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Abstract

Large language models (LLMs) can rewrite
the N-best hypotheses from a speech-to-text
model, often fixing recognition or translation
errors that traditional rescoring cannot. Yet
research on generative error correction (GER)
has been focusing on monolingual automatic
speech recognition (ASR), leaving its multi-
lingual and multitask potential underexplored.
We introduce CoVoGER, a benchmark for GER
that covers both ASR and speech-to-text trans-
lation (ST) across 15 languages and 28 lan-
guage pairs. CoVoGER is constructed by de-
coding Common Voice 20.0 and CoVoST-2
with Whisper of three model sizes and Seam-
lessM4T of two model sizes, providing 5-best
lists obtained via a mixture of beam search and
temperature sampling. We evaluated various
instruction-tuned LLMs, including commercial
models in zero-shot mode and open-sourced
models with LoRA fine-tuning, and found that
the mixture decoding strategy yields the best
GER performance in most settings. CoVoGER
will be released to promote research on reliable
language-universal speech-to-text GER. The
code and data for the benchmark are available
at https://github.com/N-Orien/CoVoGER.

1 Introduction

Automatic speech recognition (ASR) and speech-
to-text translation (ST) systems (Zue, 1985; Ney,
1999) are increasingly deployed in real-world ap-
plications, from voice assistants and captioning ser-
vices to cross-lingual communication tools. How-
ever, even state-of-the-art models can produce tran-
scription errors, especially under noisy conditions
or with accented speech. These errors often lead
to miscommunication, which leads to a growing
need for methods to correct such ASR/ST errors
on the fly. Recent advances in large language mod-
els (LLMs) (Radford et al., 2019; Brown et al.,
2020; Touvron et al., 2023; Bai et al., 2023) offer
a promising new pathway to tackle this challenge:
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Figure 1: An example of a multilingual multitask GER
system. Boxes above the GER model represent N-best
lists generated by first-pass models, and boxes below
the GER model represent the model’s predictions of the
corrected sentences.

leveraging LLMs to revise or repair the initial out-
put of speech-to-text systems, thereby enhancing
both the accuracy and the cognitive readability of
the transcribed content.

Generative error correction (GER) (Chen et al.,
2023a; Yang et al., 2023) has emerged as a new
paradigm to leverage LLMs for refining speech out-
puts. Unlike traditional rescoring (Xu et al., 2022;
Udagawa et al., 2022; Chen et al., 2023b), which
merely re-rank the existing hypotheses in an N-
best list, GER approaches utilize LLM to generate
an improved final transcription. This approach en-
ables the LLM to aggregate evidence from multiple
hypotheses and leverage its linguistic knowledge
and contextual reasoning to correct errors, mark-
ing a transition toward active, generative correction
within a multi-pass voice-agentic! system (i.e., an
ASR/ST agent followed by an LLM agent).

However, most GER studies concentrate exclu-
sively on English (Yang et al., 2023; Hu et al.,
2024a; Ghosh et al., 2024). Non-English (Uda-
gawa et al., 2024; Robatian et al., 2025) and multi-
lingual (Hu et al., 2024b) variants are emerging, but
coverage remains fragmentary and lacks a unified

'We refer to the recent chained voice agents setup: https:
//platform.openai.com/docs/guides/voice-agents.
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evaluation framework. Furthermore, most studies
address ASR and ST tasks in isolation, overlooking
their well-known synergies. It therefore remains an
open question whether GER can benefit from joint
training across both speech-to-text tasks.

Meanwhile, the first-pass decoding setup re-
mains underexplored. GER performance hinges
on the quality of the N-best lists, which depend on
both generation methods and upstream models. Yet
most prior work relies solely on beam search with a
single first-pass model to produce these lists (Chen
et al., 2023a; Hu et al., 2024b), while alternatives
like temperature sampling and a systematic analy-
sis of decoding choices are largely absent.

To address these research gaps in speech-to-text
research, we make the following contributions:

* We propose CoVoGER, the first benchmark
for GER that spans multiple languages and
multiple speech-to-text tasks (ASR and ST),
evaluating GER models’ capabilities shown
in Figure 1.

* A systematic investigation of first-pass de-
coding setups has been introduced, which in-
cludes decoding strategies and model sizes.
Our results uncover the impact on GER petrfor-
mance and motivate a new approach blending
beam search with temperature sampling.

* We conduct extensive experiments with var-
ious LLMs in both zero-shot and parameter-
efficient fine-tuning (PEFT) settings for the
benchmark to highlight potential trade-offs.

* Public release of the reproducible CoVoGER
benchmark and dataset will foster further
research and development of multilingual
speech-to-text GER methods.

2 Related Work

Yang et al. (2023) first introduced this generative
modeling idea in GER-based ASR, directly rewrit-
ing an IN-best list rather than selecting a single hy-
pothesis, which also prompted LL.Ms with instruc-
tions and demonstrated that minimal fine-tuning
closes most of the gap to oracle WER. Chen et al.
(2023a) later formalized HYPORADISE, showing
that prompting GPT-style models with N=5 hy-
potheses can significantly reduce English WER by
discovering up to N=20 beam size.

Recent multilingual work by Li et al. (2024)
tackles over 100 languages through fine-tuning a
single LLM. Their model corrects grammar and

spelling and even hallucinates missing words via
cross-script transfer. However, the input is limited
to only a single hypothesis, leaving the richer N-
best setting and its potential diversity untouched.

The GER paradigm has been initialized to
speech translation (ST) or agentic setups (Cheng
et al., 2024). For instance, (Hu et al., 2024b) fo-
cuses solely on multilingual ST. To our knowl-
edge, no existing dataset simultaneously covers
both ASR and ST across multiple languages. CoV-
oGER bridges this gap by supporting 15 ASR lan-
guages and 28 source—target ST directions, yield-
ing 40M N-best lists for a compact multilingual
evaluation.

For the investigation on generating N -best lists,
ProGRes (Tur et al., 2024) prompts an LLM to pro-
duce additional transcription hypotheses based on
the ASR’s INV-best outputs, but leaves the first-pass
decoding setups unchanged. As a study close to
ours, Ma et al. (2025) varies the size of the ASR
model for GER, yet it still relies on the 1-best input,
without analysis of different decoding strategies.
Although there are studies in the text-generation
community (Shen et al., 2022) that investigate de-
coding strategies such as beam search and temper-
ature sampling, no similar exploration has been
conducted for GER. CoVoGER fills this gap by
generating 5-best lists using three Whisper model
sizes and two SeamlessM4T model sizes, compar-
ing beam, sampling, and a mixture of both, and
quantifying their impact on GER.

3 Generative Error Correction

3.1 Task Formulation

Given an utterance’s /N-best list H =
{h1,ha,...,hy} produced by a first-pass
speech—to—text model (either ASR or ST), GER
seeks a mapping f : H — ¥ such that the generated
sequence ¥y = f(hy,...,hyn) is closer to the
reference transcription/translation y than any
h; € H.

3.2 Learning the Mapping f

During training, @ we minimize a se-
quence-to—sequence loss over the reference
data:

lyl

L= -y logps(yi |y, ®), (1)

t=1

where p is the conditional distribution parameter-
ized by an LLM with parameters ¢. In practice, we
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Figure 2: Overview of the CoVOGER benchmerk. To construct the dataset, speech from multiple languages is
transcribed or translated by several first-pass models with different model sizes. The process can be conducted with
various decoding strategies, including beam search, temperature sampling, or a mixture of both. The resulting ASR
and ST 5-best lists (the figure only shows 3-best for presentation) are used as inputs to train and evaluate GER

models in our benchmark.

adopt token-level targets with the standard cross-
entropy loss.

3.3 Low-Rank Adaptation

To adapt large LLMs without updating all weights,
we employ the PEFT method Low-Rank Adapta-
tion (LoRA) (Hu et al., 2022). LoRA freezes the
pretrained weights and injects rank-r update matri-
ces A, B into each attention projection:

W, « Wi, +aBoA,,
J 2
B, € R,

Ay € R™*4

Only A,B (and layer-norm biases) are trained,
greatly reducing the number of updated parame-
ters while preserving the forward pass latency of
the base LLM. The LoRA-augmented model is op-
timized with the same loss as Eq. (1).

4 CoVoGER

In this section, we present CoVoGER, with an
overview illustrated in Figure 2.

4.1 Source Speech Datasets

To construct the COVOGER benchmark, we de-
code speech from two large-scale public datasets,
Common Voice 20.0> for ASR and CoVoST-
2 (Wang et al., 2021) for ST. Tables 1 and 2 sum-
marize the amount of /N-best lists decoded from
these two datasets.

*https://commonvoice.mozilla.org/en/datasets

CoVoST-2 A multilingual ST corpus derived
from Common Voice. We select 14 non-English
source languages and pair each of them bidi-
rectionally with English, yielding 28 ST direc-
tions.> For each direction, we keep the official
train/validation/test splits.

Common Voice 20.0 To provide substantially
larger ASR training data in the same language
set, we extract utterances of the 15 languages (the
14 above plus English) from Mozilla Common
Voice 20.0. We also adopt the dataset’s original
train/validation/test splits.

Because some speech segments appear in both
datasets, we filter the data to prevent leakage: any
utterance in one dataset’s validation or test split is
removed from the other dataset’s training split, and
any utterance in one’s test split is deleted from the
other’s validation split.

4.2 First-Pass ASR and ST Models

The N-best lists used in COVOGER are generated
with two state-of-the-art, publicly available foun-
dation models: Whisper (Radford et al., 2023)
for ASR and SeamlessM4T (Barrault et al., 2023)
for ST. For each model family, we select various
model sizes to study how first-pass model perfor-
mance and hypothesis diversity influence down-
stream GER. As GER may compensate for weaker
ASR/ST models, comparing different first-pass

SWe exclude Mongolian because the first-pass model
(Whisper) exhibits an error rate exceeding 100%, making
N-best generation unreliable.
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Train Validation Test

Ar 28,524 10,405 10,497
Ca 1,172,032 15,148 16,412
Cy 8,000 5,392 5,399
De 583,678 11,061 16,191
En 1,108,326 9,871 16,398
Et 3,128 2,421 2,807
Fa 29,422 10,625 10,629
Id 4,973 3,210 3,690
Ja 14,477 7,766 7,786
Lv 13,870 7,536 7,578
S1 1,448 1,216 1,328
Sv 7,419 4,744 5,345
Ta 46,095 12,067 12,203
Tr 38,992 11,645 11,660
Zh 25,231 8,478 10,630
Total | 3,085,615 121,585 138,553

Table 1: Number of N-best lists decoded from ASR
dataset Common Voice 20.0 with one decoding setup.

Train Validation Test
En-X 14 x 289,392 14 x 15,520 14 x 15,526
Ar-En 1,832 1,587 1,695
Ca-En 95,854 12,730 12,730
Cy-En 937 184 690
De-En 127,824 13,511 13,511
Et-En 1,782 1,576 1,571
Fa—En 51,423 782 3,445
Id—En 928 792 844
Ja-En 1,119 635 684
Lv-En 2,337 1,125 1,629
SI-En 1,843 509 360
Sv—En 2,157 1,349 1,595
Ta—En 815 273 786
Tr-En 3,494 731 1,629
Zh-En 7,085 4,843 4,898
Total 4,350,918 257,907 263,431

Table 2: Number of N-best lists decoded from ST
dataset CoVoST 2 with one decoding setup. The “En-X”
row aggregates the 14 English — X directions.

model sizes quantifies how much baseline accuracy
remains necessary after correction. In addition,
smaller models may yield more diverse hypothe-
ses, potentially benefiting GER even if their 1-best
accuracy is lower.

Whisper A multilingual encoder—decoder model
trained on 680k hours of web-scale speech. We
adopt three released models*—SMALL, MEDIUM,
and LARGE to decode Common Voice 20.0 (Ta-
ble 1).

SeamlessM4T A massively multilingual model
that unifies ASR, S2T, T2T, and S2S in a single
architecture. We use the MEDIUM and LARGE mod-
els’ to decode the 28 CoVoST-2 directions (Ta-

4https://github.com/openai/whisper
5https://github.com/facebookresearch/seamless_
communication

Task Model Parameters
ASR  Whispersman 244 M
ASR  Whispermedium 769 M
ASR  Whisperiage 1.55B
ST SeamlessM4T medium 1.2B
ST SeamlessM4Tiaree 23B

Table 3: First-pass speech models used to generate V-
best lists for GER.

ble 2).
Table 3 summarizes the models and parameter
counts used throughout our experiments.

4.3 First-Pass Decoding Strategies

A first-pass model py(y | x) generates an N-best
list H = {hq,...,hy} thatis later fed to the GER
model. We examine two complementary decoding
schemes, beam search and temperature sampling,
and finally combine them to obtain a diverse yet
accurate hypothesis set.

Beam search. Beam search heuristically approx-
imates the maximum a posteriori sequence

h* = arg max py(y | x)
y

T 3)

= arg maprg(yt | Y<t,%),
Y oo=1

by expanding the B highest-scoring partial can-
didates at each time-step ¢, and retaining only
the top B of their continuations. After termina-
tion, we collect the IV highest-scoring finished hy-
potheses HP¢m = {pbeam pbeam} ranked by
length-normalized log-probability (Freitag and Al-
Onaizan, 2017). Although beam search produces
high-probability outputs, its top hypotheses often
differ only slightly (e.g., by punctuation or function
words), leading to low diversity in F°¢™,

Temperature sampling. To increase lexical and
structural variety, we also draw hypotheses from a
tempered categorical distribution

( | X) _ p@(yt | y<t7x)1/7-
P e S pe(w [ yes, )17

with temperature 7 > 0 (Holtzman et al., 2019).
Lower 7 sharpens the distribution (less random-
ness), while higher 7 flattens it, yielding more di-
verse but potentially less accurate sequences. By
independently sampling until an EOS token, we
obtain

“)

Fe — (e ey (s)
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Figure 3: Average validation performance of beam, sampling, and beam—sampling mixture decoding at various

temperatures.

where diversity arises naturally from stochastic
choice at each step.

Beam-sampling mixture. Pure sampling may
degrade 1-best accuracy, whereas pure beam search
offers little variety. We therefore construct a mixed
list

mix __ beam sample | .
H _{hlea }U{hj ‘]_17aN_1}7 (6)

retaining the highest-probability beam output for
reliability and filling the remaining /N —1 slots with
temperature samples for diversity.

4.4 Optimising Sampling Temperature

Beam search (§4.3) returns exactly N hypotheses,
whereas sampling requires choosing a tempera-
ture 7. We fix the list length to N =5 for every
utterance: (i) beam keeps the top—5 sequences,
(i1) sampling draws 5 independent samples at tem-
perature 7, and (iii) mix takes the 1-best beam
hypothesis plus 4 temperature samples.

Evaluation metrics. Unlike the conventional
practice of stripping punctuation, we retain all sym-
bols so that the GER model can learn to correct
fully-formatted ASR. Consequently, we measure
Token Error Rate (TER) with a standard Sacre-
BLEU (Post, 2018) tokenizer for ASR data. To
assess the upper bound of an N-best list we report:

(1) oracle TER, the TER of the single hypothesis
h; € H with lowest TER, and (ii) compositional
oracle TER (Chen et al., 2023a), which greedily
composes a new hypothesis by selecting from any
h; token by token, so as to minimize TER against
the reference. For ST, we compute oracle BLEU:
selecting the best hypothesis per utterance in terms
of sentence-level BLEU, and calculating corpus-
level BLEU.

Temperature optimization. Figure 3 shows val-
idation results across different temperatures. ASR
scores are the average of all 15 languages, and ST
scores are the average of all 28 language pairs. We
can observe that:

* Unsurprisingly, larger models generally yield
lower TER and higher BLEU.

* The mixture strategy consistently beats pure
sampling in oracle metrics for both tasks.

* Mixture outperforms beam search in oracle
metrics for ASR but not for ST. However, later
experiments still show that mixture is able to
beat beam search on ST, which indicates that
oracle BLEU may not be the best metric to
estimate the /N-best list quality for GER on
ST.

* A general trend is that smaller models fa-
vor mixture decoding and larger models favor
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N-best GER Ar Ca Cy De En Et Fa Id Ja Lv Sl Sv Tr Zh|AVG
S+Beam - 59.7 283 64.6 15.6 19.7 65.5 84.9 283 40.0 55.1 41.2 22.8 26.7 35.0| 42.0
S+Beam  Qwen|63.8 19.0 64.5 11.6 165 65.3 77.0 19.7 49.8 552 36.7 21.7 22.9 17.0| 38.6
S+Sample Qwen|62.4 19.7 67.5 122 162 67.0 79.7 18.2 52.3 57.8 40.4 23.6 25.3 16.9| 39.9
S+Mix Qwen | 58.0 19.2 62.9 11.6 15.8 63.7 75.0 18.1 46.1 55.1 40.3 21.7 23.7 16.4| 37.7
M+Beam — 50.1 21.1 42.1 10.2 16.2 45.1 56.8 18.8 34.9 37.5 30.2 154 20.8 28.5| 30.6
M+Beam Qwen|51.8 13.6 435 84 13.0 46.8 56.0 12.4 37.4 383 28.8 14.6 18.2 13.7| 28.3
M+Sample Qwen|55.7 149 47.8 8.9 13.6 49.4 58.1 14.1 49.3 40.2 293 164 21.3 14.0| 30.9
M-+Mix Qwen |54.5 13.5 43.1 83 13.1 472 55.1 129 49.7 38.1 27.9 14.8 18.0 14.0| 29.3
L+Beam - 484 194 38.6 95 157 414 541 18.1 33.0 35.1 243 143 19.7 30.2| 28.7
L+Beam  Qwen|50.1 12.4 40.1 7.7 12.5 44.6 552 12.8 39.7 354 227 13.7 16.2 12.1| 26.8
L+Sample Qwen|59.3 13.5 44.6 83 13.3 46.0 54.5 13.2 42.6 38.7 245 153 185 13.4| 29.0
L+Mix Qwen |57.1 12.5 413 7.8 12.5 446 54.0 124 448 36.4 223 143 17.1 12.5| 27.8

Table 4: TER results of ASR GER with different first-pass decoding setups on test set. GER models are all LoRA
fine-tuned on single task. “S,” “M” and “L” stand for “small,” “medium” and “large.” The “AVG” column presents

the average scores across all the languages.

N-best GER

Ar-En Ca—En Cy—En De—En Et—-En Fa—En Id—En Ja—En Lv—En SI-En Sv—En Tr—En Zh-En|X—En

35.61 21.70
37.06 22.86
35.94 21.75
36.72 22.54

40.28
44.33
42.79
43.96

35.49
36.22
35.55
36.15

48.54
45.75
44.07
45.50

M+Beam -

M+Beam Qwen
M+Sample Qwen
M+Mix  Qwen

23.48 49.39 18.01
24.75 53.52 19.88
23.90 51.89 19.39
24.34 52.40 21.07

21.12 28.69
26.49 33.55
26.57 31.60
26.96 31.83

31.20
35.78
34.85
35.84

27.98
30.15
28.81
29.13

19.46
20.23
15.36
18.75

30.84
33.12
31.73
32.71

38.88 26.43
39.20 26.73
38.19 25.97
38.82 26.34

45.25
47.16
46.60
47.92

38.36
38.24
37.46
38.22

55.01
45.35
53.12
49.02

L+Beam -

L+Beam Qwen
L+Sample Qwen
L+Mix Qwen

25.60 51.26 21.89
25.60 53.12 22.73
25.54 53.21 21.61
25.64 54.00 22.25

26.57 37.50
31.48 37.88
31.30 38.40
31.08 38.74

38.23
40.98
40.24
41.25

31.34
32.13
31.01
31.79

20.82
20.94
19.40
20.67

35.16
35.50
35.54
35.85

N-best GER

En—Ar En—Ca En—Cy En-De En-Et En-Fa En-Id En—Ja En-Lv En—SI En—Sv En-Tr En—Zh{En-X AVG

33.03 25.01
33.89 24.03
33.20 22.85
33.76 24.23

22.60
22.98
22.29
22.72

39.61
38.83
38.02
38.67

31.82
31.21
29.81
30.85

M+Beam -

M+Beam Qwen
M+Sample Qwen
M+Mix  Qwen

18.46 37.00 24.00
17.24 37.27 29.25
16.51 36.59 30.70
16.95 37.11 30.75

21.07 30.92
19.27 29.80
18.21 28.58
19.12 29.71

39.53 21.40
38.66 20.26
38.35 19.18
39.03 19.92

32.04(28.96 29.90
43.50(29.71 31.42
43.68|29.07 30.40
44.32|29.78 31.25

42.09
39.70
39.94
40.86

34.18
32.87
32.35
33.38

36.23 28.90
36.01 27.30
35.40 26.33
36.09 27.71

25.13
25.18
24.53
25.30

L+Beam -

L+Beam Qwen
L+Sample Qwen
L+Mix Qwen

19.78 39.41 25.59
18.29 38.70 32.55
17.81 38.42 31.85
18.30 39.12 32.59

24.23 3542
21.54 33.72
20.26 32.77
21.48 34.06

42.93 24.25
41.03 22.26
41.03 21.65
41.90 22.34

35.83(31.84 33.50
46.67|31.99 33.75
46.34(31.44 33.49
46.97|32.32 34.09

Table 5: BLEU results of ST GER with different first-pass decoding setups on test set. GER models are all LoRA
fine-tuned on single task. “M” and “L” stand for “medium” and “large.” Columns “X-En,” “En-X,” and “AVG”
present the average scores across any-to-English, English-to-any, and all the language pairs, respectively.

beam search, with sampling in the middle.

* For ASR, mixture and sampling have a larger
advantage over beam on compositional TER
than on oracle TER. In addition, the optimal 7
for the compositional oracle is slightly higher
than for the plain oracle. These observations
likely suggest that compositional oracle favors
diversity for compositional possibilities more
than the accuracy of a single hypothesis.

Based on overall observation, we therefore set both
7ASR and 75T to 0.8 for the following experiments.

5 Experimental Setups

5.1 GER Models

We evaluate 8 specific LLMs for our benchmark:
3 of them are from the Qwen2.5 family (Yang
et al., 2024), including Qwen2.5-7B-Instruct
(main model for investigations), Qwen2.5-7B,

and Qwen2.5-3B-Instruct. Other LLMs include
Meta-Llama-3-8B-Instruct (Grattafiori et al.,
2024), DeepSeek-R1-Distill-Llama-8B (Guo
et al., 2025), Platypus2-7B (Lee et al., 2023),
Falcon3-7B-Instruct (?), and GPT-40 (Hurst et al.,
2024) (commercial model for testing the perfor-
mance upper-bound). GPT-40 cannot be finetuned
with LoRA and is evaluated only in the zero-shot
setting.

5.2 Parameter-Efficient Fine-Tuning

We use LoRA for PEFT and follow LitGPT®’s refer-
ence configuration with Rank =8, scaling « =16,
LoRA dropout 0.05. Training runs for 25, 000 iter-
ations for single-task training and 50, 000 iterations
for multi-task training, with an effective batch size
of 64. All experiments are conducted on one H-100
GPU with a single run.

Shttps://github.com/Lightning-AI/litgpt
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ST (X-En) ST (En-X)

Et-En 0 De-En En-Et 60 En-De

Sv-En Ta-En En-Sv En-Ta

—— First-Pass ---- First-Pass (Oracle) - First-Pass (Compositional) —— GPT-40 (z-shot) Qwen2.5-7B (z-shot) —— Qwen2.5-7B (LoRA)

Figure 4: Comparison of GPT-40 and Qwen2.5-7B-Instruct models on different languages of Val-100 set. The left
figure shows TER for ASR, the middle and right figures show BLEU for ST. N-best lists are large first-pass models
decoded with mixture decoding. LoRA finetuning is conducted with single task. See the full results in Appendix A.
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Figure 5: Comparison of GPT-40 and Qwen2.5-7B-Instruct models in different first-pass decoding setups on Val-100
set. The scores are the average across all the language or language pairs. See the full results in Appendix A.

5.3 Evaluation

Data splits. Besides the test sets in Tables 1 and
2, we create a Val-100 subset by sampling 100 utter-
ances per language from the validation set, which
is specifically used for comparison with GPT-40.
This yields 1,500 utterances for ASR and 2,800 for
ST, small enough for affordable lightweight evalu-
ation, yet large enough to reflect full-set trends.

Metrics. For ASR, we compute TER using
SacreBLEU tokenization, which keeps punctua-
tion as tokens, crucial for our fully-formatted tran-
scripts. We calculate TER based on WER imple-
mentation of jiwer.” ST output quality is measured
with SacreBLEU.

"https://github.com/jitsi/jiwer

6 Results and Analysis

6.1 First-Pass Decoding Setups

Tables 4 and 5 compare different first-pass setups
using Qwen2.5-7B-Instruct with LoRA. For ASR,
mixture decoding is unable to beat pure beam
search on the larger Whisper models, mirroring
the observation in Figure 3 that larger models favor
beam search. For ST, the trend reverses: mixture
decoding’s advantage improves as the size of Seam-
lessM4T grows. One hypothesis is that the accu-
racy of ASR is high enough for /NV-best diversity to
hurt the performance, but not for ST.

6.2 Comparison with GPT-40

We conduct a comparison of GPT-40 with zero-
shot and LoRA finetuning results of open-sourced
models (represented by Qwen2.5-7B-Instruct) on
Val-100. Figures 4 and 5 (ASR) present the perfor-
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GER Ar Ca Cy De En Et Fa Id Ja Lv SI Sv Tr Zh|AVG

Q2.5-7B-1|58.8 13.6 40.4 8.1 12.8 45.2 56.5 12.5 42.6 37.8 224 142 17.2 12.6| 28.2

Q2.5-7B |51.9 132 40.7 79 124 43.0 51.3 124 37.2 355 222 14.0 17.1 12.5]| 26.5

Q2.5-3B-1|61.6 14.5 41.3 8.5 13.5 455 629 13.2 450 36.8 23.5 14.6 18.1 17.1| 29.7

L3-8B-i |49.4 12.5 38.8 7.5 123 39.2 51.1 12.6 44.0 344 21.1 135 163 15.2| 26.3

DS-8B 58.6 12.9 38.6 8.0 13.3 41.1 52.8 13.5 46.0 357 222 139 17.7 14.7| 27.8

P2-7B 489 11.8 40.1 7.6 12.6 414 51.1 13.0 40.8 34.2 220 13.3 182 14.7| 264

F3-7B-i |53.4 14.0 40.2 9.0 13.0 43.0 555 149 48.8 36.8 239 15.0 20.2 21.8| 29.3

GER Ar-En Ca-En Cy-En De-En Et-En Fa-En Id-En Ja-En Lv-En SI-En Sv-En Tr-En Zh-En|X-En
Q2.5-7B-1| 47.56 37.95 51.12 38.67 26.96 26.06 54.02 23.58 31.50 38.53 41.25 32.14 19.03|36.03
Q2.5-7B | 47.73 3841 52.60 38.96 27.10 26.13 53.75 23.96 31.35 39.57 41.41 32.67 21.04|36.51
Q2.5-3B-i| 47.42 3791 51.49 3845 2629 2590 53.21 21.89 31.19 38.62 40.80 31.76 20.29|35.79
L3-8B-i | 47.86 38.28 53.35 39.17 26.95 26.09 54.29 23.52 31.49 39.68 41.10 31.83 18.54|36.32
DS-8B 48.13 37.95 5247 38.17 26.53 25.81 54.52 2333 31.02 38.59 40.54 31.41 19.55|36.00
P2-7B 48.00 38.20 52.31 38.83 26.90 26.37 53.63 22.57 31.28 38.58 41.67 32.84 21.20|36.34
F3-7B-i 47.67 38.06 5097 38.58 2631 26.10 52.22 22.49 30.37 37.88 40.39 32.00 20.50|35.66

GER En-Ar En-Ca En—Cy En-De En-Et En-Fa En-Id En-Ja En-Lv En-SI En-Sv En-Tr En—Zh|En-X AVG
Q2.5-7B-1| 25.10 40.02 33.26 35.75 27.57 18.21 38.84 32.47 21.47 34.05 41.64 2229 46.90(32.12 34.08
Q2.5-7B | 25.26 40.46 33.60 3597 27.77 18.54 39.01 32.53 21.71 34.33 4196 22.58 47.14|32.15 34.33
Q2.5-3B-i| 24.94 39.89 32.85 3554 27.22 16.80 38.61 30.97 20.79 33.61 41.24 2248 45.31|31.56 33.68
L3-8B-i | 25.16 41.39 3424 36.14 28.08 21.52 39.40 31.58 22.15 34.75 42.59 23.39 43.98|32.64 34.48
DS-8B 2430 40.11 33.42 3543 27.59 20.86 38.76 30.09 21.06 34.12 41.97 22.69 44.11|31.89 33.95
P2-7B 25.68 40.85 36.54 36.08 29.07 21.32 39.29 32.93 24.46 35.28 42.56 23.66 43.64|33.18 34.76
F3-7B-i 17.93 41.08 33.05 34.80 27.75 1547 38.00 22.01 21.77 34.21 41.03 20.37 39.95|29.80 32.73

Table 6: GER model comparison on the test set with all the models being LoRA fine-tuned on multiple tasks (ASR
and ST). The upper part presents TER for ASR, with the “AVG” column presenting the average scores across all the
languages. The middle and lower parts present BLEU for ST, with columns “X-En,” “En-X,” and “AVG” presenting
the average scores across any-to-English, English-to-any, and all the language pairs, respectively.

Whisper Whisper Qwen2.5-7B-Instruct
(L+Beam) (L+Sample) (GER for ASR)
0.34 0.32 0.12
SeamlessM4T SeamlessM4T Qwen2.5-7B-Instruct
(L+Beam) (L+Sample) (GER for ST)
0.09 0.09 0.10

Table 7: RTF of first-pass decoding and GER on the
Val-100 set. “L” stand for “large.”

mance comparison across different languages and
different first-pass decoding setups, respectively.

GPT-40 delivers the best performance across
both tasks, surpassing Qwen2.5-7B-Instruct
with LoRA. Unlike for Qwen with LoRA,
Beam-sampling mixture decoding consistently
outperforms pure beam search for GPT-40. This
confirms that controlled diversity helps the LLM
discover better corrections, in line with prior
observations.

In the zero-shot setting, Qwen2.5-7B-Instruct
exhibits poor TER on ASR but achieves reasonable
BLEU on ST. We hypothesize that ASR’s stricter
correctness constraints make its outputs more vul-
nerable to over-correction, whereas ST tolerates
more variation. Crucially, LoRA fine-tuning sig-
nificantly improves both ASR and ST, especially
ASR, validating the effectiveness of our training
data. For both ASR and ST, Qwen2.5-7B-Instruct

performs poorly in generating certain languages
(Ta),® reflecting that open-source models still lack
language coverage compared to commercial mod-
els like GPT-4o.

6.3 Multi-task Training and Benchmarking

For multi-task training, we select the mixture de-
coding with large first-pass models for both ASR
and ST, and combine the ASR and ST data to create
the new training set. The choice is based on the
fact that GPT-40 performs best with these setups
(Figure 5). Although Table 4 reveals that mixture
decoding fails to outperform beam decoding with
larger ASR models for Qwen2.5-7B-Instruct with
LoRA, we argue that it is because Qwen cannot
fully exploit this extra diversity like GPT-40 does.
We therefore adopt the highest-potential first-pass
setup to favor stronger LLMs.

Results are shown Table 6. Across both ASR
and ST, the same trend holds within the Qwen-2.5
family: Qwen2.5-7B delivers the best performance,
followed by Qwen2.5-7B-Instruct, with Qwen2.5-
3B-Instruct trailing behind. These results indicate
that (i) additional instruction tuning does not bene-
fit GER on either task, and (ii) reducing the GER

8 As most open-sourced models’ capabilities for Tamil are
extremely poor, we exclude “ta”, “ta-en”, and “en-ta” from
the evaluation on the test set. (Tables 4, 5, and 6)
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model size below 7 B parameters noticeably de-
grades performance.

When mixing the strongest Qwen2.5 model
with other LLMs for comparison, results show
that Meta-Llama-3-8B-Instruct attains the low-
est average TER for ASR, while Platypus2-7B
achieves the best average BLEU for ST. These two
strong models also yield sufficient performance
on the other task, both ranking 2nd. Qwen2.5-
7B also shows a competitive and balanced capa-
bility, ranking 3rd on both tasks. DeepSeek-R1-
Distill-Llama-8B and Falcon3-7B-Instruct are
the weaker models among them, with the latter
being the weakest, producing the poorest perfor-
mance on ASR and ST (mainly for En-X).

The performance of Qwen2.5-7B-Instruct drops
slightly compared with single-task LoRA (“L+Mix”
rows in Tables 4 and 5). We attribute this to neg-
ative transfer: gradients from the ST objective en-
courage semantic paraphrasing, occasionally con-
flicting with the stricter accuracy required by ASR.
Therefore, achieving universal speech-to-text GER
models will require additional effort.

When comparing with the 1-best results (GER
“-) in Tables 4 and 5, we can observe that most
GER models outperform 1-best baselines, but there
are still a few models that fail (2 for ASR, 1 for
ST). Aside from multi-task negative transfer, an-
other possible cause is that hallucinations occur for
LoRA finetuned models, which hurts their perfor-
mance (Details in Appendix B).

6.4 Inference Cost

Introducing an LLM for error correction raises con-
cerns about additional inference cost. To quantify
this impact, we measured the real-time factor (RTF)
of first-pass decoding and GER on the Val-100 set
in Table 7. Even after adding all the required time
cost for the pipeline of GER with mixture decoding
(Beam + Temperature + GER), the combined RTF
stays well below 1.0, indicating that real-time pro-
cessing is still achievable. Cost can be reduced fur-
ther by re-using encoder states during the second-
time first-pass decoding. Additionally, even if GER
may not be ideal for live streaming due to possible
latency, its accuracy gains still deliver clear value
in offline scenarios.

7 Conclusion

We present CoVoGER, the first benchmark to unify
multilingual, multitask GER for speech. By decod-

ing Common Voice 20.0 and CoVoST 2 with multi-
ple sizes of Whisper and SeamlessM4T, we gener-
ate and release N-best lists for 33 languages across
ASR and ST—complete with oracle statistics and
evaluation scripts. Our experiments demonstrate
that (i) blending beam search with temperature sam-
pling produces the most GER-friendly hypotheses,
(i1)) GPT-40 establishes a strong zero-shot upper
bound across all languages, and (iii) joint ASR-ST
GER fine-tuning reveals a trade-off between the
two tasks, underscoring the need for future work to
reconcile their objectives. CoVoGER thus provides
an open test bed for investigating how LLMs can
bridge the gap between first-pass speech models
and human-level accuracy.

Limitations

* Imbalanced language sizes. CoVoGER inherits
the distribution of Common Voice and CoVoST-
2, with training utterances for different languages
ranging from millions to thousands. We did
not study how this imbalance affects GER train-
ing. Future work should explore per-language
reweighting or curriculum sampling to mitigate
this bias.

* Coverage of first-pass decoding strategy. We
explore only beam search, temperature sampling,
and their mixture. There are other decoding
strategies, such as diverse beam (Vijayakumar
etal., 2016) or nucleus sampling (Holtzman et al.,
2019), that could be investigated as well.

¢ Multi-task negative transfer with LoRA. Our
experiments on multi-task training show negative
transfer between ASR and ST, which could be
due to LoRA suffering measurable catastrophic
forgetting. Strategies such as task-balanced
sampling (Ruder, 2017), adapter routing (Pfeif-
fer et al., 2020), or multi-objective optimisa-
tion (Sener and Koltun, 2018) are necessary for
addressing this issue.

Ethical Considerations

This study exclusively uses publicly available
datasets (Common Voice and CoVoST-2) for ASR
and ST GER benchmarking, ensuring compliance
with ethical and privacy standards. Our work does
not involve any private or sensitive data collection.
In addition, we confirm that the dataset and mod-
els used in our study were obtained and utilized in
full compliance with their respective licenses and
intended use guidelines.
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A Val-100 Results

Tables 8 and 10 present results evaluated on Val-
100 set, with different first-pass decoding setups
and GER models. We created Figures 4 and 5 based
on these results.

We also conducted experiments using the task-
activated in-context learning in Chen et al. (2023a)
with GPT-40 on the Val-100 set for ASR GER. The
N-best lists are decoded by Whisper-Large with
Mixture decoding. Results are shown in Table 9.
Compared with the Alpaca-style zero-shot prompt
we used in the paper, task-activated prompting un-
derperforms in the zero-shot case (Average TER of
25.6 compared to 23.7 in the 3rd row from the bot-
tom of Table 8). However, it improves steadily with
more demonstrations, echoing the trend reported
by Chen et al. (2023a).

B Hallucination Analysis
We define hallucination in two cases:

* Empty-reference insertion: The first line
catches any output when the reference is
empty.

* Extreme mismatch: the number of word-level
edit operations exceeds the number of refer-
ence characters (Character Error Rate (CER)
> 1.0 for ASR task, Translation Error Rate
(TERgp) > 1.0 for ST task).
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N -best GER Ar Ca Cy De En Et Fa Id Ja Lv SI  Sv Ta Tr Zh|AVG
S+Beam - 482 284 574 112 164 678 107.6 289 37.1 46.6 405 17.8 62.0 249 344 420
S+Beam (Oracle) 534 242 589 129 156 61.6 767 21.2 351 505 34.1 18.6 61.8 203 29.8| 383
S+Beam (Compositional) [ 49.7 19.7 463 102 123 514 56.8 183 267 41.6 292 151 533 172 27.6/| 31.7
S+Beam  GPT-4o 432 259 483 92 145 569 618 219 289 357 304 156 57.6 20.1 29.6| 333
S+Beam Qwen (z-shot) |45.1 289 527 11.1 155 69.4 1294 36.5 322 463 375 18.7 1582 25.0 29.5| 49.1
S+Beam  Qwen (LoRA) |503 167 544 8.0 13.0 683 658 18.0 37.0 66.8 36.1 18.1 855 21.3 14.6| 383
S+Sample  (Oracle) 540 262 634 133 162 644 722 243 352 549 387 205 645 235 294| 40.0
S+Sample (Compositional) | 47.4 17.5 41.7 9.5 11.0 459 525 172 227 363 267 13.7 46.7 17.1 22.6| 28.6
S+Sample  GPT-40 434 257 465 10.1 17.5 509 944 259 287 342 340 152 549 203 294 | 354
S+Sample  Qwen (z-shot) | 509 33.0 107.7 129 199 985 230.8 419 565 69.6 78.0 19.5 101.8 29.5 385 | 659
S+Sample Qwen (LoRA) |[54.8 17.8 582 9.0 145 699 71.7 183 35.0 483 404 19.8 88.1 23.0 154 | 389
S+Mix (Oracle) 514 237 559 120 150 598 67.5 22.1 333 495 348 184 59.7 21.0 282 36.8
S+Mix (Compositional) | 46.5 169 386 92 109 442 50.1 169 228 348 258 133 451 164 23.0]| 27.6
S+Mix GPT-40 42.6 238 413 87 153 481 668 227 284 321 282 139 550 19.1 31.5]| 31.8
S+Mix Qwen (z-shot) |49.1 324 714 11.8 194 742 1250 36.6 439 495 38.6 193 91.6 29.8 27.8| 48.0
S+Mix Qwen (LoRA) |48.7 162 534 87 134 685 1213 169 42.6 485 38.0 187 81.2 21.5 13.3| 40.7
M+Beam - 482 203 326 99 167 482 536 162 257 322 288 133 544 166 27.5| 29.6
M+Beam  (Oracle) 429 175 374 80 126 41.8 49.7 152 29.0 328 232 114 527 154 232|274
M+Beam  (Compositional) | 40.9 143 305 6.9 10.1 344 397 112 219 272 193 92 46.0 132 21.2| 231
M+Beam  GPT-4o0 454 188 293 79 156 384 462 142 228 257 202 11.5 50.7 13.7 239| 25.6
M+Beam  Qwen (z-shot) |46.2 257 348 10.1 158 514 548 152 287 350 262 133 904 169 243| 32.6
M+Beam  Qwen (LoRA) [43.9 128 338 6.8 124 51.7 49.6 123 244 337 239 122 549 148 114 26.6
M+Sample (Oracle) 438 187 424 85 132 443 506 152 289 356 259 127 550 174 229 29.0
M+Sample (Compositional) | 39.4 13.0 27.1 64 92 298 357 109 19.1 230 18.1 87 387 13.1 18.0| 20.7
M+Sample GPT-40 452 210 289 73 139 339 518 169 225 227 209 127 47.0 14.1 235|255
M+Sample Qwen (z-shot) |47.9 264 537 89 684 149 878 23.7 31.0 372 286 242 972 259 26.1| 40.1
M+Sample Qwen (LoRA) [489 13.1 368 69 119 546 54.0 129 26.0 325 268 143 47.7 17.0 12.6| 27.7
M+Mix (Oracle) 423 174 372 8.0 124 408 473 142 279 326 233 119 523 16.1 222] 27.1
M-+Mix (Compositional) | 39.1 129 256 64 93 293 349 109 192 228 175 88 389 128 185 205
M-+Mix GPT-40 436 183 282 7.7 13.6 328 469 13.6 222 232 185 12.6 493 13.8 235| 245
M-+Mix Qwen (z-shot) |48.6 22.4 40.7 102 525 609 158 20.0 29.8 328 27.6 222 974 187 24.1| 349
M+Mix Qwen (LoRA) |42.6 122 341 74 124 51.7 503 11.4 487 31.0 23.6 123 47.0 148 11.2| 26.0
L+Beam  — 422 203 287 82 14.0 442 474 173 245 303 253 123 475 158 2441 268
L+Beam  (Oracle) 414 16.1 337 73 121 379 463 133 281 297 19.0 103 477 144 247 255
L+Beam  (Compositional) | 39.6 129 276 63 9.7 312 359 11.3 208 240 159 82 41.1 124 230| 213
L+Beam  GPT-4o0 422 190 260 6.7 128 349 437 13.6 23.1 245 196 10.8 445 150 200 | 23.8
L+Beam  Qwen (z-shot) |42.6 50.6 312 9.1 139 485 540 150 24.6 332 253 13.0 848 172 21.5]| 303
L+Beam  Qwen (LoRA) |[44.4 127 309 6.7 11.0 46.7 475 109 324 302 244 132 987 160 94| 24.0
L+Beam  (Oracle) 418 169 38.1 75 124 399 473 145 274 323 218 115 509 156 24.1| 268
L+Sample (Compositional) | 37.7 119 248 59 87 269 328 11.1 181 208 155 79 352 119 199 193
L+Sample GPT-4o0 427 214 260 69 128 283 563 143 23.6 254 286 109 456 145 249 24.1
L+Sample Qwen (z-shot) [41.9 353 373 93 144 529 87.6 19.5 347 439 357 13.6 94.1 194 244 | 376
L+Sample Qwen (LoRA) |[46.6 148 358 7.5 11.1 532 457 132 26.0 35.1 233 11.5 1504 145 10.3| 33.3
L+Mix (Oracle) 403 158 337 7.2 11.8 367 442 139 267 296 195 109 474 148 235| 25.1
L+Mix (Compositional) | 37.3 11.8 235 59 88 265 319 I11.1 183 206 148 81 350 119 203 19.0
L+Mix GPT-40 439 19.1 243 73 128 28.1 477 146 225 225 199 112 444 147 229 237
L+Mix Qwen (z-shot) |42.7 31.5 328 92 135 503 723 179 338 37.6 282 132 952 183 233| 34.6
L+Mix Qwen (LoRA) |47.6 128 315 6.6 107 458 46.7 11.3 32.0 314 223 113 769 145 98| 274

Table 8: TER scores on Val-100 for ASR. “S,” “M” and “L” stand for “small,” “medium” and “large.”

“Qwen”

stands for Qwen2.5-7B-Instruct. The “AVG” column presents the average scores across all the languages.

n-shot| Ar Ca Cy De En Et Fa

Id

Ja Lv SI Sv Ta Tr Zh|AVG

41.9
49.6
45.7
52.1

19.5
19.1
17.6
17.2

26.9
20.6
19.6
18.3

7.4
7.7
6.9
6.4

13.6
12.5
11.9
11.6

38.2
229
224
21.9

49.6
442
47.0
48.4

n=0
n=1
n=>y
n=10

15.7
18.2
11.9
11.3

26.0
23.5
332
254

26.4
23.7
19.1
18.9

20.8
14.3
13.6
13.3

11.3
14.4
16.1
14.2

47.2
46.2
40.9
41.0

15.0 24.9
14.1 14.0
147 99
142 10.1

25.6
23.0
220
21.6

Table 9: TER results using task-activated in-context learning with GPT-40 on the Val-100 set for ASR GER. The
N-best lists are decoded by Whisper-Large with Mixture decoding.

So, the hallucination rate is the percentage of
sentence pairs where either the reference is empty
but the system still outputs tokens, or the sentence-
level CER or TER, exceeds 1.0. With this defini-
tion, we conducted an analysis on the Qwen model
outputs in Table 6.

To prevent hallucination on ASR tasks, the
model is strong in well-represented Latin languages
and acceptable in Chinese, but it needs a targeted
adaptation for scripts that diverge in segmentation
or writing direction, as shown in Table 11.

For translation tasks (as shown in Table 12),
in terms of language resource levels, the pattern
is much like in ASR; by the writing system, the
riskiest directions are from English into non-Latin
scripts or highly agglutinative languages, while
translating into English from languages with sim-
pler morphology and scripts is relatively safe.

In summary, at the sentence level, hallucinations
are quite alarming: they either never occur or wreck
the entire sentence. Throughout the test set, the
reduction of hallucinations can achieve a minimum
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N -best GER Ar-En Ca-En Cy-En De-En Et-En Fa—En Id-En Ja—En Lv-En SI-En Sv-En Ta-En Tr-En Zh-En|X-En

M+Beam - 33.69 3524 4148 27.64 3424 36.03 56.66 17.69 5.84 2540 21.41 4.18 27.46 22.49|27.82
M+Beam  (Oracle) 46.03 44.17 52.81 3338 40.32 5205 76.85 25.19 948 36.72 3393 8.61 36.73 27.23|37.39
M+Beam GPT-40 3487 34.01 4393 29.22 33774 37.08 59.19 1870 6.61 2533 2546 532 2848 22.00|28.85

M+Beam  Qwen (z-shot) | 34.57 34.64 39.08 29.33 33.45 34.07 57.15 18.83 5.84 2527 2476 5.33 28.07 22.80|28.08
M+Beam Qwen (LoRA)| 35.87 34.68 41.50 30.03 33.39 39.05 59.95 20.23 6.29 28.33 2821 5.72 3029 21.37|29.64
M+Sample (Oracle) 4091 4396 47.94 3299 39.51 44.04 67.89 2290 9.06 32.73 2845 851 3493 26.35|34.30
M+Sample GPT-40 33.03 3397 44.65 29.10 3333 34.04 56.58 18.33 6.73 27.72 21.55 5.12 30.05 19.37|28.11
M+Sample Qwen (z-shot) | 29.90 34.18 39.11 28.20 32.12 33.35 55.12 15.68 4.67 25.07 1875 3.08 27.25 18.98|26.10
M+Sample Qwen (LoRA)| 34.22 33.15 31.70 31.12 32.01 36.28 58.73 16.21 6.97 28.02 25.02 5.34 3145 20.45|27.90
M+Mix (Oracle) 41.79 4384 47.19 3244 40.10 4537 68.03 2328 894 33.18 28.99 8.63 35.02 27.06|34.56
M+Mix GPT-40 35.15 33.78 4530 2841 3129 3697 5882 18.63 7.47 28.85 22.13 4.60 30.77 21.20|28.81
M+Mix Qwen (z-shot) | 34.13 34.85 38.63 27.86 31.08 3539 5557 1556 523 26.07 21.11 3.38 29.76 21.79|27.17
M+Mix Qwen (LoRA)| 34.27 3534 3586 31.19 32.64 37.02 58.19 1821 7.45 2798 2691 4.99 3279 18.71|28.68

L+Beam - 3870 36.12 50.01 31.83 4094 42.11 61.35 21.90 23.61 33.87 31.92 6.34 30.72 21.95|33.67
L+Beam  (Oracle) 51.14 4633 61.81 37.64 47.58 50.33 76.55 31.36 31.03 43.58 40.67 8.99 41.59 25.59|42.44
L+Beam  GPT-40 37.10 3555 49.79 32.01 3828 37.56 57.53 21.82 22.88 30.79 31.07 7.14 30.89 20.27|32.33

L+Beam  Qwen (z-shot) | 37.50 35.29 50.15 31.59 39.51 39.89 56.33 2222 21.71 3042 31.21 5.11 31.25 20.08|32.30
L+Beam Qwen (LoRA)| 38.64 36.19 47.66 33.05 38.06 42.80 57.15 2391 2625 33.60 31.78 6.81 32.39 20.56|33.49
L+Sample (Oracle) 4831 4339 53.63 3752 46.12 4633 70.77 27.50 27.65 40.64 3742 8.89 3593 26.73|39.34
L+Sample GPT-40 40.63 33.82 49.56 30.40 3590 39.16 59.56 20.47 24.43 30.84 33.15 6.13 30.86 20.91|32.56
L+Sample Qwen (z-shot) | 35.48 34.58 4850 28.61 36.51 35.52 5598 17.62 19.37 29.27 27.10 2.84 28.54 18.56|29.89
L+Sample Qwen (LoRA)| 24.07 3494 3330 29.12 3570 43.02 61.41 1881 28.44 3348 3470 5.78 3225 23.05|31.29
L+Mix (Oracle) 4734 4422 5295 3723 46.50 4722 70.27 2747 2699 40.88 3729 9.09 37.09 26.47|39.36
L+Mix GPT-40 41.01 3453 49.71 33.04 37.64 40.60 58.96 22.59 23.12 3277 3146 690 29.73 21.24|33.09
L+Mix Qwen (z-shot) | 35.55 35.57 48.61 31.53 37.35 40.09 59.80 17.81 19.85 31.09 29.39 4.53 29.35 21.97|31.61
L+Mix Qwen (LoRA)| 37.52 35.83 3321 30.38 37.46 41.54 62.46 2140 26.18 3444 3426 540 31.60 2225|3242

N-best GER En-Ar En-Ca En—-Cy En-De En-Et En-Fa En-Id En-Ja En-Lv En-SI En-Sv En-Ta En-Tr En-Zh|En-X AVG
M+Beam - 2647 3544 2865 2351 1831 1220 29.81 30.41 1426 36.19 3226 16.80 20.48 30.77[25.40 26.61
M+Beam  (Oracle) 3540 44.67 3441 30.71 2526 17.40 40.19 37.02 18.10 4598 41.37 26.99 27.02 37.62|33.01 35.20
M+Beam GPT-40 28.07 36.78 30.49 2429 2135 13.81 30.82 33.58 14.77 37.97 33.86 16.62 21.85 34.36|27.04 27.94

M+Beam Qwen (z-shot) | 24.48 3336 26.66 2494 17.39 11.28 29.92 3251 14.69 33.34 3345 1.75 17.90 33.32|23.93 26.00
M+Beam Qwen (LoRA)| 26.44 3548 2694 2435 1672 12.01 31.25 33.23 12.11 35.03 3297 226 20.55 38.44|24.84 27.24
M+Sample (Oracle) 32.00 41.45 33.05 28.06 2499 18.57 34.47 37770 19.14 43.06 3828 2391 24.55 36.19|31.10 32.70
M+Sample GPT-40 26.81 38.69 29.30 2537 22.11 16.24 29.58 32.89 1593 36.49 33.51 17.58 20.87 33.93|27.09 27.60
M+Sample Qwen (z-shot) | 24.21 3548 26.04 22.77 17.79 13.18 26.73 29.54 13.56 32.26 31.95 2.09 17.65 33.32|23.33 24.72
M+Sample Qwen (LoRA)| 2320 3491 27.81 2393 17.13 10.62 30.32 33.63 13.58 32.61 3321 252 18.00 37.61|24.22 26.06
M+Mix (Oracle) 3333 41.53 3327 2848 2496 1841 3538 37.49 18.03 44.14 3828 23.60 24.31 36.83|31.29 32.93
M+Mix GPT-40 26.63 37.25 3029 24.76 2045 15.68 31.28 33.25 1590 38.14 3255 18.52 20.23 34.94|27.13 27.97
M+Mix Qwen (z-shot) | 25.43 35.56 2693 24.59 17.16 12.73 2831 3042 13.23 3440 3041 1.76 20.05 33.06|23.86 25.52
M+Mix Qwen (LoRA)| 24.84 3471 27.16 24.15 17.14 11.37 29.29 33.84 13.72 31.92 30.73 1.82 19.37 39.88|24.28 26.48

L+Beam - 31.66 37.53 31.09 25.18 22.19 13.84 3245 30.53 18.95 40.87 37.80 22.22 20.94 35.25|28.61 31.14
L+Beam  (Oracle) 40.77 46.13 3723 3326 32.02 20.01 4425 3599 24.88 50.06 47.15 30.46 29.29 41.71|36.66 39.55
L+Beam  GPT-40 30.55 39.24 32.04 27.00 2359 14.38 34.07 33.02 18.61 38.80 37.80 21.19 23.04 36.27|29.26 30.80

L+Beam  Qwen (z-shot) | 28.12 36.64 26.62 26.38 2226 1236 31.32 30.81 16.05 36.48 36.41 194 19.38 35.99|25.77 29.03
L+Beam  Qwen (LoRA)| 30.13 37.10 28.14 26.73 21.06 14.64 32.48 3541 1745 36.76 34.57 1.19 22.02 43.86|27.25 30.37
L+Sample (Oracle) 3696 42.60 3450 31.36 31.94 18.58 40.56 37.87 23.11 45.83 43.09 25.51 27.05 40.56|34.25 36.80
L+Sample GPT-40 27.53 38.11 32.07 26.03 2344 14.00 3323 3399 1596 39.28 36.98 19.55 20.72 37.35|28.45 30.51
L+Sample Qwen (z-shot) | 27.82 3593 28.82 2549 20.19 11.38 32.67 31.62 1270 36.25 34.53 1.88 20.13 35.12|25.32 27.60
L+Sample Qwen (LoRA)| 29.94 37.43 2855 26.61 20.09 13.09 31.79 35.88 14.45 37.32 3425 2.04 2044 43.61|26.82 29.06
L+Mix (Oracle) 37.84 4295 3575 2991 3235 19.22 39.94 3820 23.08 4596 43.61 26.49 27.19 40.98|34.53 36.95
L+Mix GPT-40 31.22 3943 3039 25.66 25.64 1497 3445 34.64 18.58 39.23 36.56 21.42 21.79 36.08|29.29 31.19
L+Mix Qwen (z-shot) | 27.08 35.71 27.45 26.19 2206 11.72 3221 30.99 16.58 37.29 3449 191 20.68 36.49|25.78 28.70
L+Mix Qwen (LoRA)| 29.24 36.14 30.27 26.44 2037 1441 3270 3529 1590 36.44 3524 092 21.24 44.82|27.10 29.76

Table 10: BLEU scores on Val-100 for ST. “M” and “L” stand for “medium” and “large.” “Qwen” stands for
Qwen2.5-7B-Instruct. Columns “X-En,” “En-X,” and “AVG” present the average scores across any-to-English,
English-to-any, and all the language pairs, respectively.

De Id Ca Sv En Zh S1 Lv Ja Cy Et Ar  Fa Ta
04 02 09 02 1.I 05 02 09 36 12 04 46 67 113

Table 11: ASR Sentence-level hallucination rates (%) (percentage of hallucinated sentences) for each language.

SI—En En—S1 Tr—En En—Tr Sv—En En—Sv Lv—En En—Lv Fa—En En—Fa

0.2 3.9 0.9 8.2 1.2 4.7 1.3 5.6 1.9 8.3
De—En  En—De Id—En En—Id En—Et Et—En Cy—En En—Cy Ja—En En—Ja
3.8 34 33 2.4 5.3 5.6 5.2 4.1 11.5 5.0
En—Ar Ar—En Zh—En En—Zh Ta—En En—Ta
5.0 5.7 6.2 8.1 38.9 17.2

Table 12: ST Sentence-level hallucination rates (%) for each translation direction.

overall increase in absolute precision of 1%. For
low-resource languages, the improvement is even
greater, typically greater than 10%.
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