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Abstract

Currently, Large Language Models (LLMs)
have achieved remarkable results in machine
translation. However, their performance in
multi-domain translation (MDT) is less satis-
factory, the meanings of words can vary across
different domains, highlighting the significant
ambiguity inherent in MDT. Therefore, eval-
uating the disambiguation ability of LLMs in
MDT remains an open problem. To this end,
we present an evaluation and analysis of LLMs
on disambiguation in multi-domain translation
(DMDTEval), our systematic evaluation frame-
work consisting of three aspects: (1) we con-
struct a translation test set with multi-domain
ambiguous word annotation, (2) we curate a
diverse set of disambiguation prompt strategies,
and (3) we design precise disambiguation met-
rics, and study the efficacy of various prompt
strategies on multiple state-of-the-art LLMs.
We conduct comprehensive experiments across
4 language pairs and 13 domains, our extensive
experiments reveal a number of crucial findings
that we believe will pave the way and also fa-
cilitate further research in the critical area of
improving the disambiguation of LLM:s.

1 Introduction

In recent years, LLMs achieved promising re-
sults in machine translation (MT) that demon-
strate their potential in practical applications (Jiao
et al., 2023b; Qian et al., 2024; Feng et al., 2025).
However, LLMs perform unsatisfactorily in multi-
domain translation (MDT) (Zheng et al., 2024; Hu
et al., 2024). LLMs rely on extensive pre-training
data, but multi-domain parallel corpora remain ex-
ceedingly scarce. This scarcity limits their trans-
lation capabilities and prevents them from effec-
tively acquiring cross-domain knowledge, which
leads to translation ambiguities. Figure 1, Example
@, shows that directly using LL.Ms for translation

"Yujie Zhang is the corresponding author.

Please translate the following sentence into Chinese:
“Managed under the government system”
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Please translate the following sentence into Chinese: R
“Managed under the government system” AN
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Figure 1: Two examples from the UM-Corpus English-
Chinese test set. We prompt LLMs with domain label
to disambiguate in Qwen-2.5-7B-Instruct. Red text rep-
resents the ambiguity translation. Blue text represents
for the correct translation.

causes word ambiguities. For example, the term
“system,” which refers to “#& 2 (framework), may
be mistranslated as “ & 4.7 (the literal translation
of system). This example illustrates that word am-
biguity poses a key challenge for LLMs in MDT.

An intuitive solution is to directly prompt the
LLMs to translate according to the specific domain
(Hu et al., 2024), and we find that this approach
yields the correct translation. The translation of
the term “system’ in the Law domain is accurate
“fk 47, as shown in the Figure 1, Example @. The
critical issue is how to effectively leverage do-
main information in prompt strategies to en-
hance the performance of LLMs.

Regarding the above critical issue, previous work
mainly focuses on two key aspects: (i) Multi-
domain translation (Jiang et al., 2020; Man et al.,
2024b, 2025): these methods aim to enhance trans-
lation performance across different domains by in-
corporating sentence-level and word-level domain
labels. Recently, some researchers have explored
the performance of LLMs in MDT (Hu et al., 2024)
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and investigated fine-tuning LL.Ms using domain-
specific parallel corpora (Hu et al., 2024; Zheng
et al., 2024). (ii) Disambiguation evaluation for
translation: (Campolungo et al., 2022; Mahesh-
wari et al., 2024; Martelli et al., 2025): these stud-
ies evaluate the ability of models to handle and
translate lexical ambiguities in general domains.
The above-mentioned work provides feasible ap-
proaches for MDT under LLMs. However, three
key research questions (RQs) remain unresolved
in MDT:

* RQ1: How can we quantify the disambigua-
tion ability of LLMs in MDT? Existing work
(i) evaluates or fine-tunes MDT with LLMs,
but does not address the role of key factors
(i.e., ambiguity) that influence performance
variation in MDT. Therefore, constructing an
ambiguity dataset and designing evaluation
metrics for ambiguity are crucial.

RQ2: Can various prompting techniques
help LLMs disambiguate in MDT? Figure
1, Example @, shows that the translation
changes when the prompt includes domain
information. This observation suggests that
domain information influences the translation
of LLMs. Therefore, we explore additional
prompt strategies to determine how they affect
the performance of LLMs in MDT.

RQ3: What domain knowledge is essential
for LLMs to achieve effective MDT? Previ-
ous work (ii) mainly evaluates ambiguity in
general domains. In the MDT, the core re-
search questions revolve around cross-domain
word ambiguities and identifying which do-
main knowledge can be effectively leveraged
under LLMs.

To answer and explore the aforementioned ques-
tions, we introduce an evaluation and analysis of
LLMs on disambiguation in multi-domain trans-
lation for LLMs (DMDTEval) to tackle the chal-
lenges in MDT. For RQ1: We employ a word
alignment tool to construct a multi-domain ambigu-
ity vocabulary and manually annotate ambiguous
words in the test set. Additionally, we design an
evaluation metric to assess disambiguation ability
in translation and compute the accuracy of ambigu-
ous words being correctly translated. For RQ2: We
design multiple disambiguation prompt strategies
to evaluate the translation performance of promi-
nent LLMs across multiple domains. For RQ3:

We conduct extensive experiments across four lan-
guage pairs, with a particular focus on English-
Chinese translation, providing a detailed and in-
depth analysis along with key findings based on
these experimental results.

To sum up, the main contributions of our work
can be summarized as follows:

* We construct an ambiguous word dataset
specifically tailored for MDT. This dataset
enables systematic evaluation of the disam-
biguation capabilities of LLMs.

* We systematically explore various disam-
biguation prompt strategies, including zero-
shot, chain-of-thought (CoT), few-shot, and
reflection prompting, to evaluate MDT quality
using 5 popular open-source LLMs.

* We investigate the types of domain knowl-
edge required by LLMs to evaluate transla-
tions across 4 language pairs and 13 domains,
focusing on sentence-level and word-level do-
main knowledge, domain-specific examples,
and domain discrimination capabilities.

2 DMDTEval: Evaluation Framework

In our work, our goal includes (1) constructing
an ambiguous word test set (§2.1). (2) evaluat-
ing the influence of domain information in LLMs’
translation with different prompting (§2.2). (3) and
designing the metrics of word ambiguity (§2.4).

2.1 Data Construction

In this section, we aim to construct a multi-domain
ambiguous word vocabulary to annotate the test set.
Currently, the publicly available test sets of domain-
specific machine translation is scarce. We use the
same dataset as in previous research (Man et al.,
2024a; Hu et al., 2024), we mainly utilize two MDT
test sets for ambiguous data set': UM-Corpus?
(English-to-Chinese), including five domains: Edu-
cation, Law, News Science, and Spoken (Tian et al.,
2014), and OPUS? (German-to-English), including
five domains: 17, Koran, Laws, Medical, and Sub-
titles (Aharoni and Goldberg, 2020). The detailed

ISince this part of the data involves manual annotation, we
primarily construct ambiguous data sets for English—Chinese
and German-English, given our linguistic expertise in these
language pairs. For Japanese—English and Korean—-English,
we utilize these data to evaluate overall translation quality.

“http://nlp2ct.cis.umac.mo/um-corpus/

3http://opus.nlpl.eu/
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[Data Construction]
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Figure 2: Ambiguous word test set construction annotation. This process consists of three steps.
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Figure 3: Statistics of ambiguous word in the test set.

English-Chinese

Trainset Edu  Laws News Sci Spo
444K 207K 443K 263K 210K

Test set Edu  Laws News Sci Spo

790 456 1500 503 455

German-English

Train set IT Kor Laws Med Sub
211K 16K 434K 233K 470K

Test set IT Kor Laws Med Sub
2000 2000 2000 2000 2000

Table 1: The statistics of multi-domain translation data
sets. Edu represents for the Education domain, Sci
represents for the Science domain, Spo represents for
the spoken domain, and Sub represents for the subtitles
domain.

statistic of these data sets in the Table 1. We utilize
the train set from these domains to obtain an am-
biguity vocabulary, as shown in the Figure 2. Our
annotation processing consists of three steps:

Step 1: Bilingual Vocabulary Construction. In
this step, we apply Awesome-Align* (Dou and Neu-
big, 2021) to perform word alignment on multi-
domain training corpora and extract bilingual word
pairs. We then deduplicate and merge the bilin-

*https://github.com/neulab/awesome-align

gual vocabularies within each domain based on
the source-language tokens. This process yields
domain-specific bilingual lexicons, which include
a substantial number of ambiguous words (e.g.,
“power” — “# 717 in Law domain, “power” —

“ft. = in Science domain).

Step 2: Ambiguous Vocabulary Construction. In
this step, we construct a cross-domain ambiguous
vocabulary based on the bilingual lexicons obtained
in Step 1. For each domain, we initialize an empty
set to store ambiguous word pairs. Then, for each
bilingual pair in the domain-specific lexicon, we
check whether the source word appears in other
domains with different target-language translations.
If such discrepancies are found, all corresponding
translations are added to the ambiguous vocabulary
set for that domain. This process results in a collec-
tion of domain-specific ambiguous vocabularies.

Step 3: Human Annotation. Due to inevitable
errors in word alignment, we manually refine the
bilingual lexicons derived from the alignment pro-
cess. In this step, we annotate the sentences in each
domain’s test set using the ambiguous vocabulary
obtained in Step 2. Specifically, we identify and
label instances of one-to-many source-language
words that appear in the test set. The statistics of
such ambiguous words are summarized in Figure 3.

Scoring of Alignment Quality. To evaluate the
quality of the word alignments in ambiguous vocab-
ulary construction, we randomly sample aligned
word pairs from each domain and ask bilingual
annotators to judge their correctness. Each pair
is labeled as correct, partially correct, or
incorrect. We calculate alignment accuracy as
the proportion of correct alignments. Table 10
shows the results across domains in Table 1, high-
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[Design of Prompt Strategies]

<Base prompt Templates >

T2: Please translate the following
sentence into Chinese :

T1: Please translate the following
sentence into Chinese:

T3: T4: Please translate the following
Please | | sentence into Chinese and then

T7: Step 1: Read this sentence.
Step 2: Translate this sentence

T5: Please translate the following
sentence into Chinese

T6: Please translate the following| | T8: Step 1:
sentence into Chinese according to
the Step 2: Translate this

sentence

Step 1: Read this sentence. translate the following sentence
Step 2: Translate this sentence. into Chinese:
<Disambiguation prompt Templates > ’,@\’
— Zero-shot + DI - CoT + DI = Few-shot + DI = Reflection + DI M

T9: Examples: 1.<...>; 2.<...>;
3<.>; 4<.>; 5<.>

T10: Please translate the following
sentence into Chinese and then
reflect and regenerate

Please translate the following
sentence into Chinese:

Figure 4: Design of Prompt Strategies. Light blue text represents for the specific information in each prompt strategy.
Light green text represents for the domain specific information of disambiguation prompt strategies.

lighting the need for human annotation in Step 3.
In addition, the relevant criteria and detailed infor-
mation regarding human annotation are provided
in Appendix B.

2.2 Design of Prompt Strategies

In this section, we introduce the design of prompt
templates, including both base prompt templates
and disambiguation prompt templates, as shown in
Figure 4.

Base Prompt Strategies. Designing an effective
prompt is the key to unlocking the translation ca-
pabilities of LLMs. Specifically, we evaluate im-
pact of different base prompt strategies, includ-
ing: (1) Zero-shot: this prompting directly asks
LLM to translate a source input into the target lan-
guage (Liu et al., 2018). (2) Chain-of-thought
(CoT): this strategy prompts LLMs to reason about
the input before generating an output (Wei et al.,
2022). (3) Few-shot: this prompting supplies an
LLM with task-specific examples before querying
it (Brown et al., 2020). (4) Reflection: this method
(Shinn et al., 2023) further reflect on the generated
translations yields new answers.

Disambiguation Prompt Strategies. In this work,
our prompt includes 1) instructions to perform the
task such as “Please translate the following sen-
tence into <target language>" (i.e., T1), and 2)
domain information such as domain tag. As shown
in Figure 4, our disambiguation prompts strategies
as following:

(1) Zero-shot + domain information: This
strategies contain sentence-level and word-level:

1) Template 5 (T5): This template primarily uti-
lizes domain information from the sentence-level
domain tag, based on sentence-level MDT (Kobus
et al., 2017). 1) Template 6 (T6): This template
further utilize the domain information of each word
base on the word-level MDT (Jiang et al., 2020).
We aim to evaluate whether fine-grained domain
information can disambiguate and improve the ca-
pability of LLMs’ understanding.

(2) CoT + domain information: We also test
whether CoT prompting could improve LLMs’ per-
formance by utilizing reasoning-based steps for
quality evaluation, Template 2 “Please translate
the following sentence into <target language> step
by step: Step 1: read this sentence. Step 2: trans-
late this sentence.” Moreover, we design two dis-
ambiguation prompting by devising Template 2:
1) Template 7: In this prompt, we give domain
tag in step 2. This template further utilize domain
information in reasoning ; 2) Template 8: In this
prompt, we ask LL.Ms to automatically discrimi-
nate which domain the source sentence comes from
in step 1.

(3) Few-shot + domain information: We ran-
domly retrieve 5-shot examples from the training
datastore and use these examples for translation,
this prompt is Template 3. To further integrate
domain information, we add domain tags to each
example, enhancing LLM’s ability to perceive do-
main as Template 9.

(4) Reflection + domain information: Reflec-
tion encourages LLMs to review and refine its re-
sponses for improved accuracy and coherence (?).
After reflecting on its initial output, the large model
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Education Laws News Science Spoken AVG
Neural Machine Translation-based Methods
NLLB / 25.03/79.65 38.61/84.73 16.85/74.87 17.37/7640 11.43/72.86 21.86/77.70
Translation-based LLMs
T1 27.86/86.87 23.35/88.95 28.57/84.02 25.39/84.39 17.59/76.32 24.75/84.91
ALMA-7B T2 30.45/87.14 41.43/89.24 28.13/83.99 25.79/84.36 18.65/76.36 28.09/84.02
T3 29.64/86.86 43.41/89.54 27.22/83.65 26.00/84.51 18.45/77.02 28.94/84.72
T4 27.86/86.88 2491/89.07 28.26/83.93 25.82/84.50 1821/77.52 25.81/84.58
Open-source LLMs

T1 2297/77.40 22.88/71.30 16.03/72.31 15.81/74.04 15.62/72.46 18.06/73.30
LLaMA-3-8B T2 22.70/79.50 31.21/73.31 21.32/74.89 19.87/76.00 17.10/72.05 22.04/75.15
T3 28.20/86.67 43.27/87.67 23.92/8295 2259/84.01 1820/73.45 27.64/83.75
T4 20.37/78.76 26.53/73.23 17.77/76.09 17.67/76.69 1551/70.32 19.77/74.82

S T T1 1486/7796 26.01/7996 1622/77.40 15.68/78.56 10.21/68.69 16.60/76.51
Mistral-7B T2 19.04/81.53 24.10/79.76 15.71/7790 15.09/80.34 10.08/68.88 16.80/77.68
T3 18.22/82.54 26.12/82.88 17.01/79.63 16.21/80.97 11.23/69.04 15.96/79.61
T4 10.99/74.26 7.38/66.07 6.27/67.15 7.42/70.10 8.03/65.11 7.42768.14

S T 15.62/77.05 20.03/81.87 15.96/7828 17.66/78.54 12.10/72.33 16.67/77.61
Gemma-2-9B T2 16.32/79.09 20.36/83.23 16.56/79.51 18.16/80.83 12.06/71.03 17.85/80.67
T3 18.12/81.08 20.66/83.35 16.78/79.80 18.99/82.79 13.11/72.86 17.93/79.98
T4 14.69/71.78 13.16/69.12 12.33/70.57 1525/71.26 11.10/66.42 13.31/69.83

T T T T T T TT  33.14/88.100 50.82/88.94 30.04/84.51 2876/84.82° '19.20/77.00 32.39/84.67
Qwen-2.5-7B T2 34.02/88.06 51.19/89.60 30.51/84.91 28.82/8591 2245/79.31 33.40/85.56
T3 34.17/88.17 50.48/89.22 2991/84.66 2833/85.64 18.44/77.12 32.27/84.96
T4 26.75/86.06 47.77/81.76 26.16/82.71 2590/84.03 17.01/76.05 28.72/83.32

T T T T T T T 36.147/89.45 53.69/89.36  34.75/8720 30.55/88.22 '23.65/80.02 35.76/86.85
Qwen-2.5-14B T2 37.90/89.65 53.87/89.98 35.14/87.72 31.04/88.80 23.51/80.00 36.29/87.23
T3 35.77/88.12 52.94/89.12 34.58/86.87 30.23/88.01 23.55/79.49 35.41/86.32
T4 37.19/89.82 53.16/89.25 34.64/87.58 30.82/88.03 23.42/80.05 35.85/86.95

Table 2: BLEU and COMET scores on the English-to-Chinese translation task (T1-T4) with different open-source
LLMs and NMT models. The best results are highlighted in bold.

regenerates the translation as Template 4. We fur-
ther enhance this process by incorporating domain
information, encouraging the model to produce
domain-specific translation results, as shown in
Figure 4 Template 10.

2.3 Model Comparison and Selection

In order to achieve more accurate and cost-effective
replication, we are using some popular general-
purpose LLMs. Our model selection can be di-
vided into the following three categories: (1) Open-
source: we select LLama-3-8B (Grattafiori et al.,
2024), Mistral-7B (Jiang et al., 2024), Gemma-2-
9b (Team et al., 2024), and Qwen-2.5-7B which
was specifically tested on a diverse set of 12 lan-
guages and showed impressive multilingual capa-
bilities (Bai et al., 2023). (2) LLM-based transla-
tion model: ALMA-7B fine-tuned in Llama-3-7B
with translation instructions (Xu et al., 2024). For
all 5 selected models, we use the instruction-tuned
version, i.e., the chat model, for zero-shot, CoT
and few-shot inference. As shown in the Table 2,
Qwen-2.5-7B achieve the best performance on the

English-Chinese MDT. Therefore, we selected it
as the base model for subsequent in-depth analysis
in the section 3.1. (3) NMT: NLLB (NLLB Team
et al., 2024) is a multilingual translation model
developed by Meta Al, supporting 200 languages.
In addition, to demonstrate the performance on a
larger-scale model, we also compare with Qwen-
2.5-14B. The specific results are shown in Ap-
pendix C Table 2 and 10.

2.4 Evaluation Metrics

Translation Quality. We adopt two widely-used
metrics: SacreBLEU (Post, 2018)°, a n-gram
matching-based metric, and the wmt22-comet-da
model is used to generate the COMET® scores,
the scope is 0-1, for convenience, we multiply the
comet score by 100 in our experiments. In particu-
lar, we use the paired bootstrap resampling methods
(Koehn, 2004) for the statistical significance test.

5Signature: nrefs:1|case:mixed|eff:no|tok:13a
| smooth:exp|version:2.1.0
®https://github.com/Unbabel/COMET
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English-to-Chinese

Strategies AVG
Education Laws News Science Spoken
Tl 33.14/88.10 50.82/88.94 30.04/84.51 28.76/84.82 19.20/77.00 32.39/84.67
33.46/88.21 51.39/89.20 30.36/84.92 28.78/86.13 20.89/77.46 32.98/85.18
Zero-shot  T5-T1 +0.32/+0.11 +0.57/+0.26 +0.32/+0.41 +0.02/+1.31 +1.69/+0.46 +0.59/+0.51
32.64/87.84 50.10/88.29 30.10/84.25 27.99/8550 18.40/75.06 31.85/84.19
T6-T1 -0.50/-0.26 -0.72/-0.65 +0.06/-0.26 -0.77 /+0.68 -0.80/-1.94 -0.54/-0.48
77777777 T2 — 34.02/88.06 51.19/89.60 30.51/84.91 28.82/8591 2245/79.31 33.40/85.56
34.50/88.09 52.09/90.15 31.00/85.15 28.97/86.05 23.47/80.88 33.99/86.06
CoT T7-T2 +0.48/+0.03 +0.9/+0.55 +0.49/+0.24 +0.15/+0.14 +1.02/+1.57 +0.59/+0.50
33.56/88.22 50.39/88.79 30.15/84.88 28.95/86.05 22.02/79.01 32.61/85.79
T8-T2 -0.46 /+0.16 -0.80/-0.81 -0.36/-0.03 +0.13/+0.14 -0.43 /-0.30 -0.79 /+0.23
77777777 T3~ 34.17/88.17 50.48/89.22 29.91/84.66 28.33/85.64 18.44/77.82 32.27/85.10
Few-shot 33.63/88.03 50.46/89.49 29.76/84.68 27.94/85.89 18.05/77.32 31.97/85.08
T9-T3 -0.54/-0.14 -0.02 /+0.27 -0.15/+0.02 -039/+025 -0.39/-0.50 -0.30/-0.02
77777777 T4~ 26.75/86.06 47.77/87.76 26.167/8271 25.90/84.03 17.01/76.05 28.72/83.32
Reflection 32.80/87.83 50.61/89.16 30.24/84.57 28.60/85.68 22.20/79.40 32.89/85.33
T10-T4 +6.05/+1.77 +2.84/+1.40 +4.08/+ 1.86 +2.70/+ 1.65 +5.19/+3.35 +4.17/+2.01

Table 3: BLEU and COMET scores on the English-to-Chinese translation task for T1-T10 with Qwen-2.5-7B. We

bold the best performance results in each strategy.

text stands for the disambiguation prompting templates.

3

/” represents for the “BLEU / COMET”. Blue text represents for the improvement and red text represents for the

decrease.

Disambiguation Accuracy. To evaluate the disam-
biguation ability of LLMs in MDT, we propose a
metric based on the ambiguous vocabulary. Specif-
ically, we identify all ambiguous source-language
words in the test set and denote the total number
of such instances as n. Among them, we count m
instances where the words are correctly translated
according to their domain-specific meanings. We
define disambiguation accuracy as m/n, which re-
flects how effectively an LLM resolves lexical am-
biguity across domains. For example, in the science
domain, the word “power” should be translated as
“RE 2 (energy) rather than “A 71" (authority).

GPT-40-mini Evaluator. Previous research (Qian
et al., 2024) has shown that using GPT for trans-
lation quality evaluation is a feasible research ap-
proach. Therefore, we design a prompt to evaluate
the disambiguation capability of LLMs using GPT-

40-mini’.

3 Evaluation Experiments

In this section, we conduct an in-depth investiga-
tion of the three research questions (RQs) intro-
duced in the Section 1 through experiments on
English-Chinese translation.

Evaluation and Training. All our experiments
were run using 1 x NVIDIA V100 32G, for dif-

"The specific prompt template for GPT-40-mini Evaluator
in Appendix E.

ferent LLM variants. We use vLLM® (Kwon et al.,
2023) to save inference time. We keep the param-
eters consistent with those used in previous work
(Qian et al., 2024). For training, we use the Qwen-
2.5-7B as base model for supervised fine-tuning
base on the LLaMAFactory framework®. The De-
tails of the training procedure parameters are pro-
vided in Appendix A.

Evaluation Data. As shown in Table 1, the training
and testing data sizes for the English-Chinese and
German-English datasets are presented. Besides
these two language pairs, we use data sets from
FLORES'? (NLLB Team et al., 2024), selecting
Japanese-English and Korean-English. The test set
consists of 1,012 sentences covering three domains:
Wikinews, Wikibooks, and Wikiyago, referred to
in paper as the news, book, and travel domains.
After domain-wise splitting, the data for these three
domains consist of 341, 351, and 321 sentences,
respectively. Additionally, regarding the scoring
of alignment quality, we observe that our human
annotated results achieve higher accuracy, as shown
in Table 10.

3.1 Main Results

As shown in Table 3, compared with the Zero-shot
(i.e., T1), all strategies except T6 and T9 achieve

8https://github.com/vlim-project/vlim
“#https://github.com/hiyouga/LLaMA-Factory
https://huggingface.co/datasets/facebook/flores
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varying degrees of improvement. This demon-
strates that incorporating domain information is
effective for the vast majority of prompt strategies,
highlighting the positive role of disambiguation
prompts. However, we also observed several note-
worthy findings, which we analyze in detail below:

Finding 1: On average, incorporating domain infor-
mation does not lead to performance gains across the
different base prompt strategies.

Domain Education

which we hypothesize is due to their limited ability
to enhance disambiguation performance.

Domain Laws

SRC

Chapter III Fundamental Rights and Duties of
the Residents
_REF  B=F BR&OERRMALE

Chapter IX Supplementary Provisions
F U W]

Table 5: Two cases illustrate the specialized domain
terminology and distinct textual styles.

SRC He washed his hands in a basin.

_REF Mgz TF. .
Tl TR 23T F -

T6 e —ANZTFHT F

Domain News

SRC Is there a suicide contagion on Wall Street?
_REF__ @@itlkdnafsiirer
T2 ERBAEAFHEDG?

TS R B RGHBA B X

Table 4: Three cases illustrate the phenomenon of de-
creased average scores for T6 and T8.

Analysis and Case Study for Finding 1. As
shown in Table 4, for case 1, T6 adopts a word-
based domain information translation strategy, fo-
cusing on lexical accuracy. As a result, the transla-
tions often exhibit clear word-to-word alignments,
such as “a” — “—/~” and “basin” — “& . T8
automatically determines the domain of the sen-
tence and then translates accordingly. This strategy
may lead to translation errors (i.e., “‘contagion” —
“4£3%”) if the domain is Economic domain.

Finding 2: Apart from Reflection, adding domain infor-
mation to other strategies yields inconsistent improve-
ments across domains, even in the best-performing
approach on average, CoT with domain information.

Analysis for Finding 2. As shown in the Ta-
ble 3, CoT combined with domain information
(i.e., T7) achieves the highest average BLEU and
COMET scores, reaching “33.99 / 86.06” and
“22.52 / 80.55”, respectively. This indicates that
the reasoning-based approach of LLMs can gen-
erate more accurate translations across multiple
domains. Notably, the Reflection achieves consis-
tent improvements across all domains when domain
information is incorporated, suggesting that it ef-
fectively leverages domain knowledge during the
reasoning process. In contrast, other strategies do
not show consistent gains with domain information,

Finding 3: Different domains exhibit varying degrees
of sensitivity to prompt templates.

Analysis and Case Study for Finding 3. For
English-to-Chinese, in the zero-shot setting, the
Spoken domain sees notable gains from T1 to TS,
with BLEU increasing by 1.69 and COMET by
0.46, while the Science domain under the CoT strat-
egy shows minimal change from T2 to T7, with
BLEU increasing by only 0.15 and COMET by
0.14. In contrast, the Reflection strategy, compar-
ing T4 and T10, achieves consistent and substantial
improvements across all domains. For example,
in the Education domain, BLEU increases by 6.05
and COMET by 1.77, this is due to the presence
of more prominent domain features, such as spe-
cialized terminology and distinct textual styles, as
shown in Table 5.

Finding 4: In some domains, BLEU improves while
COMET decreases, indicating that these metrics fail to
adequately reflect the model’s ability to handle ambi-
guity in MDT.

Domain News

SRC It’s clear he doesn’t have any power.

REF o5 RBEAAEATALA
T6  RREAEMALE
T8 o 5 R A AEATALAL

Table 6: One case illustrate the phenomenon of BLEU
and COMET scores are not inconsistent for T6 and T8.

Analysis and Case Study for Finding 4. For
the English-to-Chinese translation direction, we
found that BLEU and COMET scores exhibit diver-
gent trends in the News domain. To illustrate this
phenomenon, we present a case where the English
word “power”—which can mean either “I % (au-
thority) or “71 & (strength)—demonstrates lexical
ambiguity, as shown in Table 6. This ambiguity
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Strategies Ch-En Ge-En Ja-En Ko-En AVG

T1  20.55/78.53 22.09/70.35 20.78/85.33 22.12/85.83 21.39/80.01
Zero-shot 21.94/79.83 26.84/74.89 21.29/85.76 23.15/86.01 23.31/81.62
20.33/77.84 23.59/7293 19.75/84.37 21.30/85.25 21.24/80.10

77777777 T2 21.99/80.02 28.97/78.62 22.25/86.35 22.72/8596 23.98/82.74
CoT 22.52/80.55 27.27/77.18 22.54/86.52 23.26/86.38 23.90/82.66
21.92/79.99 26.40/7538 19.70/84.29 21.94/85.54 22.49/81.30

) i‘e;vjsl;o; © T3 21.53779778 28.55/77.54  20.17/83.74 22.24785.69 23.12/81.69
21.84/79.98 28.63/77.56 20.90/85.19 22.74/85.98 23.53/82.18

) i;ﬂ;c;io; © T4 17.04776.775 251377581 21.35/85.66 22.627/86.00 21.54/81.06
21.33/79.26 27.47/77.27 20.31/84.96 22.83/86.08 22.99/81.89

Table 7: The average BLEU and COMET scores across four translation directions (Chinese-to-English, German-
to-English, Japanese-to-English, Korean-to-English) with Qwen-2.5-7B. The last column shows averaged results

across all directions. Bold numbers indicate the best performance within each group, and

disambiguation prompt strategies.

can lead to discrepancies in evaluation results when
using BLEU and COMET, as each metric may fa-
vor different reference choices. In summary, the
aforementioned interesting findings further demon-
strate the necessity of explicitly designing prompt
templates to reveal and study the disambiguation
capabilities of LLMs in MDT.

As shown in Table 7, we conducted experiments
on multi-domain datasets for Chinese—to—English,
German—to—English, Japanese—to—English, and Ko-
rean—to—English translation directions. The over-
all trends are consistent with those observed in
the English—to-Chinese experiments, which sup-
ports the validity and rationality of our proposed
research motivation. In particular, templates such
as T7 and T10 consistently achieve competitive
performance across multiple language directions,
indicating the robustness of our method. Moreover,
the relative improvements are more pronounced
in German—to—English and Japanese—to—English
tasks, suggesting that our approach is especially
effective for languages with greater structural di-
vergence from English. Detailed results for differ-
ent language directions across various domains are
provided in Appendix D.

3.2 Fine-tuning Results

Based on the experimental results in Table 3, we
further fine-tune the prompt strategies that benefit
from domain information on Qwen-2.5-7B. The
specific fine-tuned results are shown in the Fig-
ure 5, with the increase in fine-tuning data, all
prompt strategies exhibit improved average BLEU
scores. Notably, TS5 shows the greatest improve-
ment, which further highlights the effectiveness of
our proposed prompt design.

text denotes
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Figure 5: The average BLEU scores on the English-to-
Chinese translation task with different fine-tuning data
scales. The x-axis represents the amount of fine-tuning
data selected from each domain.

3.3 Disambiguation Performance

As shown in the Table 8, we further analyze the dis-
ambiguation performance of multiple disambigua-
tion strategies, contain the following conclusion:

e N
Conclusion 1 (= Finding 1): The disambiguation per-

formance of the templates also improves in consistency

with adding domain information.
N\ y

s N
Conclusion 2 (= Finding 2): The reason for the con-

sistent improvement in translation performance under

the reflection strategy lies in its ability to disambiguate

the target translations.
\ J

P
Conclusion 3 (= Finding 3): In domains with stronger

features (i.e., Law and Science domains), the improve-
ment in disambiguation accuracy is also greater. This
further demonstrates that using this metric in these

domains can better assess translation performance.
N J

6073



English-to-Chinese

Strategies AVG
Education Laws News Science Spoken
Tl 39.68 40.85 46.89 36.98 42.88 41.46
Zero-shot 42.56+2_gg 44.96+4_11 47-69+O_80 44.12+7_14 43.654) 77 44.60+'; 14
36.36.3 32 38.19-2 66 45.11 1.78 35.20-1 78 40.56., 32 39.08.2 38
T T2 4460 4597 4722 4514 4490 4557
CoT 45.04.0 44 46.98.101 4827.105 46.05.001 45.98.103 46.46.039
36.25.335 38.69728 38943553  30.10.4504 39.50540 36.70337
) Ee;v:sl:o; T3 4055 0 4160 4811 3725 43.00 4210
34.58.5.97 3926034 4230581  35.44.8 40.872.13 38.49.354
) Ileiﬂ;ctiio;i T4 4356 4207 4785  39.60 = 44.09 @ 4343
45.02, 46 43.05.008 4728057 405,055 45.60+151 44.22.079

Table 8: Disambiguation accuracy scores (%) on English-to-Chinese translation task for T1-T10 with Qwen-2.5-7B.

Conclusion 4 (= Finding 4): Disambiguation accu-
racy reflects improvements or declines in consistency,
thereby avoiding inconsistencies in the increases or de-
creases of BLEU and COMET scores.

Overall, the proposed disambiguation accu-
racy further demonstrates the effectiveness of the
prompt strategies and corroborates the findings dis-
cussed above. The detailed disambiguation accu-
racy results for German-to-English and GPT-4o-
mini are provided in Appendix E, respectively.

4 Related work

Multi-domain Translation. MDT seeks to design
a unified NMT model to translate texts across vari-
ous domains, which can be divided into sentence-
level (Kobus et al., 2017; Britz et al., 2017; Tars
and Fishel, 2018; Aharoni and Goldberg, 2020) and
word-level (Zeng et al., 2018; Su et al., 2021; Jiang
et al., 2020; Lai et al., 2022; Zhang et al., 2021)
domain representation learning. Recently, some
researchers have explored the MDT on LLMs (Hu
et al., 2024; Zheng et al., 2024). These methods
based on conventional encoder-decoder framework.
However, we aim to explore the performance of
disambiguation when utilizing the disambiguation
prompt strategies in LLMs.

Disambiguation Evaluation for Translation. Am-
biguity has long been a central challenge in ma-
chine translation, with numerous studies conduct-
ing evaluations in general domains (Campolungo
et al., 2022; Maheshwari et al., 2024; Martelli et al.,
2025; Hu et al., 2024; Zheng et al., 2024). How-
ever, these studies are built exclusively on general-
domain data, rather than being tailored to domain-
specific datasets. In addition, some work has at-
tempted to improve disambiguation by incorporat-
ing domain-specific dictionaries through constraint-

based translation (Song et al., 2019; Chen et al.,
2021; Zhang et al., 2023b; Baek et al., 2023). How-
ever, our approach fundamentally differs in that it
does not rely on external constraint resources such
as dictionaries. Instead, we focus on systemati-
cally evaluating and enhancing the disambiguation
capabilities of LLMs.

LLMs for Translation. These work can be broadly
divided into two main categories. The first category
focuses on leveraging prompting techniques (Wei
et al., 2022; Jiao et al., 2023b; Zhang et al., 2023a;
Moslem et al., 2023; He et al., 2024; Briakou et al.,
2024) to enhance and analyze the performance of
machine translation using LL.Ms. The second cate-
gory focuses on fine-tuning LLMs to improve their
performance in downstream NLP tasks (Xu et al.,
2024; Jiao et al., 2023a; Zeng et al., 2024). Our
key contribution is identifying essential MDT dis-
ambiguation information for LLMs and designing
prompt strategies.

5 Conclusion

In this work, we propose DMDTEval, a system-
atic benchmark for evaluating the disambiguation
capabilities of LLMs in MDT. We construct a ded-
icated ambiguous word dataset, explore diverse
prompting strategies, and evaluate five leading
open-source LLMs across four language pairs and
thirteen domains. Our analysis reveals key chal-
lenges in MDT disambiguation and provides action-
able insights for improving domain-aware transla-
tion. In future work, we plan to develop improved
methods for disambiguation building upon the pro-
posed dataset, with the goal of further enhancing
both the robustness and generalization of LL.Ms in
MDT, as well as promoting more reliable, context-
aware applications in multilingual scenarios.
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Limitations

Multi-domain bilingual parallel corpora are scarce
and difficult to obtain at scale, which poses a funda-
mental challenge for research on MDT. Although
the datasets used in our study are widely adopted in
previous work and cover a broad range of domains,
we acknowledge that they may contain noise, in-
consistencies, or domain overlaps that could affect
evaluation outcomes. Furthermore, the provenance
and annotation quality of some datasets are not al-
ways transparent or verifiable, which may introduce
bias into the model’s disambiguation assessment.
Another limitation lies in the uneven distribution of
domain data across different language pairs. While
we focus on English—Chinese and German—English
due to our linguistic expertise, other language pairs
(e.g., Japanese—English and Korean—English) are
only used for evaluation purposes and lack the same
level of manual verification and ambiguous word
coverage. In future work, we plan to address these
limitations by focusing on high-quality data collec-
tion and annotation.
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A Evaluation and Training Details

Specifically, we chose the default hyperparameter
settings in vLLM for all our experiments, i.e., 0.8 as
temperature 4, 0.95 for top_p. The input sequence
length was chosen as 1024 for zero-shot and CoT
inference and 3000 for few-shot inference. For the
training procedure, we utilize the LoRA (Hu et al.,
2021) to fine-tune the Qwen-2.5-7B. The hyper-
parameters for supervised fine-tuning are listed in
Table 9.

B Human Annotation

In our work, human annotation is primarily re-
flected in the annotation of ambiguous words in

Hyper-Parameter Value
lora rank 8
learning rate le-5
train epoch 2
per_device_batchsize 1
warm up ratio 0.1
learning rate scheduler cosine

Table 9: Hyper-parameters for supervised fine-tuning

Domains C Pc I

Education 89% 9% 2%
Laws 9%5% 4% 1%
News 84% 14% 2%
Science 81% 10% 3%
Spoken 82% 16% 2%

Table 10: C represents for the Correct label, Pc repre-
sents for the Partially correct label, and I represents for
the Incorrect, respectively.

English—Chinese and German—English. The an-
notators consist of the authors of this paper, who
undertook the annotation voluntarily as part of their
academic duties, and our primary reference stan-
dard is the use of bilingual dictionaries for these
language pairs.

C Detailed Results on LLMs

As shown in Table 2 and Table 11, the two tables
present the detailed results of our main experiments,
including those from the neural machine translation
model NLLB, the larger-scale model Qwen-2.5-
14B, as well as the results obtained using GPT-40-
mini.

D Detailed Results on Other Language
Pairs

As shown in Tables 12, 13, 14, and 15, we provide
detailed experimental results for German-English,
Japanese-English, and Korean-English. The over-
all trends are consistent with those observed in
English-Chinese, further demonstrating the effec-
tiveness of the disambiguation prompt strategies.
For German-to-English, Table 12 shows that dis-
ambiguation prompting (T5-T10) consistently im-
proves translation quality over the baseline prompts
(T1-T4) across all domains. Notably, gains are
most prominent in technical domains like Medi-
cal and Laws. This highlights the effectiveness
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English-to-Chinese

Education Laws News Science Spoken AVG
(TI_ 3677/8874 5032/9031 33.00/8551 3091/8661 2025/7968  34.25/86.17
36.90/88.79 50.52/90.39 33.19/85.60 30.93/86.77 21.55/80.01 34.62/86.31
36.58/88.60 50.47/80.42 32.55/85.47 30.25/86.39 19.50/79.22 33.87/84.02
(T2 3722/88.05 4981/90.19 32.68/8545 31.08/8624 22.56/8097 34.67/8620
38.96/88.61 49.86/90.21 32.74/85.54 32.88/86.42 23.45/81.05 35.58/86.37
34.22/80.23 4536/85.63 30.26/83.00 31.11/85.01 22.09/79.65 32.61/82.70
(T3 35.05/8840 52.63/90.54 33.12/8548 3074/8659 20.13/79.60 3435/86.12
36.99/89.32 52.62/90.69 33.25/86.55 31.45/87.62 22.11/80.87 35.28/87.01
(T4 3597/88.50 50.60/90.14 3274/8543 3124/8676 21.69/80.88 34.45/8634
36.71/89.12 50.86/90.33 33.16/86.19 31.42/86.01 22.17/80.89 34.86/86.51

Table 11: BLEU and COMET scores on the English-to-Chinese translation task for T1-T10 with GPT-40-mini. We
bold the best performance results in each strategy. text stands for the disambiguation prompt strategies.

of our disambiguation strategy in enhancing both
BLEU and COMET scores for German-to-English
translation.

E Disambiguation Performance and
GPT-40-mini Evaluator

Disambiguation Accuracy. As shown in Table
16, we present the disambiguation accuracy for
German-to-English, further demonstrating the ro-
bustness of our evaluation framework across multi-
ple language pairs. This indicates that our proposed
method is not limited by specific languages and can
be effectively generalized to other language direc-
tions.

GPT-40-mini Evaluator. We design a prompt to
evaluate the disambiguation capability of LLMs us-
ing GPT-40-mini. The specific prompt is: “source
sentence: < >, target sentence: < >, generate
sentence: < >. Please find the ambiguous word
pairs in the source language sentence and the tar-
get language sentence, and count the number of
ambiguous word pairs. Refer to the above word
pairs to further count the accuracy of disambigua-
tion in the generated sentences. . We calculate the
average accuracy across different templates with
GPT-40-mini in Figure 6 and 7. The consistency
with Figure 6 and 7 further prove the effectiveness
of disambiguation prompting.
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Chinese-to-English

Education

Laws

News

Science

Spoken

AVG

T1

22.19/83.05
26.61/ 84.02
25.05/83.44
26.65/84.17
26.63/84.91
26.38/84.23
26.36 / 84.05
27.11/83.96
15.55/78.96
24.33 / 83.69

36.03 / 83.48
34.00/83.37
33.42/ 82.67
33.49/83.44
34.46 / 83.72
33.88/83.54
32.08/83.44
32.11/83.56
28.33/80.06
34.25/83.77

17.63/80.31
18.35/80.94
16.20/78.38
17.82/80.60
18.08 / 80.29
17.89/80.72
18.67/80.69
18.68 / 80.80
16.07/79.35
17.72 / 80.68

16.52/81.36
17.68 / 81.86
16.88 / 80.39
18.12/81.82
18.82 / 81.86
18.18/81.90
18.26/ 81.80
18.33/81.91
15.15/79.86
16.84 / 81.87

10.39/64.43
11.07 / 64.97
10.12/64.30
13.87/70.05
14.59 /71.97
13.25/69.68
12.30/68.91
12.97 / 69.66
10.11/65.50
13.52/66.30

20.55/78.53
21.94/79.83
20.33/77.84
21.99/80.02
22.52/80.55
21.92/79.99
21.53/79.78
21.84/79.98
17.04 /76.75
21.33/79.26

Table 12: BLEU and COMET scores on the Chinese-to-English translation task for T1-T10 with Qwen-2.5-7B. We

bold the best performance results in each strategy.

text stands for the disambiguation prompting

German-to-English

IT

Koran

Laws

Medical

Subtitles

AVG

29.67 / 60.08
30.37/72.03
23.54/67.82

12.85/769.12
15.10/70.26
14.64 /69.79

25.20/75.69
31.05/80.33
28.42/78.66

22.06/72.67
32.26/76.98
32.63/77.63

20.65/74.20
25.42/74.86
18.74 /70.77

22.09/70.35
26.84/74.89
23.59/72.93

33.56/80.28
33.01/77.45
30.91/72.82

15.50/71.38
14.34/70.50
14.60/70.32

32.98/82.87
29.97781.38
29.59/79.93

36.41/81.64
33.47/79.96
31.86/77.69

26.40/76.95
25.54/76.62
25.05/76.13

28.97 /78.62
27.27177.18
26.40/75.38

33.67/77.75
33.34/77.50

15.61/71.24
15.78/71.46

33.18/82.61
33.90/82.71

34.58/79.59
34.30/79.61

25.72/76.52
25.82/76.51

28.55/77.54
28.63 /77.56

28.90/76.01
32.14/77.74

13.52/69.48
15.41/771.15

29.03/80.50
30.97/82.03

33.01/79.29
33.34/79.45

21.16/73.77
25.48 /75.99

25.13/75.81
27.47/717.27

Table 13: BLEU and COMET scores on the German-to-English translation task for T1-T10 with Qwen-2.5-7B. We
bold the best performance results in each strategy.

Zero-shot

CoT

Few-shot

text stands for the disambiguation prompting

Reflection

64.56

60.12

65.25

59.60

62.36

68.25

59.14 58,63

55.21

Accuracy
[«2]
o

54.26

Tl T5 T6 T2 T7 T8 T3 T9 T4 T10

Figure 6: The accuracy of GPT-40-mini Evaluator on the English-to-Chinese translation task.
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Table 14: BLEU and COMET scores on the Japanese-to-English translation task for T1-T10 with Qwen-2.5-7B. We

bold the best performance results in each strategy. text stands for the disambiguation prompt strategies.

Japanese-to-English

Book

Travel

News

AVG

23.00/85.38
23.66/ 85.96
21.07/83.45

17.47 7 84.65
17.87/85.02
16.75/ 84.01

21.86/85.97
22.34/86.29
21.43/85.66

20.78 /85.33
21.29/85.76
19.75/84.37

24.36 / 86.36
24.71/86.48
22.14/83.75

18.50/85.20
18.69/85.48
16.85/84.10

23.90/87.49
24.23/87.60
20.10/85.01

22.25/86.35
22.54/86.52
19.70 / 84.29

22.96 / 84.03
23.20/84.76

16.89 7/ 83.99
17.56/84.79

20.65/83.20
21.94/86.01

20.17/83.74
20.90/85.19

24.10/85.96
22.80/85.10

17.97 / 85.00
17.12/84.33

21.98/86.01
21.01/85.46

21.35/85.66
20.31/84.96

Korean-to-English

Book

Travel

News

AVG

23.34/85.55
24.05/86.15
22.98/84.61

21.22/85.69
22.64/85.78
20.48/85.14

21.81/86.25
22.77786.10
20.45/86.01

22.12/85.83
23.15/86.01
21.30/85.25

23.98/85.70
24.13/86.57
23.01/85.09

21.58/85.74
22.80/86.05
21.17/85.44

22.60/86.43
22.86/86.51
21.65/86.08

2272 /85.96
23.26 / 86.38
21.94/85.54

23.01/85.19
23.58 / 85.67

21.08 /85.46
21.85/85.70

22.64/86.41
22.80/86.57

22.24 7 85.69
22.74 / 85.98

23.88/85.60

22.14/86.10

21.85/86.31

22.62/86.00

23.98/85.62 22.45/86.13 22.07/86.50 22.83/86.08

Table 15: BLEU and COMET scores on the Korean-to-English translation task for T1-T10 with Qwen-2.5-7B. We
bold the best performance results in each strategy. text stands for the disambiguation prompt strategies

Zero-shot CoT Few-shot Reflection

71.08 70.15 69.35

70 68.23

68.01

66,58

65.39 64.90

62.25

60.33

Accuracy
[«2]
o

Tl T5 T6 T2 T7 T8 T3 T9 T4 T10

Figure 7: The accuracy of GPT-40-mini Evaluator on the German-to-English translation task.
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German-to-English

Strategies AVG
IT Koran Laws Medical Subtitles
T1 51.87 53.42 59.11 50.93 55.07 54.08
Zero-shot 58.264.6439 57.894.4447 60.12+1_01 57~34+6.41 58.904.3,83 58.504.4,42
48.62.375 52.15577 56.49363 48.80g54 51.23767 514654
S T2 5589 3 58.07 6035 5688 5731 5770
CoT 58.02,013 59.86,179 61.17,08 58.02:114 58.67,:136 59.15,145
4499 1303 48.25.1060 47151400 43.08.1404 49.19943 46.531.17
L T3 5310 3 5497 6045 5165 5581 5520
Few-shot
46-23-6.87 50.78_4_19 53.62_(,_83 48.84_2_81 51 .87_3_94 50.27 4.93
. T4 5692 ¢ 5375 5890 5241 5630 5546
Reflection

60.02,310 57.814406 59511061 55.894348 59.48.318 58.54.303

Table 16: Disambiguation accuracy scores (%) on the German-to-English translation task for T1-T10 with Qwen-
2.5-7B. We bold the best performance results in each strategy.

6083



