Tiny Budgets, Big Gains: Parameter Placement Strategy in Parameter Super-Efficient Fine-Tuning
Jinman Zhao, Xueyan Zhang, Jiaru Li, Jingcheng Niu, Yulan Hu, Erxue Min, Gerald Penn
Abstract
In this work, we propose FoRA-UA, a novel method that, using only 1–5% of the standard LoRA’s parameters, achieves state-of-the-art performance across a wide range of tasks. Specifically, we explore scenarios with extremely limited parameter budgets and derive two key insights: (1) fix-sized sparse frequency representations approximate small matrices more accurately; and (2) with a fixed number of trainable parameters, introducing a smaller intermediate representation to approximate larger matrices results in lower construction error. These findings form the foundation of our FoRA-UA method. By inserting a small intermediate parameter set, we achieve greater model compression without sacrificing performance. We evaluate FoRA-UA across diverse tasks, including natural language understanding (NLU), natural language generation (NLG), instruction tuning, and image classification, demonstrating strong generalisation and robustness under extreme compression.- Anthology ID:
- 2025.emnlp-main.321
- Volume:
- Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
- Month:
- November
- Year:
- 2025
- Address:
- Suzhou, China
- Editors:
- Christos Christodoulopoulos, Tanmoy Chakraborty, Carolyn Rose, Violet Peng
- Venue:
- EMNLP
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 6326–6344
- Language:
- URL:
- https://preview.aclanthology.org/ingest-emnlp/2025.emnlp-main.321/
- DOI:
- Cite (ACL):
- Jinman Zhao, Xueyan Zhang, Jiaru Li, Jingcheng Niu, Yulan Hu, Erxue Min, and Gerald Penn. 2025. Tiny Budgets, Big Gains: Parameter Placement Strategy in Parameter Super-Efficient Fine-Tuning. In Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 6326–6344, Suzhou, China. Association for Computational Linguistics.
- Cite (Informal):
- Tiny Budgets, Big Gains: Parameter Placement Strategy in Parameter Super-Efficient Fine-Tuning (Zhao et al., EMNLP 2025)
- PDF:
- https://preview.aclanthology.org/ingest-emnlp/2025.emnlp-main.321.pdf