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Abstract

Large language models (LLMs) can rewrite
the N -best hypotheses from a speech-to-text
model, often fixing recognition or translation
errors that traditional rescoring cannot. Yet
research on generative error correction (GER)
has been focusing on monolingual automatic
speech recognition (ASR), leaving its multi-
lingual and multitask potential underexplored.
We introduce CoVoGER, a benchmark for GER
that covers both ASR and speech-to-text trans-
lation (ST) across 15 languages and 28 lan-
guage pairs. CoVoGER is constructed by de-
coding Common Voice 20.0 and CoVoST-2
with Whisper of three model sizes and Seam-
lessM4T of two model sizes, providing 5-best
lists obtained via a mixture of beam search and
temperature sampling. We evaluated various
instruction-tuned LLMs, including commercial
models in zero-shot mode and open-sourced
models with LoRA fine-tuning, and found that
the mixture decoding strategy yields the best
GER performance in most settings. CoVoGER
will be released to promote research on reliable
language-universal speech-to-text GER. The
code and data for the benchmark are available
at https://github.com/N-Orien/CoVoGER.

1 Introduction

Automatic speech recognition (ASR) and speech-
to-text translation (ST) systems (Zue, 1985; Ney,
1999) are increasingly deployed in real-world ap-
plications, from voice assistants and captioning ser-
vices to cross-lingual communication tools. How-
ever, even state-of-the-art models can produce tran-
scription errors, especially under noisy conditions
or with accented speech. These errors often lead
to miscommunication, which leads to a growing
need for methods to correct such ASR/ST errors
on the fly. Recent advances in large language mod-
els (LLMs) (Radford et al., 2019; Brown et al.,
2020; Touvron et al., 2023; Bai et al., 2023) offer
a promising new pathway to tackle this challenge:

绳金塔始建于唐朝。 Shengji Tower was built in the Tang Dynasty.
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Figure 1: An example of a multilingual multitask GER
system. Boxes above the GER model represent N -best
lists generated by first-pass models, and boxes below
the GER model represent the model’s predictions of the
corrected sentences.

leveraging LLMs to revise or repair the initial out-
put of speech-to-text systems, thereby enhancing
both the accuracy and the cognitive readability of
the transcribed content.

Generative error correction (GER) (Chen et al.,
2023a; Yang et al., 2023) has emerged as a new
paradigm to leverage LLMs for refining speech out-
puts. Unlike traditional rescoring (Xu et al., 2022;
Udagawa et al., 2022; Chen et al., 2023b), which
merely re-rank the existing hypotheses in an N -
best list, GER approaches utilize LLM to generate
an improved final transcription. This approach en-
ables the LLM to aggregate evidence from multiple
hypotheses and leverage its linguistic knowledge
and contextual reasoning to correct errors, mark-
ing a transition toward active, generative correction
within a multi-pass voice-agentic1 system (i.e., an
ASR/ST agent followed by an LLM agent).

However, most GER studies concentrate exclu-
sively on English (Yang et al., 2023; Hu et al.,
2024a; Ghosh et al., 2024). Non-English (Uda-
gawa et al., 2024; Robatian et al., 2025) and multi-
lingual (Hu et al., 2024b) variants are emerging, but
coverage remains fragmentary and lacks a unified

1We refer to the recent chained voice agents setup: https:
//platform.openai.com/docs/guides/voice-agents.
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evaluation framework. Furthermore, most studies
address ASR and ST tasks in isolation, overlooking
their well-known synergies. It therefore remains an
open question whether GER can benefit from joint
training across both speech-to-text tasks.

Meanwhile, the first-pass decoding setup re-
mains underexplored. GER performance hinges
on the quality of the N -best lists, which depend on
both generation methods and upstream models. Yet
most prior work relies solely on beam search with a
single first-pass model to produce these lists (Chen
et al., 2023a; Hu et al., 2024b), while alternatives
like temperature sampling and a systematic analy-
sis of decoding choices are largely absent.

To address these research gaps in speech-to-text
research, we make the following contributions:

• We propose CoVoGER, the first benchmark
for GER that spans multiple languages and
multiple speech-to-text tasks (ASR and ST),
evaluating GER models’ capabilities shown
in Figure 1.

• A systematic investigation of first-pass de-
coding setups has been introduced, which in-
cludes decoding strategies and model sizes.
Our results uncover the impact on GER perfor-
mance and motivate a new approach blending
beam search with temperature sampling.

• We conduct extensive experiments with var-
ious LLMs in both zero-shot and parameter-
efficient fine-tuning (PEFT) settings for the
benchmark to highlight potential trade-offs.

• Public release of the reproducible CoVoGER
benchmark and dataset will foster further
research and development of multilingual
speech-to-text GER methods.

2 Related Work

Yang et al. (2023) first introduced this generative
modeling idea in GER-based ASR, directly rewrit-
ing an N -best list rather than selecting a single hy-
pothesis, which also prompted LLMs with instruc-
tions and demonstrated that minimal fine-tuning
closes most of the gap to oracle WER. Chen et al.
(2023a) later formalized HYPORADISE, showing
that prompting GPT-style models with N=5 hy-
potheses can significantly reduce English WER by
discovering up to N=20 beam size.

Recent multilingual work by Li et al. (2024)
tackles over 100 languages through fine-tuning a
single LLM. Their model corrects grammar and

spelling and even hallucinates missing words via
cross-script transfer. However, the input is limited
to only a single hypothesis, leaving the richer N -
best setting and its potential diversity untouched.

The GER paradigm has been initialized to
speech translation (ST) or agentic setups (Cheng
et al., 2024). For instance, (Hu et al., 2024b) fo-
cuses solely on multilingual ST. To our knowl-
edge, no existing dataset simultaneously covers
both ASR and ST across multiple languages. CoV-
oGER bridges this gap by supporting 15 ASR lan-
guages and 28 source–target ST directions, yield-
ing 40M N -best lists for a compact multilingual
evaluation.

For the investigation on generating N -best lists,
ProGRes (Tur et al., 2024) prompts an LLM to pro-
duce additional transcription hypotheses based on
the ASR’s N -best outputs, but leaves the first-pass
decoding setups unchanged. As a study close to
ours, Ma et al. (2025) varies the size of the ASR
model for GER, yet it still relies on the 1-best input,
without analysis of different decoding strategies.
Although there are studies in the text-generation
community (Shen et al., 2022) that investigate de-
coding strategies such as beam search and temper-
ature sampling, no similar exploration has been
conducted for GER. CoVoGER fills this gap by
generating 5-best lists using three Whisper model
sizes and two SeamlessM4T model sizes, compar-
ing beam, sampling, and a mixture of both, and
quantifying their impact on GER.

3 Generative Error Correction

3.1 Task Formulation
Given an utterance’s N -best list H =
{h1, h2, . . . , hN} produced by a first-pass
speech–to–text model (either ASR or ST), GER
seeks a mapping f : H→ ŷ such that the generated
sequence ŷ = f(h1, . . . , hN ) is closer to the
reference transcription/translation y than any
hi ∈ H.

3.2 Learning the Mapping f

During training, we minimize a se-
quence–to–sequence loss over the reference
data:

L = −
|y|∑

t=1

log pϕ(yt | y<t,H), (1)

where pϕ is the conditional distribution parameter-
ized by an LLM with parameters ϕ. In practice, we
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Figure 2: Overview of the CoVOGER benchmerk. To construct the dataset, speech from multiple languages is
transcribed or translated by several first-pass models with different model sizes. The process can be conducted with
various decoding strategies, including beam search, temperature sampling, or a mixture of both. The resulting ASR
and ST 5-best lists (the figure only shows 3-best for presentation) are used as inputs to train and evaluate GER
models in our benchmark.

adopt token-level targets with the standard cross-
entropy loss.

3.3 Low-Rank Adaptation

To adapt large LLMs without updating all weights,
we employ the PEFT method Low-Rank Adapta-
tion (LoRA) (Hu et al., 2022). LoRA freezes the
pretrained weights and injects rank-r update matri-
ces A,B into each attention projection:

WQ ← WQ + αBQAQ,

BQ ∈ Rd×r, AQ ∈ Rr×d.
(2)

Only A,B (and layer-norm biases) are trained,
greatly reducing the number of updated parame-
ters while preserving the forward pass latency of
the base LLM. The LoRA-augmented model is op-
timized with the same loss as Eq. (1).

4 CoVoGER

In this section, we present CoVoGER, with an
overview illustrated in Figure 2.

4.1 Source Speech Datasets

To construct the COVOGER benchmark, we de-
code speech from two large-scale public datasets,
Common Voice 20.02 for ASR and CoVoST-
2 (Wang et al., 2021) for ST. Tables 1 and 2 sum-
marize the amount of N -best lists decoded from
these two datasets.

2https://commonvoice.mozilla.org/en/datasets

CoVoST-2 A multilingual ST corpus derived
from Common Voice. We select 14 non-English
source languages and pair each of them bidi-
rectionally with English, yielding 28 ST direc-
tions.3 For each direction, we keep the official
train/validation/test splits.

Common Voice 20.0 To provide substantially
larger ASR training data in the same language
set, we extract utterances of the 15 languages (the
14 above plus English) from Mozilla Common
Voice 20.0. We also adopt the dataset’s original
train/validation/test splits.

Because some speech segments appear in both
datasets, we filter the data to prevent leakage: any
utterance in one dataset’s validation or test split is
removed from the other dataset’s training split, and
any utterance in one’s test split is deleted from the
other’s validation split.

4.2 First–Pass ASR and ST Models
The N -best lists used in COVOGER are generated
with two state-of-the-art, publicly available foun-
dation models: Whisper (Radford et al., 2023)
for ASR and SeamlessM4T (Barrault et al., 2023)
for ST. For each model family, we select various
model sizes to study how first-pass model perfor-
mance and hypothesis diversity influence down-
stream GER. As GER may compensate for weaker
ASR/ST models, comparing different first-pass

3We exclude Mongolian because the first-pass model
(Whisper) exhibits an error rate exceeding 100%, making
N -best generation unreliable.
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Train Validation Test
Ar 28,524 10,405 10,497
Ca 1,172,032 15,148 16,412
Cy 8,000 5,392 5,399
De 583,678 11,061 16,191
En 1,108,326 9,871 16,398
Et 3,128 2,421 2,807
Fa 29,422 10,625 10,629
Id 4,973 3,210 3,690
Ja 14,477 7,766 7,786
Lv 13,870 7,536 7,578
Sl 1,448 1,216 1,328
Sv 7,419 4,744 5,345
Ta 46,095 12,067 12,203
Tr 38,992 11,645 11,660
Zh 25,231 8,478 10,630

Total 3,085,615 121,585 138,553

Table 1: Number of N -best lists decoded from ASR
dataset Common Voice 20.0 with one decoding setup.

Train Validation Test
En-X 14 × 289,392 14 × 15,520 14 × 15,526
Ar-En 1,832 1,587 1,695
Ca–En 95,854 12,730 12,730
Cy–En 937 184 690
De–En 127,824 13,511 13,511
Et–En 1,782 1,576 1,571
Fa–En 51,423 782 3,445
Id–En 928 792 844
Ja–En 1,119 635 684
Lv–En 2,337 1,125 1,629
Sl–En 1,843 509 360
Sv–En 2,157 1,349 1,595
Ta–En 815 273 786
Tr–En 3,494 731 1,629
Zh–En 7,085 4,843 4,898
Total 4,350,918 257,907 263,431

Table 2: Number of N -best lists decoded from ST
dataset CoVoST 2 with one decoding setup. The “En-X”
row aggregates the 14 English→X directions.

model sizes quantifies how much baseline accuracy
remains necessary after correction. In addition,
smaller models may yield more diverse hypothe-
ses, potentially benefiting GER even if their 1-best
accuracy is lower.

Whisper A multilingual encoder–decoder model
trained on 680k hours of web-scale speech. We
adopt three released models4—SMALL, MEDIUM,
and LARGE to decode Common Voice 20.0 (Ta-
ble 1).

SeamlessM4T A massively multilingual model
that unifies ASR, S2T, T2T, and S2S in a single
architecture. We use the MEDIUM and LARGE mod-
els5 to decode the 28 CoVoST-2 directions (Ta-

4https://github.com/openai/whisper
5https://github.com/facebookresearch/seamless_

communication

Task Model Parameters
ASR Whispersmall 244 M
ASR Whispermedium 769 M
ASR Whisperlarge 1.55 B
ST SeamlessM4Tmedium 1.2 B
ST SeamlessM4Tlarge 2.3 B

Table 3: First-pass speech models used to generate N -
best lists for GER.

ble 2).
Table 3 summarizes the models and parameter

counts used throughout our experiments.

4.3 First-Pass Decoding Strategies
A first-pass model pθ(y | x) generates an N -best
list H = {h1, . . . , hN} that is later fed to the GER
model. We examine two complementary decoding
schemes, beam search and temperature sampling,
and finally combine them to obtain a diverse yet
accurate hypothesis set.

Beam search. Beam search heuristically approx-
imates the maximum a posteriori sequence

h⋆ = argmax
y

pθ(y | x)

= argmax
y

T∏

t=1

pθ(yt | y<t,x) ,
(3)

by expanding the B highest-scoring partial can-
didates at each time-step t, and retaining only
the top B of their continuations. After termina-
tion, we collect the N highest-scoring finished hy-
potheses Hbeam = {hbeam

1 , . . . , hbeam
N } ranked by

length-normalized log-probability (Freitag and Al-
Onaizan, 2017). Although beam search produces
high-probability outputs, its top hypotheses often
differ only slightly (e.g., by punctuation or function
words), leading to low diversity in Hbeam.

Temperature sampling. To increase lexical and
structural variety, we also draw hypotheses from a
tempered categorical distribution

pτ (yt | y<t,x) =
pθ(yt | y<t,x)

1/τ

∑
w pθ(w | y<t,x)1/τ

, (4)

with temperature τ > 0 (Holtzman et al., 2019).
Lower τ sharpens the distribution (less random-
ness), while higher τ flattens it, yielding more di-
verse but potentially less accurate sequences. By
independently sampling until an EOS token, we
obtain

Hsample = {hsample
1 , . . . , h

sample
N }, (5)
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Figure 3: Average validation performance of beam, sampling, and beam–sampling mixture decoding at various
temperatures.

where diversity arises naturally from stochastic
choice at each step.

Beam–sampling mixture. Pure sampling may
degrade 1-best accuracy, whereas pure beam search
offers little variety. We therefore construct a mixed
list

Hmix={hbeam
1 }∪{hsample

j |j=1, . . . , N−1}, (6)

retaining the highest-probability beam output for
reliability and filling the remaining N−1 slots with
temperature samples for diversity.

4.4 Optimising Sampling Temperature
Beam search (§4.3) returns exactly N hypotheses,
whereas sampling requires choosing a tempera-
ture τ . We fix the list length to N = 5 for every
utterance: (i) beam keeps the top–5 sequences,
(ii) sampling draws 5 independent samples at tem-
perature τ , and (iii) mix takes the 1-best beam
hypothesis plus 4 temperature samples.

Evaluation metrics. Unlike the conventional
practice of stripping punctuation, we retain all sym-
bols so that the GER model can learn to correct
fully-formatted ASR. Consequently, we measure
Token Error Rate (TER) with a standard Sacre-
BLEU (Post, 2018) tokenizer for ASR data. To
assess the upper bound of an N -best list we report:

(i) oracle TER, the TER of the single hypothesis
hi ∈ H with lowest TER, and (ii) compositional
oracle TER (Chen et al., 2023a), which greedily
composes a new hypothesis by selecting from any
hi token by token, so as to minimize TER against
the reference. For ST, we compute oracle BLEU:
selecting the best hypothesis per utterance in terms
of sentence-level BLEU, and calculating corpus-
level BLEU.

Temperature optimization. Figure 3 shows val-
idation results across different temperatures. ASR
scores are the average of all 15 languages, and ST
scores are the average of all 28 language pairs. We
can observe that:

• Unsurprisingly, larger models generally yield
lower TER and higher BLEU.

• The mixture strategy consistently beats pure
sampling in oracle metrics for both tasks.

• Mixture outperforms beam search in oracle
metrics for ASR but not for ST. However, later
experiments still show that mixture is able to
beat beam search on ST, which indicates that
oracle BLEU may not be the best metric to
estimate the N -best list quality for GER on
ST.

• A general trend is that smaller models fa-
vor mixture decoding and larger models favor
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N -best GER Ar Ca Cy De En Et Fa Id Ja Lv Sl Sv Tr Zh AVG
S+Beam – 59.7 28.3 64.6 15.6 19.7 65.5 84.9 28.3 40.0 55.1 41.2 22.8 26.7 35.0 42.0
S+Beam Qwen 63.8 19.0 64.5 11.6 16.5 65.3 77.0 19.7 49.8 55.2 36.7 21.7 22.9 17.0 38.6
S+Sample Qwen 62.4 19.7 67.5 12.2 16.2 67.0 79.7 18.2 52.3 57.8 40.4 23.6 25.3 16.9 39.9
S+Mix Qwen 58.0 19.2 62.9 11.6 15.8 63.7 75.0 18.1 46.1 55.1 40.3 21.7 23.7 16.4 37.7
M+Beam – 50.1 21.1 42.1 10.2 16.2 45.1 56.8 18.8 34.9 37.5 30.2 15.4 20.8 28.5 30.6
M+Beam Qwen 51.8 13.6 43.5 8.4 13.0 46.8 56.0 12.4 37.4 38.3 28.8 14.6 18.2 13.7 28.3
M+Sample Qwen 55.7 14.9 47.8 8.9 13.6 49.4 58.1 14.1 49.3 40.2 29.3 16.4 21.3 14.0 30.9
M+Mix Qwen 54.5 13.5 43.1 8.3 13.1 47.2 55.1 12.9 49.7 38.1 27.9 14.8 18.0 14.0 29.3
L+Beam – 48.4 19.4 38.6 9.5 15.7 41.4 54.1 18.1 33.0 35.1 24.3 14.3 19.7 30.2 28.7
L+Beam Qwen 50.1 12.4 40.1 7.7 12.5 44.6 55.2 12.8 39.7 35.4 22.7 13.7 16.2 12.1 26.8
L+Sample Qwen 59.3 13.5 44.6 8.3 13.3 46.0 54.5 13.2 42.6 38.7 24.5 15.3 18.5 13.4 29.0
L+Mix Qwen 57.1 12.5 41.3 7.8 12.5 44.6 54.0 12.4 44.8 36.4 22.3 14.3 17.1 12.5 27.8

Table 4: TER results of ASR GER with different first-pass decoding setups on test set. GER models are all LoRA
fine-tuned on single task. “S,” “M” and “L” stand for “small,” “medium” and “large.” The “AVG” column presents
the average scores across all the languages.

N -best GER Ar–En Ca–En Cy–En De–En Et–En Fa–En Id–En Ja–En Lv–En Sl–En Sv–En Tr–En Zh–En X–En
M+Beam – 40.28 35.49 48.54 35.61 21.70 23.48 49.39 18.01 21.12 28.69 31.20 27.98 19.46 30.84
M+Beam Qwen 44.33 36.22 45.75 37.06 22.86 24.75 53.52 19.88 26.49 33.55 35.78 30.15 20.23 33.12
M+Sample Qwen 42.79 35.55 44.07 35.94 21.75 23.90 51.89 19.39 26.57 31.60 34.85 28.81 15.36 31.73
M+Mix Qwen 43.96 36.15 45.50 36.72 22.54 24.34 52.40 21.07 26.96 31.83 35.84 29.13 18.75 32.71
L+Beam – 45.25 38.36 55.01 38.88 26.43 25.60 51.26 21.89 26.57 37.50 38.23 31.34 20.82 35.16
L+Beam Qwen 47.16 38.24 45.35 39.20 26.73 25.60 53.12 22.73 31.48 37.88 40.98 32.13 20.94 35.50
L+Sample Qwen 46.60 37.46 53.12 38.19 25.97 25.54 53.21 21.61 31.30 38.40 40.24 31.01 19.40 35.54
L+Mix Qwen 47.92 38.22 49.02 38.82 26.34 25.64 54.00 22.25 31.08 38.74 41.25 31.79 20.67 35.85
N -best GER En–Ar En–Ca En–Cy En–De En–Et En–Fa En–Id En–Ja En–Lv En–Sl En–Sv En–Tr En–Zh En–X AVG
M+Beam – 22.60 39.61 31.82 33.03 25.01 18.46 37.00 24.00 21.07 30.92 39.53 21.40 32.04 28.96 29.90
M+Beam Qwen 22.98 38.83 31.21 33.89 24.03 17.24 37.27 29.25 19.27 29.80 38.66 20.26 43.50 29.71 31.42
M+Sample Qwen 22.29 38.02 29.81 33.20 22.85 16.51 36.59 30.70 18.21 28.58 38.35 19.18 43.68 29.07 30.40
M+Mix Qwen 22.72 38.67 30.85 33.76 24.23 16.95 37.11 30.75 19.12 29.71 39.03 19.92 44.32 29.78 31.25
L+Beam – 25.13 42.09 34.18 36.23 28.90 19.78 39.41 25.59 24.23 35.42 42.93 24.25 35.83 31.84 33.50
L+Beam Qwen 25.18 39.70 32.87 36.01 27.30 18.29 38.70 32.55 21.54 33.72 41.03 22.26 46.67 31.99 33.75
L+Sample Qwen 24.53 39.94 32.35 35.40 26.33 17.81 38.42 31.85 20.26 32.77 41.03 21.65 46.34 31.44 33.49
L+Mix Qwen 25.30 40.86 33.38 36.09 27.71 18.30 39.12 32.59 21.48 34.06 41.90 22.34 46.97 32.32 34.09

Table 5: BLEU results of ST GER with different first-pass decoding setups on test set. GER models are all LoRA
fine-tuned on single task. “M” and “L” stand for “medium” and “large.” Columns “X-En,” “En-X,” and “AVG”
present the average scores across any-to-English, English-to-any, and all the language pairs, respectively.

beam search, with sampling in the middle.

• For ASR, mixture and sampling have a larger
advantage over beam on compositional TER
than on oracle TER. In addition, the optimal τ
for the compositional oracle is slightly higher
than for the plain oracle. These observations
likely suggest that compositional oracle favors
diversity for compositional possibilities more
than the accuracy of a single hypothesis.

Based on overall observation, we therefore set both
τASR and τST to 0.8 for the following experiments.

5 Experimental Setups

5.1 GER Models
We evaluate 8 specific LLMs for our benchmark:
3 of them are from the Qwen2.5 family (Yang
et al., 2024), including Qwen2.5-7B-Instruct
(main model for investigations), Qwen2.5-7B,

and Qwen2.5-3B-Instruct. Other LLMs include
Meta-Llama-3-8B-Instruct (Grattafiori et al.,
2024), DeepSeek-R1-Distill-Llama-8B (Guo
et al., 2025), Platypus2-7B (Lee et al., 2023),
Falcon3-7B-Instruct (?), and GPT-4o (Hurst et al.,
2024) (commercial model for testing the perfor-
mance upper-bound). GPT-4o cannot be finetuned
with LoRA and is evaluated only in the zero-shot
setting.

5.2 Parameter-Efficient Fine-Tuning

We use LoRA for PEFT and follow LitGPT6’s refer-
ence configuration with Rank r=8, scaling α=16,
LoRA dropout 0.05. Training runs for 25, 000 iter-
ations for single-task training and 50, 000 iterations
for multi-task training, with an effective batch size
of 64. All experiments are conducted on one H-100
GPU with a single run.

6https://github.com/Lightning-AI/litgpt
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Figure 4: Comparison of GPT-4o and Qwen2.5-7B-Instruct models on different languages of Val-100 set. The left
figure shows TER for ASR, the middle and right figures show BLEU for ST. N -best lists are large first-pass models
decoded with mixture decoding. LoRA finetuning is conducted with single task. See the full results in Appendix A.

Figure 5: Comparison of GPT-4o and Qwen2.5-7B-Instruct models in different first-pass decoding setups on Val-100
set. The scores are the average across all the language or language pairs. See the full results in Appendix A.

5.3 Evaluation

Data splits. Besides the test sets in Tables 1 and
2, we create a Val-100 subset by sampling 100 utter-
ances per language from the validation set, which
is specifically used for comparison with GPT-4o.
This yields 1,500 utterances for ASR and 2,800 for
ST, small enough for affordable lightweight evalu-
ation, yet large enough to reflect full-set trends.

Metrics. For ASR, we compute TER using
SacreBLEU tokenization, which keeps punctua-
tion as tokens, crucial for our fully-formatted tran-
scripts. We calculate TER based on WER imple-
mentation of jiwer.7 ST output quality is measured
with SacreBLEU.

7https://github.com/jitsi/jiwer

6 Results and Analysis

6.1 First-Pass Decoding Setups

Tables 4 and 5 compare different first-pass setups
using Qwen2.5-7B-Instruct with LoRA. For ASR,
mixture decoding is unable to beat pure beam
search on the larger Whisper models, mirroring
the observation in Figure 3 that larger models favor
beam search. For ST, the trend reverses: mixture
decoding’s advantage improves as the size of Seam-
lessM4T grows. One hypothesis is that the accu-
racy of ASR is high enough for N -best diversity to
hurt the performance, but not for ST.

6.2 Comparison with GPT-4o

We conduct a comparison of GPT-4o with zero-
shot and LoRA finetuning results of open-sourced
models (represented by Qwen2.5-7B-Instruct) on
Val-100. Figures 4 and 5 (ASR) present the perfor-
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GER Ar Ca Cy De En Et Fa Id Ja Lv Sl Sv Tr Zh AVG
Q2.5-7B-i 58.8 13.6 40.4 8.1 12.8 45.2 56.5 12.5 42.6 37.8 22.4 14.2 17.2 12.6 28.2
Q2.5-7B 51.9 13.2 40.7 7.9 12.4 43.0 51.3 12.4 37.2 35.5 22.2 14.0 17.1 12.5 26.5
Q2.5-3B-i 61.6 14.5 41.3 8.5 13.5 45.5 62.9 13.2 45.0 36.8 23.5 14.6 18.1 17.1 29.7
L3-8B-i 49.4 12.5 38.8 7.5 12.3 39.2 51.1 12.6 44.0 34.4 21.1 13.5 16.3 15.2 26.3
DS-8B 58.6 12.9 38.6 8.0 13.3 41.1 52.8 13.5 46.0 35.7 22.2 13.9 17.7 14.7 27.8
P2-7B 48.9 11.8 40.1 7.6 12.6 41.4 51.1 13.0 40.8 34.2 22.0 13.3 18.2 14.7 26.4
F3-7B-i 53.4 14.0 40.2 9.0 13.0 43.0 55.5 14.9 48.8 36.8 23.9 15.0 20.2 21.8 29.3
GER Ar–En Ca–En Cy–En De–En Et–En Fa–En Id–En Ja–En Lv–En Sl–En Sv–En Tr–En Zh–En X–En
Q2.5-7B-i 47.56 37.95 51.12 38.67 26.96 26.06 54.02 23.58 31.50 38.53 41.25 32.14 19.03 36.03
Q2.5-7B 47.73 38.41 52.60 38.96 27.10 26.13 53.75 23.96 31.35 39.57 41.41 32.67 21.04 36.51
Q2.5-3B-i 47.42 37.91 51.49 38.45 26.29 25.90 53.21 21.89 31.19 38.62 40.80 31.76 20.29 35.79
L3-8B-i 47.86 38.28 53.35 39.17 26.95 26.09 54.29 23.52 31.49 39.68 41.10 31.83 18.54 36.32
DS-8B 48.13 37.95 52.47 38.17 26.53 25.81 54.52 23.33 31.02 38.59 40.54 31.41 19.55 36.00
P2-7B 48.00 38.20 52.31 38.83 26.90 26.37 53.63 22.57 31.28 38.58 41.67 32.84 21.20 36.34
F3-7B-i 47.67 38.06 50.97 38.58 26.31 26.10 52.22 22.49 30.37 37.88 40.39 32.00 20.50 35.66
GER En–Ar En–Ca En–Cy En–De En–Et En–Fa En–Id En–Ja En–Lv En–Sl En–Sv En–Tr En–Zh En–X AVG
Q2.5-7B-i 25.10 40.02 33.26 35.75 27.57 18.21 38.84 32.47 21.47 34.05 41.64 22.29 46.90 32.12 34.08
Q2.5-7B 25.26 40.46 33.60 35.97 27.77 18.54 39.01 32.53 21.71 34.33 41.96 22.58 47.14 32.15 34.33
Q2.5-3B-i 24.94 39.89 32.85 35.54 27.22 16.80 38.61 30.97 20.79 33.61 41.24 22.48 45.31 31.56 33.68
L3-8B-i 25.16 41.39 34.24 36.14 28.08 21.52 39.40 31.58 22.15 34.75 42.59 23.39 43.98 32.64 34.48
DS-8B 24.30 40.11 33.42 35.43 27.59 20.86 38.76 30.09 21.06 34.12 41.97 22.69 44.11 31.89 33.95
P2-7B 25.68 40.85 36.54 36.08 29.07 21.32 39.29 32.93 24.46 35.28 42.56 23.66 43.64 33.18 34.76
F3-7B-i 17.93 41.08 33.05 34.80 27.75 15.47 38.00 22.01 21.77 34.21 41.03 20.37 39.95 29.80 32.73

Table 6: GER model comparison on the test set with all the models being LoRA fine-tuned on multiple tasks (ASR
and ST). The upper part presents TER for ASR, with the “AVG” column presenting the average scores across all the
languages. The middle and lower parts present BLEU for ST, with columns “X-En,” “En-X,” and “AVG” presenting
the average scores across any-to-English, English-to-any, and all the language pairs, respectively.

Whisper Whisper Qwen2.5-7B-Instruct
(L+Beam) (L+Sample) (GER for ASR)

0.34 0.32 0.12
SeamlessM4T SeamlessM4T Qwen2.5-7B-Instruct

(L+Beam) (L+Sample) (GER for ST)
0.09 0.09 0.10

Table 7: RTF of first-pass decoding and GER on the
Val-100 set. “L” stand for “large.”

mance comparison across different languages and
different first-pass decoding setups, respectively.

GPT-4o delivers the best performance across
both tasks, surpassing Qwen2.5-7B-Instruct
with LoRA. Unlike for Qwen with LoRA,
Beam–sampling mixture decoding consistently
outperforms pure beam search for GPT-4o. This
confirms that controlled diversity helps the LLM
discover better corrections, in line with prior
observations.

In the zero-shot setting, Qwen2.5-7B-Instruct
exhibits poor TER on ASR but achieves reasonable
BLEU on ST. We hypothesize that ASR’s stricter
correctness constraints make its outputs more vul-
nerable to over-correction, whereas ST tolerates
more variation. Crucially, LoRA fine-tuning sig-
nificantly improves both ASR and ST, especially
ASR, validating the effectiveness of our training
data. For both ASR and ST, Qwen2.5-7B-Instruct

performs poorly in generating certain languages
(Ta),8 reflecting that open-source models still lack
language coverage compared to commercial mod-
els like GPT-4o.

6.3 Multi-task Training and Benchmarking

For multi-task training, we select the mixture de-
coding with large first-pass models for both ASR
and ST, and combine the ASR and ST data to create
the new training set. The choice is based on the
fact that GPT-4o performs best with these setups
(Figure 5). Although Table 4 reveals that mixture
decoding fails to outperform beam decoding with
larger ASR models for Qwen2.5-7B-Instruct with
LoRA, we argue that it is because Qwen cannot
fully exploit this extra diversity like GPT-4o does.
We therefore adopt the highest-potential first-pass
setup to favor stronger LLMs.

Results are shown Table 6. Across both ASR
and ST, the same trend holds within the Qwen-2.5
family: Qwen2.5-7B delivers the best performance,
followed by Qwen2.5-7B-Instruct, with Qwen2.5-
3B-Instruct trailing behind. These results indicate
that (i) additional instruction tuning does not bene-
fit GER on either task, and (ii) reducing the GER

8As most open-sourced models’ capabilities for Tamil are
extremely poor, we exclude “ta”, “ta-en”, and “en-ta” from
the evaluation on the test set. (Tables 4, 5, and 6)

6321



model size below 7 B parameters noticeably de-
grades performance.

When mixing the strongest Qwen2.5 model
with other LLMs for comparison, results show
that Meta-Llama-3-8B-Instruct attains the low-
est average TER for ASR, while Platypus2-7B
achieves the best average BLEU for ST. These two
strong models also yield sufficient performance
on the other task, both ranking 2nd. Qwen2.5-
7B also shows a competitive and balanced capa-
bility, ranking 3rd on both tasks. DeepSeek-R1-
Distill-Llama-8B and Falcon3-7B-Instruct are
the weaker models among them, with the latter
being the weakest, producing the poorest perfor-
mance on ASR and ST (mainly for En-X).

The performance of Qwen2.5-7B-Instruct drops
slightly compared with single-task LoRA (“L+Mix”
rows in Tables 4 and 5). We attribute this to neg-
ative transfer: gradients from the ST objective en-
courage semantic paraphrasing, occasionally con-
flicting with the stricter accuracy required by ASR.
Therefore, achieving universal speech-to-text GER
models will require additional effort.

When comparing with the 1-best results (GER
“-”) in Tables 4 and 5, we can observe that most
GER models outperform 1-best baselines, but there
are still a few models that fail (2 for ASR, 1 for
ST). Aside from multi-task negative transfer, an-
other possible cause is that hallucinations occur for
LoRA finetuned models, which hurts their perfor-
mance (Details in Appendix B).

6.4 Inference Cost

Introducing an LLM for error correction raises con-
cerns about additional inference cost. To quantify
this impact, we measured the real-time factor (RTF)
of first-pass decoding and GER on the Val-100 set
in Table 7. Even after adding all the required time
cost for the pipeline of GER with mixture decoding
(Beam + Temperature + GER), the combined RTF
stays well below 1.0, indicating that real-time pro-
cessing is still achievable. Cost can be reduced fur-
ther by re-using encoder states during the second-
time first-pass decoding. Additionally, even if GER
may not be ideal for live streaming due to possible
latency, its accuracy gains still deliver clear value
in offline scenarios.

7 Conclusion

We present CoVoGER, the first benchmark to unify
multilingual, multitask GER for speech. By decod-

ing Common Voice 20.0 and CoVoST 2 with multi-
ple sizes of Whisper and SeamlessM4T, we gener-
ate and release N -best lists for 33 languages across
ASR and ST—complete with oracle statistics and
evaluation scripts. Our experiments demonstrate
that (i) blending beam search with temperature sam-
pling produces the most GER-friendly hypotheses,
(ii) GPT-4o establishes a strong zero-shot upper
bound across all languages, and (iii) joint ASR–ST
GER fine-tuning reveals a trade-off between the
two tasks, underscoring the need for future work to
reconcile their objectives. CoVoGER thus provides
an open test bed for investigating how LLMs can
bridge the gap between first-pass speech models
and human-level accuracy.

Limitations

• Imbalanced language sizes. CoVoGER inherits
the distribution of Common Voice and CoVoST-
2, with training utterances for different languages
ranging from millions to thousands. We did
not study how this imbalance affects GER train-
ing. Future work should explore per-language
reweighting or curriculum sampling to mitigate
this bias.

• Coverage of first-pass decoding strategy. We
explore only beam search, temperature sampling,
and their mixture. There are other decoding
strategies, such as diverse beam (Vijayakumar
et al., 2016) or nucleus sampling (Holtzman et al.,
2019), that could be investigated as well.

• Multi-task negative transfer with LoRA. Our
experiments on multi-task training show negative
transfer between ASR and ST, which could be
due to LoRA suffering measurable catastrophic
forgetting. Strategies such as task-balanced
sampling (Ruder, 2017), adapter routing (Pfeif-
fer et al., 2020), or multi-objective optimisa-
tion (Sener and Koltun, 2018) are necessary for
addressing this issue.

Ethical Considerations

This study exclusively uses publicly available
datasets (Common Voice and CoVoST-2) for ASR
and ST GER benchmarking, ensuring compliance
with ethical and privacy standards. Our work does
not involve any private or sensitive data collection.
In addition, we confirm that the dataset and mod-
els used in our study were obtained and utilized in
full compliance with their respective licenses and
intended use guidelines.
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A Val-100 Results

Tables 8 and 10 present results evaluated on Val-
100 set, with different first-pass decoding setups
and GER models. We created Figures 4 and 5 based
on these results.

We also conducted experiments using the task-
activated in-context learning in Chen et al. (2023a)
with GPT-4o on the Val-100 set for ASR GER. The
N -best lists are decoded by Whisper-Large with
Mixture decoding. Results are shown in Table 9.
Compared with the Alpaca-style zero-shot prompt
we used in the paper, task-activated prompting un-
derperforms in the zero-shot case (Average TER of
25.6 compared to 23.7 in the 3rd row from the bot-
tom of Table 8). However, it improves steadily with
more demonstrations, echoing the trend reported
by Chen et al. (2023a).

B Hallucination Analysis

We define hallucination in two cases:

• Empty-reference insertion: The first line
catches any output when the reference is
empty.

• Extreme mismatch: the number of word-level
edit operations exceeds the number of refer-
ence characters (Character Error Rate (CER)
> 1.0 for ASR task, Translation Error Rate
(TERtrn) > 1.0 for ST task).

6324

https://arxiv.org/abs/2412.15115


N -best GER Ar Ca Cy De En Et Fa Id Ja Lv Sl Sv Ta Tr Zh AVG
S+Beam – 48.2 28.4 57.4 11.2 16.4 67.8 107.6 28.9 37.1 46.6 40.5 17.8 62.0 24.9 34.4 42.0
S+Beam (Oracle) 53.4 24.2 58.9 12.9 15.6 61.6 76.7 21.2 35.1 50.5 34.1 18.6 61.8 20.3 29.8 38.3
S+Beam (Compositional) 49.7 19.7 46.3 10.2 12.3 51.4 56.8 18.3 26.7 41.6 29.2 15.1 53.3 17.2 27.6 31.7
S+Beam GPT-4o 43.2 25.9 48.3 9.2 14.5 56.9 61.8 21.9 28.9 35.7 30.4 15.6 57.6 20.1 29.6 33.3
S+Beam Qwen (z-shot) 45.1 28.9 52.7 11.1 15.5 69.4 129.4 36.5 32.2 46.3 37.5 18.7 158.2 25.0 29.5 49.1
S+Beam Qwen (LoRA) 50.3 16.7 54.4 8.0 13.0 68.3 65.8 18.0 37.0 66.8 36.1 18.1 85.5 21.3 14.6 38.3
S+Sample (Oracle) 54.0 26.2 63.4 13.3 16.2 64.4 72.2 24.3 35.2 54.9 38.7 20.5 64.5 23.5 29.4 40.0
S+Sample (Compositional) 47.4 17.5 41.7 9.5 11.0 45.9 52.5 17.2 22.7 36.3 26.7 13.7 46.7 17.1 22.6 28.6
S+Sample GPT-4o 43.4 25.7 46.5 10.1 17.5 50.9 94.4 25.9 28.7 34.2 34.0 15.2 54.9 20.3 29.4 35.4
S+Sample Qwen (z-shot) 50.9 33.0 107.7 12.9 19.9 98.5 230.8 41.9 56.5 69.6 78.0 19.5 101.8 29.5 38.5 65.9
S+Sample Qwen (LoRA) 54.8 17.8 58.2 9.0 14.5 69.9 71.7 18.3 35.0 48.3 40.4 19.8 88.1 23.0 15.4 38.9
S+Mix (Oracle) 51.4 23.7 55.9 12.0 15.0 59.8 67.5 22.1 33.3 49.5 34.8 18.4 59.7 21.0 28.2 36.8
S+Mix (Compositional) 46.5 16.9 38.6 9.2 10.9 44.2 50.1 16.9 22.8 34.8 25.8 13.3 45.1 16.4 23.0 27.6
S+Mix GPT-4o 42.6 23.8 41.3 8.7 15.3 48.1 66.8 22.7 28.4 32.1 28.2 13.9 55.0 19.1 31.5 31.8
S+Mix Qwen (z-shot) 49.1 32.4 71.4 11.8 19.4 74.2 125.0 36.6 43.9 49.5 38.6 19.3 91.6 29.8 27.8 48.0
S+Mix Qwen (LoRA) 48.7 16.2 53.4 8.7 13.4 68.5 121.3 16.9 42.6 48.5 38.0 18.7 81.2 21.5 13.3 40.7
M+Beam – 48.2 20.3 32.6 9.9 16.7 48.2 53.6 16.2 25.7 32.2 28.8 13.3 54.4 16.6 27.5 29.6
M+Beam (Oracle) 42.9 17.5 37.4 8.0 12.6 41.8 49.7 15.2 29.0 32.8 23.2 11.4 52.7 15.4 23.2 27.4
M+Beam (Compositional) 40.9 14.3 30.5 6.9 10.1 34.4 39.7 11.2 21.9 27.2 19.3 9.2 46.0 13.2 21.2 23.1
M+Beam GPT-4o 45.4 18.8 29.3 7.9 15.6 38.4 46.2 14.2 22.8 25.7 20.2 11.5 50.7 13.7 23.9 25.6
M+Beam Qwen (z-shot) 46.2 25.7 34.8 10.1 15.8 51.4 54.8 15.2 28.7 35.0 26.2 13.3 90.4 16.9 24.3 32.6
M+Beam Qwen (LoRA) 43.9 12.8 33.8 6.8 12.4 51.7 49.6 12.3 24.4 33.7 23.9 12.2 54.9 14.8 11.4 26.6
M+Sample (Oracle) 43.8 18.7 42.4 8.5 13.2 44.3 50.6 15.2 28.9 35.6 25.9 12.7 55.0 17.4 22.9 29.0
M+Sample (Compositional) 39.4 13.0 27.1 6.4 9.2 29.8 35.7 10.9 19.1 23.0 18.1 8.7 38.7 13.1 18.0 20.7
M+Sample GPT-4o 45.2 21.0 28.9 7.3 13.9 33.9 51.8 16.9 22.5 22.7 20.9 12.7 47.0 14.1 23.5 25.5
M+Sample Qwen (z-shot) 47.9 26.4 53.7 8.9 68.4 14.9 87.8 23.7 31.0 37.2 28.6 24.2 97.2 25.9 26.1 40.1
M+Sample Qwen (LoRA) 48.9 13.1 36.8 6.9 11.9 54.6 54.0 12.9 26.0 32.5 26.8 14.3 47.7 17.0 12.6 27.7
M+Mix (Oracle) 42.3 17.4 37.2 8.0 12.4 40.8 47.3 14.2 27.9 32.6 23.3 11.9 52.3 16.1 22.2 27.1
M+Mix (Compositional) 39.1 12.9 25.6 6.4 9.3 29.3 34.9 10.9 19.2 22.8 17.5 8.8 38.9 12.8 18.5 20.5
M+Mix GPT-4o 43.6 18.3 28.2 7.7 13.6 32.8 46.9 13.6 22.2 23.2 18.5 12.6 49.3 13.8 23.5 24.5
M+Mix Qwen (z-shot) 48.6 22.4 40.7 10.2 52.5 60.9 15.8 20.0 29.8 32.8 27.6 22.2 97.4 18.7 24.1 34.9
M+Mix Qwen (LoRA) 42.6 12.2 34.1 7.4 12.4 51.7 50.3 11.4 48.7 31.0 23.6 12.3 47.0 14.8 11.2 26.0
L+Beam – 42.2 20.3 28.7 8.2 14.0 44.2 47.4 17.3 24.5 30.3 25.3 12.3 47.5 15.8 24.4 26.8
L+Beam (Oracle) 41.4 16.1 33.7 7.3 12.1 37.9 46.3 13.3 28.1 29.7 19.0 10.3 47.7 14.4 24.7 25.5
L+Beam (Compositional) 39.6 12.9 27.6 6.3 9.7 31.2 35.9 11.3 20.8 24.0 15.9 8.2 41.1 12.4 23.0 21.3
L+Beam GPT-4o 42.2 19.0 26.0 6.7 12.8 34.9 43.7 13.6 23.1 24.5 19.6 10.8 44.5 15.0 20.0 23.8
L+Beam Qwen (z-shot) 42.6 50.6 31.2 9.1 13.9 48.5 54.0 15.0 24.6 33.2 25.3 13.0 84.8 17.2 21.5 30.3
L+Beam Qwen (LoRA) 44.4 12.7 30.9 6.7 11.0 46.7 47.5 10.9 32.4 30.2 24.4 13.2 98.7 16.0 9.4 24.0
L+Beam (Oracle) 41.8 16.9 38.1 7.5 12.4 39.9 47.3 14.5 27.4 32.3 21.8 11.5 50.9 15.6 24.1 26.8
L+Sample (Compositional) 37.7 11.9 24.8 5.9 8.7 26.9 32.8 11.1 18.1 20.8 15.5 7.9 35.2 11.9 19.9 19.3
L+Sample GPT-4o 42.7 21.4 26.0 6.9 12.8 28.3 56.3 14.3 23.6 25.4 28.6 10.9 45.6 14.5 24.9 24.1
L+Sample Qwen (z-shot) 41.9 35.3 37.3 9.3 14.4 52.9 87.6 19.5 34.7 43.9 35.7 13.6 94.1 19.4 24.4 37.6
L+Sample Qwen (LoRA) 46.6 14.8 35.8 7.5 11.1 53.2 45.7 13.2 26.0 35.1 23.3 11.5 150.4 14.5 10.3 33.3
L+Mix (Oracle) 40.3 15.8 33.7 7.2 11.8 36.7 44.2 13.9 26.7 29.6 19.5 10.9 47.4 14.8 23.5 25.1
L+Mix (Compositional) 37.3 11.8 23.5 5.9 8.8 26.5 31.9 11.1 18.3 20.6 14.8 8.1 35.0 11.9 20.3 19.0
L+Mix GPT-4o 43.9 19.1 24.3 7.3 12.8 28.1 47.7 14.6 22.5 22.5 19.9 11.2 44.4 14.7 22.9 23.7
L+Mix Qwen (z-shot) 42.7 31.5 32.8 9.2 13.5 50.3 72.3 17.9 33.8 37.6 28.2 13.2 95.2 18.3 23.3 34.6
L+Mix Qwen (LoRA) 47.6 12.8 31.5 6.6 10.7 45.8 46.7 11.3 32.0 31.4 22.3 11.3 76.9 14.5 9.8 27.4

Table 8: TER scores on Val-100 for ASR. “S,” “M” and “L” stand for “small,” “medium” and “large.” “Qwen”
stands for Qwen2.5-7B-Instruct. The “AVG” column presents the average scores across all the languages.

n-shot Ar Ca Cy De En Et Fa Id Ja Lv Sl Sv Ta Tr Zh AVG
n=0 41.9 19.5 26.9 7.4 13.6 38.2 49.6 15.7 26.0 26.4 20.8 11.3 47.2 15.0 24.9 25.6
n=1 49.6 19.1 20.6 7.7 12.5 22.9 44.2 18.2 23.5 23.7 14.3 14.4 46.2 14.1 14.0 23.0
n=5 45.7 17.6 19.6 6.9 11.9 22.4 47.0 11.9 33.2 19.1 13.6 16.1 40.9 14.7 9.9 22.0
n=10 52.1 17.2 18.3 6.4 11.6 21.9 48.4 11.3 25.4 18.9 13.3 14.2 41.0 14.2 10.1 21.6

Table 9: TER results using task-activated in-context learning with GPT-4o on the Val-100 set for ASR GER. The
N -best lists are decoded by Whisper-Large with Mixture decoding.

So, the hallucination rate is the percentage of
sentence pairs where either the reference is empty
but the system still outputs tokens, or the sentence-
level CER or TERtrn exceeds 1.0. With this defini-
tion, we conducted an analysis on the Qwen model
outputs in Table 6.

To prevent hallucination on ASR tasks, the
model is strong in well-represented Latin languages
and acceptable in Chinese, but it needs a targeted
adaptation for scripts that diverge in segmentation
or writing direction, as shown in Table 11.

For translation tasks (as shown in Table 12),
in terms of language resource levels, the pattern
is much like in ASR; by the writing system, the
riskiest directions are from English into non-Latin
scripts or highly agglutinative languages, while
translating into English from languages with sim-
pler morphology and scripts is relatively safe.

In summary, at the sentence level, hallucinations
are quite alarming: they either never occur or wreck
the entire sentence. Throughout the test set, the
reduction of hallucinations can achieve a minimum
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N -best GER Ar–En Ca–En Cy–En De–En Et–En Fa–En Id–En Ja–En Lv–En Sl–En Sv–En Ta-En Tr–En Zh–En X–En
M+Beam - 33.69 35.24 41.48 27.64 34.24 36.03 56.66 17.69 5.84 25.40 21.41 4.18 27.46 22.49 27.82
M+Beam (Oracle) 46.03 44.17 52.81 33.38 40.32 52.05 76.85 25.19 9.48 36.72 33.93 8.61 36.73 27.23 37.39
M+Beam GPT-4o 34.87 34.01 43.93 29.22 33.74 37.08 59.19 18.70 6.61 25.33 25.46 5.32 28.48 22.00 28.85
M+Beam Qwen (z-shot) 34.57 34.64 39.08 29.33 33.45 34.07 57.15 18.83 5.84 25.27 24.76 5.33 28.07 22.80 28.08
M+Beam Qwen (LoRA) 35.87 34.68 41.50 30.03 33.39 39.05 59.95 20.23 6.29 28.33 28.21 5.72 30.29 21.37 29.64
M+Sample (Oracle) 40.91 43.96 47.94 32.99 39.51 44.04 67.89 22.90 9.06 32.73 28.45 8.51 34.93 26.35 34.30
M+Sample GPT-4o 33.03 33.97 44.65 29.10 33.33 34.04 56.58 18.33 6.73 27.72 21.55 5.12 30.05 19.37 28.11
M+Sample Qwen (z-shot) 29.90 34.18 39.11 28.20 32.12 33.35 55.12 15.68 4.67 25.07 18.75 3.08 27.25 18.98 26.10
M+Sample Qwen (LoRA) 34.22 33.15 31.70 31.12 32.01 36.28 58.73 16.21 6.97 28.02 25.02 5.34 31.45 20.45 27.90
M+Mix (Oracle) 41.79 43.84 47.19 32.44 40.10 45.37 68.03 23.28 8.94 33.18 28.99 8.63 35.02 27.06 34.56
M+Mix GPT-4o 35.15 33.78 45.30 28.41 31.29 36.97 58.82 18.63 7.47 28.85 22.13 4.60 30.77 21.20 28.81
M+Mix Qwen (z-shot) 34.13 34.85 38.63 27.86 31.08 35.39 55.57 15.56 5.23 26.07 21.11 3.38 29.76 21.79 27.17
M+Mix Qwen (LoRA) 34.27 35.34 35.86 31.19 32.64 37.02 58.19 18.21 7.45 27.98 26.91 4.99 32.79 18.71 28.68
L+Beam - 38.70 36.12 50.01 31.83 40.94 42.11 61.35 21.90 23.61 33.87 31.92 6.34 30.72 21.95 33.67
L+Beam (Oracle) 51.14 46.33 61.81 37.64 47.58 50.33 76.55 31.36 31.03 43.58 40.67 8.99 41.59 25.59 42.44
L+Beam GPT-4o 37.10 35.55 49.79 32.01 38.28 37.56 57.53 21.82 22.88 30.79 31.07 7.14 30.89 20.27 32.33
L+Beam Qwen (z-shot) 37.50 35.29 50.15 31.59 39.51 39.89 56.33 22.22 21.71 30.42 31.21 5.11 31.25 20.08 32.30
L+Beam Qwen (LoRA) 38.64 36.19 47.66 33.05 38.06 42.80 57.15 23.91 26.25 33.60 31.78 6.81 32.39 20.56 33.49
L+Sample (Oracle) 48.31 43.39 53.63 37.52 46.12 46.33 70.77 27.50 27.65 40.64 37.42 8.89 35.93 26.73 39.34
L+Sample GPT-4o 40.63 33.82 49.56 30.40 35.90 39.16 59.56 20.47 24.43 30.84 33.15 6.13 30.86 20.91 32.56
L+Sample Qwen (z-shot) 35.48 34.58 48.50 28.61 36.51 35.52 55.98 17.62 19.37 29.27 27.10 2.84 28.54 18.56 29.89
L+Sample Qwen (LoRA) 24.07 34.94 33.30 29.12 35.70 43.02 61.41 18.81 28.44 33.48 34.70 5.78 32.25 23.05 31.29
L+Mix (Oracle) 47.34 44.22 52.95 37.23 46.50 47.22 70.27 27.47 26.99 40.88 37.29 9.09 37.09 26.47 39.36
L+Mix GPT-4o 41.01 34.53 49.71 33.04 37.64 40.60 58.96 22.59 23.12 32.77 31.46 6.90 29.73 21.24 33.09
L+Mix Qwen (z-shot) 35.55 35.57 48.61 31.53 37.35 40.09 59.80 17.81 19.85 31.09 29.39 4.53 29.35 21.97 31.61
L+Mix Qwen (LoRA) 37.52 35.83 33.21 30.38 37.46 41.54 62.46 21.40 26.18 34.44 34.26 5.40 31.60 22.25 32.42
N -best GER En–Ar En–Ca En–Cy En–De En–Et En–Fa En–Id En–Ja En–Lv En–Sl En–Sv En-Ta En–Tr En–Zh En–X AVG
M+Beam - 26.47 35.44 28.65 23.51 18.31 12.20 29.81 30.41 14.26 36.19 32.26 16.80 20.48 30.77 25.40 26.61
M+Beam (Oracle) 35.40 44.67 34.41 30.71 25.26 17.40 40.19 37.02 18.10 45.98 41.37 26.99 27.02 37.62 33.01 35.20
M+Beam GPT-4o 28.07 36.78 30.49 24.29 21.35 13.81 30.82 33.58 14.77 37.97 33.86 16.62 21.85 34.36 27.04 27.94
M+Beam Qwen (z-shot) 24.48 33.36 26.66 24.94 17.39 11.28 29.92 32.51 14.69 33.34 33.45 1.75 17.90 33.32 23.93 26.00
M+Beam Qwen (LoRA) 26.44 35.48 26.94 24.35 16.72 12.01 31.25 33.23 12.11 35.03 32.97 2.26 20.55 38.44 24.84 27.24
M+Sample (Oracle) 32.00 41.45 33.05 28.06 24.99 18.57 34.47 37.70 19.14 43.06 38.28 23.91 24.55 36.19 31.10 32.70
M+Sample GPT-4o 26.81 38.69 29.30 25.37 22.11 16.24 29.58 32.89 15.93 36.49 33.51 17.58 20.87 33.93 27.09 27.60
M+Sample Qwen (z-shot) 24.21 35.48 26.04 22.77 17.79 13.18 26.73 29.54 13.56 32.26 31.95 2.09 17.65 33.32 23.33 24.72
M+Sample Qwen (LoRA) 23.20 34.91 27.81 23.93 17.13 10.62 30.32 33.63 13.58 32.61 33.21 2.52 18.00 37.61 24.22 26.06
M+Mix (Oracle) 33.33 41.53 33.27 28.48 24.96 18.41 35.38 37.49 18.03 44.14 38.28 23.60 24.31 36.83 31.29 32.93
M+Mix GPT-4o 26.63 37.25 30.29 24.76 20.45 15.68 31.28 33.25 15.90 38.14 32.55 18.52 20.23 34.94 27.13 27.97
M+Mix Qwen (z-shot) 25.43 35.56 26.93 24.59 17.16 12.73 28.31 30.42 13.23 34.40 30.41 1.76 20.05 33.06 23.86 25.52
M+Mix Qwen (LoRA) 24.84 34.71 27.16 24.15 17.14 11.37 29.29 33.84 13.72 31.92 30.73 1.82 19.37 39.88 24.28 26.48
L+Beam - 31.66 37.53 31.09 25.18 22.19 13.84 32.45 30.53 18.95 40.87 37.80 22.22 20.94 35.25 28.61 31.14
L+Beam (Oracle) 40.77 46.13 37.23 33.26 32.02 20.01 44.25 35.99 24.88 50.06 47.15 30.46 29.29 41.71 36.66 39.55
L+Beam GPT-4o 30.55 39.24 32.04 27.00 23.59 14.38 34.07 33.02 18.61 38.80 37.80 21.19 23.04 36.27 29.26 30.80
L+Beam Qwen (z-shot) 28.12 36.64 26.62 26.38 22.26 12.36 31.32 30.81 16.05 36.48 36.41 1.94 19.38 35.99 25.77 29.03
L+Beam Qwen (LoRA) 30.13 37.10 28.14 26.73 21.06 14.64 32.48 35.41 17.45 36.76 34.57 1.19 22.02 43.86 27.25 30.37
L+Sample (Oracle) 36.96 42.60 34.50 31.36 31.94 18.58 40.56 37.87 23.11 45.83 43.09 25.51 27.05 40.56 34.25 36.80
L+Sample GPT-4o 27.53 38.11 32.07 26.03 23.44 14.00 33.23 33.99 15.96 39.28 36.98 19.55 20.72 37.35 28.45 30.51
L+Sample Qwen (z-shot) 27.82 35.93 28.82 25.49 20.19 11.38 32.67 31.62 12.70 36.25 34.53 1.88 20.13 35.12 25.32 27.60
L+Sample Qwen (LoRA) 29.94 37.43 28.55 26.61 20.09 13.09 31.79 35.88 14.45 37.32 34.25 2.04 20.44 43.61 26.82 29.06
L+Mix (Oracle) 37.84 42.95 35.75 29.91 32.35 19.22 39.94 38.20 23.08 45.96 43.61 26.49 27.19 40.98 34.53 36.95
L+Mix GPT-4o 31.22 39.43 30.39 25.66 25.64 14.97 34.45 34.64 18.58 39.23 36.56 21.42 21.79 36.08 29.29 31.19
L+Mix Qwen (z-shot) 27.08 35.71 27.45 26.19 22.06 11.72 32.21 30.99 16.58 37.29 34.49 1.91 20.68 36.49 25.78 28.70
L+Mix Qwen (LoRA) 29.24 36.14 30.27 26.44 20.37 14.41 32.70 35.29 15.90 36.44 35.24 0.92 21.24 44.82 27.10 29.76

Table 10: BLEU scores on Val-100 for ST. “M” and “L” stand for “medium” and “large.” “Qwen” stands for
Qwen2.5-7B-Instruct. Columns “X-En,” “En-X,” and “AVG” present the average scores across any-to-English,
English-to-any, and all the language pairs, respectively.

De Id Ca Sv En Zh Sl Lv Ja Cy Et Ar Fa Ta
0.4 0.2 0.9 0.2 1.1 0.5 0.2 0.9 3.6 1.2 0.4 4.6 6.7 11.3

Table 11: ASR Sentence-level hallucination rates (%) (percentage of hallucinated sentences) for each language.

Sl→En En→Sl Tr→En En→Tr Sv→En En→Sv Lv→En En→Lv Fa→En En→Fa
0.2 3.9 0.9 8.2 1.2 4.7 1.3 5.6 1.9 8.3

De→En En→De Id→En En→Id En→Et Et→En Cy→En En→Cy Ja→En En→Ja
3.8 3.4 3.3 2.4 5.3 5.6 5.2 4.1 11.5 5.0

En→Ar Ar→En Zh→En En→Zh Ta→En En→Ta
5.0 5.7 6.2 8.1 38.9 17.2

Table 12: ST Sentence-level hallucination rates (%) for each translation direction.

overall increase in absolute precision of 1%. For
low-resource languages, the improvement is even
greater, typically greater than 10%.
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