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Abstract

We present SciRIFF (Scientific Resource
for Instruction-Following and Finetuning), a
dataset of 137K instruction-following instances
for training and evaluation, covering 54 tasks.
These tasks span five core scientific literature
understanding capabilities: information extrac-
tion, summarization, question answering, claim
verification, and classification. SciRIFF is
unique in being entirely expert-written, high-
quality instruction-following dataset for extract-
ing and synthesizing information from research
literature across diverse scientific fields. It fea-
tures complex instructions with long input con-
texts, detailed task descriptions, and structured
outputs. To demonstrate its utility, we fine-
tune a series of large language models (LLMs)
using a mix of general-domain and SciRIFF
instructions. On nine out-of-distribution held-
out tasks (referred to as SciRIFF-Eval), LLMs
finetuned on SciRIFF achieve 70.6% average
improvement over baselines trained only on
general-domain instructions. SciRIFF facili-
tates the development and evaluation of LLMs
to help researchers navigate the rapidly grow-
ing body of scientific literature.

1 Introduction

LLMs have the potential to advance scientific
progress by helping researchers navigate and
draw insights from the scientific literature. To
accomplish these tasks, LLMs must be able to
reliably follow a range of instructions—e.g. to
extract information, summarize content, or answer
questions—when given research articles as input.
These instructions are often grounded in entire
scientific articles, featuring longer inputs than
other typical instruction-following resources in the

*Equal contribution. Full author contributions here.
Correspondence to: {kejian.shi,arman.cohan}@yale.edu

†Denotes core contributors.

science domain. In addition, the model’s responses
may need to be structured according to a specific
format or schema that supports aggregation for
literature review (Marshall and Wallace, 2019), or
is consumable by software components like aug-
mented reading interfaces (Lo et al., 2023; Palani
et al., 2023). For example, when analyzing clinical
trials, responses should follow a PICO framework
(Population, Intervention, Comparison, Outcome),
or when examining methodology papers, follow a
standardized format capturing study design, sample
size, statistical methods, and key findings, or when
performing question answering or fact checking,
accompany appropriate evidence for attribution
and verification. Such outputs can be represented
as json to ensure structured, consistent formatting
that enhance both human readability and seamless
machine processing (e.g., for claim verification
and the input claim “Coffee consumption
reduces diabetes risk”, the response could
be { “verdict”: “support”, “evidence”:
[“Study A shows 23% risk reduction”,
“Meta-analysis B confirms protective
effect”], “confidence”: “moderate”}).

While bespoke models are available for specific
scientific literature understanding tasks, models
that can flexibly follow instructions in domain-
specific settings of science are preferable both for
their ease of use (offering a unified input / output
interface) and for their ability to generalize to novel
applications and settings within that domain.

The general instruction-following capabilities
of LLMs have advanced rapidly in recent years,
largely due to the availability of general-purpose in-
struction datasets (Zhang et al., 2023a). In addition,
some instruction-following resources are available
for specific scientific and medical tasks, such as
describing the properties of a molecule (Fang et al.,
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2024; Yu et al., 2024) or answering medical exam
questions (Toma et al., 2023; Han et al., 2023) (see
§5 for a review). However, few resources are avail-
able for supporting instruction-following for flexi-
ble scientific literature understanding capabilities
across a range of domains.

In this work, we present SciRIFF (Scientific
Resource for Instruction-Following and
Finetuning), a comprehensive dataset to en-
able progress on instruction-following over
scientific literature. SciRIFF includes 137K
demonstrations for 54 tasks A.1 spanning five
broad scientific literature understanding task
categories: information extraction, summarization,
question answering, claim verification, and
classification.

SciRIFF covers five scientific domains, ranging
from AI to clinical medicine (Figure 2).

Unlike synthetic or LLM-distilled instruction-
following data (e.g., Lambert et al., 2024a), we
prioritize human-annotated data to better capture
nuanced domain expertise, complex structures, and
reasoning required for scientific tasks. Addition-
ally, existing datasets undergo individualized, man-
ually written processes for data conversion to di-
verse instructions and undergo expert verification,
ensuring accuracy and reliability (§2.1).

Our resource is a unique and specialized
instruction-following meta-dataset. As illustrated
in Figure 1 and with sample prompt templates
provided in Appendix F, it is characterized by:
(1) grounding every instance in scientific articles
or texts, (2) requiring structured and complex re-
sponses, such as answers paired with attributions
(i.e., tracing the source of the answer), and (3) fea-
turing longer input contexts compared to most ex-
isting resources in the science domain (see Figure 5
and Table 7 in Appendix A).

All instruction templates are created by experts
(authors of the paper) to ensure quality. Our experi-
ments (§4) show that simple templates—similar to
those used in prior work such as FlanV2 (Chung
et al., 2024) or generated by an LLM (GPT-4o)—do
not capture the complexity of our tasks. As a result,
models finetuned on these instructions perform sub-
stantially worse than those using our expert-crafted
instructions.

We also present a new benchmark dataset
SciRIFF-Eval (§3.1) for evaluating instruction-
following capabilities of LLMs in the science do-
main. Specifically, we hold out nine datasets from
SciRIFF as an unseen evaluation benchmark which

covers a representative range of skills and tasks.
To demonstrate the utility of SciRIFF in improv-
ing scientific literature instruction following, we
perform supervised finetuning experiments on sev-
eral LLMs ranging different sizes.1 When fine-
tuned on a mix of SciRIFF and general open-source
instruction-following data (i.e., Tülu v2 (Ivison
et al., 2023a)), our models show consistent im-
provements on SciRIFF-Eval compared to training
on general-domain instructions alone. Our evalu-
ation tasks test true out-of-distribution generaliza-
tion with formats and templates entirely excluded
from training.

In summary, our contributions are as follows:
• We introduce SciRIFF, a high-quality and com-

prehensive resource for instruction-following in the
science domain, containing 137K instances cover-
ing a wide range of tasks.
• We present SciRIFF-Eval, a diverse evaluation

suite in scientific literature understanding (4.1K
selected instances from unseen tasks).
• We release a range of LLMs finetuned on SciR-

IFF, achieving substantial improvements in scien-
tific literature instruction-following, and conduct
experiments showing insights on training strategy
and instruction data scaling.
• We release SciRIFF dataset, evaluation suite

SciRIFF-Eval, model checkpoints, and code to en-
able the community to reproduce our results and
contribute to task sourcing for broader coverage.

2 SciRIFF

SciRIFF is a comprehensive instruction-following
resource for real-world scientific literature under-
standing, with 137K instructions for training and in-
domain validation. In addition, the test set SciRIFF-
Eval includes 4.1K instances from held-out tasks.
Our resource spans five task categories and sub-
jects, (Figure 1), with particular emphasis on at-
tribution and evidence in scientific tasks. Many
tasks require models not only to provide answers
but also to support them with evidence from the
source paper to ensure verifiable outputs.

Our focus is on document-grounded scientific
literature understanding tasks, rather than tasks
that evaluate scientific knowledge recall (Feng
et al., 2024), or general mathematical, problem-
solving abilities without reference to scientific lit-
erature (e.g., SciInstruct (Zhang et al., 2024a),
MMLU (Hendrycks et al., 2021a)). In addition

1Other types of post-training such as preference optimiza-
tion are outside our scope.
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Figure 1: Example SciRIFF tasks. Given an input context from a research paper, the text prompt instructs an
LLM to perform an operation on the input—e.g. determine whether the abstract entails a scientific claim, extract
information over the full_text, answer a question, etc. The model’s output must conform to a task-specific,
user-specified structure. SciRIFF unifies 54 scientific literature understanding tasks under a common input /
output format, enabling the development of LLMs that can flexibly generalize to novel scientific use cases.
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Figure 2: SciRIFF: pie charts show dataset counts and brackets indicate instance totals for task categories/domains.

to a wide coverage, the instructions in SciRIFF
are grounded in long inputs (i.e., paper sections)
and support structured outputs useful for tasks in
literature understanding (such as relation extrac-
tion, fact checking with rationale selection, and
QA with attribution). SciRIFF is sourced from
existing high-quality scientific datasets and con-
verted into instructions using expert-written and
verified instruction templates. Out of 54 tasks,
50 involve templates paired with manually crafted
Python scripts that serve to extract ground-truth an-
swers, postprocess (e.g., removing duplicate entity
mentions; converting span-level representations to
instruction-following formats), or normalize the
source datasets.2

2The remaining four tasks are naturally formatted for
instruction-following and ready for Jinja templating which
don’t require any special treatment.

2.1 Dataset construction

We construct SciRIFF through a rigorous pipeline
that transforms existing scientific literature datasets
into high-quality instruction-following instances,
which involves template engineering, output
schema design, and quality control steps that go
well beyond simple dataset reformatting. See § A.1
for full task list.

We perform all template writing and annotation
with domain experts. Domain experts are the pa-
per authors with extensive experience in NLP. We
chose this approach rather than using synthetic data
(e.g., (Köksal et al., 2023; Li et al., 2023)). We
believe it is sensible to exhaust available human-
annotated resources for this emerging area before
turning to potentially noisy synthetic data genera-
tion (see Appendix F for sample templates, which
show the complexity of the tasks.) Further, in §4
we show that using templates from prior work, or
using LLMs to generate templates results in signif-
icant decline in performance. In addition, we need
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high-quality evaluation data, which we construct
by holding out nine SciRIFF tasks as an evaluation
benchmark (§3.1).

We adopt json as the output format for struc-
tured tasks (34 of 54 tasks).3 json is a convenient
format for tasks requiring attribution, such as infor-
mation extraction and question answering, where
outputs must explicitly pair answers with support-
ing evidence in a human-and-machine-readable for-
mat. Our training set spans multiple scientific do-
mains (Figure 2). We create instruction mixes of
varying context lengths.4 We refer readers to Ap-
pendix A.3 for details and statistics.

Dataset selection criteria We focus on scientific
literature understanding tasks in which the model
is given a portion of scientific text as input, and is
instructed to produce a response derived directly
from the text. The task families include summariza-
tion, reading comprehension, entailment, classifica-
tion, and information extraction, which are relevant
for real-world use cases (e.g., meta-analysis of lit-
erature, clinical decision-making, augmented read-
ing). We provide detailed information and citations
of all source datasets in Appendix A. We exclude
datasets that require retrieval from document col-
lections (e.g., open-domain QA), since it is unclear
how to build instruction-response pairs from them.
We also exclude datasets that assess general rea-
soning and mathematical problem-solving skills
without grounding on scientific literature, such as
ScienceQA (Lu et al., 2022), SciBench (Wang et al.,
2023b), and MATH (Hendrycks et al., 2021b) since
such resources already exist. Additionally, we only
keep datasets that are publicly available, have a
permissive license, and are well-documented and
actively maintained. See Appendix A.1 for the
complete task list.

Quality Verification. Each template was veri-
fied by an additional author for clarity and correct-
ness. We will include guidelines and best practices
for prompt-writing in the release and aim to pro-
mote community contributions to expand SciRIFF
through our open-sourced data collection process.

3 Experiment setup

We conduct supervised finetuning experiments to
evaluate the effectiveness of SciRIFF in improv-

3Paper authors transform raw dataset annotations into stan-
dardized json schemas before templating.

4We conduct our experiments using SciRIFF-4096 (here-
after SciRIFF) due to computational constraints.

ing LLM performance on scientific instruction-
following tasks across various model families
and sizes. Our experiments explore different
data configurations and their impact on scien-
tific instruction-following as measured through
SciRIFF-Eval described in §3.1.

3.1 Evaluation

We selected a set of nine tasks from SciRIFF for
evaluation, designed to cover a diverse range of
task categories and scientific domains. SciRIFF
tests true out-of-distribution generalization with
instructions entirely excluded from training. The
inputs, outputs, and evaluation metrics for each
task are summarized in Table 1. Additional details
of evaluation tasks are included in Appendix D.

3.2 Scientific Instruction Finetuning

Our goal is to adapt pretrained LLMs to the scien-
tific literature domain. We conduct full finetuning
experiments using a range of models and data con-
figurations to assess the effectiveness of SciRIFF.
In §4.3, we present an additional analysis exam-
ining the potential of using SciRIFF for continual
finetuning of instruction-tuned models, exploring a
compute-efficient strategy for adaptation.

Data sources We finetune using two primary
datasets: (1) SciRIFF, 5 and (2) Tülu V2 Mix
(Ivison et al., 2023b), an open-source high-quality
general-domain instruction-following dataset that
includes demonstrations from various sources, both
human-written (e.g., Flan (Wei et al., 2022)) and
distilled from proprietary LLMs (e.g., ShareGPT6,
Open Assistant7). The original Tülu V2 Mix
contains 326,154 examples, including 7.5K scien-
tific literature understanding demonstrations which
overlap (i.e. contaminated) with our evaluation set
SciRIFF-Eval. We remove those 7.5K examples
for clean experiments and to avoid contamination
with SciRIFF-Eval. For all experiments, we consis-
tently use this filtered version and refer to this as
Tülu V2 Mix to maintain controlled finetuning and
unbiased evaluations.

Base models We use following base LLMs as
starting points: Llama 3.1-8B (Touvron et al.,
2023b), Llama 3.2-3B (Dubey et al., 2024), and

5In our study, we use 70.5K instances for training.
6https://sharegpt.com/
7https://github.com/LAION-AI/Open-Assistant
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Name Type Input Output Metrics

BioASQ List QA QA Question, paper excerpts Answer entities Exact match F1
BioRED IE(NER) Biomedical abstract 6 entity types Exact match F1
DiSCoMaT IE(Table) LaTex table excerpt Table entries BLEU score
Evidence Inference (EI) IE(Rel) Clinical trial abstract PICO String overlap F1
MultiCite (MC) Classification Citation context Citation intents Exact match F1
MuP Summarization ML paper full text Peer review summary LLM judge similarity
Qasper QA NLP paper question Answer / Attribution LLM judge similarity / Token F1
SciERC IE(Rel) CS abstract 6 entity types Exact match F1
SciFact Entailment Claim, abstract Verdict / Evidence Label F1 / Token F1

Table 1: Evaluation tasks included in SciRIFF-Eval. “/” separators indicate two separate subtasks. We use GPT-4o
as our LLM judge and evaluate similarity on a 1-5 scale; see Appendix D for details.

Qwen 2.5-1.5B (Yang et al., 2024).8 While our pri-
mary focus is on improving base models, we also
experiment with models that have undergone pro-
prietary instruction tuning and preference optimiza-
tion (“–instruct” versions) (Ouyang et al., 2022).
Although direct comparisons with “–instruct” mod-
els are complicated by unknown training details,
we show that SciRIFF can provide additional value
even in these cases. We note, however, that our
main results and analyses focus on the controlled
experiments with base models where we can fully
account for all training conditions.

Finetuning data configurations For each model,
we explore three data configurations: (1) Tülu
V2 Mix only, to establish a baseline for general
instruction-following; (2) SciRIFF only, to assess
the impact of scientific instruction data in isolation;
and (3) SciRIFF+Tülu, combining the general and
scientific instruction data.

4 Results

This section discusses our key results and findings.

4.1 Main Results
We report our main experimental results in Table 2.
For fair comparison, all models are finetuned on the
same data mixes. We show that training on SciRIFF
instances results in the best average performance
in each model family. Six frontier models, such
as GPT-5, Gemini-2.5-Pro (Gemini-2.5, 2025) and
Kimi-K2 (Kimi, 2025), serve as strong baselines.
Additionally, we evaluate selected domain-expert
models for comprehensiveness, including SciL-
itLLM 7B (Li et al., 2024), BioMedical-Llama3
8B (Bolton et al., 2024), BioMistral 7B (Labrak
et al., 2024), CodeLlama 7B (Rozière et al., 2023),

8We do not train larger models due to compute constraint.
However, as shown in §4.1 improvements are consistent across
sizes/families.

and a weak baseline Llama 2 7B (Touvron et al.,
2023a).

Furthermore, to demonstrate the necessity of
expert-written templates for our tasks, we conduct
an ablation study comparing our templates against
alternatives in §4.2, with details in Appendix B.

Our key findings are below:

SciRIFF enhances scientific literature under-
standing Table 2 shows that finetuning on SciR-
IFF consistently enhances the overall performance
on SciRIFF-Eval. Compared to the corresponding
base models finetuned on Tülu, SciRIFF-trained
models achieve, on average, 70.6% performance
gain. Furthermore, without exception, SciRIFF
also adds values when finetuning on “–instruct”
models (44.6% on average). Across all model
groups, the “–instruct” variants trained exclusively
on SciRIFF achieve the highest average scores
within their respective groups. Finally, while the
new frontier models are very strong, with GPT-5
achieving the top baseline score of 61.1, out of the
twelve models trained with the inclusion of SciR-
IFF instances, eight outperform GPT-5 on SciRIFF-
Eval, with Qwen 2.5 1.5B showing the most signif-
icant improvement (from 29.1 to 57.2 in average
score with SciRIFF alone). Results indicate that
our specialized SciRIFF can substantially enhance
scientific literature understanding and extraction
capabilities beyond what general or proprietary in-
struction data can provide.

Task-specific impacts and room for improve-
ment SciRIFF training achieves large gains on
the three IE tasks (BioRED, DiSCoMaT, and Sci-
ERC). Relative to their Tülu-only counterparts,
SciRIFF-finetuned base models improve IE task
performance by, on average, 200.4%. And SciR-
IFF training improves performance on QA and En-
tailment as well. In contrast, performance on the
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Model Data BioASQ BioR DiscMT EI MC MuP Qasper SciERC SciFact Avg.

GPT-5 - 47.3 66.6 72.0 25.7 67.9 94.2 62.1 / 55.9 44.0 73.1 / 74.0 61.1
Gemini-2.5-Pro - 45.1 65.1 71.2 23.7 63.9 92.8 66.6 / 52.0 42.3 77.1 / 72.5 59.8
DeepSeek-V3.1 - 48.3 68.0 75.5 25.1 51.2 90.5 66.1 / 49.7 44.1 82.4 / 61.8 59.2
Kimi-K2 - 49.3 66.9 75.0 5.9 58.8 92.5 61.0 / 47.9 42.7 87.6 / 62.0 60.0
GPT-4o - 48.3 63.6 71.3 25.9 62.0 88.3 54.0 / 55.0 40.3 85.5 / 70.4 60.4
GPT-4o-mini - 49.6 53.7 75.6 27.7 54.8 88.8 61.7 / 46.7 33.1 82.7 / 63.6 58.0

SciLitLLM 7B - 51.2 76.6 71.0 23.5 70.7 67.5 50.7 / 53.9 49.8 83.4 / 67.2 60.3
BioMedical-Llama3 8B - 41.1 45.7 62.9 8.4 28.6 79.8 19.0 / 11.1 58.0 43.1 / 38.7 41.1
BioMistral 7B - 38.3 0.7 4.7 7.7 23.7 70.3 14.1 / 12.5 0.0 7.1 / 18.6 19.1
CodeLlama 7B - 38.6 22.7 45.0 11.0 38.9 80.3 46.3 / 31.4 14.8 55.8 / 35.1 38.1
Llama 2 7B - 34.2 0.0 4.8 7.4 37.8 72 15.7 / 8.5 0.3 27.7 / 6.2 19.5

Qwen 2.5 1.5B-Instruct - 38.9 19.7 35.5 10.5 36.9 80.8 38.8 / 39.4 20.8 55.0 / 31.5 37.1
SciRIFF 48.1 79.7 80.6 20.9 70.9 67.3 42.8 / 54.3 52.0 80.9 / 68.9 60.6
SciRIFF +Tülu 49.3 80.1 79.5 21.3 70.8 61.3 45.8 / 48.6 51.0 78.5 / 70.1 59.7

Qwen 2.5 1.5B Tülu 35.7 23.4 31.8 7.6 6.6 73.0 25.0 / 23.2 12.0 52.4 / 29.5 29.1
SciRIFF 43.6 81.8 45.6 18.9 71.2 67.8 47.0 / 51.4 52.7 78.8 / 70.5 57.2
SciRIFF +Tülu 46.5 79.0 78.3 19.4 70.2 63.8 40.4 / 49.7 51.7 80.9 / 70.6 59.1

Llama 3.2 3B-Instruct - 42.9 35.9 61.0 11.2 47.3 86.0 43.9 / 35.8 20.8 59.5 / 40.0 44.0
SciRIFF 42.7 84.0 83.4 25.5 71.4 64.8 50.0 / 57.1 58.2 86.8 / 70.5 63.1
SciRIFF +Tülu 43.0 83.3 82.9 21.7 72.2 69.0 51.9 / 58.2 53.3 85.6 / 70.3 62.8

Llama 3.2 3B Tülu 35.5 30.1 46.7 3.1 44.0 75.6 47.4 / 34.4 20.3 55.4 / 36.6 39.0
SciRIFF 43.6 84.2 83.2 25.2 71.7 64.3 46.0 / 57.2 57.2 81.6 / 65.8 61.8
SciRIFF+Tülu 46.0 84.3 83.3 24.6 72.7 65.5 47.7 / 56.3 57.0 82.7 / 71.2 62.8

Llama 3.1 8B-Instruct - 43.7 48.8 62.2 17.8 48.8 88.3 54.0 / 43.0 30.6 66.7 / 51.7 50.5
SciRIFF 45.9 86.0 83.7 25.0 71.4 70.5 53.3 / 54.1 56.8 85.8 / 72.5 64.1
SciRIFF+Tülu 48.8 84.7 83.6 26.6 71.3 66.0 50.9 / 55.2 54.4 85.5 / 70.2 63.4

Llama 3.1 8B Tülu 44.4 42.8 51.8 1.1 39.4 80.8 42.8 / 28.6 24.3 50.0 / 33.6 40.0
SciRIFF 46.2 84.2 83.9 23.5 71.0 68.5 49.8 / 52.2 56.2 83.3 / 71.9 62.8
SciRIFF+Tülu 41.6 85.2 78.7 28.2 71.6 70.5 47.9 / 61.0 58.1 87.4 / 71.2 63.8

Table 2: Performance on SciRIFF-Eval tasks across model families and training configurations (§3.2). Best
performance per model group is bolded. Columns with a “/” indicate two evaluation metrics as described in §3.1.

Config Ours Simple Synthetic

Llama-3.1-8B 62.8 42.2 28.0
Qwen-2.5-1.5B 57.2 33.1 19.1

Table 3: Average SciRIFF-Eval scores across selected
configurations. Columns use their matching evaluations,
SciRIFF-Eval, SciRIFF-Eval-Simple, and SciRIFF-
Eval-Synthetic for fair comparisons. See Appendix B
and Table 8 for details.

summarization task (MuP) generally decreases af-
ter SciRIFF finetuning. This suggests that while
SciRIFF is particularly effective for enhancing IE
capabilities, it may not provide additional bene-
fits for summarization tasks that are likely well-
covered in general instruction-following training.
The fact that frontier models our strong finetuned
models achieve only an average score of around 60

highlights the difficulty of SciRIFF-Eval. Model
performance remains relatively low on tasks like
EI; This is due to a combination of task difficulty
and evaluation challenges, which we discuss in §6.

Balancing scientific and general data As shown
in Table 2, combining SciRIFF and Tülu V2 Mix
training data (SciRIFF+Tülu) yields the best per-
formance on SciRIFF-Eval for base models. This
suggests that incorporating general instruction-
following data may provide some broader capabil-
ity transfer, which base models particularly benefit
from, though the impact remains limited (within
2.2%). On the other hand, training “–instruct”
models exclusively on SciRIFF data proves to be
slightly more effective (within 1% on average).

Comparing with domain-specialized baselines
Models trained on in-domain scientific corpora
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in continual pretraining, followed by instruction-
tuning for science literature tasks, can be very com-
petitive (e.g., SciLitLLM at 60.3 on SciRIFF-Eval).
In contrast, models specialized for biomedical and
general science tasks (e.g., BioMedical, BioMis-
tral) consistently underperform in literature under-
standing. Llama 2 7B achieves an average score of
only 19.5, with near-zero performance on IE tasks
(BioRED and SciERC) partly due to its inability to
follow JSON output requirements. We also observe
that CodeLlama, likely benefiting from exposure
to JSON and code-based reasoning improvements,
outperforms Llama 2 and BioMistral. None of the
specialized models match the performance of our
approach, which uniquely leverages SciRIFF train-
ing to enhance scientific literature understanding.

Grounded Attribution vs. General Reasoning
While highly capable at strong general reason-
ing, DeepSeek-V3.1 and Kimi-K2 show lower per-
formance on tasks requiring grounded attribution.
Specifically, Table 2 shows their evidence-finding
scores on Qasper and SciFact are lower than other
frontier models, as is their performance on Multi-
Cite. This suggests a distinction between general
problem-solving and the specific skill of finding
and attributing evidence from a given text. This
finding, also discussed in concurrent work (Li et al.,
2025), indicates that strong abstract reasoning does
not guarantee proficiency in document-grounded
tasks. This reinforces the value of SciRIFF-Eval as
a specialized benchmark for measuring this crucial,
evidence-based capability in scientific literature un-
derstanding.

4.2 Template Ablation

We compare our standard expert-written tem-
plates with (1) simple templates that mirror
FlanV2 (Chung et al., 2024) and (2) templates gen-
erated by GPT-4o. We conduct the analysis on
selected (due to compute constraints) Base mod-
els with SciRIFF only training data, to exclude
confounding factors (see templating details in Ap-
pendix B.) While prompt ablations are more mean-
ingful for general-purpose language models rather
than supervised-finetuned models (Voronov et al.,
2024; Kung and Peng, 2023), we present the experi-
ments to validate our design decisions to rely on ex-
pert human-written templates for the emerging and
complex domain of instruction-following for scien-
tific literature understanding and synthesis. Table 3
shows that expert-written templates, which care-

Model Data 7B 70B

Llama 2 Tülu 36.7 47.5
SciRIFF 48.0 51.1
SciRIFF+Tülu 46.0 50.8

Tülu V2 SciRIFF 47.0 48.8
SciRIFF+Tülu 47.0 50.7

Table 4: Comparison of SciRIFF-Eval (Sci.) perfor-
mance for models finetuned from Llama 2 base and
Tülu V2 (science-decontaminated).

fully specify task requirements and output struc-
tures, outperform the alternatives. We argue, along
with detailed descriptions in §2 and prompt exam-
ples at Appendix §F, that expert-written template is
preferred. These ablations, while not central to our
main contributions and objectives, provide signals
on the importance of careful template design for
scientific literature understanding tasks.

4.3 Continual Finetuning Analysis

In early phase of our study, we explore strategies
for efficient adaptation. Specifically, we exam-
ined whether starting from an existing instruction-
tuned checkpoint (on general domain instructions)
could provide compute advantages over training
from scratch, without hurting SciRIFF-Eval per-
formance. For this controlled experiment, we se-
lected two starting points: (1) Llama 2 base and
(2) the same model already finetuned on science-
decontaminated Tülu V2 Mix (referred as Tülu
V2). We explored different training approaches:For
Llama 2 base, we train on all available Tülu V2
Mix demonstrations, combined with 1000 instances
per SciRIFF task, given the empirical findings in
§ 4.4. For the Tülu V2 starting point, we perform
continual finetuning using 1000 instances per SciR-
IFF task, together with a matching number (1000)
of instances sampled from Tülu V2 Mix.

Table 4 reports average SciRIFF-Eval perfor-
mance for our two starting checkpoints using three
data configurations. Starting from Tülu V2 per-
forms comparably to Llama 2 base while requiring
only 20% of the compute (Table 5). When trained
on SciRIFF+Tülu data, models from both starting
points achieve similar performance: Tülu V2 is
slightly better on science at 7B and nearly identi-
cal at 70B. Given that finetuning Tülu V2 requires
only 20% of the data, this highlights a compute-
efficient adaptation for scientific domains, aligning
with prior findings (Dong et al., 2024; Shi et al.,
2023). While our main experiments (§3.2) use

6090



0
10

0
20

0

50
0

10
00

25
00

Examples per train task

30

35

40

45

50

Sc
iR

IF
F-

Ev
al

 p
er

fo
rm

an
ce

Starting checkpoint
Tulu V2 Llama 2

Figure 3: Performance on SciRIFF-Eval vs. nsci (in-
stances/task). Gains saturate at nsci = 1000 (see §3.2)

newer architectures,9 this analysis, along with the
results in § 4.4, illustrates how practitioners can
optimize training for SciRIFF under fixed model
architectures.

Checkpoint SciRIFF Tülu-V2 Total

Llama 2 base 35,357 318,686 354,043
Tülu V2 35,357 35,357 70,714

Table 5: SciRIFF and Tülu V2 Mix instances used for
finetuning described in §4.3, with nsci = 1000.

4.4 Instruction Data Scale

We define nsci as the number of instances per SciR-
IFF task. Figure 3 shows that performance on
SciRIFF-Eval increases sharply as nsci rises from
100 to 500 and levels off subsequently. We found
that 1,000 instances per science task are sufficient
for peak performance for Llama 2 models. There-
fore, we set nsci = 1000 across our experiments in
the continual finetuning analysis (§4.3).

5 Related Work

Strategies for creation of instruction-following
resources. Related work has explored a number
of methods for curating instruction-following re-
sources such as repurposing existing datasets us-
ing human-written templates (Wei et al., 2022;
Chung et al., 2024), crowdsourcing instructions
Databricks (2023); Zhou et al. (2023); Mishra
et al. (2021), ShareGPT10 and generating syn-
thetic data (Lambert et al., 2024a). Broadly, syn-
thetic approaches use LLMs to either generate new
dataset/task instances alongside instructions (Wang

9Due to compute constraints, we do not extend this analysis
to all models.

10https://sharegpt.com/

et al., 2023c; Xu et al., 2024; Nayak et al., 2024;
Lou et al., 2024), or to “back-translate” existing
datasets into instructions (Yin et al., 2023; Köksal
et al., 2023; Li et al., 2023). In this work, we create
instructions using human-written templates (§2.1)
for quality assurance. We refer the readers to see
template examples in Appendix F for evidence.

Instruction-following resources for scientific lit-
erature. Despite many instruction-following col-
lections, few resources focus on scientific literature,
which are crucial for assisting researchers and ac-
celerating discovery (Taylor et al., 2022; Xie et al.,
2023). Recent work has taken steps in this direc-
tion with the development of instruction-following
datasets for specific domains such as mathematics
(Yue et al., 2024a,b; Shao et al., 2024; Luo et al.,
2023; Tang et al., 2024; Toshniwal et al., 2024),
medicine (Parmar et al., 2022; Wu et al., 2024;
Rohanian et al., 2023), chemistry (Yu et al., 2024;
Zhang et al., 2024b), molecular biology (Fang et al.,
2024; Tran et al., 2023), materials science (Song
et al., 2023), and college-level foundational science
(Zhang et al., 2024a). In contrast, SciRIFF both
covers a broader set of scientific domains and fo-
cuses on document-grounded scientific literature
understanding tasks that can power real-world sci-
entific use cases. While recent work such as Li
et al. (2024) explores improving language mod-
els’ scientific understanding through continuous
pretraining and SFT, our work specifically con-
tributes a diverse, high-quality instruction dataset
for this domain. Some instruction-tuning resources
have explored structured output formats (Zhang
et al., 2023b; Wang et al., 2023a; Jiao et al., 2023;
Gao et al., 2023), but not with a focus on science.
Finally, most datasets in SciRIFF have longer in-
struction contexts than prior works (see Appendix
Table 7 for a comparison).

Other scientific literature benchmarks. Prior
works have developed benchmarks to improve
and assess scientific literature understanding. No-
table efforts in the biomedical domain include
BLUE (Peng et al., 2019), BLURB (Gu et al.,
2021), InBoXBART (Parmar et al., 2022), and Big-
Bio (Fries et al., 2022); SciRIFF covers a broader
set of domains than these resources. Other ef-
forts such as (Singh et al., 2023; Taylor et al.,
2022; Wei et al., 2023) cover domains beyond
biomedicine, but are not targeted for training
instruction-following models. SciASSESS (Cai
et al., 2024) evaluates LLMs’ proficiency in sci-
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entific literature analysis, focusing on memoriza-
tion and reasoning abilities. Complementary to
our static benchmark, SciArena (Zhao et al., 2025)
provides a dynamic platform that evaluates models
via ongoing expert preference voting. In contrast,
SciRIFF provides fully expert-written instructions,
serving both as a benchmark and training resource.

Concurrent with our work, Li et al. (2025) in-
troduce SciReas, a meta-benchmark for scientific
problem-solving that includes a subset of SciRIFF
tasks. Their analysis characterizes SciRIFF as fo-
cusing on grounded literature comprehension, dis-
tinguishing it from abstract reasoning benchmarks.
This distinction is supported by their findings that
performance on SciRIFF has low correlation with
reasoning-focused benchmarks like GPQA (Rein
et al., 2023), validating the unique contribution
of our resource for measuring essential skills in
evidence-based literature understanding.

6 Conclusion and Future Work

In this work, we introduced SciRIFF, a resource to
facilitate progress on LLM instruction-following
over scientific literature. We demonstrated that
training on SciRIFF leads to significant improve-
ment in model performance on held-out scientific
tasks (on average 70.6% over baselines). The large
improvements we observe, especially on tasks re-
quiring structured extraction and evidence-finding,
underscore the value of targeted data for building
practical tools for researchers.

As observed in §4.1, neither our best finetuned
models nor the proprietary frontier models are suf-
ficiently strong on SciRIFF-Eval (around 60%),
which demonstrates the difficulty of our tasks. Uti-
lizing LLMs to perform more flexible and fine-
grained evaluations (Kim et al., 2024) represents
a promising direction. Future work could focus
on reliably generating multiple templates for such
complex tasks in a more controlled and principled
manner to help models improve their generaliza-
tion to unseen tasks. Incorporating reliable syn-
thetic data generation techniques and preference
data (Lambert et al., 2024b) for scientific literature
understanding tasks is also a promising avenue.
In conclusion, we are optimistic that the SciRIFF
data and evaluations SciRIFF-Eval, as well as the
model checkpoints, will serve as valuable resources
to build systems for scientific researchers.

Limitation

While we demonstrated the effectiveness of SciR-
IFF and the value of SciRIFF-Eval, we note the
following limitations about our work: Although we
included a wide range of datasets, this still could
limit the open-ended tasks that could involve lit-
erature understanding. For example, more sophis-
ticated iterative or chat-style interactions mimick-
ing interactions with a research assistant are not
captured with SciRIFF. Finally, computational con-
straints prevented us to experiment with largest
open-source models; we suspect that training larger
open-source models (such as Llama 3.1 405B) can
provide even further improvements over state-of-
the-art commercial models.
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A SciRIFF Provenance

In this section, we provide additional details for
SciRIFF introduced in the main body of our paper
(§1, §2).

A.1 SciRIFF Task and Schema

We provide detailed information on all tasks–
including citations, URLs to source websites, and
licensing information where available–in Table 6.
SciRIFF task taxonomy is visualized in Figure 4.
Where convenient, we use datasets as preprocessed
by the BigBio resource (https://huggingface.co/
bigbio); details will also be provided in the dataset
card upon release.

A.2 Task Length Distribution

Figure 5 shows the distribution of input and output
lengths for demonstrations in SciRIFF.

Table 7 compares SciRIFF with selected
instruction-following datasets, including canonical
collections commonly used for general fine-tuning
and selected datasets specialized in scientific do-
mains. Our dataset features longer input contexts
than existing resources.

A.3 Instruction Mix Statistics

We further describe our data mixture following
the main discussion in §2. Figure 2 presents an
overview of the SciRIFF training set distribution
over task categories and domains. The domain
distribution reflects the current landscape of avail-
able high-quality scientific datasets (e.g., Reid
et al., 2022), with a notable representation from
the biomedicine and AI domain. This aligns with
our dataset selection criteria, which prioritize well-
documented resources with permissive licenses.

Given the significant presence of information
extraction tasks, a large percentage of datasets in

SciRIFF (34 datasets; 63%) require structured out-
puts.

We construct three instruction mixes from this
dataset collection, with maximum context lengths
(input + output tokens) of 4,096, 8,192 and 16,382
per instance (longer instances are truncated where
possible and discarded otherwise; see Appendix
A.4). Due to model and hardware limitations, we
conduct experiments in this work using the SciR-
IFF-4096 mixture, and make the longer mixtures
available to enable future research. In what follows,
we refer to SciRIFF-4096 simply as SciRIFF.

A.4 Truncation Strategy

In §A.3, we mention that when an instance exceeds
the maximum context length for a given version of
SciRIFF, we truncate where possible and discard
otherwise. In particular, we truncate for tasks (like
question answering) where the task output can be
localized to particular passages in the input doc-
ument by randomly removing irrelevant passages
until the document fits in the desired context. For
tasks like summarization, where the task output
cannot easily be localized, we simply discard ex-
amples that are longer than the context window.

B Template Ablation

We created two variants of templates for compar-
ison: (1) simple templates adapted from previous
work FlanV2, a collection of datasets, templates,
and methods for general-purpose instruction tun-
ing (Chung et al., 2024), and (2) LLM-generated
templates with GPT-4o.

B.1 Evaluation under Alternative Template

For fair evaluation, we develop corresponding vari-
ants of our evaluation templates (for SciRIFF-Eval
tasks; §3.1) to ensure that models trained on al-
ternative templates are evaluated on prompts of
matching distribution.

B.2 Simple Template

We adapted the style of FlanV2’s basic instruc-
tion format while maintaining essential task re-
quirements. For example, we transformed com-
plex templates into basic input-output patterns (e.g.,
Summarize:text\n \n Summary: \n) while
preserving necessary variable substitutions using
"variable" syntax in Jinja. To ensure valid compar-
ison and prevent complete task failure, we main-
tained minimal but crucial specifications such as
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SciRIFF name Source paper License Website

acl_arc_intent_
classification

ACL ARC (Bird et al., 2008) - [Link]

anat_em_ner AnatEM (Pyysalo and Ananiadou, 2014) CC BY [Link]
annotated_materials_
syntheses_events

MatSci Text Corpus (Mysore et al., 2019) MIT [Link]

bc7_litcovid_topic_
classification

LitCOVID (Chen et al., 2022) - [Link]

bioasq_
{factoid,general,list,yesno}-qa

BioASQ (Tsatsaronis et al., 2015) CC BY [Link]

biored_ner BioRED (Luo et al., 2022) - [Link]
cdr_ner BioCreative V CDR (Li et al., 2016) - [Link]
chemdner_ner CHEMDNER (Krallinger et al., 2015) - [Link]
chemprot_{ner,re} ChemProt (Krallinger et al., 2017) - [Link]
chemsum_single_document_
summarization

ChemSum (Adams et al., 2023) - [Link]

chemtables_te ChemTables (Bai et al., 2024) GPL 3.0 [Link]
chia_ner Chia (Kury et al., 2020) CC BY [Link]
covid_deepset_qa COVID-QA (Möller et al., 2020) Apache 2.0 [Link]
covidfact_entailment CovidFact (Saakyan et al., 2021) - [Link]
craftchem_ner CRAFT-Chem (Cohen et al., 2017) - [Link]
data_reco_mcq_{mc,sc} DataFinder (Viswanathan et al., 2023) Apache 2.0 [Link]
ddi_ner DDI (Herrero-Zazo et al., 2013) CC BY [Link]
discomat_te DISCoMaT (Gupta et al., 2023) CC BY-SA [Link]
drug_combo_extraction_re Drug Combinations (Tiktinsky et al., 2022) - [Link]
evidence_inference Evidence inference (DeYoung et al., 2020) MIT [Link]
genia_ner JNLPBA (Collier et al., 2004) CC BY [Link]
gnormplus_ner GNormPlus (Wei et al., 2015) - [Link]
healthver_entailment HealthVer (Sarrouti et al., 2021) - [Link]
linnaeus_ner LINNAEUS (Gerner et al., 2010) CC BY [Link]
medmentions_ner MedMentions (Mohan and Li, 2019) CC 0 [Link]
mltables_te AxCell (Kardas et al., 2020) Apache 2.0 [Link]
mslr2022_cochrane_
multidoc_summarization

Cochrane (Wallace et al., 2021) Apache 2.0 [Link]

mslr2022_ms2_multidoc_
summarization

MS2 (DeYoung et al., 2021) Apache 2.0 [Link]

multicite_intent_
classification

MultiCite (Lauscher et al., 2022) CC BY-NC [Link]

multixscience_multidoc_
summarization

Multi-XScience (Lu et al., 2020) MIT [Link]

mup_single_document_
summarization

MUP (Cohan et al., 2022) Apache 2.0 [Link]

ncbi_ner NCBI Disease (Islamaj Doğan et al., 2014) CC 0 [Link]
nlmchem_ner NLM-Chem (Islamaj et al., 2021a) CC 0 [Link]
nlmgene_ner NLM-Gene (Islamaj et al., 2021b) CC 0 [Link]
pico_ner EBM-NLP PICO (Nye et al., 2018) - [Link]
pubmedqa_qa PubMedQA (Jin et al., 2019) MIT [Link]
qasa_abstractive_qa QASA (Lee et al., 2023) MIT [Link]
qasper_
{abstractive,extractive}_
qa

Qasper (Dasigi et al., 2021) CC BY [Link]

scicite_classification SciCite (Cohan et al., 2019) - [Link]
scientific_lay_
summarisation_
{elife,plos}_single_doc_
summ

Lay Summarisation (Goldsack et al., 2022) - [Link]

scientific_papers_
summarization__single_
doc_{arxiv,pubmed}

Scientific Papers (Cohan et al., 2018) - [Link]

scierc_{ner,re} SciERC (Luan et al., 2018) - [Link]
scifact_entailment SciFact (Wadden et al., 2020) CC BY-NC [Link]
scireviewgen_multidoc_
summarization

SciReviewGen (Kasanishi et al., 2023) CC BY-NC [Link]

scitldr_aic SciTLDR (Cachola et al., 2020) Apache 2.0 [Link]

Table 6: Overview of source datasets repurposed for SciRIFF (§2). SciRIFF is licensed under ODC-By and is derived
from existing scientific literature understanding datasets. {} indicates subsets belonging to the same source.
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Figure 4: Overview of SciRIFF dataset. Dashed black lines indicate that a task is included in SciRIFF-Eval
and held out during model training. Scientific domains are colored as follows: ■Biomedicine;■AI;■Clinical
Medicine;■Chemistry;■Materials Science;■Miscellaneous.

Name # Instances Domain Avg. Length

General Domain
Flan V2 (Chung et al., 2024) 15M General 355.6 / 31.2
SuperNI (Wang et al., 2022) 97K General 291.1 / 38.7
Tülu V2 Mix (Ivison et al., 2023b) 326K General 353.3 / 696.9

Scientific Domain
BoX (Parmar et al., 2022) 141K Biomed X∗
SciInstruct (Zhang et al., 2024a) 254K Math, PH, Chem, FP 88.4 / 265.6
Mol-Instructions (Fang et al., 2024) 2.04M Biomolecular 126.3 / 112.9
MathInstruct (Yue et al., 2024a) 262K Math 82.5 / 174.0
MedInstruct-52K (Zhang et al., 2023c) 52K Medical 148.2 / 96.9
LlaSMol (Yu et al., 2024) 3.29M Chem 81.9 / 53.0

SciRIFF (Our work) 137K AI, Biomed, Clinical, Chem, MatSci 1242.9 / 139.6

Table 7: Comparison with selected instruction-following datasets. We use the following abbreviations: PH – Physics;
FP – Formal Proof; MatSci – Materials Science. We report average token counts for input/output using Llama 2
tokenizer using up to 200k subsamples from each dataset. ∗BoX dataset is not readily available.
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Figure 5: Distribution of input (left) and output (right) token lengths over SciRIFF training instances.

output format requirements (e.g., JSON structure)
and output constraints where necessary.

The simple templates still require careful adapta-
tion since previous work typically handles simpler
scenarios - their templates rarely need to ground in-
structions in scientific papers or specify structured
output formats. We made deliberate choices to
preserve these critical requirements while simplify-
ing the instruction language and reducing template
complexity. Figures 6 and 7 show examples of
simple templates.

For evaluation, we created
SciRIFF-Eval-Simple, a variant of our
evaluation suite using simple prompts. This
ensures that models trained on simple templates
are not unfairly evaluated on complex instructions,
while still testing the core capabilities required for
scientific literature understanding tasks.

B.3 Synthetic Template

We also explored using GPT-4o to generate instruc-
tion templates11.

For each task category, we provided GPT-4o
with a canonical example template and detailed
specifications including task requirements, input-
output structures, and available variables ({{ an-
chors}}) from our prior post-processing steps (See
§2). Generating templates for diverse scientific
literature understanding tasks proved challeng-
ing. The complexity of our tasks–ranging from
evidence-based question answering to structured
information extraction– makes it difficult to create

11Initial attempts at naive prompting failed to produce us-
able templates.

a universal prompting strategy.
We provide our prompt template for synthetic

template generation in Figure 8.
For evaluation, similar to the approach in §B.2,

we created SciRIFF-Eval-Synthetic, follow-
ing the same principle of matching training and
evaluation distribution.

B.4 Results and Discussion
Table 8 shows that expert-written templates, which
carefully specify task requirements and output
structures, outperform the alternatives. Addition-
ally, we observe that the (in-distribution) evaluation
for Synthetic variants show zero performance on
QASPER and SciERC tasks (See Figure 9 and Fig-
ure 10–our expert-crafted template–for reference).
Upon inspection, we found that GPT-4o12 failed to
specify the required output format correctly, thus
the evaluation fails. Nevertheless, when we drop
the two tasks, we still see that expert-written tem-
plates perform much stronger than the alternatives.

C Training Details

For instruction-tuning, our training hyperparame-
ters were as follows:

• Precision: BFloat16
• Epochs: 5
• Weight decay: 0
• Warmup ratio: 0.03
• Learning rate: 2e-5 (1e-5 for 70B)
• Max. seq. length: 4,096

12Note that the effort to prompt GPT4o to generate template
for diverse and different scientific literature understanding
tasks is non-trivial in itself; See Figure 8.
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SciERC-simple

Extract all unique entities from the paper abstract.

Output a JSON object where keys are entity types and values are lists of extracted entities.

Abstract:
{{paper}}

|||

{{ ner_dict | tojson }}

Figure 6: simple template for SciERC task.

QASPER-simple

Read the following paper excerpts and answer the question. Output a JSON object with "answer" and "evidence" fields.

Paper: {{paper}}

Question: {{question}}

|||

{{output}}

Figure 7: simple template for QASPER task.

Model Data BioASQ BioR DiscMT EI MC MuP Qasper SciERC SciFact Sci. Sci.Selected

Llama-3.1-8B Ours 46.2 84.2 83.9 23.5 71.0 68.5 49.8 / 52.2 56.2 83.3 / 71.9 62.8 65.0
Simple 57.3 64.4 19.6 4.1 9.4 42.3 49.8 / 65.0 33.7 65.8 / 52.6 42.2 36.6
Synthetic 41.0 58.1 38.7 0.3 9.1 57.5 0.0 0.0 63.4 / 39.7 28.0 36.7

Qwen2.5-1.5B Ours 43.6 81.8 45.6 18.9 71.2 67.8 47.0 / 51.4 52.7 78.8 / 70.5 57.2 57.7
Simple 36.2 43.1 38.5 0.8 2.9 42.5 32.5 / 48.3 28.8 47.9 / 42.2 33.0 29.9
Synthetic 33.9 39.7 40.9 0.3 7.7 68.5 0.0 0.0 7.2 / 11.8 19.1 28.6

Table 8: Performance on evaluation tasks (SciRIFF-Eval, SciRIFF-Eval-Simple, and
SciRIFF-Eval-Synthetic respectively, across ablations for §4.2 and Appendix B. This table accompa-
nies Table 3. Sci.Selected represents the average score dropping QASPER and SciERC tasks (representative of
complex output in SciRIFF), where synthetic templates failed to specify the required complex output formats. We
show that our templates show stronger performances under either comparison scheme.

• Effective batch size: 128

For context, each training run of 7B-sized mod-
els requires approximately 40 GPU hours on H100
GPUs, making comprehensive ablation studies (on
e.g. task mixing ratios) prohibitively expensive for
most research labs. We have prioritized our com-
putational resources for experiments that directly
address core research questions while maintaining
reproducibility for typical computing budgets.

D Evaluation Details

The following pages show full input / output ex-
amples for all SciRIFF-Eval tasks, along with de-
tails on metric calculations. This information will
be available on our project GitHub page. We use
gpt-4o-2024-08-06 model for tasks using an LLM
judge as evaluation.
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Prompt Generation

Today, you will write instruction templates (in Jinja) to format an instruction-following task that a researcher might
reasonably ask about scientific literature.

You will be writing templates in Jinja formats. Input field and output field are separated by "|||". Since our Jinja template
will likely be a multiline string, please use a block scalar "|" to indicate a multiline string in Jinja. For example:
"""
jinja: |
<input part: most of your instructions will be in this part>
|||
<output part>
"""

Here is the task that you are about to create template for:

{{TASK_DESCRIPTION}}

{{RELEVANT_CONTEXT}}

<—start_of_author_notes—NOT IN ACTUAL PROMPT>
Author notes: We optionally provide “relevant context” in this general format. In actual generation, we drop fields that
do not apply.

- task_family: The category to which this task belongs. Options include summarization, ie, qa, entailment, and
classification.
- domain: Scientific field(s) that the task covers like "artificial intelligence"
- input_context: Whether the input is full paper text, a table, etc.
- source_type: Indicates whether the input comes from a single paper or multiple sources.
- output_context: Clear text descriptions for output requirements like "Yes or No", json, jsonlines.
<—end_of_author_notes—NOT IN ACTUAL PROMPT>

You should clearly and concisely specify task requirements and any special output structures (if applicable). For tasks
that require JSON (or JSON array) outputs, explicitly mention the output requirement in your template.

Here is the list of anchor variables for this task, which are prepared for you:
{{VARIABLES_POSTPROCESSED_BY_EXPERT_ANNOTATORS}}

Important: the content enclosed by "{{" and "}}": should NOT change. You should re-use the verbatim
texts for anchor variables.

Here is a template example belonging to the same task category. You should only study the overall struc-
ture and the style, but do not copy the content:

{{DEMONSTRATION_FROM_STANDARD_SCIRIFF_INSTRUCTION}}

Make sure your generated template prompt is clear and not verbose.

Figure 8: Template generation prompt for GPT-4o for synthetic templates §B.3. We adapt the prompt for individual
tasks. We note that GPT-4o often generate vague and under-specified instructions for our use case.
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Evaluation tasks

This doc has a list of all evaluation tasks,  including input / output examples and evaluation metrics.

Table of contents

BioASQ:  question answering

BioRED:  named entity recognition

Discomat:  table extraction

Evidence inference:  evidence tuple extraction

Multicite:  citation intent classification

MUP:  summarization

Qasper:  paper question answering

SciERC:  named entity recognition

SciFact:  claim verification

BioASQ

Task input:  A collection of biomedical research excerpts and a question answerable from the excerpts.

Task output:  A list of answers to the question.

Metrics:  Compare predicted vs.  reference answers using exact-match F1.

Input

Below are a collection of excerpts from biomedical research articles. Excerpts are separated by 

newlines. Your task is to answer a question based these excerpts. Your response should be 

formatted 

as a `json` array. 

 

For instance, given excerpts from articles studying breast cancer, and the question "what are some 

common genes associated with breast cancer?", an answer might be formatted like: ["BRCA1", 

"BRCA2", 

"TP53", ...]. Only include answers that are mentioned in the provided exerpts. The array should 

always have at least one answer; do not respond with an empty array []. Do not include any text in 

your response other than the answer array. 

 

Context: sensitization, behavioral changes, and low body mass index (BMI). One possible cellular 

target that may mediate some of these findings is the hypocretin/orexin neurons. This neuronal 

system plays a role in regulating wakefulness/sleep cycles, pain perception, and appetite. Food 

intake, in contrast, receives circadian modulation through hormones such as leptin, ghrelin, 

insulin 

and orexin. A low level of hypocretin-1/orexin-A in the cerebrospinal fluid is sufficient to 

diagnose narcolepsy type 1, being a highly specific and sensitive biomarker, and the irreversible 

loss of hypocretin neurons is responsible for the main symptoms of the disease: Orexins, or 

hypocretins, are excitatory neuropeptides involved in the regulation of feeding behavior and the 

sleep and wakefulness states. 

 

[Lines omitted for space] 
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Orexin A (OXA) and orexin B (OXB) are recently discovered neuropeptides that appear to play a role 

in various distinct functions such as arousal and the sleep-wake cycle as well as on appetite and 

regulation of feeding and energy homeostasis. Orexins were first described as neuropeptides 

expressed by a sp Orexin/hypocretin neurons located in the lateral hypothalamus play a critical 

role 

in the maintenance of arousal and contribute to the regulation of multiple homeostatic and 

behavioral processes. 

 

Question: What processes do orexin/hypocretin neurons regulate? 

Output

[ 

  "sleep", 

  "appetite", 

  "wakefullness", 

  "pain", 

  "reward", 

  "energy homeostasis", 

  "goal-directed behaviors", 

  "Arousal", 

  "addiction" 

] 

BioRed

Task input:  Abstract of a biomedical research article.

Task output:  All entities in the article of the following types:

cell line

chemical

disease

gene

gene variant

species

Metrics:  Compare predicted vs.  reference entities using exact-match F1.

Input

You will be shown an abstract from a biomedical research paper. Given this abstract, your task is 

to 

extract all unique entities of the following types: ["Chemical", "Variant", "Gene", "CellLine", 

"Disease", "Species"]. 

 

Please return the output as a JSON object of the format: {"CellLine": ["hRPTEC", ...], "Chemical": 

["Glucose", ...], "Disease": ["Diabetes", ...], "Gene": ["HNF-6", ...], "Species": ["Patients", 

...], "Variant": ["Pro75Ala", ...]}. The keys should be entity types and values should be lists of 

extracted entities belonging to the corresponding type. If you cannot find entities belonging to a 

specific type, the value should be []. 
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Only output the JSON object and do not include any additional text. 

 

Abstract: 

 

Fatal carbamazepine induced fulminant eosinophilic (hypersensitivity) myocarditis: emphasis on 

anatomical and histological characteristics, mechanisms and genetics of drug hypersensitivity and 

differential diagnosis. The most severe adverse reactions to carbamazepine have been observed in 

the 

haemopoietic system, the liver and the cardiovascular system. A frequently fatal, although 

exceptionally rare side effect of carbamazepine is necrotizing eosinophilic (hypersensitivity) 

myocarditis. We report a case of hypersensitivity myocarditis secondary to administration of 

carbamazepine. Acute hypersensitivity myocarditis was not suspected clinically, and the diagnosis 

was made post-mortem. Histology revealed diffuse infiltration of the myocardium by eosinophils and 

lymphocytes with myocyte damage. Clinically, death was due to cardiogenic shock. To best of our 

knowledge this is the second case of fatal carbamazepine induced myocarditis reported in English 

literature. 

Output

{ 

  "CellLine": [], 

  "Chemical": ["carbamazepine"], 

  "Disease": [ 

    "hypersensitivity", 

    "death", 

    "myocarditis", 

    "cardiogenic shock", 

    "drug hypersensitivity" 

  ], 

  "Gene": [], 

  "Species": [], 

  "Variant": [] 

} 

Discomat

Task input:  A passage from a research paper including a table.

Task output:  The table,  with each cell as a json line.

Metrics:  BLEU score between predicted and gold reference.  Manual inspection showed that BLEU was

pretty reliable for this task.

Input

| Sample no. | Ph, volume percent of crystals | Activation energy (kJ/mol) of the scale factor for 

normalised frequency | ln(t 0, s) of the scale factor | G  unrelaxed shear modulus (GPa) | 

| Glas 0     | 0                              | 137+-18                                               

| -50.15                         | 24.3                             | 

| Glas 1     | 17                             | 129+-13                                               
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| -47.68                         | 23.8                             | 

| Glas 3     | 22                             | 126+-16                                               

| -45.72                         | 24.7                             | 

| Glas 5     | 27                             | 117+-10                                               

| -42.25                         | 25.0                             | 

Caption: Activation energies of shear stress relaxation and unrelaxed shear modulus of disilicate 

lithium glasses 

 

You are provided with a table from a material science paper. Here are JSON templates for two types 

of numeric cells: "Other" and "Glass_Compound_Amount": {"value": "xx", "type": "Other"} {"value": 

"xx", "type": "Glass_Compound_Amount", "constituent": "xx", "unit": "xx", "material": "xx"} 

 

Please describe all numeric cells in the above table following the JSON templates (proceeding by 

row 

in a left-right, top-down direction). For each cell, output one JSON description per line. For any 

unanswerable attributes in the templates, set their value to the placeholder "xx". 

 

Cell Description: 

Output

{"value": "0", "type": "Other"} 

{"value": "137", "type": "Other"} 

{"value": "24.3", "type": "Other"} 

{"value": "17", "type": "Other"} 

{"value": "129", "type": "Other"} 

{"value": "23.8", "type": "Other"} 

{"value": "22", "type": "Other"} 

{"value": "126", "type": "Other"} 

{"value": "24.7", "type": "Other"} 

{"value": "27", "type": "Other"} 

{"value": "117", "type": "Other"} 

{"value": "25.0", "type": "Other"} 

Evidence Inference

Task input:  Abstract of a clinical trial report.

Task output:  List of all ICO (intervention / comparator / outcome) tuples,  together with the

effect of the intervention on the outcome and the textual evidence of this effect.

Metrics:  "Fuzzy" F1.  Given a prediction and a reference tuple,  compute the token overlap for each tuple

item.  If token overlaps for all fields exceed 0.3,  the predicted tuple is judged as a match to the reference.

Input

You will be shown the abstract of a medical clinical trial report. Your task is to extract all the 

findings from this report into a JSON array. Each finding should contain the following five 

elements: 

 

- Intervention: The medical intervention being tested. This should be a text span copied from the 
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  input passage. 

- Comparator: The baseline against which the intervention is being evaluated. This should be a 

text 

  span copied from the input passage. If no comparator is reported, set to `null`. 

- Outcome: The medical outcome whose effect is being measured. This should be a text span copied 

  from the input passage. 

- Effect: The effect of the intervention on the outcome, relative to the comparator. The effect 

  should be one of the following three values: ("significantly increased", "significantly 

  decreased", "no significant difference"). 

- Evidence: The evidence for the effect. This should be a text span copied from the input passage. 

 

Please format your output as a JSON array. Each entry in the output should be an array containing 

the 5 elements listed above, in the following order: [<intervention>, <comparator>, <outcome>, 

<effect>, <evidence>]. 

 

For example, an output with two findings might read: [["aspirin", "placebo", "headache severity", 

"significantly decreased", "Mean headache severity was significantly decreased in the aspirin 

group 

compared to the placebo group (p < 0.05)."], ["aspirin", "placebo", "weight loss", "no significant 

difference", "We did not observe any difference in weight loss between the group given aspirin 

relative to the control group"]] 

 

There are 3 finding(s) in the abstract below. Please extract them. Output only the JSON array with 

these 3 findings. Do not include any additional text. 

 

Abstract: ABSTRACT.OBJECTIVES: To compare the efficacy and safety of SB4 (an etanercept 

biosimilar) 

with reference product etanercept (ETN) in patients with moderate to severe rheumatoid arthritis 

(RA) despite methotrexate (MTX) therapy. 

 

ABSTRACT.METHODS: This is a phase III, randomised, double-blind, parallel-group, multicentre study 

with a 24-week primary endpoint. Patients with moderate to severe RA despite MTX treatment were 

randomised to receive weekly dose of 50 mg of subcutaneous SB4 or ETN. The primary endpoint was 

the 

American College of Rheumatology 20% (ACR20) response at week 24. Other efficacy endpoints as well 

as safety, immunogenicity and pharmacokinetic parameters were also measured. 

 

ABSTRACT.RESULTS: 596 patients were randomised to either SB4 (N=299) or ETN (N=297). The ACR20 

response rate at week 24 in the per-protocol set was 78.1% for SB4 and 80.3% for ETN. The 95% CI 

of 

the adjusted treatment difference was -9.41% to 4.98%, which is completely contained within the 

predefined equivalence margin of -15% to 15%, indicating therapeutic equivalence between SB4 and 

ETN. Other efficacy endpoints and pharmacokinetic endpoints were comparable. The incidence of 

treatment-emergent adverse events was comparable (55.2% vs 58.2%), and the incidence of antidrug 

antibody development up to week 24 was lower in SB4 compared with ETN (0.7% vs 13.1%). 

 

ABSTRACT.CONCLUSIONS: SB4 was shown to be equivalent with ETN in terms of efficacy at week 24. SB4 

was well tolerated with a lower immunogenicity profile. The safety profile of SB4 was comparable 

with that of ETN. 

 

ABSTRACT.TRIAL REGISTRATION NUMBERS: NCT01895309, EudraCT 2012-005026-30. 

 

Findings: 
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Output

[ 

  [ 

    "SB4 (an etanercept biosimilar)", 

    "etanercept (ETN)", 

    "therapeutic equivalence - Patients with moderate to severe rheumatoid arthritis (RA) despite 

methotrexate (MTX) treatment", 

    "no significant difference", 

    "The 95% CI of the adjusted treatment difference was \u22129.41% to 4.98%, which is completely 

contained within the predefined equivalence margin of \u221215% to 15%, indicating therapeutic 

equivalence between SB4 and ETN." 

  ], 

  [ 

    "SB4 (an etanercept biosimilar)", 

    "etanercept (ETN)", 

    "incidence of antidrug antibody development up to week 24 - Patients with moderate to severe 

rheumatoid arthritis (RA) despite methotrexate (MTX) treatment", 

    "significantly decreased", 

    "the incidence of antidrug antibody development up to week 24 was lower in SB4 compared with 

ETN (0.7% vs 13.1%)." 

  ], 

  [ 

    "SB4 (an etanercept biosimilar)", 

    "etanercept (ETN)", 

    "incidence of treatment-emergent adverse events - Patients with moderate to severe rheumatoid 

arthritis (RA) despite methotrexate (MTX) treatment", 

    "no significant difference", 

    "The incidence of treatment-emergent adverse events was comparable (55.2% vs 58.2%)" 

  ] 

] 

Multicite

Task Input:  A citation sentence from a research paper.

Task output:  A list of intents for the citation sentence.

Metrics:  Compare predicted vs.  reference intents using exact-match F1.

Input

Your task is to classify the citation intent within the following provided text from a 

computational 

linguistics research paper. The cited work is demarcated by "<cite>" and "</cite>". Determine the 

purpose of the cited work by selecting from the listed categories: 

 

- Background: The cited paper underpins the subject matter. 

- Motivation: The cited paper inspires or provides a rationale for the current research. 

- Uses: The current work utilizes concepts or tools from the cited paper. 

- Extends: The current work advances ideas or methods from the cited paper. 
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- Similarities: The current work identifies commonalities with the cited paper. 

- Differences: The current work delineates its distinction from the cited paper. 

- FutureWork: The cited paper is acknowledged as groundwork for prospective research. 

 

Indicate the intents by listing them in a `json` array, e.g. ["Background", "Uses"]. More than one 

intent may be applicable. Do not include any extraneous text in your response. 

 

Context with Citation: In addition to that, we implemented semi-supervised classification by 

training in the positive samples of the <cite>[9]</cite> dataset and training in only the lexicon 

as 

negative samples. 

Output

["Similarities", "Uses"] 

MUP

Task input:  Full text of a machine learning paper.

Task output:  Short paper summary that a reviewer might write as part of a paper review.

Metrics:  Use GPT-3.5 to judge similarity of generated summary to human reference on 1-5 scale.  Based

on manual inspection,  this was higher-quality than automated metrics like ROUGE.

Input

You will be presented with the title and body text of a computer science research paper. Please 

write a summary of the work that would be informative for a peer reviewer assessing its quality. 

Your summary should be 3 sentences long. In your response, include only the summary and no 

additional text. 

 

Paper title: Reinforcement Learning with Efficient Active Feature Acquisition 

 

Paper body: 1 INTRODUCTION . Recently , machine learning models for automated sequential decision 

making have shown remarkable success across many application areas , such as visual recognition ( 

Mathe et al. , 2016 ; Das et al. , 2017 ) , robotics control ( Finn et al. , 2016 ; Zhang et al. , 

2018 ) , medical diagnosis ( Ling et al. , 2017 ; Peng et al. , 2018 ) and computer games ( Mnih 

et 

al. , 2015 ; Silver et al. , 2016 ) . One fundamental reason that drives the success of such 

models 

and enables them to outperform classical algorithms is the availability of large amounts of 

training 

data . Typically such training data is either fully observed or the features stem from an 

action-independent observation model ( which clearly can depend on the state of the system ) . 

However , the fundamental assumption that the same features are always readily available during 

deployment could not hold in many real-world applications . For instance , consider a medical 

support system for monitoring and treating patients during their stay at hospital which was 

trained 

on rich historical medical data . To provide the best possible treatment , the system might need 

to 
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perform several measurements of the patient over time , while some of them could be costly or even 

pose a health risk . Therefore , during deployment , it is more ideal that the system could 

function 

with minimal features while during training more features might have been available . In such 

cases 

, we are interested in decision making models that actively take the measurement process , i.e. , 

feature acquisition , into account and only acquire the information relevant for making a decision 

. 

In this paper , we consider the challenging problem of learning effective policies when the cost 

of 

information acquisition can not be neglected . To be successful , we need to learn policies which 

acquires the information required for solving a task in the cheapest way possible . [Truncated for 

space]. 

 

3-sentence paper summary: 

Output

In this paper the authors propose an approach for simultaneously learning how to explore more 

efficiently in POMDPs via targeted feature acquisition, and learning a reward-maximizing control 

policy, balancing the cost of feature acquisition with the expected reward. Learning is done via a 

VAE framework which combines a belief inference model and an observation decoder, with a key 

innovation being that inference is done as a sequential process. Results comparing this approach 

to other variational inference approaches show the proposed framework reaches better performance 

with lower cost (particularly, number of acquired features). 

Qasper

Task input:  The full text of an NLP research paper,  and a question answerable from the paper body (but

not the abstract).

Task output:  An answer to the question,  accompanied by the extracts from the paper body supplying the

answer.

Metrics:  We compute metrics for both the answer and the evidence.

Answer:  GPT-3.5 judge of similarity of model answer to human reference (1-5 scale).

Evidence:  Token F1 overlap with gold evidence.

Input

You will be shown sections from a scientific research paper, together with a question about the 

paper. Paragraphs in the paper are separated by newlines. Your task is to answer the question 

based 

on the contents of the paper. 

 

Paper: 

---------------------------------------- 

Named Entity Disambiguation for Noisy Text 

 

We address the task of Named Entity Disambiguation (NED) for noisy text. We present WikilinksNED, 

a 
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large-scale NED dataset of text fragments from the web, which is significantly noisier and more 

challenging than existing news-based datasets. To capture the limited and noisy local context 

surrounding each mention, we design a neural model and train it with a novel method for sampling 

informative negative examples. We also describe a new way of initializing word and entity 

embeddings 

that significantly improves performance. Our model significantly outperforms existing 

state-of-the-art methods on WikilinksNED while achieving comparable performance on a smaller 

newswire dataset. 

 

The WikilinksNED Dataset:             Entity Mentions in the Web We introduce WikilinksNED, a 

large-scale NED dataset based on text fragments from the web. Our dataset is derived from the 

Wikilinks corpus BIBREF14 , which was constructed by crawling the web and collecting hyperlinks 

(mentions) linking to Wikipedia concepts (entities) and their surrounding text (context). 

Wikilinks 

contains 40 million mentions covering 3 million entities, collected from over 10 million web 

pages. 

Wikilinks can be seen as a large-scale, naturally-occurring, crowd-sourced dataset where thousands 

of human annotators provide ground truths for mentions of interest. This means that the dataset 

contains various kinds of noise, especially due to incoherent contexts. The contextual noise 

presents an interesting test-case that supplements existing datasets that are sourced from mostly 

coherent and well-formed text. 

 

[Truncated for space] 

---------------------------------------- 

 

Question: How was a quality control performed so that the text is noisy but the annotations are 

accurate? 

 

To answer the question, format your response as a `json` object with two fields: 

 

"answer": A string providing a succinct answer to the question, in your own words. "evidence": An 

array of strings. Each entry should be a full paragraph from the paper. Together, the evidence 

should serve as a justification for the answer. 

 

For instance, for the question "What baselines did the authors compare against?", a sample 

response 

might be: 

 

{ "answer": "BERT and RoBERTa." "evidence": ["We compare our approach against two baselines. In 

  Table 1, we compare against BERT. In Table 2, we compare against RoBERTa. Our findings indicate 

  that our approach improves over both baeslines..."] } 

 

The "answer" field should be roughly 190 characters in length. 

 

Do not include any text in your response other than the json. If the question is unanswerable 

given 

the provided excerpts, respond with the single word "null". 

 

To repeat, the question is: How was a quality control performed so that the text is noisy but the 

annotations are accurate? 

 

Answer JSON object: 
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Output

{ 

  "answer": "Profile pictures from the Twitter users' profiles.", 

  "evidence": [ 

    "The recent advancements in deep neural networks, specifically for image analysis task, can 

lead to determining demographic features such as age and gender BIBREF13 . We show that by 

determining and integrating heterogeneous set of features from different modalities \u2013 

aesthetic features from posted images (colorfulness, hue variance, sharpness, brightness, 

blurriness, naturalness), choice of profile picture (for gender, age, and facial expression), the 

screen name, the language features from both textual content and profile's description (n-gram, 

emotion, sentiment), and finally sociability from ego-network, and user engagement \u2013 we can 

reliably detect likely depressed individuals in a data set of 8,770 human-annotated Twitter 

users." 

  ] 

} 

SciERC

Task input:  An abstract of an NLP paper.

Task output:  A list of all entities mentioned in the paper of the following types:

Material

Method

Metric

Task

Generic

Other scientific term

Metrics:  Exact-match F1.

Input

You will be shown an abstract from a computer science research paper. Given this abstract, your 

task 

is to extract all unique entities with the following types: 

 

- "Task": Applications, problems to solve, systems to construct. Examples include "information 

  extraction", "machine reading system", "image segmentation". 

- "Method": : Methods, models, systems to use, or tools, components of a system, frameworks. 

  Examples include "language model", "CORENLP", "POS parser". 

- "Metric": Metrics, measures, or entities that can express quality of a system / method. Examples 

  include "F1", "BLEU", "Precision", "time complexity". 

- "Material": Data, datasets, resources, Corpus, Knowledge base. Examples include "image data", 

  "speech data", "stereo images", "CoNLL", "Wikipedia". 

- "OtherScientificTerm": Phrases that are a scientific terms but do not fall into any of the above 

  classes. Examples include "physical or geometric constraints", "qualitative prior knowledge", 

  "tree kernel", "noise". 

- "Generic": General terms or pronouns that may refer to a entity but are not themselves 

  informative, often used as connection words. Examples include "model", "approach", "them". 
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Please return the output as a JSON object of the format: {"type1" : ["example_entity", ...], 

"type2" 

: ["example_entity", ...]}. The keys should be entity types and values should be lists of 

extracted 

entities belonging to the corresponding type. Entity types with no matching entities should be 

assigned an empty array []. 

 

For instance, the output might look like: {"Task": ["speech recognition", ...], "Method": 

["Conditional random field"], "Material": [], ...}. 

 

Only output the JSON object and do not include any additional text. 

 

Abstract: 

 

We present a syntax-based constraint for word alignment, known as the cohesion constraint. It 

requires disjoint English phrases to be mapped to non-overlapping intervals in the French 

sentence. 

We evaluate the utility of this constraint in two different algorithms. The results show that it 

can 

provide a significant improvement in alignment quality. 

Output

{ 

  "Generic": ["algorithms"], 

  "Material": ["English phrases", "French sentence"], 

  "Method": [], 

  "Metric": ["alignment quality"], 

  "OtherScientificTerm": ["cohesion constraint", "syntax-based constraint"], 

  "Task": ["word alignment"] 

} 

SciFact

Task input:  An abstract from a biomedical research article,  and a scientific claim.

Task output:

A fact-checking verdict indicating whether the abstract supports or refutes the claim,  or has no

relevant information.

The evidence -- i.e.  sentences from the abstract justifying the verdict.

Metrics:  We compute metrics for both the answer and the evidence.

Verdict:  Label F1.

Evidence:  Token F1 overlap with gold evidence.

Input

You will be shown a scientific claim, and the abstract of a biomedical research paper. Each 

sentence 

from the abstract will be on a separate line. Your task is to return a JSON object with two 
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fields: 

 

- "verdict": The fact-checking verdict. If the information in the abstract supports the claim, 

write 

  "SUPPORT". If the abstract contradicts the claim, write "CONTRADICT". If the abstract does not 

  provide enough information to arrive at a verdict, write "NEI" (for "not enough information"). 

- "evidence": An array of sentences providing evidence for the verdict. Please copy all relevant 

  sentences verbatim from the abstract. If the verdict was "NEI", then return an empty array. 

 

For instance, if the model were given the claim "smoking causes cancer", the output might be { 

"verdict": "SUPPORT", "evidence": ["The results of our meta-analysis provide overwhelming support 

  that cigarette smoking is a risk cause for lung cancer."] } 

 

Your response should not include any text other than the json. 

 

Claim: Therapeutics receiving accelerated approval encounter a lower frequency of post-marketing 

safety events 

 

Abstract: Importance Postmarket safety events of novel pharmaceuticals and biologics occur when 

new 

safety risks are identified after initial regulatory approval of these therapeutics. These safety 

events can change how novel therapeutics are used in clinical practice and inform patient and 

clinician decision making. Objectives To characterize the frequency of postmarket safety events 

among novel therapeutics approved by the US Food and Drug Administration (FDA), and to examine 

whether any novel therapeutic characteristics known at the time of FDA approval were associated 

with 

increased risk. [Truncated for space] Biologics, psychiatric therapeutics, and accelerated and 

near–regulatory deadline approval were statistically significantly associated with higher rates of 

events, highlighting the need for continuous monitoring of the safety of novel therapeutics 

throughout their life cycle. 

Output

{ 

  "verdict": "CONTRADICT", 

  "evidence": [ 

    "In multivariable analysis, postmarket safety events were statistically significantly more 

frequent among biologics (incidence rate ratio [IRR] = 1.93; 95% CI, 1.06-3.52; P = .03), 

therapeutics indicated for the treatment of psychiatric disease (IRR = 3.78; 95% CI, 1.77-8.06; P 

< .001), those receiving accelerated approval (IRR = 2.20; 95% CI, 1.15-4.21; P = .02), and those 

with near\u2013regulatory deadline approval (IRR = 1.90; 95% CI, 1.19-3.05; P = .008); events were 

statistically significantly less frequent among those with regulatory review times less than 200 

days (IRR = 0.46; 95% CI, 0.24-0.87; P = .02)." 

  ] 

} 
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E Instruction Template Creation

Instruction templates are written in (Pallets, 2024),
Guidelines and best practices” for prompt-writing
will be available at our GitHub repository. Each
prompt was double-checked by an additional paper
author for clarity and correctness.

F Sample template

In this section, we provide examples of our expert-
written templates that demonstrate the complexity
and precision required for scientific literature under-
standing tasks, described in §1 and §2.1. These tem-
plates are carefully designed to elicit structured out-
puts while requiring sophisticated capabilities such
as information extraction with attribution, multi-
step reasoning, and adherence to specific output
schemas. The templates shown –QASPER (QA,
Figure 9), SciERC (IE, Figure 10), HealthVer (Fact-
checking, Figure 11), DiSCoMaT (IE over tabular
data, Figure 12), and DataFinder Reco MC (Mul-
tiple Choice QA, Figure 13) – demonstrates how
our instruction format guides models to perform
challenging tasks like answering questions with
evidence attribution, extracting nested entity re-
lationships, and verifying scientific claims with
supporting rationales.13

G Information About Use of AI Assistants

We use OpenAI ChatGPT and Anthropic Claude
for grammar checking in manuscript preparation.

13Our preliminary experiments showed that even strong
proprietary models like GPT-4o struggled to reliably generate
such structured outputs without explicit templates. This obser-
vation motivated our decision to use expert-written templates.
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QASPER

You will be shown sections from a scientific research paper, together with a question about the paper. This is an
extractive question-answering task, where you must find and extract relevant text spans directly from the paper to
answer the question. Your response should strictly be a json object with two fields:

- "answer": An array of strings extracted directly from the paper which, collectively, answer the question.
- "evidence": An array of strings. Each should be an excerpt from the paper, in which one or more of the extracted
answers can be found.

For example, for the question "What baselines did the authors compare against?", a sample response might be:
{
answer”: [BERT”,RoBERT”],
evidence”: [In our experiments, we compare the performance of our model against BERT and RoBERTa.”]
}
Do not include any text in your response other than the json.
If the question is unanswerable given the provided excerpts, respond with the single word "null".
Paper: {{paper}}

Question: {{question}}

|||

{% if unanswerable %} null
{% else %}
{{ {"answer": answer, "evidence": evidence} | tojson }}
{% endif %}

Figure 9: Canonical template for QASPER task in Figure 4. See §F for description.

SciERC

You will be shown an abstract from a computer science research paper. Given this abstract, your task is to extract all
unique entities with the following types:

- "Task": Applications, problems to solve, systems to construct. Examples include "information extraction", "machine
reading system", "image segmentation".
- "Method": : Methods, models, systems to use, or tools, components of a system, frameworks. Examples include
"language model", "CORENLP", "POS parser".
- "Metric": Metrics, measures, or entities that can express quality of a system / method. Examples include "F1",
"BLEU", "Precision", "time complexity".
- "Material": Data, datasets, resources, Corpus, Knowledge base. Examples include "image data", "speech data", "stereo
images", "CoNLL", "Wikipedia".
- "OtherScientificTerm": Phrases that are a scientific terms but do not fall into any of the above classes. Examples
include "physical or geometric constraints", "qualitative prior knowledge", "tree kernel", "noise".
- "Generic": General terms or pronouns that may refer to a entity but are not themselves informative, often used as
connection words. Examples include "model", "approach", "them".

Please return the output as a JSON object of the format: {"type1" : ["example_entity", ...], "type2" : ["ex-
ample_entity", ...]}. The keys should be entity types and values should be lists of extracted entities belonging to the
corresponding type. Entity types with no matching entities should be assigned an empty array "[]".

For instance, the output might look like: {"Task": ["speech recognition", ...], "Method": ["Conditional random field"],
"Material": [], ...}.

Only output the JSON object and do not include any additional text.

Abstract:

{{ org_text }}

|||

{{ ner_dict | tojson }}

Figure 10: Canonical template for SciERC task in Figure 4. See §F for description.
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HealthVer

You will be shown a claim about public health and the abstract of a biomedical research paper. Each sentence from the
abstract will be on a separate line. Your task is to return a JSON object with two fields:

- "verdict": The fact-checking verdict. If the information in the abstract supports the claim, write "SUPPORT". If the
abstract contradicts the claim, write "CONTRADICT". If the abstract does not provide enough information to arrive at a
verdict, write "NEI" (for "not enough information").
- "evidence": An array of sentences providing evidence for the verdict. Please copy all relevant sentences verbatim from
the abstract. If the verdict was "NEI", then return an empty array.

For instance, if the model were given the claim "wearing masks can prevent the spread of COVID", the output might be:

{
"verdict": "SUPPORT",
"evidence": ["Our findings indicate that mass mask-wearing reduces the transmission rate for COVID-19."]
}

Claim: {{ claim }}

Abstract:
{{ abstract_with_newlines }}

|||

{{ output_json_with_sentences }}

Figure 11: Canonical template for HealthVer task in Figure 4. See §F for description.

DiSCoMaT

{{ table_code_text }}

You are provided with the table above from a materials science paper. Here are JSON templates for two types of
numeric cells: "Other" and "Glass_Compound_Amount":

{"value": "xx", "type": "Other"}
{"value": "xx", "type": "Glass_Compound_Amount", "constituent": "xx", "unit": "xx", "material": "xx"}

Please describe all numeric cells in the above table following the JSON templates (proceeding by row in a left-right,
top-down direction). For each cell, output one JSON description per line. For any unanswerable attributes in the
templates, set their value to the placeholder "xx".

Cell Description:

|||

{{ json_records }}

Figure 12: Canonical template for DiSCoMaT task in Figure 4. See §F for description.
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DataFinder Reco MC

You are provided with a research question, keyphrases about the question, a description of candidate datasets and
dataset options. Read the description of popular datasets provided below and select the ones that can be used
to validate the following research question. Use your knowledge of machine learning datasets to make the best judgement.

Your response should be formatted as a json array. For instance, for the query "Semi supervised image classification", a
sample response might be: ["CIFAR-10", "CIFAR-100"]. Do not include any extra text in the response other than the
answer array.

Query: {{ query }}

Keyphrases: {{ keyphrase_query }}

Dataset description:
{{ context }}

Options:- {{ options }}

|||

{%- set ans_list = answer.split(", ") %}
{{ ans_list | tojson }}

Figure 13: Canonical template for DataFinder Reco MC (QA-multiple choice) task in Figure 4. See §F for
description.
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