6
DORA 0.84% 71.8 83.7 76.0 89.1 82.6 83.7 68.2 82.4 79.7
MORA 0.82% 72.2 80.8 79.5 29.0 80.2 85.3 71.4 81.2 72.5
HIRA 0.83% 71.2 83.4 79.5 88.1 84.0 86.7 73.8 84.6 81.4

HD-PISSA 0.83% 73.7 84.6 81.1 94.0 84.7 87.5 72.4 84.2 83.4

sense reasoning, and conversation. Specifically,
we use MetaMathQA, CodeFeedback, WizardLM-
Evol-Instruct (Xu et al., 2024), and eight widely
used commonsense reasoning datasets (Liu et al.,
2024) to build a cross-domain dataset (see Ap-
pendix B). This combined dataset represents a sub-
stantially more complex fine-tuning scenario, with
a diverse range of tasks requiring broad adaptabil-
ity and higher learning capacity. For all PEFT
methods, we use adapters with 128 ranks to fit the
increased difficulty of the multi-task setting. The
models are fine-tuned on LLaMA-2-7B for one
epoch, and evaluations are conducted using the
same benchmarks as the single-task experiments
in Section 5.1, as well as the test sets of the eight
commonsense reasoning datasets.

As shown in Fig. 4, HD-PiSSA consistently
demonstrates significant improvements over both
PiSSA and LoRA across mathematics, program-
ming, and commonsense reasoning tasks. Espe-
cially on some commonsense datasets, such as
OpenBookQA (78.2%/88.2%) and WinoGrande
(76.4%/85.4%), it achieves nearly a 10% perfor-
mance improvement. This indicates that HD-
PiSSA’s enhanced updated rank flexibility allows
it to capture and retain a greater volume of task-
specific knowledge, which is essential for adapt-
ing to the diverse and complex data distributions
present in multi-task fine-tuning.

We further evaluate HD-PiSSA on a widely
adopted multi-task commonsense reasoning set-
ting (Liu et al., 2024), comparing it against high-
rank PEFT methods such as MoRA, HiRA, and
DoRA. Training is conducted on eight standard
datasets (BoolQ, PIQA, SIQA, HellaSwag, Wino-
Grande, ARC-c, ARC-e, and OBQA), and evalu-
ated on their respective test sets. To ensure fair-
ness, we match the number of trainable parameters
by tuning only the q_proj, k_proj, v_proj and
up, down matrices for three epochs. We report re-
sults from the final model without validation-based

500 1000 1500 2000 Final
Training Step

29

30

31

32

33

34

Av
er

ag
e

Sc
or

e
(H

/M
)

Performance and Training Time vs. Number of GPUs

2 GPUs
4 GPUs
8 GPUs

2 GPUs Time
4 GPUs Time
8 GPUs Time

30

40

50

60

70

80

Ti
m

e
pe

r S
te

p
(s

)

Figure 5: Average performance on code generation task
and training time with different numbers of devices
during distributed fine-tuning.

checkpointing. As shown in Table 2, HD-PiSSA
achieves a 2.0% average gain over the previous
state-of-the-art (HiRA), and consistently outper-
forms other high-rank approaches.

6 Ablation Study

6.1 Experiments on Different Numbers of
Devices

To evaluate the distributed nature of HD-PiSSA,
we conducted ablation experiments using differ-
ent numbers of GPUs (2, 4, and 8) during train-
ing. All experiments were performed on the same
code dataset for 3 epochs, with evaluations on Hu-
manEval (H) and MBPP (M) conducted every 500
steps. The total batch size was fixed at 128 for
all configurations to ensure comparability. Other
hyperparameters remained unchanged.

The motivation behind this experiment is rooted
in HD-PiSSA’s design: as the number of devices in-
creases, so does the number of orthogonal adapters
and their corresponding data partitions. This en-
hanced modularization is expected to improve both
training efficiency and performance.

As shown in Fig. 5, increasing the number of
GPUs significantly reduces training time per step
(from 82.44s to 24.88s) while also leading to im-

6533

proved final performance. With 8 devices, HD-
PiSSA achieves the best average score (34.05),
showing that the distributed modularity inherent
in the method benefits both scalability and qual-
ity of learned representations. This confirms the
strength of HD-PiSSA in leveraging increased com-
putational resources effectively.

6.2 Experiments on Various Ranks

We study how different ranks affect HD-PiSSA’s
performance using LLaMA-2-7B and 100K sam-
ples from MetaMathQA. Evaluations on GSM8K
and MATH (Fig. 6) show that HD-PiSSA gener-
ally outperforms LoRA and PiSSA, especially at
higher ranks. On MATH, HD-PiSSA approaches
Full Fine-Tuning performance with only a 0.62%
gap at rank 256.

When comparing HD-PiSSA with PiSSA, we ob-
serve distinct patterns across datasets. On GSM8K,
HD-PiSSA performs better than PiSSA in the 2-
32 rank range. On MATH, however, HD-PiSSA’s
advantage continues to grow beyond rank 8. This
aligns with the fact that MATH is a more complex
dataset requiring more updates to learn effectively,
while GSM8K is simpler and benefits from fewer
updates. Consequently, the difference between
the methods is less pronounced at lower ranks on
MATH. These results show that HD-PiSSA can
achieve near-FFT performance with much lower
ranks than PiSSA, demonstrating its efficiency in
handling complex tasks with fewer updates.

6.3 Performances with Different Mute Scalars

We also evaluate the impact of different mute
scalar values on performance. We tested several
mute scalar values, including 1× 10−4, 1× 10−8,
1× 10−16, 1× 10−2, and 1× 10−32. Specifically,
we finetune LLaMA-2-7B with these mute scalars
on MetaMathQA for one epoch, then evaluate the
performance on the GSM8K test set. As shown in
Fig. 7, performance remained consistent for mute
scalar values of 1×10−4, 1×10−8, and 1×10−16.
However, when the mute scalar was set to 1×10−2

or 1× 10−32, performance decreased significantly.
The likely cause of this behavior is that if the

mute scalar is relatively large, the adapter’s contri-
butions during forward propagation are not fully
eliminated, which affects the output y. On the other
hand, setting the scalar too small might result in
reaching the lower limit of float32 precision, caus-
ing inaccuracies in gradient updates.

6.4 More Ablation Study
We conducted future ablation studies to verify the
effectiveness of Direct Weight Update (DWU) and
Orthogonal Adapter Initialization (OAI). Specifi-
cally, we included: (1) LoRA init. (with DWU): A
variant using standard LoRA initialization with the
Direct Weight Update technique. (2) Top-Rank
HD-PiSSA (w/o OAI): HD-PiSSA without orthog-
onal adapters, using PiSSA adapter instead. All
variants were fine-tuned on the code dataset for 3
epochs. Evaluation was conducted on HumanEval
and MBPP (abbreviated as H&M in the table) every
500 steps for detailed training-time insights. The
total batch size and training configuration were
kept consistent across methods.

Analyzing the results in Table 3, we conclude
that HD-PiSSA’s superior performance is due to the
synergy of DWU and OAI. First, the use of DWU
clearly provides a measurable gain, as seen in the
improved performance of LoRA+DWU compared
to standard baselines. This aligns with findings
in prior work such as AdaLoRA. However, even
with DWU, both LoRA and PiSSA-based variants
lag behind HD-PiSSA in terms of average loss and
final evaluation metrics.

We also test HD-PiSSA’s training overhead com-
pared with PiSSA, and found that HD-PiSSA’s time
and memory costs slightly increase. Details in the
Appendix C

7 Analysis of Effective Update Rank

We provide an intuitive explanation for why HD-
PiSSA enables richer and higher-rank updates than
traditional PEFT methods like LoRA and PiSSA.

Rank Expansion via Orthogonal Adapters.
Each device hosts an orthogonal adapter of rank r,
and its update takes the form:

∆W t =
1

K

K−1∑

i=0

(
∆At

iBi +Ai∆Bt
i +∆At

i∆Bt
i

)
.

Assuming the adapter matrices Ai and Bi are or-
thogonal and uncorrelated, the first-order terms
alone contribute an approximate update rank of
2Kr, significantly higher than the single-device
LoRA/PiSSA rank of r.

Going Beyond 2Kr. The second-order term
∆At

i∆Bt
i , though small, introduces updates in ad-

ditional directions not captured by the main com-
ponents. Since ∆A and ∆B evolve during train-
ing, they can rotate the updates into less-explored

6534

1 2 4 8 16 32 64 128 256
20

30

40

50

60
GS

M
8K

 A
cc

ur
ac

y
(%

) Full FT
LoRA

PiSSA
HD-PiSSA

(a): Accuracy on GSM8K under various ranks.

1 2 4 8 16 32 64 128 256

4

6

8

10

M
AT

H
Ac

cu
ra

cy
 (%

) Full FT
LoRA

PiSSA
HD-PiSSA

(b): Accuracy on MATH under various ranks.

Figure 6: Performance comparison of LoRA, PiSSA, and HD-PiSSA across different adapter ranks (1 to 256). The
dashed line represents the accuracy of Full Fine-Tuning (FFT) as a reference. The results for LoRA and PiSSA
within 1-128 rank range are taken from Meng et al. (2024), with FFT performed using the Float32 data type rather
than the BF16 data type used in their original FFT results.

Table 3: Ablation study on Direct Weight Update (DWU) and Orthogonal Adapter Initialization (OAI). Results
shown as HumanEval / MBPP / Average (H/M/A).

Components / Steps Avg. Loss 500 1000 1500 2000 Final (2323)

LoRA init. (w. DWU) 0.6035 21.3/37.3/29.3 23.2/34.9/29.05 25.6/40.2/32.9 27.4/39.4/33.4 26.2/39.9/33.05
Top-Rank HD-PiSSA (w/o OAI) 0.5984 20.1/37.3/28.7 23.8/37.0/30.4 25.6/41.0/33.3 26.8/37.6/32.2 28.0/38.4/33.2
HD-PiSSA 0.5854 19.5/39.9/29.7 25.6/38.1/31.85 26.8/40.2/33.5 26.8/39.7/33.25 27.4/40.7/34.05

1e-02 1e-04 1e-08 1e-16 1e-32
Mute Scalar

49.5

50.0

50.5

51.0

51.5

52.0

52.5

53.0

GS
M

8K
 A

cc
ur

ac
y

GSM8K Accuracy with Different Mute Scalar

Accuracy

Figure 7: Performances on GSM8K with different mute
scalars.

regions of the parameter space. As a result, HD-
PiSSA’s updates extend beyond the top-2Kr com-
ponents. This is empirically validated in Fig. 8,
where the singular values of HD-PiSSA remain 1–2
orders of magnitude larger than LoRA and PiSSA
beyond the 2Kr threshold—indicating stronger
coverage of the parameter space and more expres-
sive adaptation capability.

8 Conclusion

We propose HD-PiSSA, a parameter-efficient fine-
tuning method that overcomes the rank limita-
tions of LoRA and PiSSA while maintaining the
same memory cost. By distributing orthogonal
adapters across GPUs and applying Direct Weight
Update, HD-PiSSA significantly expands the up-
date rank and achieves performance close to Full

0 1000 2000 3000 4000
Singular Value Index

0.0

0.1

0.2

0.3

0.4

Si
ng

ul
ar

 V
al

ue
 M

ag
ni

tu
de

Delta W - Layer31.q_proj
HD-PiSSA
PiSSA
LoRA

2250 2500 2750 3000 3250 3500 3750 4000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

HD-PiSSA
PiSSA
LoRA

1e-6

Figure 8: Comparison of singular value magnitudes
for the update matrices of LoRA (r = 128), PiSSA
(r = 128), and HD-PiSSA (r = 128). The sub-figure
in the top-right corner provides a magnified view of the
singular values for indices beyond 2Kr. This highlights
that the singular values for HD-PiSSA remain 1 to 2
orders of magnitude larger than those of LoRA and
PiSSA in this high-rank region, empirically supporting
that HD-PiSSA achieves update rank beyond 2Kr.

Fine-Tuning. The Muting Mechanism further im-
proves our method by eliminating the need to main-
tain the residual matrices as PiSSA. Experiments
on mathematics, code generation, and multi-task
learning show consistent improvements over exist-
ing PEFT methods. Ablation studies further vali-
date the effectiveness of our design choices. HD-
PiSSA provides a scalable and efficient fine-tuning
strategy for LLMs, making it a strong alternative
to Full Fine-Tuning.

6535

9 Limitations

HD-PiSSA requires multi-GPU distributed setups
to fully realize its benefits, which may restrict its
applicability in resource-constrained environments.
Besides, because HD-PiSSA aggregates all the gra-
dient updates on the Pretrained Matrix W, its perfor-
mance decreases when the base model is loaded at
lower precision. Additionally, while demonstrating
strong results on various tasks, its generalization
to broader domains and modalities remains to be
validated. We also plan to conduct more rigorous
theoretical analysis on the effective update rank as
part of future work.

References
Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury

Zemlyanskiy, Federico Lebrón, and Sumit Sanghai.
2023. Gqa: Training generalized multi-query trans-
former models from multi-head checkpoints. arXiv
preprint arXiv:2305.13245.

Anonymous. 2025. HiRA: Parameter-efficient
hadamard high-rank adaptation for large language
models. In The Thirteenth International Conference
on Learning Representations.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and 1
others. 2021. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
and 1 others. 2020. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings
of the AAAI conference on artificial intelligence, vol-
ume 34, pages 7432–7439.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde De Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, and 1 others. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro

Nakano, and 1 others. 2021. Training verifiers
to solve math word problems. arXiv preprint
arXiv:2110.14168.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information
Processing Systems, 36.

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and
Sai Qian Zhang. 2024. Parameter-efficient fine-
tuning for large models: A comprehensive survey.
arXiv preprint arXiv:2403.14608.

Yongchang Hao, Yanshuai Cao, and Lili Mou. 2024.
Flora: Low-rank adapters are secretly gradient com-
pressors. arXiv preprint arXiv:2402.03293.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2021. Towards a
unified view of parameter-efficient transfer learning.
arXiv preprint arXiv:2110.04366.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational conference on machine learning, pages
2790–2799. PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Ting Jiang, Shaohan Huang, Shengyue Luo, Zi-
han Zhang, Haizhen Huang, Furu Wei, Weiwei
Deng, Feng Sun, Qi Zhang, Deqing Wang, and
1 others. 2024. Mora: High-rank updating for
parameter-efficient fine-tuning. arXiv preprint
arXiv:2405.12130.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. 2024. Dora: Weight-
decomposed low-rank adaptation. arXiv preprint
arXiv:2402.09353.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.
arXiv preprint arXiv:2308.09583.

6536

https://openreview.net/forum?id=TwJrTz9cRS
https://openreview.net/forum?id=TwJrTz9cRS
https://openreview.net/forum?id=TwJrTz9cRS

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. 2024.
Pissa: Principal singular values and singular vectors
adaptation of large language models. arXiv preprint
arXiv:2404.02948.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. arXiv preprint arXiv:1809.02789.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. 2020.
Adapterfusion: Non-destructive task composition for
transfer learning. arXiv preprint arXiv:2005.00247.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99–106.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan
LeBras, and Yejin Choi. 2019. Socialiqa: Com-
monsense reasoning about social interactions. arXiv
preprint arXiv:1904.09728.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. 2023. Stanford alpaca:
an instruction-following llama model (2023). URL
https://github. com/tatsu-lab/stanford_alpaca, 1(9).

Xiao Wang, Tianze Chen, Qiming Ge, Han Xia, Rong
Bao, Rui Zheng, Qi Zhang, Tao Gui, and Xuan-
jing Huang. 2023. Orthogonal subspace learning for
language model continual learning. arXiv preprint
arXiv:2310.14152.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. 2024. Wizardlm: Empowering
large pre-trained language models to follow complex
instructions. In The Twelfth International Conference
on Learning Representations.

Runxin Xu, Fuli Luo, Zhiyuan Zhang, Chuanqi Tan,
Baobao Chang, Songfang Huang, and Fei Huang.
2021. Raise a child in large language model: To-
wards effective and generalizable fine-tuning. arXiv
preprint arXiv:2109.05687.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023.
Metamath: Bootstrap your own mathematical ques-
tions for large language models. arXiv preprint
arXiv:2309.12284.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. 2021. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-
models. arXiv preprint arXiv:2106.10199.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu,
Bill Yuchen Lin, Jie Fu, Wenhu Chen, and Xiang
Yue. 2024. Opencodeinterpreter: Integrating code
generation with execution and refinement. arXiv
preprint arXiv:2402.14658.

Bojia Zi, Xianbiao Qi, Lingzhi Wang, Jianan Wang,
Kam-Fai Wong, and Lei Zhang. 2023. Delta-lora:
Fine-tuning high-rank parameters with the delta of
low-rank matrices. arXiv preprint arXiv:2309.02411.

6537

A Training Details

A.1 Computing Infrastructure

All experiments were conducted on NVIDIA A100
GPUs with 40GB or 80GB memory configurations.
Running the full set of main experiments, including
all primary tables, required approximately 21 days
using 8 GPUs in parallel.

A.2 Implementation details of the experiment
in Figure 1

Model: LLaMA-2-7B
Optimizer: AdamW, learning rate = 2e-5, warm-
up ratio = 0.03
Epochs: 1
Batch size: 128
Visualized layer: Layer 31, Query projection
(q_proj)

A.3 Implementation details of the experiment
in Figure 3

Model: LLaMA-3.1-8B
Training set: MetaMathQA
Optimizer: AdamW, learning rate = 2e-5, warm-
up ratio = 0.03
Epochs: 1
Batch size: 128
Ranks Per Device For LoRA, PiSSA and HD-
PiSSA: 128
Visualized layer: Layer 31, Key projection
(k_proj)

A.4 Training Setting in Main Experiments

Details are presented in Table 5. Results are ob-
tained from a single time running. Our evaluation
codebase follows PiSSA’s open-source evaluation
codebase.

A.5 Hyperparameters Configuration in
Commonsense Reasoning Experiment

Table 6: Hyperparameters for HD-PiSSA

Hyperparameter HD-PiSSA
Rank r 32
α 64
Dropout 0.05
Optimizer AdamW
Learning Rate (LR) 2e-5
LR Scheduler Linear
Batch Size 16
Warmup Steps 100
Epochs 1
Matrices Q, K, V, Up, Down

B Multi-task Fine-Tuning Dataset

The details of the multi-task dataset are provided
in Table 7.

C Speed Comparison

To evaluate the training overhead of our proposed
HD-PiSSA, we conducted a comparative analysis
against PiSSA. The experiment was performed on
the MetaMath dataset using a LLaMA-2-7B model,
distributed across 8 GPUs with 16 ranks per GPU,
and using bf16 precision without any advanced
memory and acceleration optimizations (our imple-
mentation of parallelization and communication).

As detailed in Table 8, HD-PiSSA exhibits a
slight increase in both peak memory usage per GPU
(49,176 MiB vs. 47,290 MiB) and total training
time for 100 steps (1995.8s vs. 1808.31s). We
attribute this marginal overhead to the additional
communication and computation required for up-
dating the full-parameter matrix W . For instance,
each GPU is required to gather the previous values
and gradients of matrices A and B from all other
GPUs, followed by computing the corresponding
update to W . Nevertheless, we consider this over-
head to be acceptable given the substantial gains in
performance demonstrated by HD-PiSSA.

6538

Table 4: Details of the datasets used for training and evaluation.

Dataset Description
math MetaMathQA
code CodeFeedback
commonsense BoolQ, PIQA, SIQA, HellaSwag, WinoGrande, Arc-easy, Arc-challenge, OBQA
conversation WizardLM-Evol-Instruct

Table 5: Hyperparameter configurations used in all experiments.

Hyperparameter Value
Optimizer AdamW
Batch size 128
Learning rate (LLaMA models) 2× 10−5

Learning rate (Mistral-7B-v0.1) 5× 10−6

Scheduler Cosine annealing
Warmup ratio 0.03
Weight decay 0.0
LoRA alpha Equal to LoRA rank
LoRA dropout 0
Adapter insertion Applied to all linear layers
Base Model Precision float32

Table 7: Details of the datasets used in multi-task fine-tuning.

Dataset Name Domain Number of Training Samples
MetaMathQA (Yu et al., 2023) Mathematics 395K
CodeFeedback (Zheng et al., 2024) Code Generation 105K
WizardLM-Evol-Instruct (Xu et al., 2024) Conversation 143K
BoolQ (Clark et al., 2019) yes/no QA 9.4K
PIQA (Bisk et al., 2020) physical commonsense 16.1K
SIQA (Sap et al., 2019) social reasoning 33.4K
HellaSwag (Zellers et al., 2019) commonsense NLI 39.9K
WinoGrande (Sakaguchi et al., 2021) fill-in-the-blank 40.4K
ARC_Challenge (Clark et al., 2018) multiple-choice science questions 1.1K
ARC_Easy (Clark et al., 2018) multiple-choice science questions 2.3K
OpenBookQA (Mihaylov et al., 2018) multi-step reasoning 5.0K

6539

Table 8: Training overhead comparison between PiSSA
and HD-PiSSA on LLaMA-2-7B using 8 GPUs. Both
methods are run for 100 steps on the MetaMath dataset
without advanced memory or acceleration optimiza-
tions.

Metric PiSSA HD-PiSSA

Peak Mem. 47,290 MiB 49,176 MiB
Time (100 steps) 1808.31 s 1995.8 s

6540

