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Abstract

Tactile perception is essential for human-
environment interaction, and deriving tactile
descriptions from multimodal data is a key chal-
lenge for embodied intelligence to understand
human perception. Conventional approaches
relying on extensive parameter learning for
multimodal perception are rigid and compu-
tationally inefficient. To address this, we in-
troduce Retrieval-Augmented Voting (RAV), a
parameter-free method that constructs visual-
tactile cross-modal knowledge directly. RAV
retrieves similar visual-tactile data for given
visual and tactile inputs and generates tactile
descriptions through a voting mechanism. In
experiments, we applied three voting strategies,
SyncVote, Dual Vote and WeightVote, achieving
performance comparable to large-scale cross-
modal models without training. Compara-
tive experiments across datasets of varying
quality—defined by annotation accuracy and
data diversity—demonstrate that RAV’s per-
formance improves with higher-quality data at
no additional computational cost. Code, and
model checkpoints are opensourced at https:
//github.com/PluteW/RAV.

1 Introduction

Biological perception is inherently multimodal,
with tactile perception enabling humans to dis-
cern object properties like shape, texture, and hard-
ness through environmental interaction (Navarro-
Guerrero et al., 2023; Zhong et al., 2024). In
robotics, tactile perception is vital for task gen-
eralization and adaptation (Bonner et al., 2021;
Wang, 2024). Yet, compared to vision and au-
dition, tactile perception remains underexplored.
Current research primarily integrates vision and
touch for action execution (Han et al., 2021; Qi
et al., 2023) object categorization (Cheng et al.,
2024) or materials categorization (Cheng et al.,
2024), relying on large-scale datasets to train com-
plex models, which face diminishing returns un-

der scaling laws (Dettmers and Zettlemoyer, 2023).
Notably, knowledge-driven approaches for visual-
tactile cross-modal tasks are limited, representing
a significant research gap.

To address this, we propose Retrieval-
Augmented Voting (RAV), a parameter-free
method that enhances cross-modal perception
via a visual-tactile knowledge base. Using CLIP
(Radford et al., 2021), we construct separate vector
databases for visual and tactile features. In order
to collect the knowledge and obtain the final
output, we design the mechanism of voting. For
input visual-tactile data, RAV retrieves similar
features and generates tactile descriptions through
voting, employing three strategies: SyncVote
(equal voting), DualVote (sensory credibility-based
voting), and WeightVote (distance-weighted
voting).  Unlike parameter-intensive models,
RAV efficiently leverages existing data, inspired
by retrieval-augmented generation in language
models (Lewis et al., 2020; Jiang et al., 2024).
Experiments on tactile description tasks show
that RAV achieves performance comparable to
large-scale trained models on the same dataset.
Additionally, the method demonstrates the ability
to enhance performance as data quality improves,
incurring minimal additional cost, which represents
a significant advantage over parameter-dependent
models.

The main contributions of the work can be de-
scribed as follows:

1. Proposal of RAV, a parameter-free visual-
tactile cross-modal perception method, us-
ing CLIP to construct a knowledge base and
employing three voting strategies (SyncVote,
DualVote, WeightVote) for tactile description
generation;

2. Achievement of performance comparable to
large cross-modal models in tactile descrip-
tion tasks, overcoming parameter training lim-
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itations;
3. Demonstration of low computational cost and

performance scalability with improved data
quality;

4. Validation of RAV’s effectiveness in leverag-
ing existing data, highlighting visual-tactile
cross-modal perception challenges.

2 Realted work

2.1 Tactile Perception

The exploration of tactile perception is a critical
avenue for advancing the development of robots
towards greater generalization and adaptability.
The majority of tactile perception data is acquired
through tactile sensors, including vision-based tac-
tile sensors, such as GelSight (Yang et al., 2022),
DIGHT (Kerr et al., 2023), and GelSlim (Gao
et al., 2023). These sensors are capable of detect-
ing changes in surface texture during contact by a
micro-camera underneath the elastic gel.

With the development of these advanced tactile
sensors, several publicly available high-quality tac-
tile datasets have been obtained, including TVL (Fu
et al., 2024), SSVTP (Kerr et al., 2023), Touch and
Go (Yang et al., 2022), Touch100k (Cheng et al.,
2024), support tasks like material classification
and tactile description. However, existing meth-
ods rely on large-scale parameter training, limiting
efficiency. For instance, Yang et al. (Yang et al.,
2022) obtained 54.7% material classification accu-
racy and 77.3% material attribute recognition accu-
racy by 240 epochs of comparative learning on both
visual and tactile images; while Fu et al. (Fu et al.,
2024) attained 81.7% classification accuracy and
strong tactile description performance by adding
86M parameters to LLaMa2. Such approaches re-
quire complex training, struggle to leverage ex-
isting data efficiently, and lack knowledge-driven
mechanisms for cross-modal perception, hindering
further advancements.

2.2 Retrieval-Augmented Generation (RAG)

Recent years have witnessed the surge of interest in
Artificial Intelligence Generated Content (AIGC).
Despite significant progress in generative modeling,
AIGC still faces challenges such as outdated knowl-
edge and lack of long-tail knowledge (Mallen et al.,
2023). An effective solution to such problems is
through retrieval. The purpose of retrieval is to
identify relevant existing objects from a large num-
ber of resources. Efficient information retrieval

systems can handle document collections of bil-
lions of orders of magnitude (Johnson et al., 2021).
In addition to documents, retrieval is applied to
many other modalities (Wu et al., 2024; Liu et al.,
2024).

In RAG processing, given an input query, the
retriever identifies relevant data sources and the re-
trieved information interacts with the generator to
improve the generation process. While the concept
of RAG originally emerged in the context of text-
to-text generation processes, the technique has also
been used in a variety of domains, including code
(Parvez et al., 2021), audio (Koizumi et al., 2020;
Huang et al., 2023), image (Sarto et al., 2022). The
basic ideas and processes of RAG are largely con-
sistent across the various paradigms. However, in
the field of visual-tactile perception, there is still a
gap in research directed at the retrieval and utiliza-
tion of knowledge.

3 Methods

This study introduces Retrieval-Augmented Voting
(RAV), a parameter-free visual-tactile cross-modal
perception method that constructs a knowledge
base using CLIP to extract features from visual
and tactile images, stores them in a vector database,
and fuses multimodal information via voting to gen-
erate tactile descriptions. As shown in Fig.1, RAV
comprises multimodal retrieval and voting mod-
ules for retrieving similar features and weighted
decision-making, respectively. Without any train-
able parameters, RAV achieves high performance
in tactile description tasks. Each module is detailed
below.

3.1 Preliminary

The input data is formally denoted as X, and the
corresponding features are represented as x. It is
assumed that objects with similar feature vectors
correspond to inputs that are also close. For any in-
put, by comparing the feature similarity with cosine
similarity:

x -

)

) = el
where & denotes any instance in space R, we are
able to find the & closest instances, each with ji,
labels, and model could output a list of the labels
L after each instance votes. For visual and tac-
tile inputs, we perform the above retrieval process
separately and summarize the output in the voting
stage.
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Figure 1: (a) Memory construction. Through the encoder, visual and tactile image data are separately processed to
extract feature vectors. These feature vectors are paired with semantic labels and stored in the visual vector database

My, and tactile vector database M, respectively.

(b) Query Process. Upon receiving visual and tactile image inputs, the same encoder extracts feature vectors.
Relevant data are then retrieved from M1y, and M based on vector distance, yielding visual and tactile label sets
L, and L;. These multimodal label sets are input to the voter, which fuses them using SyncVote, DualVote, or
WeightVote strategies to produce the final tactile description labels.

The inputs of visual and tactile are denoted as V;
and 7;. The corresponding features are denoted as
vy, t;, respectively. The k, instances most similar
to v; are identified through a search of the visual
database, with the label set of each instance repre-
sented as L, = {l1,lo,...,l,}. The k; instances
most similar to ¢; from tactile database has labels
denoted as L; = {l’l, ly,... 1 . After that, voter

r'm
will output the list of cross-modal labels:

L = Vote(Ly, Ly). 2)

In this way, the knowledge related to input x is
extracted in the form of label list L.

3.2 Multimodal Retriever

The multimodal retriever queries vector databases
My, and M7 to retrieve instances similar to input
visual and tactile features. The main challenge in
the multimodal retrieval process is to efficiently
encode and store a large number of visual / tactile /
textual embeddings for fast and accurate retrieval.

Given a dataset D containing data samples
(Vi, T;, L;) of a visual image V;, a tactile image
T; and labels L;, the CLIP image editor ¢;mg is
used to extract the visual embedding v; € R% and
the tactile embedding t; € R%, respectively. The
symbol d,, and d; refers to the feature dimensions.
The visual and tactile embeddings are stored in the
memories My, and M with lables L;, as shown

in Fig.1 (a).

3.3 Voter

After successfully constructing visual memory
My, and tactile memory M 7 using the multimodal
retriever, next step is to combine the memories with
the retrieval process by integrating the retrieval re-
sults using a voter to improve the performance of
the task. For input X; = {V;, T;}, the CLIP model
¢ extracts visual features v; € R% and tactile fea-
tures t; € R%.

The embeddings v; and ¢; will then be navigated
through the previously constructed indexes, and
sorted according to similarity, the memory My,
produces a list of the retrieved top k,, items with
lables denoted as L,, = {L1, Lo, ..., Lg, }. Mem-
ory M- produces a list of the top k; items with
lables denoted as Ly = {L1, Lo, ..., Ly, }. In our
experiments, we set k, and k; to 5.

The voter fuses L, and L;, outputting a cross-
modal label list L = Vote(L,, L) for tactile de-
scription. Three voting strategies are designed
here:

SyncVote. A balanced voting strategy assigns
equal voting weights to labels from instances re-
trieved from visual and tactile vector databases
My and M. In this approach, each instance
contributes one unit vote per label, assuming equal
credibility for visual and tactile labels. Votes are ag-
gregated via simple counting to fuse visual label set

6201



L, and tactile label set L;, yielding a cross-modal
label list L.

DualVote. An unbalanced voting strategy as-
signs weights based on the sensory origin of labels,
determined by experimental observations and sen-
sory specificity. Vision-related labels (e.g., "matte"
or "smeared") from the visual vector database M1,
are deemed more credible and assigned higher
weights (e.g., 1.5) than equivalent labels from
the tactile vector database M (e.g., 0.4). Con-
versely, tactile-related labels (e.g., "undulating"
and "sticky") from M7 are considered more credi-
ble and receive higher weights (e.g., 1.2) than those
from My (e.g., 0.6). Labels not clearly catego-
rized are assigned unit weight. Label categorization
is supported by GPT-4V’s vision-language model,
full categorization in the code.

WeightVote. An unbalanced voting strategy as-
signs weights based on the vector distance of re-
trieved instances to enhance cross-modal label fu-
sion in tactile description tasks. It is assumed that
labels from smaller vector distance instances pos-
sess greater credibility, more accurately reflecting
the input object’s properties. Denoting vector dis-
tance as z, the label weight is computed via the
sigmoid function:

1
() = Ty

where hyperparameters a and b control the steep-
ness and offset of the weight curve, ensuring higher
weights for labels from smaller vector distance in-
stances. Weights are applied to instances retrieved
from visual and tactile vector databases My, and
M.

3)

4 Experiment and Result

This section quantitatively evaluated the capabili-
ties of the RAV model in the tactile-semantic de-
scription task.

4.1 Dataset

Experiments utilize the TVL dataset (Fu et al.,
2024), a cross-modal dataset comprising 44,000
visual-tactile pairs. TVL integrates two subsets: 1)
the Supervised Visuo-Tactile Pretraining (SSVTP)
dataset (Kerr et al., 2022), with 4,587 pairs col-
lected by a URS robot capturing top-down visual
images followed by vertical DIGIT sensor presses
for tactile images; 2) the Human Collected Tactile
(HCT) dataset (Fu et al., 2024), with instances of
visual-tactile data gathered by five individuals in

non-laboratory settings using a handheld device at
30 Hz, recording trajectories of approach, contact,
sliding, and withdrawal, with visual data captured
at an oblique angle to keep tactile sensors in view.
Since the HCT dataset includes the entire process
of acquisition, there are a large number of non-
contact data samples.

TVL pairs are annotated with textual labels: 10%
of the SSVTP subset (4,587 pairs) is manually la-
beled in English using a 400-word tactile vocab-
ulary (ajbarnett, 2024) to describe material prop-
erties and tactile sensations, while the remaining
90% are pseudo-labeled by GPT-4V. The test set
(1%) is manually annotated to ensure evaluation
reliability.

Table 1: The voting weight of a label from the source
and has the different type. The categorization of the
labels comes from the GPT-4V and the weights used
come from human experience and have not been fine-
tuned.

Source Type Weight
Vision 1.5

Vision Tactile 0.6
Unclear 1
Vision 0.4

Tactile Tactile 1.2
Unclear 1

4.2 Tactile Description

In the tactile description task, the model receives
visual and tactile image pairs as input and outputs
a linguistic description of material properties and
tactile sensations, which is limited to a maximum
of five words. In the testing phase, to obtain numer-
ical comparison results, we follow Letian’s method
(Fu et al., 2024) by scoring the similarity of out-
put to the real labels through the GPT-4V on a
scale of 1 to 10 (higher scores indicate that the
model’s outputs are closer to the human descrip-
tions). Additionally, we ask GPT-4V to provide an
interpretation of the corresponding scores, similar
to prior works (Liu et al., 2023a,b).

For the DualVote strategy, weight parameters
were determined via grid search over the range [0.2,
2.0] with a step size of 0.1, The search aimed to
optimize accuracy on the TVL validation set, yield-
ing weights as shown in Tab.1. For the WeightVote
strategy, parameter a controls the steepness of the
weight curve, and b adjusts the vector distance
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Table 2: Tactile Description Score Sheet. RAV methods were compared with large models of multiple sizes on three
datasets. Most methods pre-train the encoder on both visual and language tasks. Blue indicates the best performing
result among the results requiring training, and red indicates the best performing method.

Model Encoder Pre-training Paramter Score(1-10)
Vision Tactile Language Size SSVTP HCT TVL
BLIP-2 X 6.7B 2.02 2.72 2.64
LLaVA-1.5(7B) X 7B 3.64 3.55 3.56
ViP-LLaVA(7B) X 7B 2.72 3.44 3.36
LLaMA-Adapter X 7B 2.56 3.08 3.02
InstructBLIP(7B) X 7B 1.40 1.30 1.31
SSVTP-LLaMA X 7B 2.58 3.67 3.54
TVL-LLaMA 7B 6.16 4.89 5.03
LLaVA-1.5(13B) X 13B 3.55 3.63 3.62
ViP-LLaVA(13B) X 13B 4.10 3.76 3.80
InstructBLIP(13B) X 13B 1.44 1.21 1.24
GPT-4V X - 5.02 442 4.49
Clip-KNN-Vote X x 0 5.47 4.58 4.83
RAV(SyncVote) X X 0 6.18 4.88 5.08
RAV(DualVote) X X 0 5.96 4.83 5.01
RAV(WeightVote) X X 0 5.13 4.93 4.99

threshold, prioritizing labels from high-similarity
instances. Based on the TVL set’s vector distance
distribution, a 0.4 ensures a smooth weight
transition, avoiding excessive penalties for low-
similarity labels; b = 9 aligns the curve’s center
with the distance distribution range.

Summary statistics of the tactile description out-
put results are provided in Tab.2. Although most
methods employ encoders that are pretrained on
both visual and language tasks, the open-source
vision language models (VLMs) do not perform
as well as GPT-4V on the benchmarks. This is
attributed to the limited diversity of visual data uti-
lized in their training and the lack of emphasis on
human tactile sensations. For a more direct com-
parison of parameter-free methods, we also eval-
uated a strong baseline, Clip-KNN-Vote, which
uses a simple majority vote on retrieved neighbors.
While Clip-KNN-Vote achieves commendable per-
formance, our RAV methods consistently outper-
form it, demonstrating that RAV’s voting strate-
gies are key to fuse effectively. On the other hand,
the results of RAVs trained without any parame-
ters were able to significantly outperform GPT-4V,
while slightly outperforming the optimal genera-
tive model TVL. This suggests that our knowledge-
based approach is able to obtain good cross-modal
perception without any trainable parameters.

With the exception of TVL-LLaMA, which is

designed for the task, and GPT-4V, which contains
a large number of parameters, a wide range of meth-
ods involved in the comparison scored lower. No-
tably, InstructBLIP(13B) does not outperform its
7B counterpart and lags behind models of similar
scale, suggesting that increasing parameter count
alone has limited impact on enhancing cross-modal
perception.

To further quantify the linguistic quality of the
generated descriptions, we conducted an evalua-
tion using standard NLP metrics, including BLEU,
CIDEr, METEOR, and ROUGE. ! The results
showed that BLEU and CIDEr scores were consis-
tently zero across all models. This is an expected
outcome, as the tactile description task involves
generating a few keywords rather than complete
sentences, leading to sparse n-gram overlap that
renders these metrics unsuitable for this applica-
tion.

In contrast, METEOR and ROUGE proved to be
more robust for this lexical-level task, as their eval-
uation mechanisms account for synonyms, stem-
ming, and longest common subsequences. As pre-
sented in Tab.3, the RAV(SyncVote) strategy con-
sistently achieved the highest scores on both ME-
TEOR and ROUGE across all three datasets. It

'All metrics were implemented using the nltk, pycocoeval-
cap, and rouge_score libraries with default parameter settings.
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Table 3: Tactile Description NLP Metrics Evaluation. RAV methods were compared with large models of multiple
sizes on three datasets. Red indicates the best performing method.

Model SSVTP HCT TVL
METEOR ROUGE METEOR ROUGE METEOR ROUGE
TVL-LLaMA 0.0730 0.3116 0.0399 0.1890 0.0438 0.2044
GPT-4V 0.0246 0.0795 0.0523 0.2197 0.0491 0.2038
Clip-KNN-Vote 0.2706 0.3237 0.1385 0.1971 0.1511 0.2087
RAV(SyncVote) 0.3015 0.3447 0.1416 0.1979 0.1584 0.2143
RAV(Dual Vote) 0.2572 0.2935 0.1413 0.1951 0.1520 0.2076
RAV(WeightVote) 0.2419 0.3036 0.1335 0.1859 0.1477 0.2028

not only surpassed the Clip-KNN-Vote baseline
and GPT4V but also significantly outperformed the
task-specific trained model, TVL. The other two
strategies, DualVote and WeightVote, also demon-
strated competitive results, although their advan-
tage was less pronounced than that of SyncVote, a
difference we attribute to their heuristic parameter
settings.

Dataset quality significantly influences model
performance. SSVTP, with all tactile data contain-
ing valid contacts and fully manually annotated
labels, offers the highest quality. HCT, with sub-
stantial shaking or non-contact data and GPT-4V
pseudo-labeling, is of lower quality. TVL, a mix-
ture of SSVTP and HCT, has intermediate qual-
ity. RAV’s three voting strategies (SyncVote, Du-
alVote, WeightVote) consistently achieve superior
performance on the high-quality SSVTP dataset
compared to HCT and TVL, aligning with trends
observed in training-dependent models. This indi-
cates that RAV’s performance improves with higher
dataset quality. Furthermore, incorporating a small
amount of high-quality SSVTP data into the lower-
quality HCT dataset significantly enhances RAV’s
performance without substantially increasing com-
putational cost, offering insights for data efficiency
optimization.

5 Conclusion

In this paper, we introduce RAV (Retrieval-
Augmented Voting), a knowledge-based cross-
modal perception model that distinctly differs from
conventional models reliant on extensive trainable
parameters. RAV achieves visual-tactile cross-
modal perception through a parameter-free design.
Specifically, during the knowledge construction
phase, visual and tactile image features extracted
by CLIP are stored in visual and tactile vector
databases, My, and M, respectively. Upon re-

ceiving visual and tactile query inputs, relevant
data are retrieved from My, and M, and fused
via a voter to generate tactile descriptions.

The voting phase incorporates three strate-
gies: SyncVote (balanced voting), Dual Vote (sen-
sory credibility-based), and WeightVote (distance-
weighted). To validate RAV’s effectiveness, we
compare it against large-scale models (e.g., GPT-
4V, TVL-LLaMA) in the tactile description task, us-
ing the TVL dataset (comprising SSVTP and HCT
subsets). Results demonstrate that RAV achieves
performance comparable to the best generative
models in accuracy, with particularly strong re-
sults on high-quality datasets (e.g., SSVTP). Its
performance significantly improves with increased
dataset quality and scale, owing to its parameter-
free nature, which enables incremental data up-
grades without additional training at minimal com-
putational cost. This approach offers a new direc-
tion for efficient cross-modal perception.

Limitations

RAV excels in the tactile description task with
low computational cost, yet its design and eval-
uation reveal limitations that guide future research.
The performance depends on the quality of vector
databases My and M. The current experiments
utilize the TVL dataset (SSVTP and HCT subsets),
where SSVTP’s high-quality manual annotations
significantly enhance performance, whereas HCT’s
pseudo-labels and non-contact data reduce retrieval
accuracy. If the vector databases contain more
noise or fail to cover specific tactile scenarios (e.g.,
rare materials), RAV’s cross-modal label fusion
may be compromised. The CLIP encoder, is pre-
trained on vision-language tasks and may not fully
capture the nuanced semantics of tactile data. Al-
though RAV mitigates some feature limitations
through voting strategies, a tactile-optimized en-
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coder could further enhance performance. Ad-
ditionally, the voting strategies (SyncVote, Du-
alVote, WeightVote) rely on sensory credibility and
distance-based weights, their robustness in com-
plex scenarios, such as HCT’s non-contact data, is
limited, particularly when retrieved labels have low
credibility, potentially leading to fusion biases.
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