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Abstract

This paper investigates how LLMs encode in-
puts with typos. We hypothesize that specific
neurons and attention heads recognize typos
and fix them internally using local and global
contexts. We introduce a method to identify
typo neurons and typo heads that work ac-
tively when inputs contain typos. Our experi-
mental results suggest the following: 1) LLMs
can fix typos with local contexts when the typo
neurons in either the early or late layers are
activated, even if those in the other layers are
not. 2) Typo neurons in the middle layers are
the core of typo-fixing with global contexts. 3)
Typo heads fix typos by widely considering the
context, not focusing on specific tokens. 4)
Typo neurons and typo heads work not only for
typo-fixing but also for understanding general
contexts.1

1 Introduction

Inputs for large language models (LLMs) some-
times contain typographical errors (typos) (Zheng
and Saparov, 2023; Wang et al., 2024a; Zhu et al.,
2023). LLMs often make correct answers on inputs
with typos (Wang et al., 2024a), which implies that
LLMs can “fix” typos to recover the intended mean-
ing. However, LLMs sometimes imperfectly fix the
meaning against typos, which might “damage” the
performance of LLMs on downstream tasks (Zhuo
et al., 2023; Wang et al., 2023; Zhu et al., 2023;
Edman et al., 2024). To reduce the impact of typos
on LLMs, it is essential to understand both their
robustness against typos and the reasons for perfor-
mance degradation caused by typos more deeply.

Existing studies have primarily focused on the
surface-level exhibition of performance degra-
dation due to typos (Wang et al., 2023; Zhu
et al., 2023) and methods for improving robust-
ness against typos (Zheng and Saparov, 2023; Zhuo

1Our code is available on https://github.com/4ldk/
typo_neurons_and_heads.

et al., 2023; Almagro et al., 2023). Few studies
have investigated how typos affect LLMs’ inner
workings (Kaplan et al., 2024; García-Carrasco
et al., 2024b; Wang et al., 2025). However, pre-
vious work focused on cases where the input con-
tains only a few subwords and a typo. Therefore,
they examined typo-fixing working with only lo-
cal contexts. In contrast, the performance of typo
correction can be improved by observing longer
(global) contexts (Li et al., 2020; Ji et al., 2021).
This implies that LLMs might see global contexts
when handling typo inputs.

Based on these previous works, we hypothesize
that LLMs with the Transformer-based decoder
also fix typos along two axes: local context-based
typo-fixing mainly focusing on nearby subwords,
and global context-based typo-fixing considering
wider contextual information. To verify this hy-
pothesis, we investigated neurons (typo neurons)
and attention heads (typo heads) in LLMs. First,
we investigated their inner workings against typos
in contextualized words using a word identification
task (§3). Then, we propose a method to identify
typo neurons (§4) and typo heads (§5). Subse-
quently, we analyze the differences in their behav-
ior between cases where the model is damaged by
typos and cases where it is not.

We conducted experiments using Gemma
2 (Team et al., 2024), Qwen 2.5 (Yang et al., 2024),
and two of the Llama 3 (AI@Meta, 2024) fam-
ily to investigate their inner workings when inputs
contain typos. Our findings suggest the following:

• If there exist typo neurons in either the early or
late layers focusing on local contexts, LLMs
fix typos by activating them even if those in
the other layers are not activated.

• Typo neurons in the middle layers of any
LLMs are responsible for typo-fixing, consid-
ering global contexts, regardless of the mod-
els.
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• Typo heads fix typos using the local and global
contexts, not focusing on specific tokens.

• Typo neurons and typo heads not only fix ty-
pos but also understand general grammatical
or morphological features.

2 Related work

2.1 Analysis of LLMs against Typos

Typos are mistakes in writing or typing letters, cat-
egorized into insertion, deletion, substitution, and
reordering (Gao et al., 2018). Research on the
robustness of LLMs regards typos as a perturba-
tion (Wang et al., 2021, 2023; Zheng and Saparov,
2023). Typos change the token sequence obtained
through the tokenization process. It causes prob-
lems because a different token sequence potentially
leads to a different output, even if the sentence is
the same (Tsuji et al., 2025). Most existing LLM
studies about typos focus on measuring the robust-
ness against perturbed inputs (Wang et al., 2021,
2023; Zhu et al., 2023; Edman et al., 2024) or mod-
ifying the architecture or prompts to improve ro-
bustness (Zhuo et al., 2023; Zheng and Saparov,
2023; Almagro et al., 2023). Chai et al. (2024)
reported that the larger models are more robust to
typos. Before the LLM era, researchers corrected
typos using specific models for typo-correction (Li
et al., 2020; Ji et al., 2021).

2.2 LLM’s Interpretability

Each feed-forward network (FFN) layer in the
Transformer (Vaswani, 2017) has two linear layers
separated by an activation function. Recent stud-
ies regard the output of the activation function as
“neurons” that store knowledge (Geva et al., 2021).
It has been reported that some neurons promote
specific tasks (Wang et al., 2022, 2024c), knowl-
edge (Dai et al., 2022; Bau et al., 2019; Gurnee
et al., 2024), and behaviors (Hiraoka and Inui,
2024; Wang et al., 2024b; Chen et al., 2024).

Some attention heads also respond to specific
knowledge (Gould et al., 2024; Voita et al., 2019;
García-Carrasco et al., 2024b) or behaviors (Mc-
Dougall et al., 2024; Crosbie and Shutova, 2024).
Additionally, some heads are responsible for merg-
ing multiple subwords of a word (Correia et al.,
2019; Ferrando and Voita, 2024).

There are various methods to investigate LLMs’
interpretability. Some measure contributions to
the residual stream (García-Carrasco et al., 2024a;

Hanna et al., 2024), while others observe intermedi-
ate predictions (nostalgebraist, 2020; Kaplan et al.,
2024), graph the inference process (Ferrando and
Voita, 2024), or directly observe activations (Wang
et al., 2022; Hiraoka and Inui, 2024; Wang et al.,
2024c). We hypothesize that typo neurons are a
type of skill neurons. Therefore, we use the direct
activation observation method, following previous
studies on skill neurons (Wang et al., 2022; Hiraoka
and Inui, 2024). Mosbach et al. (2024) concludes
that understanding the inner workings is important
to improve the model performance.

Lad et al. (2024) divides LLMs into four stages.
The early layers convert token-level representations
into entity-level representations with local contexts
as Detokenization. The early middle layers build
representations with global contexts as Feature En-
gineering. The late middle layers convert current
representations into next token representations as
Prediction Ensembling. Finally, the late layers re-
move the noise and refine the distribution of the
next token as Residual Sharpening. Elhage et al.
(2022) reports that the late layers perform the op-
posite function of the early layers’ Detokenization,
converting entity-level representations into token-
level representations as Retokenization. Based on
their work, in our paper, we define local context
as the relationship between tokens split from the
same word, and consider all other relationships as
global context.

Kaplan et al. (2024) reveals which layers are
responsible for typo-fixing. However, they only
focused on isolated words as inputs by layer-level
observation. We focus on neurons and heads and
experiment with global contexts. In addition, Wang
et al. (2025) investigated the inner workings related
to typoglycemia, which is one of the reordering
typos. Although they discussed global contexts, our
work focuses on how typos affect each component
when solving tasks.

3 Preliminary

We created a dataset that LLMs can solve without
typos (§3.2). Then, we applied typos to the dataset
(§3.3) and conducted a preliminary experiment to
observe accuracy when inputs include typos (§3.4).
Next, we identify typo neurons and reveal their spe-
cific roles (§4). Similarly, we conduct analogous
experiments for attention heads (§5).
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Figure 1: The dataset overview (left), an overview of an input example to LLM (middle), and the visualization of
Mx for calculating neurons activation score sxn (right).

3.1 Models

We used Google’s Gemma 2 (Team et al., 2024)
with 2B, 9B, and 27B parameters, Meta’s Llama
3.2 (AI@Meta, 2024) with 1B and 3B parameters,
Meta’s Llama 3.1 with 8B parameters, and Qwen’s
Qwen 2.5 (Yang et al., 2024) with 3B, 7B, 14B,
32B parameters; we loaded Gemma 2 27B and
Qwen 2.5 32B in bfloat16, while we loaded the
others in float322. We conducted all experiments
using greedy generation.

3.2 Clean Datasets without Typos

We used a word identification task in which LLMs
infer a single word from a given definition. Since
typo-fixing relies on vocabulary knowledge, it is
crucial to use a task that directly reflects the LLMs’
vocabulary knowledge, such as word identification.
Moreover, we avoided tasks requiring complex rea-
soning, such as NLI, as variations in sample dif-
ficulty could hinder a clear observation of typo-
related phenomena.

For instance, we feed the definition of the word
as input, like “a young swan”, to an LLM, and then
the model is expected to output the corresponding
word “cygnet”. Following Greco et al. (2024), we
extracted 62,643 word-definition pairs from Word-
Net (Fellbaum, 2005)3. We created the dataset with
these pairs. We designed a prompt so that LLMs
can solve this task by predicting tokens following
outputs, as shown in the middle part of Figure 1.

For our analysis, we need a dataset composed

2We described our computing environment in Appendix A.
3WordNet via NLTK (Bird and Loper, 2004) ver.3.9.1.

of samples that LLMs can correctly answer when
the samples do not include typos. Therefore, we
extracted the top 5,000 or 1,000 word-definition
pairs after sorting the samples by descending order
of likelihood for the correct words4. Note that we
created a unique dataset for each model.

3.3 Generating Inputs with Typos

3.3.1 Typo Dataset
To focus on text with typos, we generated inputs
with typos from the definition part of the clean
dataset created in §3.2. We selected the top t most
important tokens depending on their importance
scores on the word identification task. Then, we
injected a random single letter or digit into each
selected token as a typo. We calculate the impor-
tance scores following Wang et al. (2023) and Li
et al. (2019), with the smallest models among those
that share the same tokenizer (e.g., Gemma 2 2B
for Gemma 2 or Llama 3.2 1B for Llama 3 family).
Specifically, we obtained the importance scores
by performing back-propagation while predicting
words from their definitions. This process assigns
higher gradients to tokens that are important to
predict the correct answer. For example, consider
the sentence “a young swan” with t = 2 and the
top two most important words are “young” and
“swan.” In this case, we inject random letters such
as “e” and “5” into random positions5 of each word,

4Due to Llama 3.2 1B’s worse performance, we could not
extract 5,000 pairs for the Llama 3 family. Therefore, we
extract 1,000 pairs for the Llama 3 family.

5We exclude the positions before the spaces to avoid the
situation where a typo would appear at the end of the previous
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Figure 2: Accuracy on the word identification task with
different numbers of typos t.

which results in “a youneg s5wan.”

3.3.2 Split Dataset
We often obtain a different number of subwords
when tokenizing typo inputs compared to clean
inputs. For instance, the tokenizer encodes the
word “young” into a single token, but it tokenizes
the typo version “youneg” into two tokens (e.g.,
“you / neg”). When comparing the inner workings
while LLMs encode the clean inputs and the typo
inputs, the difference in the token length might
prevent appropriate analysis6.

To divide typo-related inner workings into the
factor corresponding to typos and the one to tok-
enization difference, we created the “split dataset”
in addition to the “typo dataset” mentioned in
§3.3.1. The split dataset contains samples tok-
enized into the same number of tokens as the one
with typos. For example, when the typo dataset
has a sample whose tokenized sequence is “a / you
/ neg / swan”, an example of counterparts in the
split dataset is “a / y / oung / swan” whose length
is equivalent to that of the typo version. We can
obtain the various tokenization candidates using
the tokenizer, and we randomly selected one candi-
date with the same length as the typo input. This
process is shown in Figure 1 (left).

3.4 Preliminary Experiment

To examine the impact of typos on the model perfor-
mance, we applied typos to t tokens (1 ≤ t ≤ 16)
and analyzed the change in accuracy7.

Figure 2 shows the results. The accuracy of
t = 0 indicates the performance of the clean data.

token rather than within the target token.
6Kaplan et al. (2024) reported that there are inner workings

to fix the original token from differently tokenized subwords.
We need to exclude the effect of this factor to deeply focus on
the typo-related inner workings.

7We showed the examples damaged by a typo in Ap-
pendix C

Since the clean data consists of samples that each
model can answer correctly, the accuracy for all
models is 1.0. The larger models maintain higher
accuracy than the smaller ones, even with many
typos. This supports previous findings that larger
models are more robust against typos than smaller
ones (Chai et al., 2024). However, our results also
reveal that this robustness is insufficient, resulting
in a performance drop. We conclude that typos
damage performance, but larger LLMs have some
robustness against typos, which motivates us to
investigate the typo-related inner workings. Fur-
thermore, this leads us to a deep analysis of the
differences in robustness against typos among mod-
els for further improvement.

4 Typo Neurons

Some FFN layers have been found to combine mul-
tiple tokens into a single representation vector (Ka-
plan et al., 2024; Elhage et al., 2022; Lad et al.,
2024). Additionally, it has been reported that cer-
tain neurons within LLMs function as “skill neu-
rons” with specific roles (Wang et al., 2022). In
this section, we investigate the existence of typo
neurons, a particular type of skill neuron that is
responsible for recognizing and fixing typos.

4.1 Method to Identify Typo Neurons
Following the approach of Hiraoka and Inui (2024),
we compare the activation values of neurons be-
tween clean inputs and typo inputs to identify neu-
rons that specifically respond to typos. Let x ∈ X
be a sample of the dataset, where x is a sequence of
|x| tokens: x = w1, ..., wm, ..., w|x|. Each sample
comprises the prompt (e.g., “Q. What is ... A. This
is ”) and the answer (e.g., “cygnet”).

The activation value sXn of a neuron n when
feeding a dataset X is defined as the following:

sXn =
1

|X|
∑

x∈X

(
1

|Mx|
∑

m∈Mx

f(xm1 , n)

)
, (1)

where |X| is the number of samples in the dataset.
f(xm1 , n) is a function calculating the activation
value of the neuron n corresponding to wm when
the LLM reads the input xm1 = w1, ..., wm. Mx is
a set of indices that indicates the token positions,
and |Mx| is the number of indices. We define Mx

as the indices comprising the answer word tokens
and t important words.

For example, in Figure 1, Mx for the clean input
is composed of “young” and the apostrophe before
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Figure 3: Distribution of ∆n (upper) and percentage of typo neurons per layer (lower) with t = 1. The left figures
are for Gemma 2, the center figures are for Llama 3 family, and the right figures are for Qwen 2.5.

“cygnet”, while Mx for the typo input is composed
of “you”, “neg”, and the apostrophe and for the
split input is “y”, “oung”, and the apostrophe. In
the figure, we indicate tokens comprising Mx with
an orange background.

We obtain the responsibility of neurons special-
ized to the typo inputs separated from clean and
split inputs with the following score ∆n:

∆n = s
Xtypo
n −max

(
sXclean
n , s

Xsplit
n

)
, (2)

where Xtypo, Xclean, and Xsplit are the typo, clean,
and the split datasets, respectively.

A larger ∆n indicates the neuron n that responds
specifically to typos but not clean inputs or split
inputs. Among the neurons, we identify the top K
neurons based on ∆n scores as typo neurons.

4.2 Experimental Results
We investigate typo neurons with the method intro-
duced in §4.1. We used the number of typos t = 1.
Appendix D describes the results for t = 168.

Figure 3 shows the distribution of ∆n and the
distribution of the typo neurons in each layer. We
extracted the top 0.5% of neurons with the highest
∆n as the typo neurons. The average (Avg) and
standard deviation (SD) in Figure 3 indicate that a
few neurons have significantly larger scores than
others, similar to knowledge and skill neurons (Dai
et al., 2022; Wang et al., 2022).

For the distribution of neurons, Llama 3 family
and Qwen 2.5 have many typo neurons in the late
layers(i.e., from 0.8 to 1.0). In contrast, Gemma 2

8We investigated the consistency of typo neurons in the
Appendix F. We observed consistency in the result. Therefore,
we expect the same results for the intermediate number.

models have many typo neurons in the early layers
(i.e., from 0.0 to 0.2).

According to Lad et al. (2024), the late layers per-
form Residual Sharpening, which removes noise
from representations. Considering typos as noise,
it is natural that many typo neurons are in the late
layers. Besides, Elhage et al. (2022) reports that
the early layers are responsible for Detokenization
that converts token representations into coherent
entities (e.g., words), while the late layers perform
Retokenization that converts them back into token
representations. These suggest that Gemma 2 fixes
typos as Detokenization, while LLaMA 3 family
and Qwen 2.5 fix typos as Retokenization. Since
both processes use local contexts, we can see the
variety of the balance in responsibility between the
early and late layers. As shown in Appendix D,
with many typos, typo neurons in the late layers
of Gemma 2 models also increased. This indicates
that the distribution of responsibility between the
early and late layers is adaptable.

In the middle layers (i.e., 0.2-0.8), all models
have many typo neurons. This suggests that these
layers play a common role in typo-fixing across
models. Since the early middle layers create rep-
resentations depending on global contexts with at-
tention heads as Feature Engineering and the late
middle layers convert current representations to
next token representations as Prediction Ensem-
bling (Lad et al., 2024), typo-fixing in these layers
seems to focus on recognition of global contexts in
contrast to the early and late layers.
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Clean
Dataset

Typo
Dataset

Gemma 2 2B 1.00 0.86
⊖ Random Neurons 0.98 0.87
⊖ Typo Neurons 0.84 0.73

Gemma 2 9B 1.00 0.93
⊖ Random Neurons 0.99 0.96
⊖ Typo Neurons 0.93 0.90

Gemma 2 27B 1.00 0.95
⊖ Random Neurons 0.98 0.94
⊖ Typo Neurons 0.96 0.91

Table 1: Accuracy of the word identification task with
neuron ablation on clean and typo datasets. “⊖ Ran-
dom/Typo Neurons” indicates the performance by ablat-
ing random and typo neurons, respectively.

4.3 Discussion

While the experimental results in §4.2 suggest the
existence of typo neurons, their impact has not been
clarified. Then, in this section, we investigate their
specific impact, focusing primarily on Gemma 2.

4.3.1 Neuron Ablation
We expect typo neurons to work typo-fixing that
contributes to performance preservation. There-
fore, ablating them should result in a remarkable
decrease in performance for typo inputs while not
affecting the performance for clean inputs.

We test this hypothesis by conducting ablation
experiments on typo neurons and randomly se-
lected neurons of Gemma 2 models. Appendix E
discusses the results of the ablation study for other
models. From a dataset of 5,000 samples, we use
100 randomly selected samples to identify typo
neurons. Then, we evaluate the performance of the
word identification task using the remaining 4,900
samples by deactivating the identified neurons.

Following §4.2, we identified the top 0.5% of
neurons as typo neurons. We also randomly se-
lected 0.5% of neurons as a baseline. Deactivation
was performed by setting the output values of the
neurons to zero. The experiments were conducted
for the clean inputs and the typo inputs with t = 1.

Table 1 shows the experimental results. For typo
inputs, performance remained largely unchanged
when we ablated random neurons, regardless of the
model. However, performance decreased when we
ablated typo neurons. This suggests that a small
number of typo neurons play an important role in
typo-fixing for typo inputs. For clean datasets, the
ablation of typo neurons also resulted in a larger
performance decrease than the random neuron ab-
lation. This indicates that typo neurons may not ex-

Figure 4: Distribution of typo neurons per layer for
samples damaged or not. Values above the black line
indicate many typo neurons activated when the LLMs
predicted correct words.

clusively act on typos but could also play a crucial
role in processing general grammatical or morpho-
logical features. We can see similar results with the
other models (Appendix E).

4.3.2 Neurons for Typo-fixing
The experiments in §4.2 sought typo neurons by
comparing clean and typo inputs without consid-
ering whether the LLMs could correctly solve the
task with typo inputs. This section focuses on the
difference in typo neurons between cases where the
LLMs answer to inputs with typos correctly and
incorrectly.

From the dataset of 5,000 samples, we extracted
100 samples where typos did not damage the in-
ferences and the correct word was predicted. Sim-
ilarly, we extracted another 100 samples where
typos damaged the inferences and led to incorrect
word prediction. We compared differences in the
activation of typo neurons in these two groups. We
conducted this experiment with t = 1 and com-
pared the difference in the layer distribution of the
typo neurons that have the top 0.5% ∆n.

Figure 4 shows the result. In the 9B and 27B
models, the number of typo neurons in the early
layers increases when their predictions are incor-
rect. This suggests that some neurons in the early
layers might play other roles than typo-related phe-
nomena, and activation of those neurons prevents
the correct recognition of typos. In the 2B model,
when the model fails to fix typos, typo neurons in
the middle-middle layers are activated. This sug-
gests that the strong activations observed in the
middle-middle layers of Gemma 2 2B in §4.2 are
due to neurons damaged by typos rather than con-
tributing to typo-fixing. Across all models, more
typo neurons in the early middle layer (e.g., 0.2-
0.4) were activated when typos did not damage
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Figure 5: Distribution of ∆h for each model with t = 1. The heat map colors are centered around 0, and the tick
mark closest to 0 on the positive side of the heat bar represents the maximum ∆h. The left figures are for Gemma 2,
the center figures are for Llama 3 family, and the right figures are for Qwen 2.5.

Gemma 2 Llama 3.2 Llama 3.1 Qwen 2.5
2B 9B 27B 1B 3B 8B 3B 7B 14B 32B

Average -0.0045 -0.0042 -0.0032 -0.0040 -0.0039 -0.0049 -0.0043 -0.0053 -0.0047 -0.0050
SD 0.0038 0.0041 0.0049 0.0045 0.0040 0.0044 0.0046 0.0056 0.0052 0.0057

Table 2: The average and standard deviation (SD) of ∆h.

inferences. This indicates the importance of typo
neurons in the early middle layers.

5 Typo Heads

5.1 Method to Identify Typo Heads

Typo-fixing may not solely depend on neurons but
on subword merging by attention heads (Correia
et al., 2019; Ferrando and Voita, 2024) and is based
on understanding local and global contexts. We
assume two types of such heads for typo inputs: 1)
the one focusing on important tokens and 2) the
one widely attending contexts.

In this section, we investigate the attention heads
specialized to typo inputs. Herein, we calculated
the KL divergence between a uniform distribution
and the rows of attention maps by considering them
as a probability distribution. The KL divergence

increases monotonically with the number of tokens,
which can result in higher values for typo inputs
or split inputs, as they often have more tokens than
clean inputs. We alleviate this problem by normal-
izing the KL divergence with the maximum score
log2m, defined as follows:

sXh =
1

|X|
∑

x∈X

(∑

m

(
DKL(Px,m,h||Um)

log2m

))
,

(3)
where DKL(·) is the function that returns the KL
divergence, Um is a uniform distribution over m
elements. Px,m,h is the m-th row of the attention
map output by head h for the token sequence x.
In decoder models, attention scores for the m-th
token and each token from the first to the m-th
token sum to 1. Unlike neurons, for the calculation
of typo head identification, we did not narrow down
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the tokens to calculate and used all tokens in the
prompts.

Similar to Eq. (2) for typo neurons, we define
the responsibility score of the heads to the typos as
follows:

∆h = s
Xtypo

h −max
(
sXclean
h , s

Xsplit

h

)
, (4)

where Xtypo, Xclean, and Xsplit are the typo, clean,
and split datasets, respectively. A large absolute
value of ∆h indicates that the head behaves differ-
ently between typo and clean inputs. Specifically,
a large positive ∆h indicates the head that focuses
on specific tokens for typo-fixing, while a large
negative ∆h indicates the head that widely attends
contexts for it. We identify the top J heads with
the highest absolute value of ∆h as typo heads.

5.2 Experimental Results
We used the number of typos t = 1. Appendices G
and I discuss other settings9. As shown in Figure 5,
the differences between the maximum and absolute
minimum scores are approximately 10 times in
all models. The average and standard deviation
in Table 2 also indicate that a few heads near the
minimum ∆h are distinctive. These results suggest
that heads recognize and fix typos by observing the
wider context, not by focusing on specific tokens.

As the model size increases, the proportion of
heads with ∆h close to zero increases. This con-
trasts with the results in §4.2, where model dif-
ferences contributed to the difference in the distri-
bution of typo neurons. However, we can see a
similar trend between the distributions of typo neu-
rons and typo heads in very early layers (∼ 10%
layers from the first layer). For instance, Gemma
2 has some heads with large ∆h in these layers,
while the Llama3 family and Qwen 2.5 do not.
This trend among models is similar to the one in
the distribution of typo neurons (see Figure 3).

5.3 Discussion
In this section, we investigate the specific impact
and behavior of typo heads, focusing primarily on
Gemma 2, similar to §4.3.

5.3.1 Head Ablation
Following the approach in §4.3.1, we identified
typo heads in Gemma 2 using 100 randomly se-
lected samples of the dataset. Then, we ablated

9We investigated the consistency of typo heads in Ap-
pendix H. We observed consistency in the result. Therefore,
we expect the same results for the intermediate number.

Clean
Dataset

Typo
Dataset

Gemma 2 2B 1.00 0.86
⊖ Random Heads 0.87 0.80
⊖ Typo Heads 0.81 0.75

Gemma 2 9B 1.00 0.93
⊖ Random Heads 0.80 0.76
⊖ Typo Heads 0.89 0.81

Gemma 2 27B 1.00 0.95
⊖ Random Heads 0.35 0.33
⊖ Typo Heads 0.69 0.67

Table 3: Accuracy of the word identification task with
head ablation on clean and typo datasets. “⊖ Random
Heads” and “⊖ Typo Heads” indicate the performance
by ablating random and typo heads, respectively.

these identified typo heads and measured the ac-
curacy on the remaining 4,900 samples. Since the
total number of heads is smaller than neurons, we
identified the top 1.5% of heads as typo heads (e.g.,
J = 3, 10, 22 for 2B, 9B, 27B, respectively). We
also randomly selected 1.5% of heads as a base-
line. We performed ablation by setting all attention
scores of the selected heads to 0. The experiments
were conducted for the clean inputs and the typo
inputs with t = 1. We described the results of the
ablation study for other models in Appendix J.

Table 3 shows the experimental result. In the
9B and 27B models, the ablation of random heads
damages the performance in both clean and typo
datasets compared to the typo heads, while the ab-
lation of typo heads also degrades the performance
to some degree. This suggests that many heads,
including those not normally needed for solving
that task, cooperate to fix typos, and that no specific
few heads are responsible for fixing typos. This is a
different result from our hypothesis that only a few
heads are responsible for fixing typos. In contrast,
for the 2B model, which has fewer heads, the abla-
tion of typo heads resulted in a greater decrease in
accuracy than the ablation of random heads. This
suggests that when the number of heads and param-
eters is limited, a few specific heads fix typos, as
we hypothesized.

In summary, many heads fix typos in the larger
model, while a few specific heads fix the typos in
the smaller model. Additionally, since the abla-
tion of typo heads also reduces accuracy on clean
datasets, typo heads may play a role in processing
general contextual information like typo neurons.
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6 Conclusion

This paper investigated how the neurons and heads
of Transformer-based LLMs respond to typo inputs.
Experimental results show that LLMs can fix typos
with local contexts when the typo neurons in either
the early or late layers are activated, even if those
in the other layers are not. While they fix typos
by recognizing local contexts, typo neurons in the
middle layer are responsible for the core of typo-
fixing with global contexts. Typo heads fix typos
using the context widely rather than focusing on
specific tokens because many heads have negative
∆h. Additionally, many heads fix typos in the
larger model, while a few specific heads fix the
typos in the smaller model.

Our findings indicate that Transformer-based
LLMs fix typos with not only local but also global
contexts, which suggests that improving typo ro-
bustness requires approaches that emphasize recog-
nition of both local and global contexts. The results
of the ablation study show that typo-fixing is related
to general grammatical or morphological recogni-
tion, suggesting that methods for improving typo
robustness may also enhance general contextual
recognition performance. These findings also sug-
gest that aiming at improving general contextual
recognition could contribute to typo robustness.

Limitation

This work focuses on the investigation of typo-
related inner workings. We believe our findings
will help develop applications to alleviate the per-
formance decrease caused by typo inputs. However,
the discussion of a concrete method for this appli-
cation is out of the scope of this paper. Our analy-
sis was limited to Gemma 2, Llama 3 family, and
Qwen 2.5 models and examined models with sizes
up to 32B. Larger models or LLMs with different
architectures may have different properties. For
hyperparameters, we conducted our experiments
only at t ∈ {1, 16}. Furthermore, our experiments
focused on a specific task, and models may show
different properties in a wider variety of tasks. We
ran all experiments only once, although there was
randomness in applying typos and conducting some
experiments. For creating the dataset, we limited
the type of typos to insertion because we aimed to
reduce randomness and simplify the discussion, as
the impact of different types of typos is small. For
typo neurons, we observed that models have either
more typo neurons in the early layers or more in

the late layers. This may be due to differences in
training methods or datasets. However, the true
reason remains unclear. Additionally, our method
mostly detected neurons and heads that respond to
inputs with typos. However, it cannot distinguish
between those that contribute to typo-fixing and
those that are damaged by typos. Our head abla-
tion method did not always work well for models
other than Gemma 2. Therefore, it remains unclear
whether the same trends can be reliably observed in
other models. We do not use Logit Lens (nostalge-
braist, 2020), because we may overlook some types
of typo-fixing with it. Specifically, the model can
solve the task by ignoring typos. This recovers the
intended meaning without explicitly "reconstruct-
ing" the original words. While investigating the
difference between ignoring typos and restoring
original words is important, we consider it next-
stage research following the identification of typo
neurons and heads.
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A Computing Environment

We used NVIDIA A100 40GB×2 for Gemma 2
and Llama 3.1 8B, NVIDIA A100 80GB×1 for
Qwen 2.5, and NVIDIA RTX 3060×1 for Llama
3.1 1B and 3B.

B Models Using the Same Tokenizer

Since LLMs using the same tokenizer share their
vocabulary, the impact of typos could be similar.
To compare LLMs using the same tokenizer un-
der similar settings, we constructed datasets for
such models so that they contain as many identical
samples as possible.

C Example of Damaged Outputs

We reported accuracy degradation in samples with
typos. Here, we show specific examples where
a single typo damaged Gemma 2 9B, leading to
incorrect predictions.

Table 4 shows that typos can lead to various
types of errors. First, in some cases, the output
itself contains a typo, as seen in “Palaemon” be-
coming “Palaeomon.” Additionally, we observed
cases such as “gruel” becoming “porridge,” where
the model repeated a word that was originally in
the input definition. We can also observe various
other types of cases.

D Typo Neurons for Many Typos

In §4.2, we reported the results for t = 1. Here, we
describe the behavior of typo neurons with t = 16,
where many typos are introduced. Since we are
comparing t = 1, which contains a minimal num-
ber of typos, with t = 16, which has an unreal-
istically high number of typos, it is expected that
the behavior for real-world typos would fall some-
where between them.

Figure 6 (upper) shows that the maximum value
of ∆n increases across all models. This indicates
that typo neurons respond more strongly as the
number of typos increases. Since the average and
standard deviation remain close to zero, it suggests
that even in such environments, most neurons acti-
vate similarly to those with clean input.

For the Llama 3 family and Qwen 2.5, the pro-
portion of typo neurons in the late layers increases
further, while there are few typo neurons in other
layers. However, we extracted only the top 0.5%
of neurons with the highest ∆n as the typo neu-
rons. Therefore, even if neurons in other layers are
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Definition Correct Word Generated Answer
type genus of the family Palaexmonidae; widely distributed genus Palaemon Palaeomon
a thin porzridge (usually oatmeal or cornmeal) gruel porridge
a native or inhabitant of Srind Sindhi Sringi
make f0lat or flatter flatten flatter
any plant of the genus Gazanjia valued for their showy daisy flowers Gazania gaillardia
type geqnus of the Papaveraceae; Papaver poppychiefly bristly hairy herbs with usually showy flowers

Table 4: Example outputs with a typo from Gemma 2 9B. Bold italic characters mean typos.

Figure 6: Distribution of ∆n (upper) and percentage of typo neurons per layer (lower) with t = 16. The left figures
are for Gemma 2, the center figures are for Llama 3 family, and the right figures are for Qwen 2.5.

activated similarly to those in t = 1, a significant
increase in typo neuron activation in the late layers
could cause a ranking inversion of ∆n. This leads
to the possibility that some activated neurons are
not extracted as the typo neurons.

To address this, we redefine typo neurons by
extracting neurons with ∆n values greater than the
minimum ∆n of the typo neurons in t = 1 for each
model. In other words, we extracted neurons that
activate equally to or greater than the typo neurons
in t = 1 as typo neurons. Figure 7 shows the
layer-wise distribution of typo neurons under this
new criterion. This shows that while typo neurons
increase in the late layers of Llama 3 family and
Qwen 2.5, they also increase significantly in the
middle layers. For Gemma 2, the typo neurons in
the early layers decrease, while those in the late
layers increase, even in Figure 7. This suggests
that both the early and late layers are responsible
for recognizing local contexts, and the balance of
responsibility between them can shift.

The number of typo neurons in Qwen 2.5 32B
and Gemma 2 27B does not increase compared to
the case of t = 1 in §4.2, while the number of
typo neurons in most other models significantly
increases in Figure 7. This suggests that typo neu-

rons in larger models can fix typos regardless of
the number of typos.

E Neuron Ablation for Other Models

In §4.3.1, we reported the results for Gemma 2.
Here, we examined the ablation study for typo neu-
rons in the Llama 3 family and Qwen 2.5.

Table 5 shows that the results of the ablation
study are consistent, while there were differences
in typo neuron distributions across models. In all
models, ablating random neurons did not reduce
accuracy on the typo dataset. In contrast, ablating
typo neurons led to a drop in accuracy on both
the clean and typo datasets. This indicates that
typo neurons may not exclusively act on typos but
could also play a crucial role in processing general
grammatical or morphological features, regardless
of the model.

F Consistency of Typo Neurons

In Appendix D, we showed that typo neurons acti-
vate more strongly in the case of t = 16 than t = 1.
We also noted that the behavior for real-world ty-
pos would fall somewhere between the results of
Appendix D and §4.2. However, we have not yet
clarified the degree of consistency in neuron behav-
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Figure 7: Percentage of typo neurons per layer with t = 16 when we extracted neurons that activate greater than the
typo neurons at t = 1 as typo neurons. The left figures are for Gemma 2, the center figures are for Llama 3 family,
and the right figures are for Qwen 2.5.

Clean
Dataset

Typo
Dataset

Llama 3.2 1B 1.00 0.69
⊖ Random Neurons 0.91 0.61
⊖ Typo Neurons 0.73 0.46

Llama 3.2 3B 1.00 0.90
⊖ Random Neurons 0.97 0.89
⊖ Typo Neurons 0.87 0.79

Llama 3.1 8B 1.00 0.94
⊖ Random Neurons 0.99 0.93
⊖ Typo Neurons 0.83 0.80

Qwen 2.5 3B 1.00 0.92
⊖ Random Neurons 0.99 0.91
⊖ Typo Neurons 0.84 0.71

Qwen 2.5 7B 1.00 0.92
⊖ Random Neurons 0.98 0.92
⊖ Typo Neurons 0.86 0.80

Qwen 2.5 14B 1.00 0.95
⊖ Random Heads 0.99 0.94
⊖ Typo Heads 0.92 0.82

Qwen 2.5 32B 1.00 0.96
⊖ Random Neurons 0.99 0.96
⊖ Typo Neurons 0.93 0.85

Table 5: Accuracy of the word identification task with
neuron ablation on clean and typo datasets. “⊖ Random
Neurons” and “⊖ Typo Neurons” indicate the perfor-
mance by ablating random and typo neurons, respec-
tively.

ior between the t = 1 and t = 16 cases. Therefore,
we computed NDCG (Normalized Discounted Cu-
mulative Gain) by using the ranking of δn from the
t = 1 case and the δn scores from the t = 16 case
to show that consistency. NDCG is calculated as
follows:

NDCG@k =
DCG@k

maxπ(DCG@k)
, (5)

Here,

DCG@k =
∑

π(i)≤k

2li − 1

log2(π(i) + 1)
, (6)

where π(i) is the rank of i, li is the score of i, and
k is the rank cutoff used to calculate. In this experi-

ment, we set k to 5% of the neurons in each model,
consistent with Appendix D and Section 4.2.

As shown in Table 6, all models exhibit very
high NDCG scores, indicating that typo neurons
remain highly consistent even when the number
of typos changes. Therefore, it can be concluded
that model behavior for real-world typos would fall
somewhere between the results of Appendix D and
Section 4.2.

G Typo Heads for Many Typos

Similar to Appendix D, while §5.2 reported for
t = 1, here we describe the behavior of typo heads
under the t = 16 setting.

Table 7 shows that ∆h shifts significantly in the
negative direction at t = 16 compared to t = 1. the
minimum values in Figure 8 also shows this transi-
tion. Additionally, the increase in dark blue areas
in Figure 8 indicates that more heads respond rel-
atively strongly. However, the difference between
t = 1 and t = 16 for typo heads is smaller than for
typo neurons.

H Consistency of Typo Heads

Following Appendix F, we also evaluated the con-
sistency of typo heads between the t = 1 and
t = 16 cases by NDCG. Since our analysis of
typo heads focused on heads with lower negative
scores, we computed NDCG with scores multiplied
by −1 and reversed rankings. Following §5.3.1, we
set k to 1.5% of the total number of heads.

Table 8 indicates that consistent heads respond to
typos regardless of the number of typos. The num-
ber of typos affects the intensity of the response in
these heads.

I Typo Heads for Qwen 2.5 14B

Figure 9 shows the distribution of ∆h for Qwen
2.5 14B, which was not included in §5.2 and Ap-
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Gemma 2 Llama 3.2 Llama 3.1 Qwen 2.5
2B 9B 27B 1B 3B 8B 3B 7B 14B 32B

NDCG 0.9441 0.9156 0.9054 0.9477 0.9103 0.9565 0.9386 0.9374 0.9312 0.8771

Table 6: NDCG calculated between the typo neurons in the t = 1 and t = 16 cases.

Figure 8: Distribution of ∆h for each model with t = 16. The heat map colors are centered around 0, and the tick
mark closest to 0 on the positive side of the heat bar represents the maximum ∆h. The left figures are for Gemma 2,
the center figures are for Llama 3 family, and the right figures are for Qwen 2.5.

pendix G due to space constraints. The results are
consistent with those of other models and model
sizes, as the initial layers contain fewer typo heads,
and the distribution of typo heads is sparser than in
smaller models.

J Head Ablation for Other Models

Similar to Appendix E, we examined the ablation
study for typo heads in the Llama 3 family and
Qwen 2.5.

In Table 9, both ablations significantly degraded
the model’s capability in the Llama 3 family, Qwen
2.5 14B, and Qwen 2.5 32B, making it difficult to
determine the importance of typo heads. In con-
trast, in Qwen 2.5 3B and Qwen 2.5 7B, the abla-
tion of typo heads decreases accuracy more than
the ablation of random heads. Compared to §5.3.1,

where ablation of typo heads in the 9B model had
little impact on accuracy, this suggests that typo
heads remain important even in the middle model
in Qwen 2.5, which has few typo neurons and typo
heads in the early layers.

K Examples of Typo Head Ablation

When we ablated heads, we observed a significant
drop in accuracy in the LLaMA 3 family and Qwen
2.5 14B. We constructed this task using only ques-
tions that the models originally solved correctly.
Therefore, such a drop suggests that the ablation
may cause not only a reduced ability to handle
typos but also serious damage to the overall per-
formance of the models. To investigate this, we
qualitatively examined the outputs of LLaMA 3.2
3B ablating random 1.5% of its heads (10 of the
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Gemma 2 Llama 3.2 Llama 3.1 Qwen 2.5
2B 9B 27B 1B 3B 8B 3B 7B 14B 32B

Average -0.0295 -0.0276 -0.0221 -0.0330 -0.0295 -0.0368 -0.0347 -0.0401 -0.0343 -0.0369
Standard
Deviation 0.0317 0.0335 0.0394 0.0442 0.0383 0.0398 0.0557 0.0434 0.0420 0.0452

Table 7: The average and standard deviation of ∆h with t = 16.

Gemma 2 Llama 3.2 Llama 3.1 Qwen 2.5
2B 9B 27B 1B 3B 8B 3B 7B 14B 32B

NDCG 0.9975 0.9923 0.9953 0.9905 0.9849 0.9854 0.9967 0.9932 0.9966 0.9944

Table 8: NDCG calculated between the typo heads in the t = 1 and t = 16 cases.

Figure 9: Distribution of ∆h for Qwen 2.5 14B. The
heat map colors are centered around 0, and the tick mark
closest to 0 on the positive side of the heat bar represents
the maximum ∆h.

672 heads).

In Table 10, we observed several types of broken
outputs that don’t seem like a word contributing to
the performance degradation. These broken outputs
often appeared, despite the ablated 1.5% of heads
being randomly selected each time. This suggests
that the performance degradation is unlikely due
to the accidental removal of particularly important
heads.

Additionally, we report several example outputs
from Gemma 2 9B, for which ablation seems to
work correctly, in Table 11. Unlike Table 10, we
do not observe the collapsed examples. There are

Clean
Dataset

Typo
Dataset

Llama 3.2 1B 1.00 0.69
⊖ Random Heads 0.07 0.04
⊖ Typo Heads 0.00 0.00

Llama 3.2 3B 1.00 0.90
⊖ Random Heads 0.10 0.10
⊖ Typo Heads 0.18 0.17

Llama 3.1 8B 1.00 0.94
⊖ Random Heads 0.09 0.08
⊖ Typo Heads 0.10 0.09

Qwen 2.5 3B 1.00 0.92
⊖ Random Heads 0.97 0.88
⊖ Typo Heads 0.46 0.41

Qwen 2.5 7B 1.00 0.92
⊖ Random Heads 0.55 0.53
⊖ Typo Heads 0.39 0.37

Qwen 2.5 14B 1.00 0.95
⊖ Random Heads 0.09 0.09
⊖ Typo Heads 0.13 0.12

Qwen 2.5 32B 1.00 0.96
⊖ Random Heads 0.18 0.16
⊖ Typo Heads 0.15 0.15

Table 9: Accuracy of the word identification task with
head ablation on clean and typo datasets. “⊖ Random
Heads” and “⊖ Typo Heads” indicate the performance
by ablating random and typo heads, respectively.

only errors similar to Table 4.

A possible explanation for the serious dam-
age in Table 10 is that since the model was not
trained with dropout, ablating heads during infer-
ence causes unstable behavior. This suggests that
these models rely on the simultaneous operation
of most heads, rather than assigning distinct or
isolated roles to each head. However, models in
which ablation studies functioned well were also
trained without dropout. Therefore, the reason for
this difference remains unclear. While identifying
the reason is important, since it is beyond the scope
of this paper, we do not investigate it more deeply
here.
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Definition Correct Word Generated Answer Type
relating to or derived from the sun solar s characteror utilizing the energies of the sun
a specialist in virology virologist v character
a suite of rooms usually on one floor of apartment apul shortan apartment house
compete for something; engage in a contest; compete comp short
measure oneself against others
a person who operates a farm farmer far(11)2\1\ symbol
a note or passage that is played pizzuicato pizzicato ststststststststst repetition
a structure that allows people or vehicles to cross bridge bridgeandandandandandandandand repetitionan obstacle such as a river or canal or railway etc.
soft silky fibers from cotton plants in their raw state cotton chellhellhellhellhellhellhellhell toxic
people of Irelandq or of Irish extraction Irish Irhellhellhellhellhellhellhellhell toxic

Table 10: Example outputs from LLaMA 3.2 3B ablating random 1.5% of heads. Type refers to a coarse-grained
classification. Character indicates a single character, short indicates a single token, symbol indicates containing
many symbols, repetition indicates repeated words, and toxic indicates harmful outputs (e.g., “hell”). Note that
although an output classified as toxic may also exhibit repetition, we assigned each output only a single type for
simplicity.

Definition Correct Word Generated Answer
install again reinstall install
type genus of the family Plantaginaceae; Plantago Plantaginlarge cosmopolitan genus of mostly small herbs
the spreading of a disease (especially cancer) to another part of the body metastasis metastasisis
type genus of the family Laminariaceae: perennial brown kelps Laminaria kelp
someone belonging to (or as if belonging to) the era of Edward VII Edwardian Tudor
type genus of the Solanaceae: nightshade; potato; eggplant; bittersweet Solanum Solanaceae

Table 11: Example outputs from Gemma 2 9B ablating random 1.5% of heads.

L Visualization of Typo Heads.

Figure 10. Figure 10 shows the attention maps for
each input, using the top 1.5% of heads with the
highest absolute value of ∆h scores in Gemma 2
9B as typo heads.

The typo head in Layer 2 Head 11 recognizes
sentence boundaries. There are two possible inter-
pretations of this head. First, it normally detects
sentence boundaries, but if there are typos, it simul-
taneously has the role of detecting typos. Second, it
is damaged by typos. Our method has a limitation
in that it cannot distinguish between heads that con-
tribute to typo-fixing and those that are damaged by
typos. The typo head in Layer 5 Head 7 responds to
semantic connections and fixes typos by leveraging
synonyms. This is a typical typo-fixing mechanism
of early middle layers described above, which is a
recognition of global contexts. The typo head in
Layer 30 Head 3 fixes typos by recognizing local
contexts. Additionally, most typo heads strongly
attend to ’<bos>’.

When attention norms are considered, such
heads may assign little or no weight to the
’<bos>’ (Kobayashi et al., 2020). We did not in-

corporate it into the quantitative scoring because
this method does not rescale values to the [0, 1]
interval. However, it can provide an instructive
viewpoint for visualization. Therefore, we display
the norm-corrected attention maps in Figure 11.

For Layer 2 Head 11, it becomes clearer that the
head is looking at the sentence boundaries, though
attention to ’<bos>’ remains. For Layer 5 Head 7,
the focus on ’<bos>’ disappears, and the responses
to semantic connections become clearer. For Layer
30 Head 3, this head recognizes sentence-level rela-
tionships such as attention from A to Q and strongly
focuses on ’<bos>’, even when corrected with the
norm. Additionally, the head pays attention to un-
usual splits in the typo and split inputs.

M Future Work

This paper focuses on the investigation of typo-
related inner workings. Therefore, we do not pro-
vide any methods to improve LLM’s robustness
against typos. However, our findings imply how to
create more robust LLMs against typos.

Our findings indicate that typo neurons in the
early or late layers of Transformer-based LLMs fix
typos with local contexts, while typo neurons in the

6173



Figure 10: Visualization of typo heads in the 9B model. The word definition in the clean input is “not refined or
processed,” and the correct answer is “unrefined”. The word “processed” was changed with a typo to “pbrocessed.”

middle layers fix typos with global contexts. The
model’s robustness against typos may be enhanced
by a mechanism that gives more importance to
nearby tokens in the early and late layers and to
distant tokens in the middle layers.

Furthermore, the results of the ablation study
show that typo-fixing is related to general gram-
matical or morphological recognition, which sug-
gests that methods for improving general contex-
tual recognition could contribute to typo robustness.
For example, a potential research direction could
be investigating how additional training on tasks
such as grammatical error correction or determin-
ing whether a given subword is part of a specific
word affects robustness against typos.

Additionally, our study is an important founda-
tion for future research on the internal mechanisms
of LLMs. With sufficient computational resources
and time, it would be possible to investigate when
local or global typo recognition is learned, as well
as how differences in training methods affect which
layers are responsible for local typo recognition.
Although we isolated the effects of typo-fixing by
excluding subword merging, we still found that
typo neurons and heads have roles in general gram-
matical or morphological understanding. By using
other types of perturbations, such as token replace-
ment, it may be possible to investigate a deeper un-
derstanding of these linguistic capabilities. Further-
more, applying our method to multiple checkpoints
of the same model may provide fruitful insights. In

particular, we can investigate the relation between
typos in the training data and robustness against
typos at the neuron and head level.
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Figure 11: Visualization of typo heads in the 9B model with norm adjustment.
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