
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 6224–6239
November 4-9, 2025 ©2025 Association for Computational Linguistics

PropRAG: Guiding Retrieval with Beam Search over Proposition Paths

Jingjin Wang Jiawei Han
Siebel School of Computing and Data Science, University of Illinois Urbana-Champaign

{jingjin9, hanj} @illinois.edu

Abstract

Retrieval Augmented Generation (RAG) has
become the standard approach for equipping
Large Language Models (LLMs) with up-to-
date knowledge. However, standard RAG, rely-
ing on independent passage retrieval, often fails
to capture the interconnected nature of informa-
tion required for complex, multi-hop reasoning.
While structured RAG methods attempt to ad-
dress this using knowledge graphs built from
triples, we argue that the inherent context loss
of triples (context collapse) limits the fidelity
of the knowledge representation. We introduce
PropRAG, a novel RAG framework that shifts
from triples to context-rich propositions and
introduces an efficient, LLM-free online beam
search over proposition paths to discover multi-
step reasoning chains. By coupling a higher-
fidelity knowledge representation with explicit
path discovery, PropRAG achieves state-of-
the-art zero-shot Recall@5 and F1 scores on
2Wiki, HotpotQA, and MuSiQue, advancing
non-parametric knowledge integration by im-
proving evidence retrieval through richer rep-
resentation and efficient reasoning path discov-
ery.

1 Introduction

Large Language Models (LLMs) often struggle
with knowledge-intensive tasks, particularly when
information is newly emergent or requires com-
plex reasoning over multiple facts. Retrieval Aug-
mented Generation (RAG) (Lewis et al., 2020) ad-
dresses this by retrieving external knowledge, of-
fering a non-parametric solution that mitigates is-
sues like catastrophic forgetting in continual learn-
ing (Cohen et al., 2024; Gu et al., 2024). How-
ever, conventional RAG systems (Karpukhin et al.,
2020; Lee et al., 2025) typically retrieve evidence
passages independently based on query similarity.
This approach struggles with multi-step queries
that require synthesizing interconnected informa-
tion—a process crucial for sense-making (Klein

et al., 2006) and associativity (Suzuki, 2007).
To improve multi-hop retrieval, structured RAG

methods have emerged. Approaches like Hip-
poRAG 2 (Gutiérrez et al., 2025) utilize knowl-
edge graphs (KGs) built from (Subject, Predicate,
Object) triples and use graph algorithms (e.g., Per-
sonalized PageRank) to rank relevant nodes. While
effective, we argue these methods suffer from "con-
text collapse." Triples are a lossy compression of
natural language, discarding crucial nuances like
conditionality, provenance, and n-ary relationships
(Section 3). This loss of fidelity limits the system’s
ability to reconstruct complex reasoning chains.
Other advanced RAG strategies rely on online LLM
calls during the retrieval process (e.g., generating
subsequent queries) (Trivedi et al., 2022a; Jiang
et al., 2024), which introduces significant latency,
cost, and potential consistency issues.

Our main insight is that effective multi-hop RAG
requires two key shifts: (1) moving from lossy
triples to a higher-fidelity knowledge representa-
tion that preserves context, and (2) moving from
simple node ranking to explicit, efficient discovery
of reasoning paths.

We introduce PropRAG, a novel RAG frame-
work designed for dynamic, interconnected mem-
ory retrieval without requiring online LLM infer-
ence during the search process. PropRAG features
two core innovations:

1. Propositions as High-Fidelity Knowledge
Units: Extracted offline by an LLM, proposi-
tions are atomic, self-contained statements that
preserve contextual richness (e.g., conditional
clauses, multi-entity events) beyond triples (Sec-
tion 3).

2. LLM-Free Online Beam Search for Path Dis-
covery: A novel two-stage retrieval process cul-
minating in an algorithmic beam search discov-
ers and scores paths of interconnected proposi-
tions. This search operates on a pre-built graph

6224

using embeddings and graph structure, avoiding
the costs and latency of LLM inference during
evidence discovery (Section 5).

By coupling context-rich propositions with an
efficient, algorithmic path-finding mechanism, Pro-
pRAG enhances the system’s ability to perform
associative reasoning. Experiments demonstrate
substantial improvements, particularly on multi-
hop QA tasks. PropRAG sets new state-of-the-
art zero-shot RAG scores on several challenging
benchmarks, advancing the capabilities of non-
parametric knowledge integration in LLMs.

2 Related Work

Retrieval Augmented Generation (RAG) frame-
works (Lewis et al., 2020) augment LLMs by
retrieving documents. Early methods like DPR
(Karpukhin et al., 2020) used embedding similarity.
Despite better embeddings (Izacard et al., 2022; Ni
et al., 2022; Lee et al., 2025), standard RAG strug-
gles with multi-document synthesis (Asai et al.,
2020).

Multi-Hop RAG aims to address this. Iter-
ative methods (Asai et al., 2020; Trivedi et al.,
2022a) retrieve sequentially, often using LLMs on-
line. Graph-based RAG (Edge et al., 2024; Sarthi
et al., 2024) structures knowledge, often using KGs.
HippoRAG 2 (Gutiérrez et al., 2025) used Personal-
ized PageRank over triple-based KGs, focusing on
node ranking. PropRAG differs fundamentally by
using context-rich propositions and employing an
explicit, LLM-free online beam search focused on
discovering complete reasoning paths, rather than
just ranking nodes.

Beam Search in Retrieval. Recent work has
explored leveraging beam search to improve multi-
hop retrieval. For instance, (Zhang et al., 2023)
proposed Beam Retrieval, an end-to-end trainable
framework where beam search is used during both
training and inference to find optimal passage se-
quences. Their approach learns a scoring function
optimized across hops using ground-truth passage
chains.

In contrast, PropRAG adopts a zero-shot on-
line retrieval strategy. While also employing beam
search, PropRAG operates over a graph of contextu-
ally rich propositions, extracted offline. Our beam
search algorithmically discovers proposition paths
based on pre-computed embedding similarity and
graph connectivity, crucially avoiding online LLM
inference costs or task-specific training during the

retrieval phase. PropRAG thus decouples complex
reasoning path discovery from end-to-end training
dependencies, focusing on leveraging richer knowl-
edge units (propositions) and algorithmic path ex-
ploration.

Propositions as Retrieval Units. Chen et al.
(2024) demonstrated that retrieving propositions
(atomic factoids) can outperform passage or sen-
tence retrieval in standard RAG. PropRAG builds
upon this insight by integrating propositions into a
graph structure and utilizing beam search to chain
them together for multi-hop reasoning.

3 Propositions: Escaping the Tyranny of
the Triple

The efficacy of multi-hop reasoning is constrained
by the fidelity of the underlying knowledge repre-
sentation. Traditional KG-based RAG systems rely
on ⟨Subject, Predicate, Object⟩ triples. We con-
tend this is a lossy compression that discards cru-
cial nuances, leading to "context collapse." Propo-
sitions—atomic, self-contained statements that pre-
serve context—offer a higher-fidelity alternative.
Figure 1 illustrates how a proposition graph retains
context lost in a standard KG.

Key limitations of triples addressed by proposi-
tions include:

1. Omission of Conditional Context: Facts are
often contingent upon specific conditions (tem-
poral, spatial, etc.), which triples frequently dis-
card.

• Example Passage: The experimental drug
showed promise in Phase 2 trials, reducing
tumor size significantly, but only in patients
under 50 with the specific KRAS mutation.

• Triples might yield: (drug, showed,
promise), (drug, reduced, tumor
size). The critical conditions are lost.

• Propositions preserve conditions: E.g.,
"The significant tumor size
reduction by the experimental drug
was observed only in patients
under 50."

2. Limitations in Representing Higher-Order
Relations: Representing complex constructs
like provenance, causality, or nested clauses is
unnatural in S-P-O format.

• Triple Limitation: As shown in Figure 1
(Left), the triple representation fails to cap-
ture the provenance ("Archival records in-

6225

Passage: The archival records indicate President Lincoln
signed the preliminary Emancipation Proclamation in
September 1862, but it only took legal effect on January 1,
1863, provided the Confederate states did not rejoin the
Union by that date.

Knowledge Graph (Triple Representation)

Proposition Graph

Nodes within the same proposition hyper-edge are fully connected.

Lincoln signed

Emancipation

Proclamation

Emancipation

Proclamation signed in
September

1862

Emancipation

ProclamationLincoln

September
1862

January 1,
1863

signed

signed in took effect on

President Lincoln signed
the preliminary
Emancipation Proclamation
in September 1862 according
to archival records.

The legal effect of the
Emancipation Proclamation was
conditional on the
Confederate states not
rejoining the Union by that
date.

Lincoln

Emancipation

Proclamation
September

1862
archival
records

Confederate

states

Union

The Emancipation Proclamation
was set to take legal effect
on January 1, 1863.

January 1,
1863

Emancipation

Proclamation took effect on

January 1,

1863

Emancipation

Proclamation

Lincoln September
1862

archival
records

Emancipation

Proclamation

January 1,
1863

Emancipation

Proclamation

Union
Confederate

states

Figure 1: Comparison of a traditional Knowledge Graph (KG) versus a Proposition Graph for a complex passage.
Left: The triple-based KG struggles to natively represent provenance ("archival records") and conditional clauses. It
results in disconnected facts where the crucial context (the conditionality of the Emancipation Proclamation taking
effect) is omitted, leading to context loss. Right: The PropRAG proposition graph utilizes implicit hyper-edges
(fully connected cliques within shaded ovals) to link all entities co-occurring within a single, context-rich proposition.
This structure directly preserves nuances like conditionality and provenance.

dicate...") and completely omits the crit-
ical condition ("provided the Confeder-
ate states...") regarding the Emancipation
Proclamation. While KGs can use reifica-
tion, this increases complexity and sacri-
fices clarity.

• Proposition Advantage: Propositions nat-
urally encapsulate these relations. Figure
1 (Right) shows these preserved in distinct
propositions, modeled using implicit hyper-
edges that maintain the full context.

3. Forced Binarization of Unary Predicates (At-
tributes): The S-P-O model is fundamentally re-
lational and struggles to represent intrinsic prop-
erties (e.g., "The manuscript is fragile").

• Triple Limitation: Forcing this into
(manuscript, is, fragile) artificially
treats the attribute ("fragile") as an indepen-
dent object, relying on weak predicates.

• Proposition Advantage: Propositions han-

dle attributes natively: "The ancient
manuscript was fragile."

4. Fragmentation of N-ary Relationships
(Events): Real-world events often involve mul-
tiple participants. The S-P-O structure forces
decomposition into multiple binary triples,
fragmenting the event’s holistic semantics.

• Example Passage (Collaboration): "The
groundbreaking research paper on quan-
tum entanglement was co-authored by Al-
ice, Bob, and Charlie in 2023."

• Triples fragment this: (Alice,
co-authored, paper), (Bob,
co-authored, paper), etc., losing
that they collaborated *jointly*.

• Proposition Advantage: A single proposi-
tion captures the N-ary relation: "Alice,
Bob, and Charlie co-authored the
groundbreaking research paper..."
This is represented as an implicit hyper-

6226

edge in the proposition graph.

To operationalize this, PropRAG leverages
the NLU capabilities of LLMs (Llama-3.3-70B-
Instruct) during the offline indexing phase to ex-
tract these high-fidelity propositions. This ensures
the subsequent online retrieval operates on a con-
textually rich foundation without further LLM in-
ference for knowledge representation.

4 Problem Formulation: Finding the
Reasoning Path

Traditional RAG aims to retrieve docu-
ments Dret maximizing individual relevance
sim(emb(d), emb(q)). Multi-hop KG-RAG
methods like HippoRAG 2 (Gutiérrez et al., 2025)
typically rank nodes (entities/passages) based
on proximity to query seeds or graph centrality
(e.g., via PPR), but do not explicitly construct or
evaluate multi-step reasoning paths. Furthermore,
when KGs use context-poor triples, the semantic
richness available for ranking is limited.

We reformulate multi-hop retrieval as finding
an optimal path of interconnected propositions
P = (p1, p2, ..., pk) that collectively answer query
q. Propositions pi, pi+1 are linked if they share
common or synonymous entities. This connection
occurs naturally in the proposition graph (Figure 1,
right), where entities shared between proposition
hyper-edges act as bridges.

The objective is to find

P ∗ = argmax
P∈ConnectedPaths(P)

Score(P, q), (1)

where Score(P, q) measures the relevance of the
entire path, potentially via aggregated or concate-
nated embeddings. As finding the global optimum
over all possible paths is intractable, we employ
beam search as an efficient heuristic.

5 Methodology: PropRAG

The PropRAG framework operationalizes the path-
finding objective (Section 4) through a structured
offline indexing phase followed by an efficient, two-
stage online retrieval process (Figure 2). We utilize
the complex multi-hop query presented in Figure 3
as a running example to illustrate the methodology.

5.1 Offline Indexing (LLM-assisted)
The objective of the offline indexing phase is to
construct the high-fidelity proposition graph, a pre-
requisite for efficient online path discovery.

1. Knowledge Extraction: An LLM (e.g., Llama-
3.3-70B-Instruct) is employed to extract propo-
sitions and their constituent entities from the
corpus D (Prompts detailed in Appendix A.3).

2. Graph Construction: A proposition graph
G = (V,E) is constructed. Nodes V repre-
sent entities and passages. Edges E link entities
if they co-occur within the same proposition
(forming implicit hyper-edges) or if they are
determined to be synonymous via embedding
similarity (Details in Appendix A.1).

3. Embedding Generation: Embeddings (e.g., us-
ing NV-Embed-v2) are computed and stored for
all nodes and propositions.

5.2 Online Retrieval (LLM-free)
The online retrieval component implements a two-
stage, LLM-free architecture designed to identify
salient reasoning paths. This coarse-to-fine opti-
mization strategy balances the need for broad ex-
ploration of the graph with focused refinement of
candidate paths.

5.2.1 Stage 1: Coarse-grained Subgraph
Induction

The objective of Stage 1 is to efficiently prune the
search space by inducing a highly relevant, local-
ized subgraph Gsub from the global graph G.

1. Initial Candidate Retrieval: The top-Nprop

propositions most semantically similar to the
query q are retrieved. (Running Example, Fig.
3): Propositions P1 (Mantua Cathedral) and P3
(Governor’s death) are retrieved due to high ini-
tial similarity, while the necessary intermediate
P2 is not highly ranked.

2. Seed Set Initialization (Sinitial): Entities E(p)
contained within these top propositions are ex-
tracted. The top-Nentity unique entities form
the initial seed set Sinitial. Uniform weights are
assigned to promote diverse graph exploration.

3. Exploratory Graph Traversal (PPR): Person-
alized PageRank (PPR) is executed on the global
graph G, with the reset probability distribution
concentrated on Sinitial. A high damping fac-
tor (e.g., 0.75) is utilized to facilitate broader
traversal originating from these seeds.

4. Subgraph Induction (Gsub): The top-K pas-
sages identified by the PPR scores, along with
their associated entities and propositions in G,

6227

Select top passages

Induce subgraph

Explorative PPR

Initial Relevance Signal

Query

1

Passage 3

...

Select Top k Passages

2

2 3

We select Top 4 passages
for illustration purpose

Passage 2Passage 1 Passage nPassage (k+1)Passage k

...

Exploitative PPR

Select kout Passages

Perform Beam Search on
subgraph

Top kout Passages

Stage 1: Curde Filtering

Passage 3

...

Select Top kout Passages

Passage 2Passage 1 Passage
(kout+1)

Passage kout

...

Stage 2: Fine Reasoning

Passage k

P3

P2

P1

P4

P1 → P2 → P3

P1 → P2 → P4

P2 → P3 → P4

Lmax = 34 5

6

7 Containment Edge

Synonym Edge

Passage Node

Entity Node

Proposition Hyper-Edge

Final Relevance Signal

Figure 2: The two-stage online retrieval architecture of PropRAG. Stage 1 (Coarse Filtering): Employs exploratory
PPR (high damping factor) on the full proposition graph G to induce a focused, relevant subgraph (Gsub). Stage 2
(Fine Reasoning): Executes a graph-guided beam search on Gsub to discover explicit reasoning paths (illustrated in
Figure 3), generates refined relevance signals based on these paths, applies exploitative PPR (low damping factor)
on Gsub using the refined signals, and selects the final top-kout evidence passages.

constitute the focused subgraph Gsub. This lo-
calized graph serves as the operational search
space for Stage 2.

5.2.2 Stage 2: Fine-grained Path Discovery
and Ranking

The objective of Stage 2 is to explicitly discover
multi-proposition reasoning paths within Gsub and
leverage these paths to determine the final ranking
of evidence passages.

1. Beam Search Path Exploration: The beam
search algorithm (detailed in Section 5.3) sys-
tematically explores Gsub to identify connected
proposition paths up to a maximum length Lmax.
It maintains a beam of the top-B paths ranked by
relevance to the query q. (Running Example, Fig.
3): Initiating from P1, the beam search traverses
the graph via the "Saint Peter" entity link, dis-
covering P2 ("St. Peter’s Basilica is located in
Vatican City"). Subsequently, it connects P2 to
P3 via "Vatican City", constructing the complete
path P1 → P2 → P3.

2. Refined Seed Set Construction (Sfinal): A re-
fined seed set is generated by integrating rel-
evance signals from two sources: Exploration
Seeds (derived from initial query similarity) and
Exploitation Seeds (entities central to the top-
scoring paths identified by the beam search).

3. Exploitative Path-informed Ranking (PPR):
A second iteration of PPR is executed, con-
strained to Gsub. The reset probability vector
incorporates normalized scores from both explo-
ration and exploitation seeds (Appendix A.6). A
lower damping factor (e.g., 0.45) is employed
to intensify the focus on these refined relevance
signals.

4. Final Evidence Ranking: Passages are ranked
according to their final PPR scores, prioritizing
those strongly connected to the salient reasoning
paths discovered during the beam search.

6228

Query (Q): What year did the Governor of the city where the
basilica named after the same saint as the one that Mantua
Cathedral is dedicated to die?
Gold Answer: 1952
Initial Propositions (Stage 1 Retrieval):

• (P1) 0.4275 - Mantua Cathedral is a Roman Catholic
cathedral dedicated to Saint Peter.

• 0.3851 - Mantua Cathedral is the seat of the Bishop of
Mantua.

• ...
• (P3) 0.3135 - No successor was appointed to the post

of Governor of Vatican City after Marchese Camillo
Serafini’s death in 1952.

Beam Search (Stage 2, Depth 2/3): Path expansion from
P1 .

• 0.4792 - (P1) Mantua Cathedral... dedicated to Saint
Peter. → (P2) St. Peter’s Basilica is located in Vatican
City. (via entity link: "Saint Peter" → "St. Peter")

• 0.4756 - (P1) → Alfredo Ormando died on 23 January
1998 in Rome. (via entity link: "Roman" → "Rome")

• ...

Beam Search (Stage 2, Depth 3/3): Path expansion from
P2.

• 0.5989 - (P1) Mantua Cathedral... → (P2) St. Pe-
ter’s Basilica is located in Vatican City. → (P3) No
successor was appointed... after Marchese Camillo
Serafini’s death in 1952. (via entity link: "Vatican
City")

• 0.5674 - (P1) → (P2) → Marchese Camillo Serafini held
the post of Governor... until his death in 1952.

• ...

Observation: The crucial intermediate proposition P2 ex-
hibited low initial relevance to Q but was discovered via the
graph-guided beam search, enabling the construction of the
complete reasoning path P1 → P2 → P3.

Figure 3: Running Example: Beam search execution
(Lmax = 3) for a MuSiQue query, illustrating the
discovery of a multi-hop reasoning path in PropRAG.
Proposition text is abridged for clarity.

5.3 Beam Search Algorithm for Path
Discovery

The core of Stage 2 is a specialized beam search
algorithm designed to efficiently explore the propo-
sition graph and identify high-relevance reasoning
chains without requiring online LLM inference.
It heuristically seeks paths P = (p1, ..., pL) that
maximize the relevance score Score(P, q).

Algorithmic Procedure:

• Initialization: The beam is initialized with
paths of length 1, comprising the propositions
most semantically similar to the query q.

• Path Expansion (Graph-Guided): At each
step, paths are extended by identifying candi-
date next propositions pnext. Candidates are

primarily selected from propositions connected
to the current path’s terminal proposition pk via
shared or synonymous entity links within Gsub.
(Running Example, Fig. 3): P1 is expanded to
P2 due to the shared entity "Saint Peter". To
mitigate the risk of local optima, the top-3 initial
query-relevant propositions are also included as
candidates ("jump points"), regardless of direct
connectivity to pk.

• Path Scoring (Online Embedding Com-
putation): The relevance of an expanded
path Pnew = (P, pnext) is estimated as
Score(Pnew, q) ≈ sim(emb(Pnew), emb(q)). A
computationally efficient average embedding is
used for preliminary scoring. The top-M candi-
dates are subsequently re-ranked using a more
precise score derived from an embedding of the
concatenated text of all propositions in Pnew.
This step involves efficient online computation
using the embedding model, distinct from LLM
inference.

• Selection and Pruning: From all expanded can-
didates, the top-B (beam width) paths with the
highest scores are retained for the next iteration;
others are pruned.

• Termination: The search concludes when paths
reach the maximum length Lmax or no further
valid expansions are possible.

This online beam search operates exclusively on the
pre-computed graph structure and efficient online
embedding computations. Crucially, it ensures low-
latency inference by avoiding any costly online
LLM calls for path generation or scoring.

6 Experiments

6.1 Setup

Datasets: We evaluate on five diverse QA datasets:
NaturalQuestions (NQ) (Wang et al., 2024) and
PopQA (Mallen et al., 2023) for single-hop
reasoning, and 2WikiMultihopQA (2Wiki) (Ho
et al., 2020), HotpotQA (Yang et al., 2018), and
MuSiQue-Ans (Trivedi et al., 2022b) for multi-hop
reasoning. We use the 1000-query samples and as-
sociated corpora provided by Gutiérrez et al. (2025)
for direct comparability and to manage experimen-
tal costs.

Baselines: We compare against a comprehensive
set of baselines, including classic retrievers (BM25,

6229

Table 1: Passage Retrieval Performance (Recall@5). Baselines from Gutiérrez et al. (2025). Best overall result in
bold.

Method NQ PopQA MuSiQue 2Wiki HotpotQA

Simple Baselines
BM25 56.1% 35.7% 43.5% 65.3% 74.8%
Contriever 54.6% 43.2% 46.6% 57.5% 75.3%
GTR (T5-base) 63.4% 49.4% 49.1% 67.9% 73.9%

Large Embedding Models (Base Retriever)
GTE-Qwen2-7B 74.3% 50.6% 63.6% 74.8% 89.1%
GritLM-7B 76.6% 50.1% 65.9% 76.0% 92.4%
NV-Embed-v2 (7B) 75.4% 51.0% 69.7% 76.5% 94.5%

Structure-Augmented RAG
RAPTOR 68.3% 48.7% 57.8% 66.2% 86.9%
HippoRAG 44.4% 53.8% 53.2% 90.4% 77.3%
HippoRAG 2 78.0% 51.7% 74.7% 90.4% 96.3%

PropRAG (Ours)
Lmax = 1 (No beam search) 78.4% 56.3% 75.6% 92.0% 95.7%
Lmax = 2 78.1% 56.1% 77.6% 93.4% 97.2%
Lmax = 3 (Default) 77.9% 56.2% 78.3% 94.1% 97.4%
Lmax = 4 77.8% 56.0% 77.6% 93.7% 97.0%

Table 2: End-to-End QA Performance (F1 Score) with Llama-3.3-70B-Instruct Reader. Baselines from Gutiérrez
et al. (2025). Best overall result in bold.

Method NQ PopQA MuSiQue 2Wiki HotpotQA Avg

No Retrieval (Parametric)
Llama-3.3-70B-Instruct 54.9% 32.5% 26.1% 42.8% 47.3% 40.7%

Simple Baselines
Contriever 58.9% 53.1% 31.3% 41.9% 62.3% 49.5%
GTR (T5-base) 59.9% 56.2% 34.6% 52.8% 62.8% 53.3%

Large Embedding Models (Base Retriever)
GTE-Qwen2-7B 62.0% 56.3% 40.9% 60.0% 71.0% 58.0%
GritLM-7B 61.3% 55.8% 44.8% 60.6% 73.3% 59.2%
NV-Embed-v2 (7B) 61.9% 55.7% 45.7% 61.5% 75.3% 58.0%

Structure-Augmented RAG
RAPTOR 50.7% 56.2% 28.9% 52.1% 69.5% 51.5%
GraphRAG 46.9% 48.1% 38.5% 58.6% 68.6% 52.1%
LightRAG 16.6% 2.4% 1.6% 11.6% 2.4% 6.9%
HippoRAG 55.3% 55.9% 35.1% 71.8% 63.5% 56.3%
HippoRAG 2 63.3% 56.2% 48.6% 71.0% 75.5% 62.9%

PropRAG (Ours)
Lmax = 1 (No beam search) 62.2% 56.1% 52.6% 73.5% 75.7% 64.0%
Lmax = 2 61.9% 56.1% 53.4% 74.9% 76.0% 64.4%
Lmax = 3 (Default) 62.5% 56.4% 53.9% 75.3% 76.1% 64.9%
Lmax = 4 62.8% 56.0% 53.0% 75.3% 76.1% 64.7%

Contriever, GTR), large embedding models serv-
ing as base retrievers (GTE-Qwen2, GritLM, NV-
Embed-v2), and leading structure-augmented RAG
methods (RAPTOR, GraphRAG, LightRAG, Hip-
poRAG, HippoRAG 2). Baseline results are pri-
marily adopted from Gutiérrez et al. (2025).

Implementation and Reproducibility: Pro-
pRAG uses Llama-3.3-70B-Instruct (AI@Meta,
2024) for offline proposition extraction and as the
QA reader, and NV-Embed-v2 (7B) (Lee et al.,
2025) for all embeddings. Key parameters include

beam width B = 4 and max path length Lmax = 3.
A full list of hyperparameters is provided in Ap-
pendix A.2.

Metrics: We report standard metrics: Passage
Recall@5 for retrieval quality, and QA F1 score
for end-to-end performance, following MuSiQue
evaluation scripts (Trivedi et al., 2022b).

6.2 Results and Discussion

We present the main retrieval (Recall@5) and end-
to-end QA (F1 Score) results in Table 1 and Table

6230

Table 3: Ablation Study on Beam Width (B) using Lmax = 3. Default B = 4. Performance shown as Recall@5 /
F1 Score.

Beam Width (B) MuSiQue (R@5 / F1) 2Wiki (R@5 / F1) HotpotQA (R@5 / F1) Average (R@5 / F1)

1 (Greedy Search) 76.6% / 52.9% 92.1% / 74.5% 97.0% / 76.2% 88.5% / 67.9%
2 77.4% / 52.9% 94.4% / 75.8% 97.4% / 75.7% 89.7% / 68.1%
3 78.0% / 53.1% 94.2% / 75.7% 97.5% / 76.2% 89.9% / 68.3%
4 (Default) 78.3% / 53.9% 94.1% / 75.3% 97.4% / 76.1% 89.9% / 68.5%
5 77.8% / 54.4% 93.7% / 75.4% 97.4% / 76.1% 89.6% / 68.6%
6 77.8% / 53.9% 93.2% / 74.6% 97.2% / 75.7% 89.4% / 68.1%

Table 4: Full Ablation Study Results (Recall@5). PropRAG uses Lmax = 3, B = 4 unless noted. HippoRAG 2 (no
filter) results from Gutiérrez et al. (2025) Table 4.

Configuration MuSiQue 2Wiki HotpotQA Avg

Full PropRAG 78.3% 94.1% 97.4% 89.9%

Comparison Baselines (Impact of Propositions)
PropRAG (Propositions only, no two-stage PPR, no beam search) 75.4% 90.4% 95.9% 87.2%
HippoRAG 2 (Triples, no LLM rerank, comparable setting) 73.0% 90.7% 95.4% 86.4%

Retrieval Strategy Ablations (Impact of Special Beam Search Settings)
Exploration Seeds Only 75.6% 92.0% 95.6% 87.7%
Exploitation Seeds Only 77.9% 91.4% 97.6% 89.0%
No Graph Guidance (Similarity only) 77.4% 92.9% 96.6% 89.0%

2, respectively.
Overall Performance: PropRAG (Default:

Lmax = 3, B = 4) achieves a state-of-the-art av-
erage F1 score of 64.9%. This outperforms the
previous best structured RAG, HippoRAG 2, by
2.0 points, and the base retriever, NV-Embed-v2,
by a substantial 6.9 points. This highlights the
synergy of context-rich propositions and explicit,
LLM-free online path discovery.

The Benefit of Propositions (Lmax = 1): Even
without multi-step path expansion (Lmax = 1, ef-
fectively disabling the beam search but retaining
the two-stage PPR on the proposition graph), Pro-
pRAG significantly outperforms baselines. For in-
stance, on MuSiQue, Lmax = 1 achieves 52.6%
F1, a +4.0% improvement over HippoRAG 2
(48.6%). This demonstrates the inherent bene-
fit of using the higher-fidelity proposition graph
structure, even before extensive beam search explo-
ration.

The Benefit of Beam Search (Lmax > 1): Ex-
plicit path discovery via beam search further boosts
performance, particularly on multi-hop datasets.
Comparing the default configuration (Lmax = 3)
to the Lmax = 1 ablation, we observe gains in
average F1 by +0.9% (to 64.9%). The impact on
retrieval is even more pronounced, with MuSiQue
Recall@5 increasing by +2.7% (from 75.6% to
78.3%). This confirms that exploring 2-3 hop paths
uncovers crucial evidence often missed by meth-

ods focused only on initial similarity. We find
Lmax = 3 provides the optimal balance.

Performance on Simpler Tasks: On single-hop
datasets NQ and PopQA, PropRAG remains ro-
bust (e.g., 62.5% NQ F1, 56.4% PopQA F1 with
Lmax = 3), demonstrating that the added complex-
ity does not degrade performance on tasks with less
multi-hop dependency.

6.3 Ablation Studies

We conduct ablation studies on the multi-hop
datasets (MuSiQue, 2Wiki, HotpotQA) to validate
key design choices. Tables 3 and 4 show our find-
ings.

Propositions vs. Triples: To isolate the im-
pact of the knowledge representation, we compare
PropRAG using only its first stage PPR (PPR on
the proposition graph) against HippoRAG 2 in
a comparable setting (no filter, using triples and
PPR; results from Gutiérrez et al. (2025) Table
4). PropRAG (Stage 1 PPR only) achieves an av-
erage Recall@5 of 87.2%, compared to 86.4%
for HippoRAG 2 (+0.8%). The difference is
most notable on MuSiQue (75.4% vs. 73.0%,
+2.4%). This confirms that the richer context cap-
tured in propositions provides a stronger founda-
tion for graph-based retrieval, even without multi-
step beam search.

Impact of Beam Width (B): We vary the beam
width B while keeping Lmax = 3. Increasing

6231

B from 1 (greedy search) to 4 (default) improves
average R@5 by +1.4% (from 88.5% to 89.9%)
and average F1 by +0.6%. B = 4 offers a strong
balance between exploration and computational
cost.

Importance of Graph Guidance: We test the
importance of the graph structure guiding the beam
search by allowing path expansion based purely on
embedding similarity, without requiring graph con-
nectivity (beyond the initial "jump points"). This
configuration ("No Graph Guidance") achieves an
average R@5 of 89.0%, which is 0.9% lower than
the full PropRAG (89.9%). The drop is signifi-
cant on 2Wiki (92.9% vs. 94.1%). This demon-
strates that leveraging the explicit connections in
the proposition graph effectively guides the search
towards more coherent reasoning paths, rather than
relying solely on semantic similarity which can be
noisy.

These ablations collectively confirm the contri-
butions of the higher-fidelity proposition represen-
tation, the effectiveness of the graph-guided beam
search, and the robustness of the two-stage retrieval
architecture.

6.4 Efficiency Analysis
A key design goal of PropRAG is to enable sophis-
ticated multi-hop reasoning efficiently by strategi-
cally investing in offline knowledge structuring to
avoid costly online LLM calls.

Offline Cost-Benefit Trade-off: The offline in-
dexing phase requires LLM calls for proposition
extraction. As detailed in Appendix A.5 (Table 6),
PropRAG required 21.1M total LLM tokens (In-
put+Output) to index the MuSiQue dataset. While
this is higher than HippoRAG 2 (12.2M tokens),
it is significantly lower than other structured RAG
methods like GraphRAG (151.6M tokens) and
LightRAG (86.8M tokens). Crucially, PropRAG
achieves vastly superior performance (53.9% F1 on
MuSiQue) compared to GraphRAG (38.5%) and
LightRAG (1.6%). PropRAG thus achieves a su-
perior cost-benefit balance, creating higher-quality
knowledge units with less computational overhead
than comparable methods.

Online Latency: While PropRAG avoids online
LLM calls, the two-stage PPR and beam search
(which includes online embedding computations
for path scoring) add latency compared to a stan-
dard dense retriever. We quantify this trade-off
through a runtime comparison on the MuSiQue
dataset using our hardware (NVIDIA RTX 4090).

A standard dense retriever (NV-Embed-v2) takes
approximately 50ms per query. PropRAG takes ap-
proximately 500-1000ms per query. In contrast, an
LLM-dependent retrieval step (e.g., using Llama-3-
70B to generate a next-hop query) typically takes
2-5 seconds or more per hop. Therefore, PropRAG
is significantly faster (2-10x) online than LLM-
in-the-loop retrieval alternatives while providing
superior retrieval quality.

7 Conclusion

PropRAG represents a significant advancement in
RAG by addressing the limitations of both stan-
dard retrieval and traditional structured RAG. By
shifting from context-poor triples to richer proposi-
tions, PropRAG creates a high-fidelity knowledge
representation. Coupled with a novel, LLM-free
online beam search mechanism, it enables the ex-
plicit discovery of multi-step reasoning paths. This
dual approach demonstrably improves the qual-
ity of retrieved evidence, particularly for complex
multi-hop queries. Our experiments show that Pro-
pRAG sets new state-of-the-art results for zero-
shot RAG systems on several challenging bench-
marks. PropRAG underscores the value of explicit,
algorithmic modeling of reasoning processes over
high-fidelity, pre-structured knowledge, offering
a promising direction for developing LLMs with
more robust and associative non-parametric mem-
ory.

Acknowledgments

Research was supported in part by the National Sci-
ence Foundation IIS-19-56151, NSF IIS 25-37827,
the Molecule Maker Lab Institute: An AI Research
Institutes program supported by NSF under Award
No. 2019897, and the Institute for Geospatial Un-
derstanding through an Integrative Discovery Envi-
ronment (I-GUIDE) by NSF under BRIES Program
No. HR0011-24-3-0325. The views and conclu-
sions contained in this paper are those of the au-
thors and should not be interpreted as representing
any funding agencies. We also wish to thank Mant-
ing Liao for creating the figures.

Limitations

PropRAG’s primary limitations include the com-
putational overhead of beam search, which, while
LLM-free online, is more intensive than simpler
retrieval methods. The system’s performance is sen-
sitive to the quality of the offline proposition extrac-

6232

tion phase; errors or omissions here can propagate.
Although online LLM calls are avoided during re-
trieval, the initial proposition generation relies on
an LLM, and its quality can influence downstream
results. Furthermore, the graph construction pro-
cess, particularly the accuracy of entity linking and
synonymy detection, plays a crucial role and can
be a source of error. The current path scoring relies
on embedding similarity, which might not capture
all semantic nuances required for perfect path eval-
uation.

References
AI@Meta. 2024. Llama 3 model card.

Akari Asai, Kazuma Hashimoto, Hannaneh Hajishirzi,
Richard Socher, and Caiming Xiong. 2020. Learning
to retrieve reasoning paths over wikipedia graph for
question answering. In International Conference on
Learning Representations (ICLR).

Tong Chen, Hongwei Wang, Sihao Chen, Wenhao Yu,
Kaixin Ma, Xinran Zhao, Hongming Zhang, and
Dong Yu. 2024. Dense x retrieval: What retrieval
granularity should we use? In Proceedings of the
2024 Conference on Empirical Methods in Natural
Language Processing, pages 15159–15177.

Roni Cohen, Eran Biran, Ori Yoran, Amir Globerson,
and Mor Geva. 2024. Evaluating the ripple effects
of knowledge editing in language models. Transac-
tions of the Association for Computational Linguis-
tics (TACL), 12:283–298.

Derek Edge, Hoang Trinh, Nicholas Cheng, Joshua
Bradley, Allen Chao, Ajay Mody, Shayne Tru-
itt, and Jason Larson. 2024. From local to
global: A graph rag approach to query-focused sum-
marization. http://arxiv.org/abs/2404.16130.
ArXiv:2404.16130.

Jia-Chen Gu, Hao-Xiang Xu, Jia-Yu Ma, Pu Lu, Zheng-
Hua Ling, Kai-Wei Chang, and Nanyun Peng. 2024.
Model editing harms general abilities of large lan-
guage models: Regularization to the rescue. In
Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 16801–16819.

Bernal Jiménez Gutiérrez, Yiheng Shu, Weijian Qi,
Sizhe Zhou, and Yu Su. 2025. From rag to mem-
ory: Non-parametric continual learning for large
language models. http://arxiv.org/abs/2502.
14802. ArXiv:2502.14802.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara,
and Akiko Aizawa. 2020. Constructing a multi-hop
qa dataset for comprehensive evaluation of reason-
ing steps. In Proceedings of the 28th International
Conference on Computational Linguistics (COLING),
pages 6609–6625.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2022. Unsupervised dense infor-
mation retrieval with contrastive learning. Transac-
tions of the Association for Computational Linguis-
tics (TACL), 10:641–655.

Zhouyu Jiang, Mengshu Sun, Lei Liang, and Zhiqiang
Zhang. 2024. Retrieve, summarize, plan: Advanc-
ing multi-hop question answering with an iterative
approach. http://arxiv.org/abs/2407.13101.
ArXiv:2407.13101.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781.

Gary Klein, Brian Moon, and Robert R. Hoffman. 2006.
Making sense of sensemaking 1: Alternative perspec-
tives. IEEE Intelligent Systems, 21(4):70–73.

Chang-Bin Lee, Rishav Roy, Mengjiao Xu, Jonathan
Raiman, Mohammad Shoeybi, Bryan Catanzaro,
and Wei Ping. 2025. Nv-embed-v2: Improved
techniques for training llms as generalist em-
bedding models. http://arxiv.org/abs/2405.
17428. ArXiv:2405.17428.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), volume 33,
pages 9459–9474.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,
Daniel Khashabi, and Hannaneh Hajishirzi. 2023.
When not to trust language models: Investigating
effectiveness of parametric and non-parametric mem-
ories. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (ACL),
pages 9802–9822.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo Her-
nandez Abrego, Ji Ma, Vincent Zhao, Yi Luan,
Keith Hall, Ming-Wei Chang, and Yinfei Yang. 2022.
Large dual encoders are generalizable retrievers. In
Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9844–9855.

Priyanka Sarthi, Sameer Abdullah, Abhilash Tuli, Sak-
shi Khanna, Abhijit Goldie, and Christopher D. Man-
ning. 2024. Raptor: Recursive abstractive processing
for tree-organized retrieval. In International Confer-
ence on Learning Representations (ICLR).

Wendy A. Suzuki. 2007. Making new memories: the
role of the hippocampus in new associative learning.
Annals of the New York Academy of Sciences, 1097:1–
11.

6233

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
http://arxiv.org/abs/2404.16130
http://arxiv.org/abs/2502.14802
http://arxiv.org/abs/2502.14802
http://arxiv.org/abs/2407.13101
http://arxiv.org/abs/2405.17428
http://arxiv.org/abs/2405.17428

Harsh Trivedi, Niranjan Balasubramanian, Tushar
Khot, and Ashish Sabharwal. 2022a. Interleav-
ing retrieval with chain-of-thought reasoning for
knowledge-intensive multi-step questions. arXiv
preprint arXiv:2212.10509.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2022b. Musique: Multi-
hop questions via single-hop question composition.
Transactions of the Association for Computational
Linguistics (TACL), 10:539–554.

Yuhao Wang, Ruiyang Ren, Junyi Li, Wayne Xin
Zhao, Jing Liu, and Ji-Rong Wen. 2024. Rear: A
relevance-aware retrieval-augmented framework for
open-domain question answering. arXiv preprint
arXiv:2402.17497.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. Hotpotqa: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2369–2380.

Jiahao Zhang, Haiyang Zhang, Dongmei Zhang, Yong
Liu, and Shen Huang. 2023. End-to-end beam re-
trieval for multi-hop question answering. arXiv
preprint arXiv:2308.08973.

6234

A Appendix

A.1 Proposition Graph Construction Details
The PropRAG Proposition graph G = (V,E) is
constructed to facilitate reasoning over intercon-
nected propositions. The vertex set V comprises
two main types of nodes:

• Ventity: Nodes representing entities extracted
from the text corpus.

• Vpassage: Nodes representing the original text
passages from which propositions and entities
were derived.

The edge set E includes the following key types,
designed to capture relationships within and be-
tween propositions, and to link entities back to
their source contexts:

• Entity Clique Edges (Implicit Proposition
Hyper-edge): For each proposition p extracted
from the corpus, which contains a set of enti-
ties E(p), we add undirected edges connecting
all pairs of distinct entities {ei, ej} such that
ei, ej ∈ E(p) and ei ̸= ej . This forms a clique
(a fully connected subgraph) among all entities
co-occurring within that single proposition. This
clique structure implicitly represents the propo-
sition p as a hyper-edge, contextually linking all
its constituent entities together, rather than rely-
ing on potentially ambiguous predicate-labeled
edges between only two entities as in traditional
triple stores.

• Passage Containment Edges: An undirected
edge connects each entity node e ∈ Ventity to
the passage node d ∈ Vpassage corresponding to
the text passage from which entity e (and its as-
sociated propositions) were originally extracted.
These edges ground entities and propositions in
their source documents.

• Synonymy Edges: An undirected edge con-
nects two distinct entity nodes ei, ej ∈ Ventity if
their pre-computed embeddings are highly sim-
ilar, i.e., sim(emb(ei), emb(ej)) ≥ τsyn, where
τsyn is a predefined similarity threshold. These
edges help bridge different textual mentions of
the same underlying concept.

This graph structure allows for traversal algorithms
(like PPR and beam search) to navigate through
the rich context embedded in propositions (via the
entity cliques/hyper-edges) and to connect entities

back to their original passages, facilitating compre-
hensive evidence aggregation.

A.2 Implementation Details

PropRAG leverages Llama-3.3-70B-Instruct for of-
fline proposition extraction (and as the final QA
reader for experiments) and NV-Embed-v2 (7B) as
the base embedding model for passages, entities,
and propositions, ensuring consistency with the
HippoRAG 2 baseline setup. Default parameters
used in PropRAG experiments are as follows:

• Beam width for path discovery (B): 4

• Maximum path length for beam search (Lmax):
3

• Initial PPR damping factor (Stage 1, explo-
ration): 0.75

• Final PPR damping factor (Stage 2, exploita-
tion): 0.45

• Number of passages in subgraph (K): 50

• Number of top paths for exact scoring (beam
search internal re-ranking) (M): 40

• Number of top initial seeds for final PPR
(Binitial): 5

• Number of top propositions to select seeds from
for final PPR (Pinitial): B (Beam width)

• Number of top beam-derived seeds for final PPR
(Bbeam): 5

• Number of top beam-derived paths to select
seeds from for final PPR (Pbeam): 5

• Synonymy embedding similarity threshold
(τsyn): 0.8

• Number of initial propositions for seeding Stage
1 PPR (Nprop): 20

• Number of initial entities from the top-Nprop

propositions for seeding Stage 1 PPR (Nentity):
40

• Weight for passage direct retrieval score in final
PPR (λpassage): 0.05

These parameters were determined based on empir-
ical performance on development sets or adopted
from common practices in related research where
applicable. The choice of Lmax = 3 was based on
achieving the best average F1 score across devel-
opment datasets.

6235

A.3 LLM Prompts

This section details the prompts used for entity
and proposition extraction with Llama-3.3-70B-
Instruct, crucial for the offline indexing phase of
PropRAG.

A.3.1 Entity Extraction Prompt
This prompt is designed for inclusive entity identi-
fication. Unlike strict Named Entity Recognition
(NER) often used for triple extraction, this step
aims to capture a broader set of concepts relevant
for constructing rich propositions. It explicitly asks
the LLM to identify named entities, dates, impor-
tant generic entities, and entities involved in predi-
cate relations. This provides a comprehensive list
for the subsequent proposition generation phase,
which only uses entities from this pre-identified set.
(The prompt is shown in Figure 4)

A.3.2 Proposition Extraction Prompt
This prompt guides the LLM to decompose a pas-
sage into atomic, yet contextually complete, propo-
sitions. It strictly uses the entities identified in
the previous step (Figure 4). The core focus is
on maintaining high fidelity by preserving com-
plex relationships, conditions, and the full context,
which are often lost or oversimplified in traditional
triple extraction processes. (The prompt is shown
in Figure 5)

A.4 Proposition Graph Statistics

The proposition graphs constructed for each dataset
vary in size and complexity, reflecting the nature
of the underlying corpora. Table 5 provides key
statistics for the graphs used in our experiments.
These include the number of extracted propositions,
the number of passage nodes (corresponding to
unique passages in the corpus subset), the num-
ber of unique entity nodes identified, and the total
number of edges in the constructed graph (encom-
passing entity clique edges, passage containment
edges, and synonymy edges).

A.5 Cost and Efficiency

The offline indexing phase of PropRAG involves
LLM-based proposition and entity extraction, as
well as embedding computation. For embedding,
we run a float16 version of NV-Embed-v2 on an
NVIDIA RTX 4090 GPU. For proposition and
entity extraction, we utilize the Llama-3.3-70B-
Instruct model via Nebius AI Studio’s API end-
point. Processing each passage for proposition and

entity extraction takes approximately 2 seconds
with this setup. As a concrete example, indexing
the 11,656 passages from the MuSiQue dataset
completed within approximately 40 minutes, at a
monetary cost of around $4 USD using the API.

The token cost for the offline LLM-based propo-
sition extraction is an important consideration. Ta-
ble 6 compares the input and output token counts
for PropRAG on the MuSiQue dataset against those
reported for other structure-augmented RAG meth-
ods by Gutiérrez et al. (2025) for their respective
offline knowledge structuring phases.

PropRAG’s token cost for proposition extraction
is higher than methods like HippoRAG 2 (which
uses OpenIE for triple extraction, often less LLM-
intensive) or RAPTOR (which focuses on sum-
marization). This is attributable to the detailed
instructions and the generation of full-sentence
propositions, which are richer but require more to-
kens. However, PropRAG’s costs are considerably
lower than methods like LightRAG and GraphRAG,
which may involve more extensive LLM-based pro-
cessing for their graph construction or summariza-
tion steps. The trade-off is between the upfront
offline cost of generating high-fidelity propositions
and the downstream benefits in retrieval accuracy
and the avoidance of online LLM calls during re-
trieval. The online retrieval phase of PropRAG,
involving PPR and beam search, is entirely LLM-
free and computationally efficient, relying on pre-
computed embeddings and graph operations.

A.6 Entity Score Calculation from Paths

After the beam search identifies a set of high-
scoring proposition paths (as detailed in Section
5.3), PropRAG determines the importance of indi-
vidual entities based on their participation in these
paths. This entity scoring is crucial for generating
the final set of seed nodes (Sfinal) used in the Stage
2 PPR (Section 5). The scoring process adheres to
the following principles:

1. Path Score Inheritance: Each proposition
within an identified path is considered to have
the same relevance score as the overall path it
belongs to.

2. Entity Score Aggregation: An entity’s total
score is determined by summing the scores of
all propositions (and thus, all paths) in which
it appears. If an entity is part of multiple high-
scoring paths or multiple propositions within a

6236

Entity Extraction Prompt

Instruction: Your task is to extract entities from the given paragraph. Respond with a JSON dictionary
only, with a "entities" key that maps to an non-empty list of entities. All named entities and dates must
be included in the list. All generic entities important to the theme of the passage must be included in
the list. All entities that is involved in a predicate relation to the above entities must be included in the
list. All dates must be included in the list.

Demonstration:
Example Paragraph: Radio City Radio City is India’s first private FM radio station and was started
on 3 July 2001. It plays Hindi, English and regional songs. Radio City recently forayed into New
Media in May 2008 with the launch of a music portal - PlanetRadiocity.com that offers music related
news, videos, songs, and other music-related features.
Example Output:
{" entities ":

[" Radio City", "India", "private FM radio station", "3 July 2001" , "Hindi",
"English", "New Media", "May 2008", "PlanetRadiocity.com", "music portal",
"news", "videos", "songs"]

}

Input Format:
Passage: ${passage}

Figure 4: LLM prompt for Entity Extraction. This prompt aims for comprehensive entity identification beyond
standard NER.

6237

Proposition Extraction Prompt

Instruction:
Your task is to analyze text passages and break them down into precise, atomic propositions using a specified list of named
entities. A proposition is a fully contextualized statement that expresses a single unit of meaning with complete specificity
about the relationships described.
For each proposition:

1. Extract a complete, standalone statement that preserves the full context
2. Use ONLY the entities provided in the named_entities list - do not introduce new entities
3. Ensure each proposition contains only ONE claim or relationship
4. Be extremely specific about which entities are involved in each relationship
5. Maintain clear causal connections between related statements

Respond with a JSON object containing a list of propositions, where each proposition is an object with:
- "text": The full proposition text as a complete, contextualized statement
- "entities": An array of entities from the named_entities list that appear in that proposition
Critical Guidelines:

• ONLY use entities from the provided named_entities list
• Make relationships explicit and specific - clarify exactly which entities relate to which other entities
• Clarify precisely which entity a modifier applies to (e.g., specify which product had "80% improvement")
• Establish clear connections between related facts (e.g., "Adobe optimized their applications FOR THE M1 CHIP")
• Connect comparative statements to their specific reference points (e.g., "Adobe’s applications on the M1 chip improved

by 80% compared to Intel-based Macs")
• Preserve temporal information and causal relationships between events
• Make each proposition stand alone with all necessary context
• Include ALL relevant entities from the named_entities list in both the proposition text and entities array
• Ensure the collection of propositions captures ALL meaningful information in the passage

Demonstration:
Passage: In 2020, after Apple launched the M1 chip, major software companies like Adobe optimized their applications,
improving performance by up to 80% compared to Intel-based Macs.
Named entities:

[" Apple", "M1 chip", "2020" , "Adobe", "Adobe 's applications", "Intel -based
↪→ Macs", "80% performance improvement "]

{
"propositions ": [

{
"text": "Apple launched the M1 chip in 2020." ,
"entities ": ["Apple", "M1 chip", "2020"]

},
{

"text": "Adobe optimized their applications specifically for the M1 chip
↪→ after its launch.",

"entities ": ["Adobe", "Adobe 's applications", "M1 chip"]
},
{

"text": "Adobe 's applications running on the M1 chip improved performance
↪→ by up to 80% compared to the same applications running on Intel -
↪→ based Macs.",

"entities ": ["Adobe", "Adobe 's applications", "M1 chip", "80% performance
↪→ improvement", "Intel -based Macs"]

}
]

}

Input Format:

Passage: ${passage}
Named entities: ${entities_json_list}

Figure 5: LLM prompt for Proposition Extraction. This prompt emphasizes contextual completeness and adherence
to pre-identified entities.

6238

Table 5: Statistics of Constructed Proposition Graphs per Dataset.

Statistic NQ PopQA MuSiQue 2Wiki HotpotQA

Propositions 55536 57624 59028 30099 53566
Passage Nodes 9633 8676 11656 6119 9811
Entity Nodes 62368 73577 76928 43444 75608
Total Edges 1.27M 1.17M 1.34M 0.86M 1.31M

Table 6: Offline LLM Token Costs (Input/Output) for
Knowledge Structuring on MuSiQue Dataset (Millions
of Tokens). Baseline data from Gutiérrez et al. (2025).

Method Input Tokens (M) Output Tokens (M)

RAPTOR 1.7 0.2
HippoRAG 2 9.2 3.0
PropRAG (Ours) 16.5 4.6
LightRAG 68.5 18.3
GraphRAG 115.5 36.1

single path, its score accumulates, reflecting its
centrality and repeated relevance.

3. Emphasis on Connecting Entities: The scoring
mechanism gives additional weight to entities
that form crucial links within a reasoning path,
particularly for synonymous connections.

• Synonymous Connections Boost: When
a proposition PA (containing entity EA)
connects to proposition PB (containing en-
tity EB) via a synonymous link where
EA ≈ EB , the connected entity (EB in
PB) receives an additional score increment
equivalent to the path’s score. This effec-
tively elevates the importance of EB , treat-
ing it as a strong continuation of a cen-
tral concept from PA. The rationale is that
EB is vital for identifying the passage as-
sociated with PB . The original connect-
ing entity (EA in PA) contributes its score
through its presence in PA but does not re-
ceive this specific connection-based score
enhancement itself. If PA was connected
from a preceding proposition, its own cen-
tral entities would have been accounted for
similarly.

• Exact Connections: Entities that are
shared exactly between two consecutive
propositions in a path (forming an ex-
act connection) naturally contribute to the
score aggregation through their appearance
in both propositions. Their role as direct
bridges is thus inherently emphasized by
the summation of scores from both propo-

sitions they are part of.

4. Initial Proposition Entities: For entities appear-
ing in the very first proposition of a path (which
do not have a preceding "connection" within
that path), their initial relevance is captured
through the "exploration seeds" (Sinitial). Many
entities from these initial top query-relevant
propositions are directly considered as explo-
ration seeds. This ensures their potential im-
portance is factored into the final seed set, even
if they don’t benefit from the connection-based
score enhancements that apply to entities deeper
within a path.

Following the aggregation of scores for all enti-
ties involved in the discovered paths, the entities
are ranked by their total accumulated scores. This
ranked list is then used to select the top-Bbeam "ex-
ploitation seeds." These exploitation seeds, rich
in path-derived relevance, are combined with the
"exploration seeds" (Sinitial) to form the final seed
set Sfinal for the concluding PPR stage, ensuring a
comprehensive and robust final ranking of evidence
passages.

6239

