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Abstract
Current Emotion Recognition in Conversation
(ERC) research follows a closed-domain as-
sumption. However, there is no clear consen-
sus on emotion classification in psychology,
which presents a challenge for models when it
comes to recognizing previously unseen emo-
tions in real-world applications. To bridge this
gap, we introduce the Unseen Emotion Recog-
nition in Conversation (UERC) task for the
first time and propose ProEmoTrans, a solid
prototype-based emotion transfer framework.
This prototype-based approach shows promise
but still faces key challenges: First, implicit ex-
pressions complicate emotion definition, which
we address by proposing an LLM-enhanced
description approach. Second, utterance encod-
ing in long conversations is difficult, which we
tackle with a proposed parameter-free mecha-
nism for efficient encoding and overfitting pre-
vention. Finally, the Markovian flow nature of
emotions is hard to transfer, which we address
with an improved Attention Viterbi Decoding
(AVD) method to transfer seen emotion tran-
sitions to unseen emotions. Extensive experi-
ments on three datasets show that our method
serves as a strong baseline for preliminary ex-
ploration in this new area.

1 Introduction

Emotion Recognition in Conversation (ERC) aims
to predict the emotional state of each utterance
in multi-turn conversations, holding significant re-
search value in areas such as Conversational Sen-
timent Analysis (Li et al., 2023) and Empathetic
Responses (Peng et al., 2022). However, in the
field of psychology, existing research works (Ek-
man, 1999; Plutchik and Kellerman, 2013; Cowen
and Keltner, 2017) feature a variety of emotion
classification theories, yet they have not reached
a clear consensus1. Due to the complex defini-

*Corresponding author.
1For instance, Plutchik and Kellerman (2013) categorizes

emotions into 32 types, while Cowen and Keltner (2017) cate-
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Figure 1: (a) shows that the emotion categories in three
foundational datasets vary significantly in the emotion
labels. (b) shows the transition scores learned on the
MELD dataset.

tions and the various classification theories, in real-
world applications, such as open-domain dialogue
systems, it is likely to occur new emotions that
are unseen in the training stage. As shown in Fig-
ure 1 (a), the emotion labels across three widely
used datasets (Busso et al., 2008; Zahiri and Choi,
2018; Poria et al., 2019) exhibit significant non-
overlapping portions. This makes it challenging to
directly apply models trained on a single dataset
to other datasets. For instance, a model trained on
the MELD dataset may struggle to recognize the
emotion powerful in the EmoryNLP dataset.

To bridge this gap, we introduce the Unseen
Emotion Recognition in Conversation (UERC) task
for the first time, which aims to predict unseen
emotions by leveraging prior knowledge from seen
emotions in training data. To address this task, we
attempt the prototype-based approaches (Chen and
Li, 2021; Zhao et al., 2023; Li et al., 2024) to learn
a prototype vector for each emotion, helping the
model capture the distinct meaning of emotions.
However, three key challenges hinder progress.
Challenge 1: Implicit emotion expression. Exist-
ing methods primarily rely on the provided label
descriptions to enhance prototype semantics. How-

gorizes emotions into 27 types, including unusual emotions
like nostalgia and sexual desire.
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ever, the UERC task lacks emotion descriptions,
and, even more critically, many complex emotions
are hard to define clearly, and relying solely on de-
scriptive information is insufficient to obtain robust
and faithful prototypes. Challenge 2: Hard utter-
ance encoding. Due to the extensive length of con-
versation texts, existing ERC methods (Majumder
et al., 2019; Hu et al., 2021; Zhang et al., 2023;
Yang et al., 2024) typically follow two steps: en-
coding utterance representations first, then model-
ing inter-utterance features with additional relation-
learning modules. However, our preliminary exper-
iments indicate that these additional modules can
lead to overfitting the training data, compromising
the model’s ability to generalize to unseen emo-
tions. Conversely, removing these modules results
in losing valuable inter-utterance relations, creat-
ing a dilemma. Challenge 3: Unadapted emo-
tion transition. It’s found that emotions exhibit a
Markov property (Song et al., 2022b), whereby the
current utterance’s emotion is influenced by pre-
ceding ones. As illustrated in Figure 1 (b), when
the current emotion is Disgust, the transfer score
for Anger in the subsequent utterance is notably
highest, aligning with intuitive expectations. While
the Markov property can effectively aid emotion
prediction, the transfer score matrix for unseen
emotions cannot be pre-learned.

To address these challenges, we propose a solid
prototype-based emotion transfer framework called
ProEmoTrans. Specifically, to address the im-
plicit emotion expression challenge, we first em-
ploy a dictionary to obtain all the emotion descrip-
tions. We then leverage the in-context learning
capabilities of large language models (LLMs) to
generate utterances that implicitly express these
emotions, thereby enhancing the model’s compre-
hension of complex emotions. To address the hard
utterance encoding challenge, we refrain from us-
ing additional relation-learning modules to prevent
the model from overfitting to seen emotions. In-
stead, we propose a Gaussian Self-Attention mech-
anism to capture inter-utterance relations. This
parameter-free mechanism obtains utterance em-
beddings by using linear combinations of contex-
tual representations, effectively leveraging relation
information among utterances at varying distances.
To leverage the emotion transition, we propose an
improved Attention Viterbi Decoding (AVD) algo-
rithm within the Conditional Random Field (CRF)
framework, enabling the capture of transition prob-
abilities for seen emotions between all adjacent

utterances. Subsequently, we extend the transition
probabilities of seen emotions to unseen emotions
by utilizing prototype similarity. Our contributions
can be summarized as follows:

1) We propose the UERC task for the first time
and introduce a novel model called ProEmoTrans2.
Extensive experiments on three datasets demon-
strate that this method serves as a solid baseline.

2) We leverage the prior knowledge of LLMs to
generate implicit contexts that enhance complex
emotion prototypes.

3) We introduce a Gaussian self-attention mech-
anism that effectively utilizes inter-utterance rela-
tions while avoiding overfitting to seen emotions.

4) We improve the Viterbi decoding algorithm to
extend the transition probabilities of seen emotions
to unseen emotions.

2 Related Work

2.1 Emotion Recognition in Conversation

ERC in a text-modality setting is an active research
topic. Early RNN-based (Jiao et al., 2019; Ma-
jumder et al., 2019; Hu et al., 2021) and GCN-
based (Ghosal et al., 2019; Shen et al., 2021; Zhang
et al., 2023) methods tried to model the temporal
features or conversational structures. Some other
studies (Ghosal et al., 2020; Ong et al., 2022) have
also attempted to integrate more common-sense
knowledge. The latest contrastive-based methods
(Hu et al., 2023; Yang et al., 2023; Yu et al., 2024)
focus on using contrastive learning to distinguish
semantically similar emotions. While these addi-
tional modules can effectively help the model fit the
distributions of seen emotions, in the UERC setting,
they can impair the model’s ability to generalize to
unseen emotions.

2.2 Zero-shot Learning in ERC

Zero-shot Learning (ZSL) aims to train a model
on one label set and then apply it to another set
of previously unseen labels. Currently, research
on ZSL in the ERC field is quite limited. A work
that is closely related to ours is CTPT (Xu et al.,
2023), which focuses on cross-task few-shot set-
tings, while we are the first to explore the model’s
ability in zero-shot predicting for unseen emotions.
In the zero-shot setting, CTPT primarily improves
the recognition of similar emotions across tasks but
performs poorly in recognizing unseen emotions.

2Available at https://github.com/KunPunCN/ProEmoTrans/
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Figure 2: The architecture of our proposed EmoTrans.

Prototype alignment (Chen and Li, 2021; Zhao
et al., 2023; Li et al., 2024) is a powerful method
in ZSL. It first encodes sentence and label infor-
mation into a hidden vector space, then aligns
sentence embeddings with label prototype embed-
dings using semantic matching. Through this pro-
cess, the model acquires the ability to general-
ize label knowledge. During the inference phase,
the model encodes the unseen label information
and makes predictions through nearest neighbor
search. In other prototype-based zero-shot NLP re-
search fields, such as zero-shot relation extraction,
Zhao et al. (2023) proposes a fine-grained semantic
matching method to reduce the negative impact of
irrelevant features. Li et al. (2024) enhances label
prototypes by introducing more side descriptions.

3 Methodology

3.1 Task Definition
Given a conversation U = {(u1, t1), (u2, t2), ...,
(uN , tN )}, where each utterance ui has only one
speaker ti, N is the total number of utterances. Dif-
ferent utterances may belong to the same speaker,
so it is possible to have ti = tj(i ̸= j). The train-
ing dataset Ds has a set of seen emotions Es, and
the test dataset Du has a set of unseen emotions
Eu. There is no overlap between Es and Eu. The
objective of the UERC task is to learn from Ds and

transfer the model to predict the unseen emotion
label eunsi ∈ Eu of each utterance ui.

3.2 Framework of ProEmoTrans

The overall architecture of our proposed ProEmo-
Trans is illustrated in Figure 2.

3.2.1 Emotion Prototype Encoding

Given a seen emotion word eseei ∈ Es, we can
find its corresponding description3 Xdesc

i in the
Wiktionary4. However, unlike direct descriptions,
emotions in conversation are often expressed im-
plicitly. This gap makes the prototype learned from
emotional descriptions lack sufficient generaliza-
tion, especially for more complex emotions (e.g.,
powerful).

To improve the quality of emotion prototypes,
we propose the LLM-enhanced Emotion Descrip-
tion (LED) method. We first design a prompt tem-
plate Write two sentences expressing [MASK]’s
emotions. Afterward, by filling in the [MASK] po-
sition with the emotion word eseei and leveraging
the LLM’s prompt generation capabilities, we gen-
erate sentences X llm

i that implicitly express that
emotion. The enhanced description Xsee

i is defined

3All the descriptions are listed in Appendix C.
4https://en.m.wiktionary.org

599



as the concatenation of eseei , Xdesc
i and X llm

i :

Xsee
i = {[CLS], eseei , Xdesc

i , X llm
i , [SEP]}. (1)

We feed it into the prototype encoder to obtain the
final emotion prototype hsee

i :

hsee
i = EncoderE(X

see
i )[0], (2)

where hsee
i ∈ Rd is the first token (i.e., [CLS])

of the last hidden layer. Through the above pro-
cess, we can encode the prototypes of each emo-
tion word in the seen emotion set Es and ob-
tain Hsee = (hsee

1 ,hsee
2 , ...,hsee

n ). Similarly, for
the unseen emotion set Eu, we have Huns =
(huns

1 ,huns
2 , ...,huns

m ), where n and m are the num-
bers of emotions in Es and Eu, respectively.

3.2.2 Utterance Encoding
Following previous works (Hu et al., 2021; Shen
et al., 2021; Zhang et al., 2023), due to the conver-
sation text being too lengthy, we use an utterance
encoder to obtain the utterance representation hi:

hi = EncoderU (ui)[0]. (3)

The representation of all utterances is denoted as
H ∈ RN×d, where N is the number of utterances
in U . After that, we propose a non-parametric
Gaussian Self-Attention (GSA) mechanism that
effectively learns the inter-utterance relationships
and alleviates overfitting to seen emotions.

Given the token hi ∈ H , the Gaussian attention
score Ai ∈ RN that attends to H is defined as:

Ai = Softmax(
hiH

T

d
)N i, (4)

where N i ∈ RN are discrete values that follow
the Gaussian distribution N (i, σ2), and the vari-
ance σ is a hyperparameter. Using the Gaussian
attention score, we aggregate highly relevant infor-
mation from the entire conversation while reducing
the impact of distant tokens. This inter-utterance
relationship aggregation follows a non-parametric
linear operation:

hutte
i = hi +AiH, (5)

where hutte
i ∈ Rd is the updated utterance repre-

sentation. The final representation of all utterances
is denoted as Hutte ∈ RN×d.

The GSA mechanism has two key properties:
First, parameter-free. Previous supervised meth-
ods used parameterized modules (such as LSTM

and GCN) to learn inter-utterance relationships.
However, in unsupervised scenarios, parameter-
ized modules led to overfitting on the training set,
hindering generalization on unseen datasets (Ap-
pendix B.1). Second, distance-aware learning of
inter-utterance relationships. Directly sampling dis-
crete values from a one-dimensional Gaussian dis-
tribution based on the distance between utterances,
with closer utterances receiving more attention.

3.2.3 Contrastive Similarity and Training
In the above sections, we obtained emotion proto-
types and utterance representations. In this section,
through nearest neighbor search, we can align ut-
terances with their corresponding emotion labels.
Inspired by infoNCE (Oord et al., 2018), we define
a contrastive similarity to pull the utterance em-
beddings closer to their corresponding prototype
embeddings while pushing apart the inconsistent
ones. This similarity Ssee ∈ RN×n is defined as:

Ssee = Sim(Hutte,Hsee), (6)

sseeij =
ecos(h

utte
i ,hsee

j )/τ

∑n
j=1 e

cos(hutte
i ,hsee

j )/τ
, (7)

where Eq. (7) is the details of Eq. (6). cos(·) is a
cosine similarity function and τ is a temperature
hyperparameter. sseeij represents the probability of
the i-th utterance expressing the j-th seen emotion.

Due to the transition dependencies between
emotions, independent predictions are insufficient.
Therefore, we subsequently feed Ssee into a Condi-
tional Random Field (CRF) (Lafferty et al., 2001).
For a sequence of predictions: y = (y1, y2, ..., yN ),
its CRF score can be defined as:

C(y) =
∑N

k=0
Myk,yk+1

+
∑N

k=1
Ssee
k,yk

, (8)

where M ∈ R(n+2)×n is the transition matrix5 of
the CRF layer. y0 and yN+1 are the additional start
and end tags. The probability of the sequence y is
a softmax over the scores of all possible sequences:

p(y) =
eC(y)∑

ỹ∈YU eC(ỹ)
, (9)

where YU represents all possible predicted se-
quences. Our training goal is to minimize the loss:
L = −log(p(ŷ)), where ŷ represents the true se-
quences.

5n+ 2 is because there are start and end transitions here.
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3.2.4 Inference
The original Viterbi decoding is limited to the seen
emotions, and the valuable emotion transition de-
pendencies learned by the CRF layer cannot be
adapted to unseen emotions. To address this gap,
we propose the Attention Viterbi Decoding (AVD)
algorithm. We define the score of the i-th utterance
expressing the j-th seen emotion as:

cij = max
ỹ∈YU[1:i]

,ỹk=j
C(ỹ), (10)

where c0j = M0,j . YU [1:i]
represents all possible

tag sequences from u1 to ui. The score cij rep-
resents the maximum CRF score of all possible
sequences ending with ỹi = eseej . Based on Eq.
(8), we can derive that:

cij = max
1<=k<=n

(c(i−1)k +Mk,j + Ssee
k,j ). (11)

The time complexity of calculating a single cij is
O(n). The overall time complexity for traversing
all cij is O(Nn2). During the traversal, we also
record the path y∗ = (y∗1, ..., y

∗
N ) with the maxi-

mum CRF score, such that cNy∗N > cNj , ∀j ̸= y∗N .
The final output of the AVD algorithm is a prob-

ability matrix P ∈ RN×n, where each pij ∈ P is
defined as follows:

pij =
cij − c(i−1)y∗i−1∑n

k=1(cik − c(i−1)y∗i−1
)
, (12)

where pij denotes the probability of the k-th ut-
terance expressing the j-th seen emotion. Then, we
can enhance the original utterance representation
using the seen emotion prototypes:

h′
i = hutte

i +
∑n

j=1
pijh

see
j , (13)

where h′
i incorporates the seen emotion prototypes

after considering similarity (from Ssee) and emo-
tional dependencies (from M ).

For a given ui, the predicted unseen emotion
label is obtained through nearest neighbor search:

yunsi = argmax
1<=j<=m

cos(h′
i,h

uns
j ). (14)

4 Experiments Settings

4.1 Datasets
We evaluate our ProEmoTrans on three widely used
datasets: IEMOCAP (Busso et al., 2008) is based
on two actors performing a script. EmoryNLP

Dataset # Conversations # Uterrances # Emos.train dev test train dev test
IEMOCAP (I) 100 20 31 4810 1000 1623 6
EmoryNLP (E) 659 89 79 7551 954 984 7

MELD (M) 1038 114 280 9989 1109 2610 7

Table 1: Statistics of experimental datasets.

(Zahiri and Choi, 2018) and MELD (Poria et al.,
2019) contain scripts collected from the Friends
TV series. We only use the text modality of these
datasets and follow previous work in splitting the
IEMOCAP dataset into training and validation sets.
The dataset statistics are drawn in Table 1. We
denote these datasets as I , E , and M, respectively.
We iterate through different source datasets to train
the model and use the validation and test sets of
the other two datasets as the target unseen emotion
datasets. For instance, to evaluate the model trained
on I for its performance on M test set, we select
E as the validation set. The statistics of the unseen
emotions under different source and target settings
are shown in Appendix A.1.

4.2 Implementation Details

We utilize Bert-base-uncased (Vaswani et al., 2017)
as both the utterance and prototype encoder. We
use ChatGPT-3.5 to generate enhanced emotion
descriptions. In each training batch, we input the
emotion descriptions and the utterances into the
encoders simultaneously. We use the AdamW op-
timizer (Kingma and Ba, 2015) with a batch size
of 4 and a learning rate of 2e − 5. The model is
trained for 10 epochs with 100 warm-up steps. All
experiments are conducted with an NVIDIA RTX
8000. The variance σ of the Gaussian distribution
is set to 0.5, and the temperature τ in Eq. (7) is set
to 0.02. We use the weighted-averaged F1 score
as the evaluation metric, considering only unseen
emotions. In each epoch, we evaluate the training
model on the validation set and save the best one to
test. All results are averaged across five runs with
different random seeds.

4.3 Baselines

Due to limited research, we choose the following
four types of baselines and make necessary modi-
fications to their original architectures to achieve
zero-shot prediction capability:

Feature-based models: DialogueGCN (Ghosal
et al., 2019), DialogueCRN (Hu et al., 2021),
and DualGAT (Zhang et al., 2023) design special
GNN/RNN-based modules to extract better utter-
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ance features and use a label-wise classification
head to predict the label of each utterance. They use
cross-entropy loss computed from the prediction
logits and the labels. To enable zero-shot predic-
tion capability, we replace the classification head
with a prototype encoder, which enables the model
to learn prototype vectors. Then we substitute the
original cross-entropy loss with a contrastive loss
based on prototype similarity (similar to Eq. 7).

Contrastive-based models: SACL-LSTM (Hu
et al., 2023), SCCL (Yang et al., 2023), and EACL
(Yu et al., 2024) focus on distinguishing semanti-
cally similar emotions using contrastive learning.
Since these models natively use representation sim-
ilarity for prediction, no modifications are needed.

Few-shot model: CPTC (Xu et al., 2023) lever-
ages sharable cross-task knowledge from the source
task to improve few-shot performance. By remov-
ing task-specific prompts, it can also perform zero-
shot prediction. Unlike in their original work, we
evaluate the model only on unseen emotions. To
ensure fairness, all of these comparison models use
BERT-base-uncased as their backbone.

LLMs: Llama-3.1-8b (Grattafiori et al., 2024),
Qwen-2.5-7b (Yang et al., 2025), GPT-4o (Bubeck
et al., 2023), and DeepSeek-V3 (Liu et al., 2024)
are used for zero-shot prediction. We design a
unified prompt template:
Given a conversation: <INPUT>. Please analyze
the emotion of each utterance in the conversation.
The emotions are included in <LABEL SET>.

5 Results and Analysis

5.1 Main Results

The overall performance on the three datasets
is reported in Table 2. We have the following
observations: Our ProEmoTrans outperforms all
other models by a significant margin. Compared
to the best baseline DeepSeek-V3, ProEmoTrans
achieved improvements in the weighted-averaged
F1 score of 11.58%, 6.1%, 4.24%, 2.05%, 3.44%,
and 5.88% across six different dataset settings.
This demonstrates that our ProEmoTrans exhibits
strong performance. The feature-based methods Di-
alogueGCN, DialogueCRN, and DualGAT perform
poorly due to their excessive parameter modules,
which make them prone to overfitting on seen emo-
tions. Few-shot model CPTC also shows inefficient
recognition of unseen emotions. The contrastive-
based methods SACL-LSTM, SCCL, and EACL fo-
cus on improving the distinguishability of different

Models E → I M → I
wP. wR. wF1. wP. wR. wF1.

DialogueGCN 6.83 4.55 5.84 5.61 3.48 4.71
DialogueCRN 7.48 6.48 6.51 7.08 5.16 6.44

DualGAT 9.08 5.58 7.49 7.11 5.14 6.12
CPTC 17.10 10.82 14.58 13.93 10.14 11.13

SACL-LSTM 33.05 24.50 20.55 36.39 19.25 19.90
SCCL 33.07 24.56 21.21 36.11 18.46 19.59
EACL 36.10 27.42 23.89 37.00 19.53 20.79

Llama-3.1-8b 38.17 20.30 23.63 44.33 30.61 24.79
Qwen-2.5-7b 39.34 21.58 24.20 45.15 31.37 25.66

GPT-4o 41.27 27.42 24.88 45.39 31.73 26.10
DeepSeek-V3 42.55 27.69 25.69 46.38 32.05 26.26

ProEmoTrans (Ours) 47.80 32.95 37.27 47.11 30.90 32.36

Models I → E M → E
wP. wR. wF1. wP. wR. wF1.

DialogueGCN 7.12 2.54 2.94 6.19 1.34 1.74
DialogueCRN 4.32 3.27 3.29 5.52 1.23 2.09

DualGAT 9.53 3.92 4.35 3.71 1.26 1.96
CPTC 7.06 4.19 5.16 3.94 1.37 2.41

SACL-LSTM 15.52 16.49 15.34 14.25 8.85 10.07
SCCL 14.29 15.44 14.71 15.00 9.67 11.31
EACL 17.48 18.01 17.36 16.36 9.74 12.39

Llama-3.1-8b 31.32 22.18 24.10 20.11 16.83 16.42
Qwen-2.5-7b 31.08 22.47 24.05 21.17 16.71 17.09

GPT-4o 31.14 21.61 24.51 20.71 16.32 18.25
DeepSeek-V3 31.01 23.27 24.10 22.91 16.27 18.68

ProEmoTrans (Ours) 31.36 27.67 28.34 24.98 19.07 20.73

Models I → M E → M
wP. wR. wF1. wP. wR. wF1.

DialogueGCN 5.76 3.12 4.44 5.42 1.99 2.67
DialogueCRN 7.46 4.00 5.13 6.93 3.15 3.95

DualGAT 8.20 4.12 5.07 6.23 2.08 2.94
CPTC 19.51 5.65 8.13 13.69 4.30 6.40

SACL-LSTM 31.60 19.29 25.60 29.55 22.28 25.48
SCCL 31.05 19.39 25.14 28.81 21.02 24.32
EACL 33.32 20.27 26.29 31.58 23.52 26.95

Llama-3.1-8b 31.08 22.47 24.05 32.81 25.36 27.73
Qwen-2.5-7b 30.50 43.80 35.12 34.72 26.96 29.76

GPT-4o 29.90 45.65 35.28 34.85 25.74 29.35
DeepSeek-V3 31.85 44.67 35.15 34.76 27.19 29.76

ProEmoTrans (Ours) 35.74 45.32 38.59 36.30 36.02 35.64

Table 2: The overall performance of all the compared
baselines and our ProEmoTrans on benchmark datasets.
Here wP., wR., and wF1. denote weighted-averaged
precision, recall, and F1 score.

emotions. Learning differentiated emotional proto-
types helps them perform better on the UERC task
than other supervised methods. LLMs outperform
other baselines with their rich prior knowledge. To
investigate how our model improves performance
compared to GPT-4o, we provide a more in-depth
discussion in the fine-grained analysis (Section
5.5).

5.2 Ablation Study

We conduct ablation studies to investigate the ef-
fectiveness of the key components in our method.
The results are shown in Table 3.

-w/o LED denotes removing the LED module
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Models E → I M → I I → E M → E I → M E → M Average
Proposed ProEmoTrans 37.27 32.36 28.34 20.73 38.59 35.64 32.16

- w/o LED 27.68 7.28 24.06 6.31 22.59 19.22 17.86 (14.30↓)
- w 1 Desc. 30.46 9.90 25.06 8.74 24.68 25.26 20.68 (11.48↓)
- w 3 Desc. 37.56 33.03 28.39 21.22 37.89 36.82 32.49 (0.33↑)
- w/o GSA 36.89 31.40 27.00 19.37 37.68 34.26 31.10 (1.06↓)
- w SA 36.27 30.78 26.47 19.82 37.01 33.45 30.63 (1.53↓)
- w/o CRF 31.22 19.20 18.29 16.59 33.82 32.27 25.23 (6.93↓)

Table 3: Ablation and comparison results for key components. Here 1 Desp. and 3 Desp. denote the number of
generated descriptions in LED. SA denotes replacing GSA with the original self-attention mechanism.

and directly using dictionary definitions as its de-
scription. It is evident that removing the LED re-
sults in a significant 14.3% drop in the model’s
average wF1 score, highlighting the importance
of descriptive information in enhancing emotion
representation. In the original model, we use two
descriptions (2 Desc.) to help the model fully cap-
ture the emotional semantics. To investigate the
impact of the number of generated descriptions, we
conduct experiments comparing the model’s perfor-
mance with different numbers of descriptions. As
shown in Table 3, with one description (-w 1 Desc.),
the average wF1 increases by 2.82% compared
to no Desp. However, it still shows an 11.48%
drop compared to the original 2 Desc.. With three
descriptions (-w 3 Desc.), the average wF1 only
slightly increases by 0.33%. This indicates that 2
Desc. are sufficient for the model to fully capture
the semantic meaning.

-w/o GSA denotes removing the GSA mecha-
nism and directly using H from Eq. (3) as the final
utterance representations. This led to a decrease of
1.06% in the average wF1, demonstrating the posi-
tive role of the GSA mechanism in enhancing utter-
ance representations. Since the GSA mechanism
benefits from aggregating highly relevant informa-
tion while reducing the negative impact of distant
utterances, we further compare it with using the
self-attention mechanism (SA) alone. The results
show that the performance drops by 1.53%, and it
even performs 0.47% worse than when no mech-
anism was used (-w/o GSA). This demonstrates
that directly using SA for utterance representation
learning has a detrimental effect, with the negative
impact stemming from distant noise.

-w/o CRF denotes removing the CRF layer and
the AVD algorithm, and during the inference phase,
it directly uses hseei and hunsj for nearest neigh-
bor search as specified in Eq. (14). The results
show a decrease of 6.93% in average wF1, which
demonstrates that the AVD algorithm, by leverag-
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Figure 3: Effects of σ.

Model Performance Inference Costs
bert-base-uncased 32.16 6.21 /ms

roberta-base 33.02 6.34 /ms
bert-large-uncased 34.48 9.12 /ms

roberta-large 34.83 9.26 /ms

Table 4: Performance (wF1.) and computation cost
(/ms) with different language models

ing the emotion transition dependencies learned by
the CRF layer, plays a crucial role in enhancing the
model’s performance.

5.3 Hyperparameter Sensitivity

The variance σ in the GSA mechanism controls the
attention range. To study the impact of σ on per-
formance, we conducted a sensitivity analysis, as
shown in Figure 3. It can be observed that the best
performance is achieved when σ is set to 0.5. As
σ increases, the performance gradually decreases
and converges. In fact, as σ grows, the Gaussian
Self-Attention mechanism gradually degenerates
into a standard self-attention mechanism.

5.4 Average Performance and Computation
Cost with Different Language Models

To investigate the effect of using different pre-
trained language models and the corresponding
computation costs, we conduct experiments and
record the average performance and inference costs
in Table 4. Using roberta-base (Liu et al., 2019) im-
proves the model’s average performance by 0.86%.
With the larger versions, Bert and Roberta improve
the model’s average performance by 2.32% and

603



0

10

20

30

40

50

excited
(32.04%)

frustrated
(40.82%)

angry 
(17.56%)

happy
(9.58%)

EmoTrans
GPT-4o

-w/o LED

-w/o CRF
w

F1
-s

co
re

 (%
)

(a) E → I

w
F1

-s
co

re
 (%

)

0

10

20

30

40

50

excited
(38.87%)

frustrated
(49.52%)

happy
(11.62%)

EmoTrans
GPT-4o

-w/o LED

-w/o CRF

(b) M → I

0

10

20

30

40

50

scared
(18.53%)

joy
(34.66%)

peaceful
(17.73%)

powerful
(15.36%)

mad
(13.74%)

EmoTrans
GPT-4o

-w/o LED

-w/o CRF

w
F1

-s
co

re
 (%

)

(c) I → E

0

10

20

30

40

50

peaceful
(27.14%)

scared
(28.36%)

powerful
(23.47%)

mad
(21.03%)

EmoTrans
GPT-4o

-w/o LED

-w/o CRF

w
F1

-s
co

re
 (%

)

(d) M → E

w
F1

-s
co

re
 (%

)
0

10

20

30

40

50

surprise
(35.08%)

joy
(50.19%)

disgust
(8.49%)

fear
(6.24%)

EmoTrans
GPT-4o

-w/o LED

-w/o CRF

(e) I → M

w
F1

-s
co

re
 (%

)

0

10

20

30

40

50

surprise
(37.77%)

angry
(46.37%)

disgust
(9.14%)

fear
(6.72%)

EmoTrans
GPT-4o

-w/o LED

-w/o CRF

(f) E → M
Figure 4: Fine-grained analysis of different methods, with the proportion of unseen emotions also presented.

1.81%, respectively. However, the average infer-
ence time per sample increases by 2.91 ms and 2.92
ms, respectively.

5.5 Fine-grained Analysis
As shown in Figure 4, we conduct an experiment
to demonstrate the fine-grained performance of dif-
ferent methods. Comparing the performance of
ProEmoTrans and GPT-4o, we can observe that
ProEmoTrans performs better in most unseen emo-
tions. However, as the emotion proportion de-
creases, ProEmoTrans shows a more noticeable
decline in performance. We believe this is due to
GPT-4o relying on prior knowledge, while ProE-
moTrans depends on the quality of prototype-based
representation learning, which makes it more sen-
sitive to the distribution of categories.

Removing the LED (-w/o LED) causes a perfor-
mance drop across all unseen emotions, to varying
degrees, highlighting the LED’s comprehensive
contribution. Similarly, removing the CRF (-w/o
CRF) also leads to a nearly overall performance de-
cline, but in some cases, it improves performance.
For example, in subplot (f), it leads to a 2.45% in-
crease for surprise. This suggests that while the
CRF layer optimizes global performance, it may
not be ideal for certain local categories.

5.6 Visualization
To provide more interpretability, we visualize the
embedding space of utterances and unseen emo-
tions on E → I datasets using t-SNE (Van der
Maaten and Hinton, 2008), as shown in Figure 5.
First, we find that positive emotions (excited and
happy) are farther apart from negative emotions
(frustrated and angry), while emotions of the same

frustrated
angry

excited

happy
emotion utterance

(a) Proposed ProEmoTrans

frustrated
angry

excited

happy
emotion utterance

(b) -w/o CRF

Figure 5: t-SNE visualization of utterance and emotion
embeddings in E → I datasets.
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Figure 6: Heatmap of emotion prototype similarities.

polarity are closer to each other, which aligns with
our intuition. Next, comparing subfigures (a) and
(b), we can see that adding the CRF layer enhances
the distinguishability of utterance and emotion em-
beddings, demonstrating the positive impact of the
CRF layer and AVD algorithms in our method.

We also collect all the emotion prototype embed-
dings and compute their cosine similarities. The
resulting heatmap is shown in Figure 6. It can be
observed that, first, the cosine similarity is higher
between similar emotions (e.g., happy and joy).
Second, there is a more pronounced difference in
similarity between positive and negative emotions.
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Models E → I M → I I → E M → E I → M E → M Average
Contrastive Similarity (Ours) 37.27 32.36 28.34 20.73 38.59 35.64 32.16

- w Euclidean distances 35.12 30.03 27.23 18.89 37.77 34.07 30.52
- w Cosine similarity 36.45 31.91 27.67 20.10 37.85 34.98 31.49
- w Dot Product 35.78 30.56 27.34 19.52 36.29 34.27 30.63

Table 5: The results of comparing contrastive similarity with other similarity metrics.

Models E I M
KET 13.12 16.46 8.97

TUCORE-GCN 13.11 15.27 25.96
EmotionFlow 14.65 16.99 29.34

SPCL 14.99 18.73 29.41
CTPT 20.57 31.82 31.28

ProEmoTrans (Ours) 22.46 33.20 33.29

Table 6: Performance of different ERC datasets under
the few-shot settings (16-shot). All the baseline results
are retrieved from Xu et al. (2023). We bolded the best
result and underline the second best.

5.7 More Additional Experiments

5.8 Analysis on Contrastive Similarity

The contrastive similarity (Oord et al., 2018) can
effectively measure the difference between two em-
beddings. To validate its effectiveness, we con-
ducted experiments comparing it with other similar-
ity metrics. The results are shown in Table 5. When
using Euclidean distance, cosine similarity, and
dot product, the model’s performance decreased
by 1.64%, 0.67%, and 1.53%, respectively, which
proves the effectiveness of contrastive similarity.

5.8.1 Few-shot Performance
Our model can also be used for few-shot predic-
tion without any modifications. To investigate the
performance of our model in the few-shot setting,
we conducted experiments as shown in Table 6.
To ensure a fair comparison with the baselines,
we follow the 16-shot setting and use weighted
macro-F1 as the evaluation metric. The applied
baselines include: KEY (Zhong et al., 2019) ad-
dresses ERC tasks by utilizing external knowledge
bases. TUCORE-GCN (Lee and Choi, 2021) and
EmotionFlow (Song et al., 2022b) are GCN-based
and RNN-based ERC model, respectivly. SPCL
(Song et al., 2022a) uses supervised contrastive
learning to address the class imbalance problem
in ERC. CTPT (Xu et al., 2023) is introduced in
Section 4.3. According to the results, our ProE-
moTrans outperforms the best baseline, CTPT, by
1.89%, 1.38%, and 2.01% on the three datasets,
respectively. This demonstrates that our model also
performs excellently in the few-shot setting.

6 Conclusion

In this paper, we propose a simple and effective
method named ProEmoTrans for the newly pro-
posed UERC task. First, we introduce an LLM-
enhanced Emotion Description module to enhance
emotion prototype learning. Next, a parameter-free
Gaussian Self-Attention mechanism is designed to
aggregate useful information from the conversation
while filtering out noise. This mechanism can learn
inter-utterance relations and prevent overfitting that
could arise from parameter training. Finally, we
propose an Attention Viterbi Decoding algorithm
to transfer the useful seen emotion dependencies
learned during training to unseen emotions. Ex-
tensive experiments on three datasets validate the
effectiveness of our approach and the individual
modules we designed. In future work, our goal is
to further optimize prototype representations.

7 Limitations

Our LLM prompt templates rely on manual design,
and their effectiveness has not been verified with
more complex emotions. Developing automated
prompt-tuning templates would be an interesting
avenue for exploration. Additionally, our approach
focuses solely on the text modality and does not in-
corporate multi-modal information, such as facial
expressions, which could provide valuable addi-
tional information.
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A More Details of Experiments Settings

A.1 Datasets

Source Target
I E M

I / po, pe, sc, jo, ma su, di, fe, jo
E ex, fr, ha, an / su, di, fe, an
M ex, fr, ha po, pe, sc, ma /

Table 7: Statistics of unseen emotions under different
source and target settings. We use the first two letters to
denote the emotions in Table 1, for example, po stands
for powerful.

The statistics of the unseen emotions under dif-
ferent source and target settings are shown in Table
7. For example, if we chose I as source dataset
and E as target dataset, the unseen emotions are
powerful, peaceful, scared, joy, and mad.

A.2 Baselines

The details of baselines are as follows:

• DialogueGCN (Ghosal et al., 2019) uses a GCN
to model the inter-utterance dependency.

• DialogueCRN (Hu et al., 2021) is one of the
best RNN-based ERC models. They design mul-
tiple rounds of reasoning modules to extract and
integrate emotional cues.

• DualGAT (Zhang et al., 2023) introduces a Dual
Graph Attention Network to capture complex
dependencies of discourse structure and speaker-
aware context.

• SACL-LSTM (Hu et al., 2023) proposes a super-
vised adversarial contrastive learning method for
learning class-spread structured representations.

• SCCL (Yang et al., 2023) proposes a supervised
cluster-level contrastive learning method to in-
corporate measurable emotion prototypes.

• EACL (Yu et al., 2024) proposes an emotion-
anchored contrastive learning framework, which
generates more distinguishable utterance repre-
sentations for similar emotions.

• CPTC (Xu et al., 2023) leverages sharable cross-
task knowledge from the source task to improve
few-shot performance.

We made the necessary modifications for each base-
line to enable zero-shot prediction.

B More Additional Experiments

B.1 Results with Parameterized Modules
In supervised settings, previous methods have de-
signed various parameterized modules to help learn
better utterance representations. In the zero-shot
setting, to validate their effectiveness, we con-
duct comparative experiments by replacing the
Gaussian Self-Attention module in our model with
LSTM, GCN, and GAT. The experimental results
are shown in Table 8. It can be observed that the
performance is quite weak, which proves that over-
fitting due to the parameter module severely hin-
ders the generalization performance.

B.2 Utterance-level Performance
We conducted a comparative experiment on zero-
shot ERC at the utterance level, with results shown
in Table 9, where -w utterance-level refers to ap-
plying LLM baselines to prompt each individual
utterance. Our experiments uncovered some in-
triguing findings: On the longer dialogue dataset
(IEMOCAP, avg. length 52), utterance-level clas-
sification significantly outperformed the original
conversation-level approach. We believe that ex-
cessively long conversations hinder LLM’s emo-
tional analysis capability by overwhelming con-
text processing. On the other two datasets (avg.
lengths 12 and 9), utterance-level performance was
slightly lower than conversation-level. We attribute
this to the loss of contextual information, which
poses challenges for utterances with ambiguous
emotional cues or those that are very brief. For ex-
ample, the utterance "That only took me an hour."
was misclassified as joy at the utterance level, but
correctly classified as sad at the conversation level
when the broader topic (divorce) was considered.
Crucially, our method consistently maintains an
advantage across different conversation lengths, de-
spite the observed variations in zero-shot LLM clas-
sification performance.

C Details of LED Generated Descriptions

To eliminate biases introduced by the quality of
generated descriptions, we regenerate new descrip-
tions in each of the five random runs. The emotion
descriptions generated using the LED module in
one of the five runs are shown in Table 10.
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Models E → I M → I I → E M → E I → M E → M Average
Proposed ProEmoTrans 37.27 32.36 28.34 20.73 38.59 35.64 32.16

-w LSTM 9.37 8.82 7.74 6.04 7.70 6.78 7.74
-w GCN 8.42 8.10 6.47 5.19 7.63 5.97 6.96
-w GAT 7.57 8.93 6.19 5.65 7.11 6.08 6.92

Table 8: Comparative experiments by replacing the GSA module with LSTM, GCN, and GAT.

Models E → I M → I I → E M → E I → M E → M Average
Proposed ProEmoTrans 37.27 32.36 28.34 20.73 38.59 35.64 32.16
DeepSeek-V3 25.69 26.26 24.10 18.68 35.15 29.76 26.61 (5.55↓)

-w utterance-level 30.06 31.52 23.27 19.04 34.86 29.45 28.03 (4.13↓)
GPT-4o 24.88 26.10 24.51 18.25 35.28 29.35 26.40 (5.76↓)

-w utterance-level 30.24 31.25 24.22 18.48 35.07 29.51 28.13 (4.03↓)

Table 9: Performance comparison on Zero-Shot ERC at the utterance level.

Emotion Description LED Generated Description
joy a feeling of extreme happiness or cheerfulness, es-

pecially related to the acquisition or expectation of
something good.

1. When she received the good news, a bright smile
spread across her face. 2. At the celebration, laughter
filled the room, creating a vibrant atmosphere.

happy the emotion of being happy; elation. 1. She smiled as she read the message, feeling content
with the little surprise. 2. As the music played, a
warm sense of fulfillment washed over her, making
everything else fade away.

surprise the feeling that something unexpected has happened. 1. The unexpected turn of events left him speechless,
eyes wide in disbelief. 2. She could hardly believe her
ears when she heard the astonishing news.

excited having great enthusiasm, passion, and energy. 1. Her heart raced as she opened the envelope con-
taining the results. 2. He couldn’t sit still, eagerly
anticipating the start of the event.

peaceful motionless and calm. 1. The gentle sound of the waves lapping against the
shore filled her with calm. 2. Sitting under the shade
of the old tree, he felt completely at ease.

sad emotionally negative and feeling sorrow. 1. He stared out the window, his heart heavy with a
lingering sense of loss. 2. As she walked through the
empty hall, a wave of nostalgia washed over her.

anger displaying or feeling anger. 1. She clenched her fists and glared at him when she
heard the unfair criticism. 2. His face turned red as he
confronted the person who had betrayed his trust.

mad feeling annoyed. 1. He slammed the door shut, frustration boiling be-
neath the surface. 2. Her eyes flashed with irritation
as she listened to the unfair remarks.

frustrated the feeling of annoyance at impossibility from resis-
tance or inability to achieve something.

1. She let out a sigh and ran her fingers through her
hair, feeling exasperated with the situation. 2. He
stared at the puzzle pieces scattered on the table, un-
able to find a solution.

scared feeling afraid and frightened. 1. A cold sweat broke out on his forehead as he heard
footsteps behind him in the dark. 2. She held her
breath, feeling a knot tighten in her stomach during
the thunderstorm.

fear a strong, unpleasant emotion or feeling caused by ac-
tual or perceived danger or threat.

1. In the dark alley, a sudden noise made his heart race
with unease. 2. She felt a chill run down her spine as
shadows flickered around her.

powerful having, or capable of exerting, power or influence. 1. Standing at the edge of the cliff, she felt an over-
whelming sense of strength and determination. 2. The
speaker’s voice resonated through the hall, command-
ing everyone’s attention.

disgust to cause an intense dislike for something. 1. I couldn’t believe it when my teammate ignored my
advice during the game. 2. It drove me crazy when the
internet kept disconnecting while I was working.

neutral neither positive nor negative. 1. He sat quietly, showing no particular reaction to the
events around him. 2. The room was filled with a quiet
stillness as everyone focused on their tasks.

Table 10: Details of LED generated descriptions
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