LMR-BENCH: Evaluating LLM Agents’ Ability on
Reproducing Language Modeling Research

Shuo Yan*, Ruochen Li*, Ziming Luo*, Zimu Wang*, Daoyang Li",
Ligiang Jing, Kaiyu He, Peilin Wu, George Michalopoulos,
Yue Zhang, Ziyang Zhang, Mian Zhang, Zhiyu Chen, Xinya Du
University of Texas at Dallas
{shuo.yan, ruochen.li, ziming.luo, zimu.wang}@utdallas.edu

Abstract

Large language model (LLM) agents have
demonstrated remarkable potential in advanc-
ing scientific discovery. However, their capabil-
ity in the fundamental yet crucial task of repro-
ducing code from research papers, especially in
the NLP domain, remains underexplored. This
task includes unique complex reasoning chal-
lenges in the intellectual synthesis of abstract
concepts and the comprehension of code repos-
itories with interdependent files. Motivated by
this gap, we present LMR-BENCH, a bench-
mark designed to systematically evaluate the
capability of LLM agents on code reproduc-
tion from Language Modeling Research. It
consists of 28 code reproduction tasks derived
from 23 research papers published in top-tier
NLP venues over the past five years, spanning
nine fundamental categories. Models are pro-
vided with a research paper, a code repository
containing one or more masked functions, and
instructions for implementing these functions.
We conduct extensive experiments in standard
prompting and LLM agent settings with state-
of-the-art LLMs, evaluating the accuracy of
unit tests and performing LL.M-based evalua-
tion of code correctness. Experimental results
reveal that even the most advanced models still
exhibit persistent limitations in scientific rea-
soning and code synthesis, highlighting critical
gaps in LLM agents’ ability to autonomously
reproduce scientific research’.

1 Introduction

The advent of large language model (LLM) agents
has revolutionized beyond language generation, be-
ing recognized as a transformative force in advanc-
ing scientific discovery (Peng et al., 2023; Ma et al.,
2024; Yang et al., 2024; Luo et al., 2025). These
agents have shown to be capable of executing the
entire scientific discovery pipeline (Li et al., 2024c),
“Equal contribution.

'Data, code, and leaderboard of LMR-BENCH are avail-
able at https://github.com/du-nlp-1lab/LMR-Bench.

from generating research ideas, designing exper-
iments (Li et al., 2024a,b; Baek et al., 2025) to
implementing code (Jiang et al., 2024a,b; Zhang
et al., 2024), drafting academic papers (Lee et al.,
2022; Wang et al., 2024; Ifargan et al., 2025), and
even producing complete papers that potentially
pass peer review (Yamada et al., 2025). They have
also been integrated with tools such as Scholar
Inbox (Flicke et al., 2025) to accelerate humans’
research, highlighting the extraordinary capability
of LLM agents to understand, synthesize, and gen-
erate complex knowledge in scientific discovery.

Despite the agents’ remarkable advancement in
research acceleration, there remains a notable gap
regarding their ability in a foundational yet crucial
aspect of scientific validation, i.e., code reproduc-
tion from academic papers in real-world environ-
ments. This task poses unique challenges in com-
plex reasoning, especially in the following two as-
pects: (1) Logic understanding, such as the intel-
lectual synthesis of concise and abstract mathemat-
ical equations, algorithm outlines, and generalized
flowcharts; (2) Code implementation, particularly
at the repository level that spreads across multi-
ple interdependent files. Reproducing algorithms
necessitates a thorough analysis of these complex
dependencies, ensuring the consistency of both the
internal codebase and the external environment,
thereby amplifying the challenges associated with
reproduction.

However, while reproducing code from research
papers is a critical capability for LLMs, there is a
lack of a dedicated benchmark that systematically
evaluates the capability of LLMs to reproduce re-
search papers in real-world scientific contexts. Ex-
isting efforts fall into several categories: ML engi-
neering (e.g., MLAgentBench (Huang et al., 2024),
MLE-Bench (Chan et al., 2025)), data-driven sci-
entific discovery (e.g., DSBench (Jing et al., 2025),
ScienceAgentBench (Chen et al., 2025)), and code
debugging and issues resolving (e.g., SWE-bench

6176

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 6176-6198
November 4-9, 2025 ©2025 Association for Computational Linguistics

https://github.com/du-nlp-lab/LMR-Bench

Reproduce target
function based on
paper information

—>

NLP Paper
+ Masked Repository

'
LLM-based
Reproduction

Unit Tests

LLM Judge

Implemented

Target Function i e

i

Figure 1: Overview of LMR-BENCH. Given an NLP research paper and a corresponding codebase with masked
functions, the LLM agent is tasked with reproducing the function, requiring its ability of scientific method
understanding, abstract reasoning, and cross-file understanding.

(Jimenez et al., 2024), DebugBench (Tian et al.,
2024)). While these benchmarks are valuable, they
typically evaluate isolated technical capabilities us-
ing task-specific inputs and metrics, rather than
evaluate end-to-end paper reproduction. A con-
current effort, PaperBench (Starace et al., 2025),
evaluates LLM agents on the reproduction of 20
ICML 2024 papers. However, PaperBench requires
reproducing the entire project from scratch—an un-
realistic expectation for current LLM agents, mak-
ing it difficult to offer valuable insights in guiding
model improvements. More importantly, its eval-
uation protocol relies solely on LLM-as-a-judge,
lacking curated unit tests or automated checks to
ensure objective and reproducible assessments.

Motivated by this gap, we present LMR-BENCH,
a benchmark designed to systematically evaluate
the LLM agents’ ability on reproducing Language
Modeling Research. It consists of 28 code repro-
duction tasks derived from 23 research papers pub-
lished in top-tier NLP venues over the past five
years, spanning nine fundamental categories, such
as generative models and reinforcement learning,
which are central to current LLM research. In each
task, LLM agents are provided with a research
paper, a code repository containing one or more
masked functions, and instructions for implement-
ing these functions. Successful completion requires
the model to comprehend the algorithmic details
accurately and generate functionally correct, syn-
tactically consistent code (see Figure 1). To ensure
an objective evaluation, we design two distinct met-
rics: the accuracy of unit tests curated by human
expert annotators and the distribution of LLM-as-a-
judge classifications of generated implementations
into three categories.

We conduct extensive experiments in standard
prompting and LLM agent settings with Open-
Hands (Wang et al., 2025) on state-of-the-art LLMs,
such as GPT-4o (Hurst et al., 2024), GPT-4.1, and
o4-mini. Experimental results reveal that even the
most advanced models and LLM agents exhibit per-

sistent limitations in scientific reasoning and code
synthesis, such as unsuccessful paper parsing and
failure in reasoning across steps and files, highlight-
ing critical gaps in agents’ ability to autonomously
reproduce scientific research.

The key contributions of our work can be sum-
marized as follows: (1) We present LMR-BENCH,
a benchmark designed to systematically evaluate
the ability of LLM agents to reproduce scientific re-
search projects. It consists of 28 code reproduction
tasks across nine core categories in LLM research;
(2) We introduce two complementary evaluation
metrics: the accuracy of unit tests and the distribu-
tion of LLM-as-a-judge classifications of generated
implementations, offering an objective evaluation
of the LLM agents’ capabilities. The unit tests are
curated by human expert annotators and executed
within separate Docker containers to faithfully re-
produce the original environment; (3) We conduct
extensive experiments in standard prompting and
LLM agent settings, highlighting critical gaps and
producing valuable insights in the current LLM
agent’s ability in reproducing scientific research.

2 Related Work

LLM Agents for Scientific Discovery. Recent
research has increasingly focused on leveraging
LLM agents to advance scientific discovery, span-
ning the entire research pipeline, from research
idea generation and experimental design (Li et al.,
2024a,b; Baek et al., 2025) to implementing code
(Jiang et al., 2024a,b; Zhang et al., 2024) and draft-
ing academic papers (Lee et al., 2022; Wang et al.,
2024; Ifargan et al., 2025). Some studies have in-
troduced agent-based systems that can automate an
end-to-end research flow. MLR-Copilot (Li et al.,
2024c¢) utilizes LLM agents to autonomously gen-
erate and implement research ideas. The Al Sci-
entist (Lu et al., 2024) is an iterative framework
designed to generate research concepts, conduct ex-
periments, write papers, and perform peer reviews.

6177

The Al Scientist-v2 (Yamada et al., 2025) extends
this pipeline by generalizing idea generation, incor-
porating coarse-grained experiment management,
and employing an agentic tree search-based explo-
ration. This approach has been shown to produce
manuscripts that successfully pass peer review at
well-recognized machine-learning workshops.
However, the ideas and experiments in these
frameworks are typically synthesized by agent
themselves, which limits their ability to capture the
complexity of real-world scenarios. In contrast, our
research focuses on the capability of LLM agents
to faithfully reproduce peer-reviewed research pa-
pers, bridging the gap between agent-synthesized
information and real-world publications.

LLM Agents for Code Generation. Code gen-
eration serves as a recognized benchmark for eval-
uating models’ problem-solving abilities and their
practicality in software development. Models such
as Codex (Chen et al., 2021) and Qwen-Coder
(Hui et al., 2024), accompanied by agent-based
frameworks like MapCoder (Islam et al., 2024),
AgentCoder (Huang et al., 2023), and OpenHands
(Wang et al., 2025) have been introduced to en-
hance the scalability of code intelligence. At the
same time, some benchmarks dedicated to code
generation have been proposed. MBPP, MathQA.-
Python (Austin et al., 2021), FC2Code (Liu et al.,
2022), and LiveCodeBench (Jain et al., 2025) eval-
uate models’ capability to generate code based
on natural language instructions. MLAgentBench
(Huang et al., 2024) and MLE-bench (Chan et al.,
2025) are based on Kaggle competitions to eval-
vate LLMs’ machine-learning engineering capa-
bilities. SUPER (Zhuo, 2024) evaluates agents
on end-to-end repository setup and execution for
real research repos, stressing environment provi-
sioning, dependency resolution, and task orchestra-
tion. RepoBench (Liu et al., 2024) and ML-Bench
(Liu et al., 2023) focus on code generation at the
repository level. DSBench (Jing et al., 2025) and
SciAgentBench (Chen et al., 2025) emphasize data-
driven scientific discovery. SWE-bench (Jimenez
et al., 2024) and DebugBench (Tian et al., 2024)
center on resolving bugs and issues within the code-
base. However, there is little work on research code
implementation and execution, which is a funda-
mental capability of LLM research agents (Luo
et al., 2025). PaperBench (Starace et al., 2025) as-
sesses LLM agents to replicate 20 research papers
from ICML 2024. However, this dataset requires

Interpretability & Evaluation Metrics

Explainability

Feature Learning &
Representation

17.9%

10.7%

Decoding & Search

Neural Network Strategies

Modules
7.1%

Prompt Engineering & 3.6%
Instruction Tuning

10.7%

Information Extraction 10.7%

Training Objectives &
Optimization

Data Augmentation
Figure 2: Question distribution in LMR-BENCH.

reproduction entirely from scratch, which is far
beyond existing agents’ ability and may lead to dis-
crepancies compared to human-curated codebases.
In this paper, we build upon the concept of code
generation but focus specifically on the exciting
and fundamental skill of code reproduction from
NLP research papers with human instructions.

3 LMR-BENCH

LMR-BENCH is a benchmark designed to evaluate
the LLLM agents’ ability on reproducing language
modeling research papers on related functions in
the repository. It consists of 23 research papers and
28 distinct questions, each corresponding to a key
task within the LLM/NLP research field. It covers
nine essential task categories (see Table 4), with the
distributions illustrated in Figure 2. Training Ob-
jectives & Optimization and Evaluation Metrics are
the most prevalent. This distribution aligns with the
significance and practical challenges of real-world
reproducibility, as these areas often involve high
levels of abstraction and require rigorous method-
ological precision.

3.1 Task Formulation

Given a research paper and its corresponding open-
source code repository, the aim of the task is to
reproduce the implementation of the missing func-
tion using the information provided in the paper,
focusing on repository-level code generation. This
simulates the real-world scenario where one re-
produces or verifies key components of a research
method based on its textual description.

As shown in Figure 1, the components provided
as inputs to LLMs include (1) the original paper ob-
tained from the proceedings; (2) the source files and
codes within the repository, with masked functions
for reproduction; and (3) the definition of the target
function, including the description of its definition,
input, output, and any additional steps required for
implementation. The reproduction process involves

6178

o Selected Top Conference
Papers & Code Repo

6 Locate the Key
Method & Function

e Label Test Cases

o Label Checker Functions
and Test Functions

e Mask Test Functions

D m— 00 Test Gold Test
QOIS o () Inputs 2 Function o Masked Test

H Function

3 Gold Test Test Case

Outputs Checker

WPLE]
EXAMPLE Locate Key Method & Function : — Test Inputs : Test Case Checker
Trusting Your Evidence: This expression is not a valid probabils {Iconte>‘<t . The current year is 2027', for i in enumerate(Test_cases):
tion and nceds to be normalized across al question': 'How many world cups has

o Hallucinate Less with Context-aware Decoding

values of y;. By rearranging the terms, we obtain

the final form:
e ~ softmax[(1 + a) logity(ve | ¢, @, yer)

- alogity(ye | ,y<)]
def context_aware_sampling(*args
generated_tokens = input_ids
for _ in range(max_length):
with torch.no_grad():

‘Weijia Shi Xisochuang Han ' *
Mike Lewis * Yulia Tsvetkov ' Luke Zettlemoyer '~ Scott Yih*
. eval Update evaluate_summary.p:
W image Add files via upload
() READMEMD Update READMEMD
0 demo.ipynb Added Demo

[environment tyml add env

¢ 'answer':'Argentina has won 19 World Cups.'

result = paper_method(i[1])

o1
Argentina won?'} check(result, Results[i])

Gold Test Outputs

Masked Test Function

def context_aware_sampling(*args
You need to implement this
function based on paper
Raise NotImplementedError

Gold Test Function

def context_aware_sampling(*args):
generated_tokens = input_ids.clone()
for _ in range(max_length):
with torch.no_grad():

Figure 3: Dataset annotation pipeline of LMR-BENCH.

two different setups: standard prompting and LLM
agent settings. The output function is evaluated
via a combination of unit tests and the LLM-as-a-
judge method, offering a multi-faceted evaluation
of correctness and fidelity.

3.2 Data Collection

Figure 3 illustrates the collection pipeline of LMR-
BENCH. In this section, we introduce each process
in detail.

Paper Selection. We form a group of 12 expe-
rienced researchers in the LLM/NLP community
as our co-authors and annotators (see Appendix B).
Each annotator has been provided with a detailed
annotation guideline, accompanied by examples.

We instruct annotators to collect research pa-
pers published within the past five years from top-
tier NLP conferences, including ACL, EMNLP,
NAACL, EACL, and COLING, and select appro-
priate papers for annotation. Each candidate paper
must satisfy the following criteria: (1) Method-
ological Focus: The paper should retain method-
driven research rather than survey papers or bench-
marks; (2) Reproducibility: The proposed method
should have an official, up-to-date repository with
most issues resolved, ensuring that results are repro-
ducible; (3) Clarity and Complexity: The method
should be well-documented, with clear instructions
and sufficient implementation details provided in
the paper, and should involve a level of complexity
beyond basic examples (e.g., simple prompts like
“Let’s think step by step”). Before the annotation
process, we perform a manual review of the candi-
date papers selected by annotators to ensure their
adherence to these criteria.

Reproducibility Check. For each selected pa-
per, annotators are required to reproduce its official

codebase to guarantee its reproducibility. Environ-
mental setup remains a persistent challenge, partic-
ularly due to the dependency conflicts across differ-
ent repositories, especially those with proprietary
components. To mitigate this issue, we ask annota-
tors to create a Dockerfile for each paper, following
the repository’s README. This ensures a consis-
tent and functional execution environment. More
specifically, this process involves pulling an offi-
cial PyTorch Docker image?, specifying the repos-
itory’s dependencies, and incorporating any addi-
tional setup specific to the repository. Annotators
are required to resolve issues encountered in the
environmental setup. Repositories with unresolved
errors are excluded from the process.

Data Annotation. During the data annotation
process, annotators begin by selecting an algorithm
presented in the paper and map it to the correspond-
ing code block within the repository, ensuring the
alignment between its theoretical description and
code implementation. Next, for code blocks that
are not organized into functions, they refactor the
code into self-contained functions, ensuring them
have appropriate inputs and outputs to encapsu-
late the core functionality. Then, for each aligned
function, annotators meticulously document essen-
tial implementation details in a structured format
as comments, including its primary objective, in-
puts and outputs, intra- and inter-file dependencies,
and additional steps required for implementation
(e.g., usage of external APIs). Following this doc-
umentation process, annotators craft detailed task
instructions describing the algorithm’s intended
behavior. Subsequently, they generate a masked
version of the function and save a golden file that
will be utilized for evaluation.

Zhttps://hub.docker.com/r/pytorch/pytorch

6179

https://hub.docker.com/r/pytorch/pytorch

o Inputs O Reproduction o Evaluation
N ., [
D T 3 r R - r —————— - 1 Logl
t 5 A PelTost A PsiTost o og!cally Incorrect.)s _______
E N = R o e Ol =) S iy
<L (1S N e e o N o P —ae 3, Completely correct.{’d) == ==—===—
Target Paper { LLM Judge Metrics
Agent reproduce the
Masked Test test function based Gold Test Test Function i _T_ _S_ ore !
; —_—) >
Function on the paper Outputs Checker p, [CSISEED
wpLE)
EXAMPLE 0 0 _ Agent's Test Function _ 0

Trusting Your Evidence: Agent
i H » i ent's

Hallucinate Less with Context-aware Decoding [THOUGHT] Reading paper. .. wgrki"g

I ' i _pdf

Weijia Shi ' Xiaochuang Han > cat paper.p Traject

2 ' 2 RESULT] P fully. Irajectory

Mike Lewis* Yolia Tsvethov '~ Luke Zettlemoyer | Scott Yih* [RESULT] Paper loaded successfully

[THOUGHT] Implementing context-aware decoding.

> edit unit_test/unit_test_1.py

[RESULT] Contrastive sampling logic inserted.

! University of Washington, Seattle, WA, * Meta AL
£5ui0419. xhan77)écs.washington. edu
def context_aware_sampling(*args):
As a research agent, you need
to implement this function
based on the provided paper
raise NotImplementedError

[THOUGHT] Handling rate-limit error...
> choose alternative model or retry later

[RESULT] 3/3 test cases passed with local mock.

1 et agent_sampling(*arg):
Test I # agents' implementation
Inputs P bs,sl = inputs_ids.size()

)
I ———
LLM Judge fw_ !
---get device-—- -

device = inputs_ids.device]l

==
> 01,

e -

Gold Test Outputs
‘answer':'Argentina has won 19 World Cups.'

Test Function
Checker

I ‘answer':'Argentina has won 17 world Cups.' |}

Figure 4: Dataset evaluation pipeline of LMR-BENCH. The agent is presented with a target paper and a masked
test function. After reproduction, the test function is evaluated in two stages. First, an LLM judge assesses the
code for correctness and alignment with the paper’s logic (in this example, the judge deems the implementation
correct). Second, the test function is executed on labeled inputs and its outputs are automatically compared against
the golden outputs. In this figure, since there is only one test case, the final score is 0/1.

Unit Test Evaluation Preparation. Finally, an-
notators construct a unit test suite of around 3 test
cases derived from the original datasets, where
both the inputs and corresponding expected out-
puts are faithfully recorded during the reproduction
phase. For scalable and consistent evaluation, anno-
tators create task-specific evaluation scripts based
on these pre-defined metrics that measure output
accuracy. LLMs are leveraged to support the cre-
ation of unit tests to enhance efficiency. To account
for the inherent variability that may be present in
NLP implementations, we design checker func-
tions specific to each task. For instance, we evalu-
ate the value differences between predictions and
ground truths for optimization tasks, while setting
a threshold for the BERTScore (Zhang et al., 2020)
in prompt engineering tasks. Following the anno-
tation process, all annotations undergo rigorous
human review and refinement to guarantee correct-
ness and reproducibility.

3.3 Evaluation

The overall evaluation pipeline is illustrated in Fig-
ure 4. Since evaluating code quality involves com-
plementary aspects of correctness and robustness,
we employ two automated methods: (1) unit test
evaluation and (2) LLM-as-a-judge evaluation.

Unit Test Evaluation. We first measure func-
tional correctness using an automated unit test
framework, following a protocol similar to Leet-
Code’s (Liu et al., 2023; Zhao et al., 2025). As
described in Section 3.2, we generate a suite of
test cases and create a container as the testing envi-

ronment. During evaluation, each candidate imple-
mentation is executed inside its own container, and
we run the predefined test suite. We then compute
the unit test accuracy as the fraction of problems
for which all associated test cases pass.

LLM-as-a-Judge Evaluation. Unit tests ensure
basic functionality but cannot capture code read-
ability, style conformance, or subtle semantic dis-
crepancies that do not trigger test failures (Tong
and Zhang, 2024; Starace et al., 2025). To obtain a
more granular assessment, we introduce LLM-as-a-
judge as the second evaluation method. We present
both the model-generated function and the refer-
ence solution to the LLM judge and evaluate the
generated code from two distinct but complemen-
tary perspectives: algorithmic logic correctness
and implementation correctness. The algorithmic
logic correctness evaluation verifies that the algo-
rithm’s underlying mathematical design and theo-
retical logic are conceptually sound and consistent
with the intended methodology, ensuring that for
each valid input, the algorithm would produce an
output meeting its formal specification. In parallel,
the implementation correctness evaluation scruti-
nizes the code to ensure it faithfully realizes the
intended algorithmic logic. This involves check-
ing that the code’s procedures and data handling
strictly follow the algorithm’s design and that it
robustly handles edge cases (e.g., empty inputs or
unexpected input formats), uses appropriate data
types, and behaves reliably at runtime.

Based on the combined outcomes of these two
evaluations, we classify the generated code’s cor-

6180

Benchmark \ Pub. Repo. Unit Docker Source Task

MLE-Bench (Chan et al., 2025) X X X X Kaggle Machine Learning Engineering
MLAgentBench (Huang et al., 2024) X v v X Kaggle Machine Learning Engineering
RepoBench (Liu et al., 2024) X 4 X X GitHub Code Auto-Completion
ML-Bench (Liu et al., 2023) X v v v GitHub Code Auto-Completion
SWE-bench (Jimenez et al., 2024) X v X X GitHub Resolve GitHub Issues
DebugBench (Tian et al., 2024) X X v X LeetCode Resolve Code Bugs

DSBench (Jing et al., 2025) X X v X Kaggle Data-Driven Discovery
ScienceAgentBench (Chen et al., 2025) v X v X Research Data-Driven Discovery
PaperBench (Starace et al., 2025) v 4 X 4 Research Reproduce ICML Papers
LMR-BENCH 4 v v v Research Reproduce LLM/NLP Papers

Table 1: Comparison between LMR-BENCH and existing benchmarks.

rectness into three categories: (1) Logically In-
correct: the code’s foundational logic is flawed,
rendering it incapable of producing correct results
even with a perfect implementation; (2) Logically
Correct: the design of the logic is sound in prin-
ciple, but the implementation fails to realize that
design accurately (e.g., bugs or improper handling
of edge cases); (3) Completely Correct: the logic is
conceptually sound and its implementation in code
is faithful and error-free, satisfying all specified
requirements. We report the percentage of imple-
mentations falling into each category to provide a
more fine-grained performance analysis of LLM
agents’ implementation accuracy. We also include
the prompt in Appendix C.

3.4 Comparison with Existing Benchmarks

Table 1 presents a systematic comparison between
LMR-BENCH and nine existing benchmarks across
four essential dimensions: derived from published
research papers (Pub.), repository-level opera-
tion (Repo.), standard unit tests (Unit), and task-
specific Docker environments (Docker). From the
table, it is evident that LMR-BENCH is the only
benchmark combining all four features, distinguish-
ing it as a uniquely robust benchmark in contem-
porary LLM/NLP research. An example of LMR-
BENCH is depicted in Appendix E.

4 Experiments

4.1 Experimental Setup

Our experiments are conducted under two settings:
standard prompting and LLM agent settings, where
backbone LLMs used include GPT-40 (Hurst et al.,
2024), GPT-4.13, and 04-mini*, serving as repre-

3https ://openai.com/index/gpt-4-1/
4https ://openai.com/index/
introducing-o3-and-o04-mini/

sentative models for general-purpose, complex, and
reasoning-oriented tasks, respectively.

Standard Prompting. In the standard prompting
setting, since LL.Ms cannot directly process an en-
tire repository as input, we design a straightforward
pipeline for data pre-processing, extracting relevant
information by parsing the paper and presenting
the associated code, which is then formatted into a
prompt and passed to the LLM (see Appendix D).
Specifically, the prompt includes the JSON format
of the paper parsed by PyMuPDF>, the code of
the goal file, the instruction, and the related code
snippet in other files in the repository.

LLM Agent Setting. In contrast, the LLM agent
setting aims for an end-to-end problem-solving ap-
proach. Here, the agent is provided with a folder
consisting of the paper’s PDF file and the code
repository with masked functions as input, tasked
with addressing the problem using any available
method. OpenHands (Wang et al., 2025), a well-
known coding agent, meets these requirements. Un-
der this setup, the objective is to allow the agent
to handle as much of the task as possible, with
minimal intervention, i.e., only providing an in-
struction specifying which function needs to be
implemented.

4.2 Results and Analysis

Table 2 presents the overall performance compari-
son between standard prompting and LLM agents.
GPT-4.1 and 0o4-mini achieve the highest accuracy
on unit tests. However, when it comes to LLM-as-
a-judge, o4-mini significantly outperforms GPT-4.1
in the number of samples deemed correct. On the
other hand, GPT-40 exhibits the weakest perfor-
mance, underscoring its limits in code reproduction.

Shttps://github.com/pymupdf/PyMuPDF

6181

https://openai.com/index/gpt-4-1/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://github.com/pymupdf/PyMuPDF

Unit Test

LLM-as-a-Judge Evaluation

Human Evaluation

Model ‘ ‘ ‘
| Accuracy | CC LC LI | ccC LC LI

GPT-40 39.3 17.9 10.7 71.4 25 14.3 60.7
GPT-4.1 42.9 7.1 28.6 64.3 32.1 28.6 39.3
04-mini 429 25.0 21.4 53.6 35.7 32.1 32.1
OpenHands (GPT-40) 25.0 7.1 7.1 85.7 21.4 17.9 60.7
OpenHands (GPT-4.1) 32.1 17.9 14.3 67.9 32.1 25 429
OpenHands (04-mini) 35.7 35.7 14.3 50.0 39.3 21.4 39.3

Table 2: Evaluation results for standard prompting and LLM agent settings (CC: Completely Correct, LC: Logically
Correct, LI: Logically Incorrect). All results are reported as percentages.

(a) GPT-40

Think Edit
Edit
Finish

Finish

8.0% 1509

Message 0%

2.0%

14.0% Read

(b) GPT-4.1

15.0% 2.0%

(c) o4-mini

Think Message

Finish

38.0%
Read

25.0%

Edit
Read

Figure 5: Action distribution in OpenHands agents with different backbone models.

Although the absolute unit test accuracy remains
relatively low across all models, the category logi-
cally correct also reflects that the algorithms match
the specification but contain implementation mis-
takes or omissions. This emphasizes the necessity
of future models with enhanced abstract reasoning
and better cross-file integration capabilities.

Compared to standard prompting, LLM agents
show a slight decrease in accuracy across all mod-
els, with reductions of 14.3%, 10.8%, and 7.2% for
GPT-40, GPT-4.1, and 04-mini, respectively. How-
ever, these agents tend to produce a higher number
of functions identified as correct. This observation
underscores the enhanced ability of LLM agents
to understand paper details and generate accurate
functions, while also revealing their limitations in
repository-level paper reproduction that passes unit
tests. Challenges such as repository-level code un-
derstanding and dependency handling emerge as
key areas for improvement, offering valuable direc-
tions for future research.

5 Further Analysis

5.1 Action Analysis for OpenHands Agents

To examine whether the distribution of actions of
the agent is related to implementation success, we
analyze the logs of OpenHands (Figure 5). The

explanations of the actions are listed in Appendix
F. Foundation models (GPT-40, GPT-4.1) and rea-
soning models (04-mini) exhibit markedly different
interaction profiles. Although GPT-40 and GPT-4.1
share a similar overall action distribution, GPT-
4.1 performs more concrete operations (e.g., code
execution, file queries) and fewer conversational
“think” steps. By contrast, the reasoning-oriented
o4-mini devotes a larger fraction of its workflow to
in-depth analysis before invoking execution steps.

Despite these behavioral differences, GPT-4.1
and 04-mini achieve comparable success rates un-
der human evaluation. Moreover, when we split
logs by outcome (passed vs. failed), the relative
balance between analysis and execution remains
consistent across all model types (see Figure 6),
suggesting that it is the ratio of “think” to “run”
actions, rather than their absolute counts, that best
predicts successful code implementation. The data
analysis shows that the action distribution is not
related to the success or failure of the unit test since
04-mini and GPT-4.1 have different behavior pat-
terns but show similar performance.

To quantify the impact of repository structure
on implementation success, we fit a logistic regres-
sion model (Table 5 in Appendix G) with binary
success as the dependent variable, as predictors we
included:

6182

121
120 mmm GPT-40

I GPT-4.1
98 04-mini

Run Read Edit
280

Message Finish

mm GPT-40
s GPT-4.1

250 04-mini

200

150

100

50

0

Run Read Edit

Message Finish
Figure 6: Action counts comparison for pass papers

(upper figure) and fail papers (bottom figure).

* Average Directory Depth: Sum the depth of each
file or folder (where depth is the number of edges
from the repository root to that node) and divide
by the total number of nodes;

* Average Branch Factor: Sum the number of im-
mediate subdirectories for node and divide by the
number of directories with at least one child;

* Goal Function Length: The number of source
lines of code in the goal function file;

* Dummy Indicators for Model Type: The current
model is GPT-4.1 and two dummy variables to
represent GPT-40 and o4-mini.

The regression reveals that deeper directory hier-
archies are strongly associated with success (8 =
0.8049, z = 3.232, p = 0.001), whereas more
highly branched structures significantly reduce suc-
cess likelihood (8 = —0.6750, z = —2.995,
p = 0.003). Neither directory imbalance nor
goal-function length reached statistical significance
(p > 0.10), nor did the model-type indicators
(p > 0.30). These results suggest that reposito-
ries organized into deeper but less divergent folder
structures facilitate correct implementation, while
shallow, highly forked hierarchies impede it.

5.2 Ablation Study

We conduct ablation with two different input set-
tings to identify the contribution of the paper and

Input Model \Unit Test CC LC LI

GPT-40 21.4 107 7.1 821
Paper GPT-4.1 32.1 28,6 143 57.1
04-mini 39.3 464 3.6 50.0

+ Goal File GPT-4.1 28.6 7.1 143 78.6

GPT-40 25.0 3.6 7.1 893
04-mini 39.3 429 179 393

Table 3: Performance (%) of OpenHands agents under
two input settings across different backbone models.

code context: (1) “Paper-Only” setting, where the
repository is entirely removed, so agents rely solely
on paper context; (2) “Paper + Goal File” set-
ting, where all repository files except the goal file
are removed, exposing only the minimal context
needed for reproduction. Results are reported in
Table 3. Under “Paper-Only,” GPT-40 and GPT-4.1
show lower performance, while o4-mini exhibits
larger variance, consistent with its higher decoding
temperature. Under “Paper + Goal File,” isolating
repository context has only a minor effect on ag-
gregate performance. This might come from that
most target functions are self-contained and require
limited cross-file information, so agents are able
to implement and test them successfully without
additional repository context.

5.3 Error Analysis

We observe recurrent failure modes when Open-
Hands agents translate papers into code, each re-
vealing a distinct challenge.

Unsuccessful Paper Parsing. Complex layouts
and formula-heavy descriptions often yield incom-
plete or garbled inputs. For example, mathematical
formulas and pseudo-code are often mis-extracted
(missing symbols, mis-ordering), stripping critical
information of the algorithm computation.

Incomplete Comprehension of Problem Context.
The agent often demonstrates a shallow understand-
ing of the paper context. Specifically, it can capture
the general idea (e.g., “apply an attention mecha-
nism’) but struggles to expand this into concrete
code behaviors. Key implementation details im-
plied in texts (e.g., stopping criteria and parameter
initializations) are sometimes omitted in the gener-
ated code. This indicates the models are not decom-
posing the task sufficiently and instead produce an
incomplete or overly generic solution.

Lack of Robustness in Code Generation. Many
errors originate from intrinsic weaknesses in the
LLM’s generated code, including syntax errors, log-

6183

Policy Errors Unsuccessful Paper Parsing

Cross-file Retrieval Error 5.2%

13.8%

43.1
Bk Incomplete Comprehension

Lack of Robustness of Problem Context

in Code Generation

Figure 7: Error distribution of OpenHands on LMR-
BENCH.

ical mistakes, and incorrect handling of edge cases.
Employing code-verification tools and integrating
iterative code refinement loops may significantly
reduce such errors, improving overall robustness.

Cross-file Retrieval Error. Often, functions to
be implemented rely on constants, helper functions,
or class definitions located in other parts of the
project. The code agent, with a limited context
window, sometimes fails to recall or look up these
dependencies but omits or redefines them using
placeholders. These mistakes underscore the diffi-
culty of repository-level code generation when not
all relevant context fits in the prompt.

Policy Errors. In some trials, attempts are made
to revise the prompt or inject additional context
(such as appending external code snippets or al-
tering the task description), which trigger LLM’s
safety policies or confuse its understanding of the
task. In such cases, the model’s performance de-
grades: it might refuse to continue, produce irrele-
vant output, or reset its earlier reasoning.

To facilitate better understanding, we include a
concrete example for each error category in Ap-
pendix H. Additionally, we provide a statistical
analysis of OpenHands’ error distribution on our
benchmark, as shown in Figure 7. The figure re-
veals a clear hierarchy of failure sources: nearly
half (43.1%) arise from incomplete comprehension
of the problem context, while 27.6% stem from
brittle code that breaks under minor input or en-
vironment changes. Cross-file retrieval issues ac-
count for 13.8%, underscoring limitations in track-
ing multi-file dependencies.

5.4 Discussions on Evaluation Methods

We evaluate agent-generated code using two auto-
mated methods, supplemented by detailed human
annotation (Appendix B). Table 2 shows that unit
tests achieve the highest accuracy, followed by hu-

man evaluation with LL.M-as-a-judge showing the
worst performance, contrary to our expectations.
As LLMs improve, they can generate executable
and well-structured code, but there can be multiple
valid implementations. Agents may generate cor-
rect solutions that diverge from the golden answer,
which LLM-as-a-judge (biased toward surface sim-
ilarity) can miss, whereas humans are more tolerant
of variation but often overly permissive on “logi-
cally correct” category.

We also observe mismatches between LLM and
human judgments. The LLM-human agreement
is 62.5% with 9.5% direct conflicts, and the two
annotators disagree more often with the LLM (an
average of 16%), concentrated on specific papers.
Most disagreements are human-correct but LLM-
incorrect, while the reverse mainly occurs when ex-
ecution fails. Overall, LLMs weigh local similarity
while humans prioritize global reasoning, increas-
ing divergence on complex cases (yet total agree-
ment still exceeds 70%). We further collapse the
evaluation into two categories—Completely Cor-
rect vs. Not Completely Correct. The aggregated
results are reported in Table 6.

These findings support using both unit tests and
LLM-as-a-judge. Unit tests capture correctness
regardless of implementation strategy, while LLM-
as-a-judge measures alignment with the reference
and instruction fidelity.

6 Conclusion

We present LMR-BENCH, a benchmark designed
to systematically evaluate the LLM agents’ ability
on reproducing language modeling research. To
ensure an objective evaluation of the code repro-
duction results, we employ two distinct metrics:
the accuracy of unit tests and the distribution of
LLM-as-a-judge classifications of generated imple-
mentations. Experimental results on both standard
generation and LLM agent settings reveal the per-
sistent limitations in scientific reasoning and code
synthesis of existing models, highlighting critical
gaps in agent’s ability to autonomously reproduce
scientific research. In the future, we will focus on
automatic or semi-automatic data collection and de-
sign more capable agents to improve reproduction
outcomes.

Limitations

To ensure the high quality of our benchmark, the
annotation cost is high, and scalability is difficult

6184

since it requires PhD-level expertise. How to en-
able automatic or semi-automatic data points col-
lection is an open problem.

Ethical Considerations

We developed LMR-BENCH based on research
papers from top-tier NLP conference proceedings
and their publicly available code repositories. This
project has been classified as exempt by our Institu-
tional Review Board (IRB). All human annotations
and evaluations were conducted by our co-authors
who are researchers with substantial NLP research
experience. The systems trained on our dataset
are intended to augment—not replace—human
decision-making in scientific research.

Acknowledgments

We thank the anonymous reviewers for their valu-
able feedback. This research is supported in part by
the National Science Foundation CAREER Grant
11S-2340435 and an Amazon Research Award. Any
opinions, findings, and conclusions or recommen-
dations expressed herein are those of the authors
and do not necessarily represent the views, either
expressed or implied, of the U.S. Government.

References

Jacob Austin, Augustus Odena, Maxwell 1. Nye,
Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,
and Charles Sutton. 2021. Program synthesis with
large language models. CoRR, abs/2108.07732.

Jinheon Baek, Sujay Kumar Jauhar, Silviu Cucerzan,
and Sung Ju Hwang. 2025. Researchagent: Iterative
research idea generation over scientific literature with
large language models. In Proceedings of the 2025
Conference of the Nations of the Americas Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, NAACL 2025 - Volume
1: Long Papers, Albuquerque, New Mexico, USA,
April 29 - May 4, 2025, pages 6709-6738. Associa-
tion for Computational Linguistics.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James
Aung, Dane Sherburn, Evan Mays, Giulio Starace,
Kevin Liu, Leon Maksin, Tejal Patwardhan, Alek-
sander Madry, and Lilian Weng. 2025. Mle-bench:
Evaluating machine learning agents on machine
learning engineering. In The Thirteenth International
Conference on Learning Representations, ICLR 2025,
Singapore, April 24-28, 2025. OpenReview.net.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg

Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela
Mishkin, Brooke Chan, Scott Gray, and 39 others.
2021. Evaluating large language models trained on
code. CoRR, abs/2107.03374.

Ziru Chen, Shijie Chen, Yuting Ning, Qianheng Zhang,
Boshi Wang, Botao Yu, Yifei Li, Zeyi Liao, Chen
Wei, Zitong Lu, Vishal Dey, Mingyi Xue, Frazier N.
Baker, Benjamin Burns, Daniel Adu-Ampratwum,
Xuhui Huang, Xia Ning, Song Gao, Yu Su, and Huan
Sun. 2025. Scienceagentbench: Toward rigorous
assessment of language agents for data-driven sci-
entific discovery. In The Thirteenth International
Conference on Learning Representations, ICLR 2025,
Singapore, April 24-28, 2025. OpenReview.net.

Markus Flicke, Glenn Angrabeit, Madhav Iyengar, Vi-
talii Protsenko, Illia Shakun, Jovan Cicvaric, Bora
Kargi, Haoyu He, Lukas Schuler, Lewin Scholz,
Kavyanjali Agnihotri, Yong Cao, and Andreas Geiger.
2025. Scholar inbox: Personalized paper recommen-
dations for scientists. CoRR, abs/2504.08385.

Dong Huang, Qingwen Bu, Jie M. Zhang, Michael Luck,
and Heming Cui. 2023. Agentcoder: Multi-agent-
based code generation with iterative testing and opti-
misation. CoRR, abs/2312.13010.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec.
2024. Mlagentbench: Evaluating language agents on
machine learning experimentation. In Forty-first In-
ternational Conference on Machine Learning, ICML
2024, Vienna, Austria, July 21-27, 2024. OpenRe-
view.net.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, An Yang, Rui Men, Fei Huang,
Xingzhang Ren, Xuancheng Ren, Jingren Zhou, and
Junyang Lin. 2024. Qwen2.5-coder technical report.
CoRR, abs/2409.12186.

Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow,
Akila Welihinda, Alan Hayes, Alec Radford, Alek-
sander Madry, Alex Baker-Whitcomb, Alex Beutel,
Alex Borzunov, Alex Carney, Alex Chow, Alex Kir-
illov, Alex Nichol, Alex Paino, and 79 others. 2024.
Gpt-4o system card. CoRR, abs/2410.21276.

Tal Ifargan, Lukas Hafner, Maor Kern, Ori Alcalay,
and Roy Kishony. 2025. Autonomous llm-driven
research — from data to human-verifiable research
papers. NEJM Al 2(1):Aloa2400555.

Md. Ashraful Islam, Mohammed Eunus Ali, and
Md. Rizwan Parvez. 2024. Mapcoder: Multi-agent
code generation for competitive problem solving. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), ACL 2024, Bangkok, Thailand, Au-
gust 11-16, 2024, pages 4912-4944. Association for
Computational Linguistics.

6185

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://aclanthology.org/2025.naacl-long.342/
https://aclanthology.org/2025.naacl-long.342/
https://aclanthology.org/2025.naacl-long.342/
https://openreview.net/forum?id=6s5uXNWGIh
https://openreview.net/forum?id=6s5uXNWGIh
https://openreview.net/forum?id=6s5uXNWGIh
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://openreview.net/forum?id=6z4YKr0GK6
https://openreview.net/forum?id=6z4YKr0GK6
https://openreview.net/forum?id=6z4YKr0GK6
https://doi.org/10.48550/ARXIV.2504.08385
https://doi.org/10.48550/ARXIV.2504.08385
https://doi.org/10.48550/ARXIV.2312.13010
https://doi.org/10.48550/ARXIV.2312.13010
https://doi.org/10.48550/ARXIV.2312.13010
https://openreview.net/forum?id=1Fs1LvjYQW
https://openreview.net/forum?id=1Fs1LvjYQW
https://doi.org/10.48550/ARXIV.2409.12186
https://doi.org/10.48550/ARXIV.2410.21276
https://doi.org/10.1056/AIoa2400555
https://doi.org/10.1056/AIoa2400555
https://doi.org/10.1056/AIoa2400555
https://doi.org/10.18653/V1/2024.ACL-LONG.269
https://doi.org/10.18653/V1/2024.ACL-LONG.269

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia
Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. 2025. Live-
codebench: Holistic and contamination free evalua-
tion of large language models for code. In The Thir-
teenth International Conference on Learning Repre-
sentations, ICLR 2025, Singapore, April 24-28, 2025.
OpenReview.net.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and
Sunghun Kim. 2024a. A survey on large language
models for code generation. CoRR, abs/2406.00515.

Xue Jiang, Yihong Dong, Lecheng Wang, Zheng Fang,
Qiwei Shang, Ge Li, Zhi Jin, and Wenpin Jiao.
2024b. Self-planning code generation with large lan-
guage models. ACM Trans. Softw. Eng. Methodol.,
33(7):182:1-182:30.

Carlos E. Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R.
Narasimhan. 2024. Swe-bench: Can language mod-
els resolve real-world github issues? In The Twelfth
International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net.

Ligiang Jing, Zhehui Huang, Xiaoyang Wang, Wen-
lin Yao, Wenhao Yu, Kaixin Ma, Hongming Zhang,
Xinya Du, and Dong Yu. 2025. Dsbench: How far
are data science agents from becoming data science
experts? In The Thirteenth International Conference
on Learning Representations, ICLR 2025, Singapore,
April 24-28, 2025. OpenReview.net.

Mina Lee, Percy Liang, and Qian Yang. 2022. Coauthor:
Designing a human-ai collaborative writing dataset
for exploring language model capabilities. In CHI
’22: CHI Conference on Human Factors in Comput-
ing Systems, New Orleans, LA, USA, 29 April 2022 -
5 May 2022, pages 388:1-388:19. ACM.

Long Li, Weiwen Xu, Jiayan Guo, Ruochen Zhao,
Xingxuan Li, Yugian Yuan, Bogiang Zhang, Yuming
Jiang, Yifei Xin, Ronghao Dang, Deli Zhao, Yu Rong,
Tian Feng, and Lidong Bing. 2024a. Chain of ideas:
Revolutionizing research via novel idea development
with LLM agents. CoRR, abs/2410.13185.

Ruochen Li, Ligiang Jing, Chi Han, Jiawei Zhou, and
Xinya Du. 2024b. Learning to generate research idea
with dynamic control. CoRR, abs/2412.14626.

Ruochen Li, Teerth Patel, Qingyun Wang, and Xinya
Du. 2024c¢. Mlr-copilot: Autonomous machine learn-
ing research based on large language models agents.
CoRR, abs/2408.14033.

Tianyang Liu, Canwen Xu, and Julian J. McAuley.
2024. Repobench: Benchmarking repository-level
code auto-completion systems. In The Twelfth In-
ternational Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-
Review.net.

Yuliang Liu, Xiangru Tang, Zefan Cai, Junjie Lu,
Yichi Zhang, Yanjun Shao, Zexuan Deng, Helan Hu,
Zengxian Yang, Kaikai An, Ruijun Huang, Shuzheng
Si, Sheng Chen, Haozhe Zhao, Zhengliang Li, Liang
Chen, Yiming Zong, Yan Wang, Tianyu Liu, and
7 others. 2023. Ml-bench: Large language models
leverage open-source libraries for machine learning
tasks. CoRR, abs/2311.09835.

Zejie Liu, Xiaoyu Hu, Deyu Zhou, Lin Li, Xu Zhang,
and Yanzheng Xiang. 2022. Code generation from
flowcharts with texts: A benchmark dataset and an
approach. In Findings of the Association for Com-
putational Linguistics: EMNLP 2022, Abu Dhabi,
United Arab Emirates, December 7-11, 2022, pages
6069-6077. Association for Computational Linguis-
tics.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob N. Fo-
erster, Jeff Clune, and David Ha. 2024. The Al scien-
tist: Towards fully automated open-ended scientific
discovery. CoRR, abs/2408.06292.

Ziming Luo, Zonglin Yang, Zexin Xu, Wei Yang, and
Xinya Du. 2025. LLM4SR: A survey on large
language models for scientific research. CoRR,
abs/2501.04306.

Yubo Ma, Zhibin Gou, Junheng Hao, Ruochen Xu,
Shuohang Wang, Liangming Pan, Yujiu Yang, Yixin
Cao, and Aixin Sun. 2024. Sciagent: Tool-
augmented language models for scientific reasoning.
In Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2024, Miami, FL, USA, November 12-16, 2024, pages
15701-15736. Association for Computational Lin-
guistics.

Hao Peng, Xiaozhi Wang, Jianhui Chen, Weikai Li,
Yunjia Qi, Zimu Wang, Zhili Wu, Kaisheng Zeng,
Bin Xu, Lei Hou, and Juanzi Li. 2023. When does
in-context learning fall short and why? A study on
specification-heavy tasks. CoRR, abs/2311.08993.

Giulio Starace, Oliver Jaffe, Dane Sherburn, James
Aung, Jun Shern Chan, Leon Maksin, Rachel Dias,
Evan Mays, Benjamin Kinsella, Wyatt Thompson,
Johannes Heidecke, Amelia Glaese, and Tejal Pat-
wardhan. 2025. Paperbench: Evaluating ai’s ability
to replicate Al research. CoRR, abs/2504.01848.

Runchu Tian, Yining Ye, Yujia Qin, Xin Cong, Yankai
Lin, Yinxu Pan, Yesai Wu, Haotian Hui, Weichuan
Liu, Zhiyuan Liu, and Maosong Sun. 2024. De-
bugbench: Evaluating debugging capability of large
language models. In Findings of the Association
for Computational Linguistics, ACL 2024, Bangkok,
Thailand and virtual meeting, August 11-16, 2024,
pages 4173—4198. Association for Computational
Linguistics.

Weixi Tong and Tianyi Zhang. 2024. Codejudge: Eval-
uating code generation with large language models.
In Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, EMNLP

6186

https://openreview.net/forum?id=chfJJYC3iL
https://openreview.net/forum?id=chfJJYC3iL
https://openreview.net/forum?id=chfJJYC3iL
https://doi.org/10.48550/ARXIV.2406.00515
https://doi.org/10.48550/ARXIV.2406.00515
https://doi.org/10.1145/3672456
https://doi.org/10.1145/3672456
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=DSsSPr0RZJ
https://openreview.net/forum?id=DSsSPr0RZJ
https://openreview.net/forum?id=DSsSPr0RZJ
https://doi.org/10.1145/3491102.3502030
https://doi.org/10.1145/3491102.3502030
https://doi.org/10.1145/3491102.3502030
https://doi.org/10.48550/ARXIV.2410.13185
https://doi.org/10.48550/ARXIV.2410.13185
https://doi.org/10.48550/ARXIV.2410.13185
https://doi.org/10.48550/ARXIV.2412.14626
https://doi.org/10.48550/ARXIV.2412.14626
https://doi.org/10.48550/ARXIV.2408.14033
https://doi.org/10.48550/ARXIV.2408.14033
https://openreview.net/forum?id=pPjZIOuQuF
https://openreview.net/forum?id=pPjZIOuQuF
https://doi.org/10.48550/ARXIV.2311.09835
https://doi.org/10.48550/ARXIV.2311.09835
https://doi.org/10.48550/ARXIV.2311.09835
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.449
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.449
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.449
https://doi.org/10.48550/ARXIV.2408.06292
https://doi.org/10.48550/ARXIV.2408.06292
https://doi.org/10.48550/ARXIV.2408.06292
https://doi.org/10.48550/ARXIV.2501.04306
https://doi.org/10.48550/ARXIV.2501.04306
https://aclanthology.org/2024.emnlp-main.880
https://aclanthology.org/2024.emnlp-main.880
https://doi.org/10.48550/ARXIV.2311.08993
https://doi.org/10.48550/ARXIV.2311.08993
https://doi.org/10.48550/ARXIV.2311.08993
https://doi.org/10.48550/ARXIV.2504.01848
https://doi.org/10.48550/ARXIV.2504.01848
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.247
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.247
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.247
https://aclanthology.org/2024.emnlp-main.1118
https://aclanthology.org/2024.emnlp-main.1118

2024, Miami, FL, USA, November 12-16, 2024, pages Yuwei Zhao, Ziyang Luo, Yuchen Tian, Hongzhan

20032-20051. Association for Computational Lin-
guistics.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu,
Xiangru Tang, Mingchen Zhuge, Jiayi Pan, Yueqi
Song, Bowen Li, Jaskirat Singh, Hoang H. Tran,
Fugiang Li, Ren Ma, Mingzhang Zheng, Bill Qian,
Yanjun Shao, Niklas Muennighoff, Yizhe Zhang,

Lin, Weixiang Yan, Annan Li, and Jing Ma. 2025.
Codejudge-eval: Can large language models be good
judges in code understanding? In Proceedings of the
31st International Conference on Computational Lin-
guistics, COLING 2025, Abu Dhabi, UAE, January
19-24, 2025, pages 73-95. Association for Computa-
tional Linguistics.

Binyuan Hui, and 2 others. 2025. Openhands: An Terry Yue Zhuo. 2024. Ice-score: Instructing large lan-

open platform for Al software developers as gener-
alist agents. In The Thirteenth International Con-
ference on Learning Representations, ICLR 2025,
Singapore, April 24-28, 2025. OpenReview.net.

Yidong Wang, Qi Guo, Wenjin Yao, Hongbo Zhang, Xin
Zhang, Zhen Wu, Meishan Zhang, Xinyu Dai, Min
Zhang, Qingsong Wen, Wei Ye, Shikun Zhang, and
Yue Zhang. 2024. Autosurvey: Large language mod-
els can automatically write surveys. In Advances in
Neural Information Processing Systems 38: Annual
Conference on Neural Information Processing Sys-
tems 2024, NeurIPS 2024, Vancouver, BC, Canada,
December 10 - 15, 2024.

Yutaro Yamada, Robert Tjarko Lange, Cong Lu, Shen-
gran Hu, Chris Lu, Jakob N. Foerster, Jeff Clune, and
David Ha. 2025. The Al scientist-v2: Workshop-
level automated scientific discovery via agentic tree
search. CoRR, abs/2504.08066.

Zonglin Yang, Xinya Du, Junxian Li, Jie Zheng, Sou-
janya Poria, and Erik Cambria. 2024. Large lan-
guage models for automated open-domain scientific
hypotheses discovery. In Findings of the Association
for Computational Linguistics, ACL 2024, Bangkok,
Thailand and virtual meeting, August 11-16, 2024,
pages 13545-13565. Association for Computational
Linguistics.

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo,
Liang Zhao, Zhengyan Zhang, Zhenda Xie, Y. X.
Wei, Lean Wang, Zhiping Xiao, Yuqing Wang, Chong
Ruan, Ming Zhang, Wenfeng Liang, and Wangding
Zeng. 2025. Native sparse attention: Hardware-
aligned and natively trainable sparse attention. CoRR,
abs/2502.11089.

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin.
2024. Codeagent: Enhancing code generation with
tool-integrated agent systems for real-world repo-
level coding challenges. In Proceedings of the 62nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), ACL
2024, Bangkok, Thailand, August 11-16, 2024, pages
13643-13658. Association for Computational Lin-
guistics.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Evalu-
ating text generation with BERT. In 8th International
Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

6187

guage models to evaluate code. In Findings of the
Association for Computational Linguistics: EACL
2024, St. Julian’s, Malta, March 17-22, 2024, pages
2232-2242. Association for Computational Linguis-
tics.

https://openreview.net/forum?id=OJd3ayDDoF
https://openreview.net/forum?id=OJd3ayDDoF
https://openreview.net/forum?id=OJd3ayDDoF
http://papers.nips.cc/paper_files/paper/2024/hash/d07a9fc7da2e2ec0574c38d5f504d105-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/d07a9fc7da2e2ec0574c38d5f504d105-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2504.08066
https://doi.org/10.48550/ARXIV.2504.08066
https://doi.org/10.48550/ARXIV.2504.08066
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.804
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.804
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.804
https://doi.org/10.48550/ARXIV.2502.11089
https://doi.org/10.48550/ARXIV.2502.11089
https://doi.org/10.18653/V1/2024.ACL-LONG.737
https://doi.org/10.18653/V1/2024.ACL-LONG.737
https://doi.org/10.18653/V1/2024.ACL-LONG.737
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://aclanthology.org/2025.coling-main.7/
https://aclanthology.org/2025.coling-main.7/
https://aclanthology.org/2024.findings-eacl.148
https://aclanthology.org/2024.findings-eacl.148

A Paper Categories in LMR-BENCH

Category

Definition

Feature Learning &
Representation

Creating and refining vector representation of texts.

Neural Network
Architectures

Designing building blocks within neural networks.

Prompt Engineering &
Instruction Tuning

Information Extraction

Extracting structured knowledge from unstructured texts.

Data Augmentation

‘ Crafting prompts or fine-tuning models to control and optimize model behaviors.
| Augmenting training samples with curated strategies.

Training Objectives &
Optimization

Designing loss functions or optimization algorithms to govern model training.

Decoding &
Search Strategies

Employing inference-time algorithms for decoding and search in text generation.

Evaluation Metrics

Calculating quantitative measures of text generation results.

Interpretability &
Explainability

Focusing on techniques that illuminate model internals and decision rationales.

Table 4: Paper categories within the LMR-BENCH benchmark.

B Human Annotator Profile

To conduct the manual annotation evaluation, we first draw a random sample of 40 papers. We then recruit
a panel of 30 subject-matter specialists drawn from a variety of institutions and including several faculty
members to annotate their papers. Each annotated paper is examined independently by three different
experts, ensuring the correctness of unit tests. On average, completing one paper annotation requires

roughly five hours.

Qualification Standards. All annotators are selected to satisfy the reviewer expectations of premier
NLP and machine learning venues. Each expert met at least two of the following conditions:

* holds a Ph.D. or has authored multiple peer-reviewed publications in a relevant discipline;

* has published a minimum of two first-authored papers in top-tier conferences or journals (AAAI,
NeurIPS, ICML, ICLR, ACL, EMNLP, NAACL, etc.) within the past five years;

* has served as a reviewer for one of these venues, or has comparable research standing as demonstrated
by citation metrics and scholarly record.

Evaluation Protocol.

During the manual evaluation stage, each annotator are provided with the uniform

evaluate criteria, and are be required to write a brief justification of their scoring. On average, it takes
around ten minutes to complete a code evaluation.

6188

C Prompt for LLLM-as-a-Judge Evaluation

Prompt for LLM-as-a-Judge Evaluation

Instruction: {instruction}

You are an expert NLP software engineer tasked with evaluating the correctness of a function
implementation by comparing two code artifacts:

- Golden Reference ({golden file}):
{golden content}

- Agent Implementation ({goal file}):
{goal content}

Instructions:

1. Examine both implementations in detail, focusing on:
- Logical correctness relative to the specification provided above
- Handling of edge cases and error conditions
- Subtle deviations such as off-by-one errors or missing checks

2. Classify your judgment into exactly one of the following categories:
1. Incorrect Logic: the core algorithm deviates from the specification and produces wrong results
2. Logic Correct but Subtle Errors: the main algorithm matches the specification, but there are other
implementation mistakes or omissions
3. Completely Correct: the implementation is fully faithful to the specification with no errors

3. For the chosen category, provide a concise rationale with two to four bullet points illustrating the
key discrepancies or confirmations

Output Format (JSON):
{
category: <1 | 2 | 3>,
rationale: [
First key point ...,
Second key point

D Prompt for Standard Prompting

Prompt for Standard Prompting

You are a code assistant.

Below is the entire Python source file.

Please implement only the function/method named <method_name>.

Return only its def line and indented body--no fences or explanations.

=== FILE BEGIN ===
<full_source_code>
=== FILE END ===

Paper (JSON):
<paper_json>

Instruction:
<instruction>

Related code for reference:
Path: <relative_path_1>
<retrieval_content_1>

Path: <relative_path_2>
<retrieval_content_2>

6189

E Example of LMR-BENCH

Example of the DPO Paper in LMR-BENCH

Structure of data folder:
- 1-DPO
- direct-preference-optimization (main code repository)
- Golden_files (reference implementation files)
- Dockerfile (defines Docker environment for unit-test evaluation)
- info.json (metadata and implementation details)
Content of info.json:
{
"instance_id": 1,
"paper_name": "Direct Preference Optimization: Your Language Model is Secretly a Reward Model”,
"folder_name”: "1-DPO",
"paper_url"”: "https://arxiv.org/pdf/2305.18290",
"year": 2023,
"repo_url”: "https://github.com/eric-mitchell/direct-preference-optimization”,
"repo_folder_name"”: "direct-preference-optimization”,
"implementations”: [
{
"instruction”: "Implement the preference_loss function in trainers.py based on the DPO loss
mentioned in the paper and the code repository. You may ignore the following parameters: ipo
, reference_free and label_smoothing.",
"index": 1,
"category”: "Training Objectives & Optimization Techniques"”,
"goal_file": "trainers.py",
"goal_function": "preference_loss”,
"class_name": ""
"golden_file": "golden_files/trainers_golden.py”,
"retrieval_context": [],
"unit_test_file”: "unit_test/unit_test_1.py"
3
]
}
\

F Actions of the OpenHands Agent

» Edit: Edits a file using various sub-commands (e.g., view, create, str_replace, insert, undo_edit).
* Finish: Signals that the agent has completed the task.

* Message: We combine “message” and “think” here, treating “think™ as an internal message step
(“getting information and reasoning” without executing code).

* Read: Reads a file from a given path into the agent’s context.
* Run: Combines all execution steps—whether via command-line or IPython—into a single “run”

category, since both execute code in the sandbox.

G Logistic Regression Analysis

Variable coef stderr z P>zl [0.025 0.975]
const -0.4313 0330 -1.306 0.192 -1.079 0.216
avg_dir_depth 0.8049 0.249 3.232 0.001 0.317 1.293
avg_branch_factor -0.6750 0.225 -2.995 0.003 -1.117 -0.233

directory_imbalance 0.2426 0.226 1.071 0.284 -0.201 0.686
goal_function_length -0.3478 0.225 -1.547 0.122 -0.788 0.093
model_name_gpt4o -0.4458 0475 -0939 0.348 -1.376 0.484
model_name_o4mini 0.2807 0476 0.590 0.555 -0.653 1.214

Table 5: Logistic regression analysis of repository structure and model type on implementation success.

6190

H Example of Incorrect Implementations by OpenHands

Unsuccessful Paper Parsing. Blow is the agent implementation of Native Sparse Attention (Yuan et al.,
2025). A comparison with the original algorithmic design reveals that the agent’s implementation fails to
capture the core algorithmic flow described in the paper, indicating a fundamental failure in parsing and
understanding the intended methodology.

OpenHands’ Implementation

def nsa(q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
g_slc: torch.Tensor,
g_swa: torch.Tensor,
block_indices: torch.LongTensor,
block_counts: Optional[Union[torch.LongTensor, int]] = None,
block_size: int = 64,
window_size: int = 0,
scale: Optional[float] = None,
cu_seqglens: Optional[torch.LongTensor] = None,
head_first: bool = False) -> torch.Tensor:
pnnn
Args:
q (torch.Tensor): Queries of shape “[B, T, HQ, K]° if “head_first=False~ else °“[B, HQ, T, KJ]-.
k (torch.Tensor): Keys of shape “[B, T, H, KI° if “head_first=False”™ else “[B, H, T, K]".
GQA is enforced here. The ratio of query heads (HQ) to key/value heads (H) must be a power
of 2 and >=16.
v (torch.Tensor): Values of shape “[B, T, H, V] if “head_first=False” else “[B, H, T, V]-.
g_slc (torch.Tensor): Gate score for selected attention of shape “[B, T, HQ] if ~head_first=
False™ else “[B, HQ, T1-.
g_swa (torch.Tensor): Gate score for sliding attentionof shape “[B, T, HQ] if “head_first=
False™ else “[B, HQ, T1-.
block_indices (torch.LongTensor): Block indices of shape “[B, T, H, S]° if “head_first=False"
else “[B, H, T, S]1°.
ST is the maximum number of selected blocks for each query token, which is set to 16 in the
paper.
block_counts (Union[torch.LongTensor, int]): Number of selected blocks for each token. If a
tensor is provided, with shape “[B, T, H]® if “head_first=True~ else “[B, T, H] , each token can
select the same number of blocks.If not provided, it will default to *S°, Default: “None’.
block_size (int): Selected block size. Default: 64.
window_size (int): Sliding window size. Default: @
scale (Optional[int]): Scale factor for attention scores.
If not provided, it will default to ~1 / sqrt(K) . Default: ~None~™.
cu_seqlens (torch.LongTensor): Cumulative sequence lengths of shape “[N+1]° used for variable-
length training,
consistent with the FlashAttention API.
head_first (Optional[bool]):
Whether the inputs are in the head-first format. Default: “False™.
Returns:
o (torch.Tensor):
Outputs of shape “[B, T, HQ, V]® if “head_first=False™ else “[B, HQ, T, V] .

nnn

Determine scale if not provided
if scale is None:
scale = 1 / math.sqrt(q.size(-1))

Compute scaled dot-product attention
g = q * scale

Hierarchical Sparse Strategy: Coarse-grained token compression

Assuming g_slc and g_swa are gate scores for selected and sliding attention
Apply gate scores to queries

g_slc = q * g_slc.unsqueeze(-1)

gq_swa = g * g_swa.unsqueeze(-1)

Fine-grained token selection

Compute attention scores for selected blocks
attn_scores_slc = torch.einsum('bthd,bshd->bths', q_slc, k)
attn_scores_swa = torch.einsum('bthd,bshd->bths', qg_swa, k)

6191

Apply softmax to get attention probabilities
attn_probs_slc = F.softmax(attn_scores_slc, dim=-1)
attn_probs_swa = F.softmax(attn_scores_swa, dim=-1)

Compute attention outputs
o_slc = torch.einsum('bths,bshd->bthd', attn_probs_slc, v)

o_swa = torch.einsum('bths,bshd->bthd', attn_probs_swa, v)

Combine outputs from selected and sliding attention
o = o_slc + o_swa

return o

\.

Incomplete Comprehension of Problem Context. OpenHands’ implementation compared with the
reference implementation, and the backbone of OpenHands is o4-mini. Parameter beta is not used
correctly in OpenHands’ implementation.

OpenHands’ Implementation

def preference_loss(policy_chosen_logps: torch.FloatTensor,
policy_rejected_logps: torch.FloatTensor,
reference_chosen_logps: torch.FloatTensor,
reference_rejected_logps: torch.FloatTensor,
beta: float,
label_smoothing: float = 0.0,
ipo: bool = False,
reference_free: bool = False) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.
FloatTensor]:

"""Compute the DPO loss for a batch of policy and reference model log probabilities.

Args:

policy_chosen_logps: Log probabilities of the policy model for the chosen responses. Shape: (

batch_size,)

policy_rejected_logps: Log probabilities of the policy model for the rejected responses. Shape:

(batch_size,)

reference_chosen_logps: Log probabilities of the reference model for the chosen responses. Shape
(batch_size,)

reference_rejected_logps: Log probabilities of the reference model for the rejected responses.

Shape: (batch_size,)

beta: Temperature parameter for the DPO loss, typically something in the range of 0.1 to 0.5. We
ignore the reference model as beta -> 0.

label_smoothing: conservativeness for DPO loss, which assumes that preferences are noisy (

flipped with probability label_smoothing)

ipo: If True, use the IPO loss instead of the DPO loss.

reference_free: If True, we ignore the _provided_ reference model and implicitly use a reference
model that assigns equal probability to all responses.

Returns:
A tuple of three tensors: (losses, chosen_rewards, rejected_rewards).
The losses tensor contains the DPO loss for each example in the batch.
The chosen_rewards and rejected_rewards tensors contain the rewards for the chosen and rejected
responses, respectively.

if reference_free:

reference_chosen_logps = torch.zeros_like(reference_chosen_logps)
reference_rejected_logps = torch.zeros_like(reference_rejected_logps)

chosen_rewards = (policy_chosen_logps - reference_chosen_logps) / beta

rejected_rewards = (policy_rejected_logps - reference_rejected_logps) / beta

differences = chosen_rewards - rejected_rewards

losses = -F.logsigmoid(differences)

return losses, chosen_rewards, rejected_rewards

6192

Reference Implementation

def preference_loss(policy_chosen_logps: torch.FloatTensor,
policy_rejected_logps: torch.FloatTensor,
reference_chosen_logps: torch.FloatTensor,
reference_rejected_logps: torch.FloatTensor,

beta: float,

label_smoothing: float = 0.0,

ipo: bool = False,

reference_free: bool = False) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.

FloatTensor]:
"""Compute the DPO loss for a batch of policy and reference model log probabilities.

Args:

policy_chosen_logps: Log probabilities of the policy model for the chosen responses. Shape: (
batch_size,)

policy_rejected_logps: Log probabilities of the policy model for the rejected responses. Shape:
(batch_size,)

reference_chosen_logps: Log probabilities of the reference model for the chosen responses. Shape

(batch_size,)

reference_rejected_logps: Log probabilities of the reference model for the rejected responses.

Shape: (batch_size,)

beta: Temperature parameter for the DPO loss, typically something in the range of 0.1 to 0.5. We
ignore the reference model as beta -> 0.

label_smoothing: conservativeness for DPO loss, which assumes that preferences are noisy (

flipped with probability label_smoothing)

ipo: If True, use the IPO loss instead of the DPO loss.

reference_free: If True, we ignore the _provided_ reference model and implicitly use a reference
model that assigns equal probability to all responses.

Returns:
A tuple of three tensors: (losses, chosen_rewards, rejected_rewards).
The losses tensor contains the DPO loss for each example in the batch.
The chosen_rewards and rejected_rewards tensors contain the rewards for the chosen and rejected
responses, respectively.
pi_logratios = policy_chosen_logps - policy_rejected_logps
ref_logratios = reference_chosen_logps - reference_rejected_logps

if reference_free:
ref_logratios = 0@

logits = pi_logratios - ref_logratios # also known as h_{\pi_\theta}*"{y_w,y_1}

if ipo:
losses = (logits - 1/(2 * beta)) *x 2 # Eq. 17 of https://arxiv.org/pdf/2310.12036v2.pdf
else:
Eq. 3 https://ericmitchell.ai/cdpo.pdf; label_smoothing=0 gives original DPO (Eq. 7 of https
://arxiv.org/pdf/2305.18290. pdf)
losses = -F.logsigmoid(beta * logits) * (1 - label_smoothing) - F.logsigmoid(-beta * logits) =
label_smoothing

chosen_rewards = beta * (policy_chosen_logps - reference_chosen_logps).detach()
rejected_rewards = beta * (policy_rejected_logps - reference_rejected_logps).detach()

return losses, chosen_rewards, rejected_rewards

6193

Lack of Robustness in Code Generation. Below is an example of OpenHands’ implementation
compared with the reference implementation, and the backbone of OpenHands is GPT-40. There is two
case in the reference implementation determined by parameter if_tdpo2 whether to use method TDPO2.
However, the implementation by OpenHands neglects to consider these cases.

OpenHands’ Implementation

def tdpo_loss(chosen_logps_margin: torch.FloatTensor,
rejected_logps_margin: torch.FloatTensor,
chosen_position_kl: torch.FloatTensor,
rejected_position_kl: torch.FloatTensor,
beta: float, alpha: float = 0.5, if_tdpo2: bool = True) -> Tuple[torch.FloatTensor, torch.
FloatTensor, torch.FloatTensor]:
"""Compute the TDPO loss for a batch of policy and reference model log probabilities.

Args:
chosen_logps_margin: The difference of log probabilities between the policy model and the
reference model for the chosen responses. Shape: (batch_size,)
rejected_logps_margin: The difference of log probabilities between the policy model and the
reference model for the rejected responses. Shape: (batch_size,)
chosen_position_kl: The difference of sequential kl divergence between the policy model and the
reference model for the chosen responses. Shape: (batch_size,)
rejected_position_kl: The difference of sequential kl divergence between the policy model and
the reference model for the rejected responses. Shape: (batch_size,)
beta: Temperature parameter for the TDPO loss, typically something in the range of 0.1 to 0.5.
We ignore the reference model as beta -> 0.
alpha: Temperature parameter for the TDPO loss, used to adjust the impact of sequential kl
divergence.
if_tdpo2: Determine whether to use method TDP02, default is True; if False, then use method
TDPO1.

Returns:
A tuple of two tensors: (losses, rewards).
The losses tensor contains the TDPO loss for each example in the batch.
The rewards tensors contain the rewards for response pair.
Calculate the rewards using the Bradley-Terry model
chosen_rewards = torch.sigmoid(chosen_logps_margin / beta - alpha * chosen_position_kl)
rejected_rewards = torch.sigmoid(rejected_logps_margin / beta - alpha * rejected_position_kl)

Calculate the losses as the negative log likelihood of the rewards
losses = -torch.log(chosen_rewards) - torch.log(l - rejected_rewards)

return losses, chosen_rewards, rejected_rewards

6194

Reference Implementation

def tdpo_loss(chosen_logps_margin: torch.FloatTensor,
rejected_logps_margin: torch.FloatTensor,
chosen_position_kl: torch.FloatTensor,
rejected_position_kl: torch.FloatTensor,
beta: float, alpha: float = 0.5, if_tdpo2: bool = True) -> Tuple[torch.FloatTensor, torch.
FloatTensor, torch.FloatTensor]:
"""Compute the TDPO loss for a batch of policy and reference model log probabilities.

Args:
chosen_logps_margin: The difference of log probabilities between the policy model and the
reference model for the chosen responses. Shape: (batch_size,)
rejected_logps_margin: The difference of log probabilities between the policy model and the
reference model for the rejected responses. Shape: (batch_size,)
chosen_position_kl: The difference of sequential kl divergence between the policy model and the
reference model for the chosen responses. Shape: (batch_size,)
rejected_position_kl: The difference of sequential kl divergence between the policy model and
the reference model for the rejected responses. Shape: (batch_size,)
beta: Temperature parameter for the TDPO loss, typically something in the range of 0.1 to 0.5.
We ignore the reference model as beta -> 0.
alpha: Temperature parameter for the TDPO loss, used to adjust the impact of sequential kl
divergence.
if_tdpo2: Determine whether to use method TDP02, default is True; if False, then use method
TDPO1.

Returns:
A tuple of two tensors: (losses, rewards).
The losses tensor contains the TDPO loss for each example in the batch.
The rewards tensors contain the rewards for response pair.

nnn

chosen_values = chosen_logps_margin + chosen_position_kl
rejected_values = rejected_logps_margin + rejected_position_kl

chosen_rejected_logps_margin = chosen_logps_margin - rejected_logps_margin

if not if_tdpo2:

logits = chosen_rejected_logps_margin - (rejected_position_kl - chosen_position_kl) # tdpol
else:
logits = chosen_rejected_logps_margin - alpha * (rejected_position_kl - chosen_position_kl.
detach()) # tdpo2
losses = -F.logsigmoid(beta * logits)
chosen_rewards = beta * chosen_values.detach()
rejected_rewards = beta * rejected_values.detach()

return losses, chosen_rewards, rejected_rewards

6195

Cross-file Retrieval Error. In the following example, simpo_loss depends on class-level attributes
(e.g., self.gamma_beta_ratio and self.beta) defined outside the function body. As a result, the agent
implementation fails to access these key parameters from self, leading to an incorrect implementation of
the simpo_loss function.

OpenHands’ Implementation

def simpo_loss(
self,
policy_chosen_logps: torch.FloatTensor,
policy_rejected_logps: torch.FloatTensor,
) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]
"""Compute the SimPO loss for a batch of policy model log probabilities.

Args:
policy_chosen_logps: Log probabilities of the policy model for the chosen responses. Shape:
(batch_size,)
policy_rejected_logps: Log probabilities of the policy model for the rejected responses.
Shape: (batch_size,)

Returns:
A tuple of three tensors: (losses, chosen_rewards, rejected_rewards).
The losses tensor contains the SimPO loss for each example in the batch.
The chosen_rewards and rejected_rewards tensors contain the rewards for the chosen and
rejected responses, respectively.

wnn

Calculate rewards using average log probabilities
chosen_rewards = policy_chosen_logps.mean(dim=-1)
rejected_rewards = policy_rejected_logps.mean(dim=-1)

Implement the Bradley-Terry objective with a target reward margin

target_margin = 1.0 # This can be a hyperparameter
margin = chosen_rewards - rejected_rewards - target_margin
losses = -F.logsigmoid(margin)

return losses, chosen_rewards, rejected_rewards

6196

Reference Implementation

def simpo_loss(
self,
policy_chosen_logps: torch.FloatTensor,
policy_rejected_logps: torch.FloatTensor,
) -> Tuplel[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]
"""Compute the SimPO loss for a batch of policy model log probabilities.

Args:
policy_chosen_logps: Log probabilities of the policy model for the chosen responses. Shape:
(batch_size,)
policy_rejected_logps: Log probabilities of the policy model for the rejected responses.
Shape: (batch_size,)

Returns:
A tuple of three tensors: (losses, chosen_rewards, rejected_rewards).
The losses tensor contains the SimPO loss for each example in the batch.
The chosen_rewards and rejected_rewards tensors contain the rewards for the chosen and
rejected responses, respectively.

nnn

pi_logratios = policy_chosen_logps - policy_rejected_logps

logits = pi_logratios - self.gamma_beta_ratio
if self.loss_type == "sigmoid":
losses = (

-F.logsigmoid(self.beta * logits) * (1 - self.label_smoothing)
- F.logsigmoid(-self.beta * logits) * self.label_smoothing
)
elif self.loss_type == "hinge":
losses = torch.relu(l - self.beta * logits)
else:
raise ValueError(
f"Unknown loss type: {self.loss_type}. Should be one of ['sigmoid', 'hinge']"

chosen_rewards = self.beta * policy_chosen_logps
rejected_rewards = self.beta * policy_rejected_logps

return losses, chosen_rewards, rejected_rewards

6197

Policy Errors. Below is an OpenHands implementation using GPT-40 as its backbone. Notably, the

target function remains unimplemented.

Agent implementation

def info_nce_loss(self, features):

wnn

Compute the InfoNCE loss for a batch of features.

Args:
features (torch.Tensor):
Shape: (batch_size * n_views, feature_dim).
It is assumed that features from different augmented views of the same image

are stacked along the batch dimension.

Normalized feature representations from the encoder.

Returns:
A tuple containing:
- logits (torch.Tensor): Similarity scores for positive and negative pairs.

Shape: (batch_size * n_views, 1 + num_negatives).
Each row corresponds to one positive pair and multiple negative pairs.

- labels (torch.Tensor): Ground truth labels where the first entry is the positive.
Shape: (batch_size * n_views,). All entries are @ since positive is first.

wnn

return logits, labels

The corresponding OpenHands logs below indicate that this run resulted in a BadRequestError, likely
because prompt revisions made by OpenHands triggered the underlying LLM’s safety mechanisms.

Log Messages
{"id": 84, "timestamp": "2025-05-16T18:44:29.250531", "source”: "environment”, "message"”: "",6 "
observation”: "agent_state_changed”, "content”: "", "extras"”: {"agent_state”: "error"”, "reason": "

litellm.BadRequestError: OpenAlException - Invalid prompt: your prompt was flagged as

BadRequestError:
Please try again with a different prompt: https://platform.

potentially violating our usage policy.
openai.com/docs/guides/reasoning#advice-on-prompting"3}}

I Evaluation with Binary Labels

We further collapse the evaluation into two categories—Completely Correct vs. Not Completely Correct.
The aggregated results are reported in Table 6. Under this binary labeling, GPT-40 and 04-mini show
minimal change, whereas GPT-4.1 shifts notably—likely reflecting bias introduced by using GPT-4.1 as

the judge LLM.

Agent Completely Correct Not Completely Correct
No Agent (GPT-40) 14.29% 85.71%
No Agent (GPT-4.1) 21.43% 78.57%
No Agent (04-mini) 25.00% 75.00%
OpenHands (GPT-40) 7.14% 92.86%
OpenHands (GPT-4.1) 28.57% 71.43%
OpenHands (04-mini) 39.29% 60.71%

Table 6: Binary-label evaluation on LMR-BENCH (Completely Correct vs. Not Completely Correct).

6198

