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Abstract

This paper introduces ThoughtProbe, a novel
inference-time framework that leverages the
hidden reasoning features of Large Language
Models (LLMs) to improve their reasoning per-
formance. Unlike previous works that manip-
ulate the hidden representations to steer LLM
generation, we harness them as discriminative
signals to guide the tree-structured response
space exploration. In each node expansion, a
classifier serves as a scoring and ranking mech-
anism that efficiently allocates computational
resources by prioritizing higher score candi-
dates for continuation. After completing the
tree expansion, we collect answers from all
branches to form a candidate answer pool. We
then propose a branch-aggregation method that
marginalizes over all supporting branches by
aggregating their CoT scores, thereby identify-
ing the optimal answer from the pool. Experi-
mental results show that our framework’s com-
prehensive exploration not only covers valid
reasoning chains but also effectively identi-
fies them, achieving significant improvements
across multiple arithmetic reasoning bench-
marks. The code is available at https://
github.com/Zijian007/Thoughtprobe.

1 Introduction

Chain of Thought (CoT) reasoning has emerged as
a pivotal approach for enhancing LLMs’ problem-
solving capabilities(Wei et al., 2022). However,
eliciting this capability from pre-trained base
LLMs typically requires expensive post-training or
carefully designed prompting strategies(Yao et al.,
2023; Kojima et al., 2022; Hoffman et al., 2024).

Recent research demonstrates that LLMs’ in-
ternal hidden representations serve as meaningful
proxies for CoT behaviors, revealing a correspon-
dence between reasoning patterns and specific lin-
ear features within the internal activation space(Ye
et al., 2024). This correspondence has given rise to
two distinct insights for leveraging representations

to improve reasoning performance. The first in-
sight adopts a causality perspective, viewing hidden
representations as causal factors that influence the
CoT generation. This has led to activation steering
techniques that manipulate representations along
specific directions to enhance reasoning capabil-
ities(Hong et al., 2025; Tang et al., 2025; Højer
et al.).

Despite promising results, such approaches face
inherent limitations. Direct manipulation risks dis-
rupting the model’s internal representational struc-
ture, potentially pushing activations out of distri-
bution and degrading linguistic quality(von Rütte
et al., 2024; Da Silva et al., 2025). Moreover, the
high-dimensional nature of the latent space makes
it challenging for a single linear direction to cap-
ture the complexity of reasoning features, which
often involve intricate patterns spanning multiple
cognitive dimensions(Luo et al., 2024; Bo et al.,
2025).

In this work, we adopt an alternative perspective,
which recognizes the strong correlation between
hidden representations and the manifestation of
CoT in generated text. Rather than manipulating
representations to steer LLM generation, we lever-
age their discriminative capacity as indicators to
detect reasoning patterns within the model’s natural
outputs. Through rigorous empirical investigation,
we first demonstrate that representations exhibit
remarkable power in distinguishing between CoT
and non-CoT content, particularly within specific
representation types and network layers, as evi-
denced by a simple classifier’s performance. Also,
we show the classifier is a reliable evaluator that
can assign higher scores to high quality CoT con-
tent, supported by both theoretical evidence and
empirical validation.

Building on these findings, we present Thought-
Probe, a novel inference-time computational frame-
work that effectively explores CoT paths via re-
sponse space exploration. Specifically, Thought-
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Figure 1: Pre-trained LLMs could naturally generate both CoT and non-CoT responses when sampling multiple
times, and hidden representations provide a strong signal for discriminating them.

Probe systematically explores the response space as
an iterative tree expansion process, with the input
question as the root node, and branches as the can-
didate CoT paths. At each expansion step, multiple
token sequences are generated in parallel as candi-
date child nodes, whose CoT score is evaluated by
the classifier through probing their hidden represen-
tations. By prioritizing higher scoring candidates
for continuation, we efficiently allocate computa-
tional resources and increase the likelihood of in-
cluding correct reasoning paths in our exploration
tree. This exploration process continues until either
reaching the termination token or exhausting the
computational budget.

Upon completion of tree expansion, we obtain
multiple branches, each leading to a candidate an-
swer, forming a comprehensive answer pool. To de-
termine the optimal one, rather than using Best-of-
N sampling(Huang et al., 2025; Sun et al., 2024a),
we propose a branch-aggregation selection through
value marginalization that considers CoT score
across all branches leading to each candidate an-
swer. Specifically, the value of each answer is
computed by aggregating the CoT score of all its
supporting branches, with the final answer selected
as the one that achieves the highest marginal value.

Experiments on multiple reasoning benchmarks
demonstrate that ThoughtProbe consistently out-
performs existing inference-time computing meth-
ods, achieving significant improvements over both
sampling-based methods (e.g., self-consistency)
prompting-based techniques (e.g., zero-shot CoT
and ToT) and activation-steering method. Our
work provides new insights into enhancing LLMs’
reasoning capabilities without requiring expensive
fine-tuning or elaborate prompting strategies, and
opens up promising directions for developing more

robust reasoning systems that can effectively lever-
age the model’s internal representations.

2 Preliminary

2.1 LLMs Architecture and Hidden
Representation

To provide a foundation for the discussion, we first
describe the basic structure of a Transformer-based
LLM architecture (Vaswani, 2017). The input text
is initially tokenized into a sequence of tokens,
which are then mapped to embeddings to form
the initial representation sequence x(0) ∈ RT×demb .
Here, T is the sequence length, and demb is the
embedding dimension.

The embeddings are then processed through mul-
tiple Transformer layers. In each layer l, its hidden
representations are composed of three components:
activations from multi-head self-attention (MHA),
multi-layer perceptron (MLP), and residual connec-
tions. This process can be formulated as:

a
(l)
attn = MHA(h(l)) (Att activations)

a
(l)
mlp = MLP(a(l)attn + h(l)) (MLP activations)

h(l+1) = a
(l)
mlp + a

(l)
attn + h(l) (Hidden states)

2.2 LLMs Reasoning Structure
Reasoning structures typically manifest in two fun-
damental topologies: sequential chains and branch-
ing trees. The chain structure reflects the step-
by-step nature of logical deduction, while the tree
structure captures the exploration of multiple po-
tential reasoning paths. Below, we formally de-
fine these structures and their probabilistic formu-
lations.

Reasoning Chain: For an input question Q, a
reasoning chain is defined as a sequence of interme-
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diate thought steps R = [Q, r1, r2, ..., rN ], leading
to a final answer A. Here, ri represents an inter-
mediate thought at the i-th step, and N denotes
the chain length. The answer can be extracted by
appending a trigger prompt at the end of the chain,
like “Therefore, the answer is". The probability of
generating such a chain can be formalized as:

P (R,A|Q) = P (r1|Q)

N∏

i=2

P (ri|Q, r1:i−1)

· P (A|Q,R)

where P (r1|Q) is the probability of the first step,
P (ri|Q, r1:i−1) is the probability of the i-th step,
and P (A|Q,R) is the probability of the final an-
swer. At each step i, a new thought ri is appended
to form R = [Q, r1, ..., ri−1, ri].

More specifically, each reasoning step ri is itself
a token sequence, which can be further decom-
posed as:

P (ri|Q, r1:i−1) =

Ti∏

t=1

P (rti |Q, r1:i−1, r
1:t−1
i )

where, rti denotes the t-th token in the i-th reason-
ing step, Ti represents the total number of tokens
in the i-th step, r1:t−1

i represents the previously
generated tokens in the current step. In each token
generation, the hidden representation Rep(rti) of
token rti is accessible for probing.

Branching Chains into Trees: By sampling
diverse tokens at each reasoning step, a single chain
can branch into a tree structure, where Q serves as
the root node, each node represents an intermediate
reasoning step. This tree-based expansion explores
multiple reasoning branches simultaneously and
can increase the probability of covering the correct
reasoning chain and answer. At each step ri, we
could sample k different continuations:

{r1i , r2i , ..., rki } ∼ Pk(ri | Q, r1:i−1)

Here, rji represents the j-th sampled continu-
ation at step i. Each root-to-leaf chain forms a
distinct branch, leading to its answer, and col-
lectively these branches generate an answer pool
A = {A1, A2, ..., Ap}.

While the tree structure improves solution cov-
erage, it introduces two key challenges: (1) Can-
didate Selection: How to evaluate and prioritize
promising children nodes in each exploration step?
(2) Answer Determination: How to select the opti-
mal answer from the pool A?

3 ThoughtProbe: Classifier-guided
Reasoning Tree Exploration

This section presents our ThoughtProbe framework
that guide the response space exploration where
the guidance signal is derived by probing repre-
sentations. We first validate the discriminative
power of representations in discriminating CoT and
non-CoT responses through comprehensive prob-
ing experiments across different LLMs. We then
introduce a classifier-guided beam search algorithm
that systematically explores the response space to
construct a diverse answer pool. Finally, we pro-
pose marginalization methods to aggregate these
answers based on CoT score, enabling effective
optimal answer selection.

3.1 Probing Representations
Setup We construct a binary representation classi-
fication dataset by first collecting paired CoT/non-
CoT responses for questions sampled from GSM8K
(Cobbe et al., 2021) training set. For each question,
we generate 10 distinct responses and classify them
using GPT4o-as-Judge. We define CoT responses
as those exhibiting correct step-by-step reasoning
processes, while non-CoT responses provide an-
swers directly without intermediate reasoning steps.
Subsequently, we extract token-level representa-
tions from three widely-used LLMs: Mistral-7b
(Jiang et al., 2023), Gemma-2-2b (Team et al.,
2024), and Phi-1.5 (Li et al., 2023), capturing
activations across various layers and representa-
tion types. More details are provided in the ap-
pendixD.1.

Classifier We employ Logistic Regression (LR)
as our classifier. LR models the probability of CoT
through a two-step process: first computing the
logit (log-odds) using a linear function w⊤x + b,
then transforming it to probability of positive via
the sigmoid function σ.

logit = ln
P (y = 1|x)
P (y = 0|x) = w⊤x+ b

P (y = 1|x) = σ(logit) =
1

1 + e−(w⊤x+b)

where w is the weight vector, b is the bias term,
and x is the input feature vector.

For each layer and representation type (Hidden
states, Attention activations, and MLP activations),
we train LR classifiers and evaluate their perfor-
mance using AUC-ROC, and F1-score.

Classification Results Figure 2 illustrates clas-
sification performance, that varies across represen-
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Figure 2: Layer-wise classification performance (F1-
Score and AUC-ROC) across different representation
types and LLMs.

tation types and layers in different LLMs. (1) Rep-
resentation type analysis: In Mistral-7b, hidden
states outperform both MLP and Attention activa-
tions. For Phi-1.5, Attention outputs demonstrate
stable superiority despite hidden states’ fluctua-
tions. In Gemma2-2b, Attention outputs maintain
consistent performance while hidden states and
MLP activations fluctuate significantly. (2) Layer-
wise analysis: Layer depth influences performance
differently across models. Mistral-7b shows a clear
shallow-to-deep improvement trend, indicating pro-
gressive CoT feature refinement. Conversely, Phi-
1.5 and Gemma2-2b exhibit fluctuating patterns
with no consistent directional trends, suggesting
more distributed CoT representations throughout
layers. Despite variations, we conclude that all
LLMs achieve over 80% performance with their
optimal configurations, indicating the promising
discriminative power of representations.

Logit as Ranking Score Beyond the promising
classification performance, we also validate that the
classifier’s logit can serve as a theoretically sound
score for ranking and selecting higher CoT score
candidates. Prior research(Sun et al., 2024b) has
demonstrated that a binary classifier’s logit implies
ordering equivalence with preference rewards in
the Bradley-Terry model(Bradley and Terry, 1952),
establishing that:

l(x1) > l(x2) =⇒ r(x1) > r(x2)

where l(x) represents the logit value and r(x) de-
notes the reward function in the Bradley-Terry
model. A brief proof is provided in the appendix
A.1. We empirically validate this ranking capability
in Figure3. The left subplot shows CoT responses

consistently achieve higher logit values than non-
CoT responses, while the right subplot demon-
strates correct CoT responses maintain higher logit
values than incorrect ones. This suggests our clas-
sifier captures response quality regardless of rea-
soning correctness. Both theoretical and empirical
evidence support using the classifier’s logit as a
ranking score for tree exploration.

Figure 3: Mean logit values and variance regions along
the token sequence. Left: Comparison between CoT
and non-CoT responses. Right: Comparison between
correct and incorrect CoT responses.

3.2 Classifier-guided Beam Search

With the classifier’s logit as the ranking score, we
propose a classifier-guided beam search for effec-
tive response space exploration. Specifically, for a
parent node (root question or intermediate reason-
ing step), the tree expansion process is formulated
as follows:

Diverse Beam Construction: The process be-
gins by generating diverse candidate continuations,
organized into a beam. To encourage diversity,
stochasticity must be introduced during token se-
quence generation. In this paper, we employ Top-K-
Start Greedy Decoding, which explores alternative
top-k tokens at the first decoding step, followed
by greedy decoding for subsequent steps (Wang
and Zhou, 2024). The resulting k reasoning chains,
denoted as B = {R1, R2, ..., Rk}, represent po-
tential continuations with associated hidden states,
forming the initial beam for further processing.

Derive CoT Score via Classifier: Once the
beam is constructed, a pre-trained classifier is used
to evaluate the CoT score of each candidate . The
classifier operates on the hidden state representa-
tions of the chains and assigns a score to each one.
Specifically, for a candidate chain Ri, the CoT
score Si is computed as Si = l(Rep(Ri[−1])),
where l(·) is the logit output of classifier and
Rep(Ri[−1]) represents the hidden state of the last
token in Ri.

Beam Pruning by Score Ranking: After scor-
ing, all candidate chains are ranked based on their
CoT scores, and only the top-n highest-scoring
candidates are retained for further expansion. The
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Figure 4: Our classifier-guided tree exploration framework. At each parent node, multiple candidates are sampled
and evaluated by a pre-trained classifier by probing representations. Nodes are selected for further expansion based
on scores. Each exploration branch produces a candidate answer, forming an answer pool from which the final
answer is determined through marginalization across all branches.

pruned beam, denoted as B′, is defined as B′ =
{Rσ(i) | i ≤ n}, where σ is the permutation that
sorts the scores in descending order, and Rσ(i) rep-
resents the candidate corresponding to the i-th high-
est score. By dynamically adjusting the beam width
n, we can control the trade-off between exploration
breadth and computational efficiency. This pruning
step ensures that only promising reasoning paths
are preserved, effectively reducing computational
overhead while maintaining the quality of the rea-
soning process.

Implementation Details: Our framework con-
sists of two phases: a branching phase for system-
atic exploration with depth m and beam width n,
followed by a completion phase for final genera-
tion. During the branching phase, we iteratively
expand the tree for m steps. At each step i, we
first generate k candidate responses for each node
and select the top-n candidates based on their CoT
scores, with each candidate expanded by generating
a sequence of Ti tokens. In the completion phase,
all leaf nodes from the branching phase are ex-
tended using greedy decoding until either reaching
a completion token or the maximum length limit.
For input formatting, we adopt a simple question-
answer template: “Question:[question]\nAnswer:"
without any additional prompting techniques.

3.3 Answer Pool Marginalization
After completing the tree expansion process, we
generate final answers by appending the prompt
“Therefore, the answer is” to each branch, resulting
in an answer pool A = {A1, A2, ..., Ap}. To select
the final answer from the pool, several straight-
forward approaches can be applied: (1) majority

voting based on answer frequency, and (2) single-
branch selection that selects the answer from indi-
vidual branch with the highest score metrics (e.g.,
final score or mean score). Instead, we propose
branch-aggregation selection that determines the
final answer by aggregating branch score metrics
for each answer.

Specifically, for each candidate answer Ai, we
collect its supporting branches R(Ai), which con-
sists of all branches that arrive at Ai as their fi-
nal answer, formally defined as R(Ai) = {R |
answer(R) = Ai}. Then we compute the value
of each branch from its node score sequence
[S1, S2, ..., SN ], using its final score SN as the
branch value. For each unique answer, we then ag-
gregate the values of all its supporting branches by
summation: V alue(Ai) =

∑
R∈R(Ai)

V alue(R).
Finally, we select the answer with the highest
aggregated value as our final answer: A∗ =
argmaxAi∈AV alue(Ai). We provide a detailed
comparative analysis of different answer selection
methods in Section 4.2.

4 Experiments

Dataset and LLMs We evaluate our method on
popular mathematical reasoning benchmarks: (1)
GSM8K (Cobbe et al., 2021), a challenging dataset
of grade school math problems; (2) MultiArith
(MA) (Roy and Roth, 2016); (3) SVAMP (Patel
et al., 2021); (4) MAWPS (Koncel-Kedziorski et al.,
2016); and a logical reasoning benchmark: (5)
CoinFlips (CF) (Srivastava et al., 2022). For our
experiments, we use the same LLMs as in Section
3.1: Mistral-7b, Gemma2-2b, and Phi-1.5.
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Baselines We compare our approach with six
representative baselines: (1) Greedy Decoding: Se-
lects the highest-probability token at each step of
generation. (2) Zero-shot CoT prompting (Zs CoT)
(Kojima et al., 2022): Appends "Let’s think step by
step" to questions, encouraging step-wise problem-
solving without task-specific training. (3) Zero-
shot Tree of Thought prompting (Zs ToT) (Yao
et al., 2023): Generate multiple reasoning steps via
prompting and evaluate through self-assessment
prompts. (4) Activation-Steering (Act-S)(Højer
et al.): Steers model activations along a direction
vector derived from the difference between CoT
and non-CoT hidden states. (5) Chain-of-Thought
Decoding (CoT-Dec) (Wang and Zhou, 2024): Gen-
erates multiple solution paths and selects the most
confident one based on the average probability mar-
gin between the top two token predictions in the
answer segment. (6) Self-consistency (SC) (Wang
et al., 2022): Employs a majority voting mecha-
nism across multiple generated responses to iden-
tify the most consistent answer. In appendixC and
B, we provide a detailed analysis of the time com-
plexity of each method and reproducing details.

Hyperparameters Config For the branching
phase, we set the depth m = 3 and beam width
n = 3. At each step, we generate k = 10 candi-
dates and select top-n based on CoT scores, with
token generation lengths Ti = [1, 20, 20] for steps
i = 1,2,3. For the completion phase, we extend
each leaf node with two steps of greedy decoding,
generating 100 tokens per step. A detailed analy-
sis of how depth m and beam width n affect the
framework’s performance is presented in Section
4.4.

4.1 Main Experimental Analysis
As shown in Table 1, our method consistently out-
performs baseline approaches in most scenarios,
achieving substantial improvements in problem
solving accuracy.

Cross-Model Analysis Our method shows ro-
bust performance gains across different LLM
scales. For the larger Mistral-7b model, we ob-
serve the most significant improvements, with our
method achieving 38.18% accuracy on GSM8K,
surpassing the strongest baseline (Zs CoT) by
14.01%. The performance advantage maintains
for smaller models like Gemma2-2b and Phi-1.5,
where our method improves GSM8K accuracy by
3.7% and 12.36% respectively compared to their
best baselines. This demonstrates our method’s

LLM Methods GSM8K MA SVAMP MAWPS CF

M
is

tr
al

-7
b

Greedy 11.92 15.16 52.66 58.29 47.60
SC 17.13 27.22 58.00 66.56 51.60

Zs CoT 26.17 50.47 56.33 69.81 53.00
Zs ToT 33.82 52.65 59.75 71.69 54.40
Act-S 15.48 18.93 56.48 59.45 48.00

CoT-Dec 25.79 39.76 58.66 64.78 51.20
Ours 38.18 58.57 61.33 80.64 56.80

G
em

m
a2

-2
b

Greedy 6.42 5.53 38.53 46.16 44.40
SC 7.59 8.41 40.00 47.00 49.80

Zs CoT 16.92 42.11 39.33 51.69 48.40
Zs ToT 18.73 45.74 44.08 55.37 53.20
Act-S 7.38 11.43 41.36 49.84 45.00

CoT-Dec 14.34 33.22 38.99 50.28 47.40
Ours 20.62 50.00 48.66 63.86 54.60

Ph
i-

1.
5

Greedy 5.69 24.44 24.33 33.74 42.60
SC 25.02 33.88 29.03 39.16 46.20

Zs CoT 7.21 83.88 39.33 65.18 54.40
Zs ToT 29.56 53.45 41.85 67.18 55.60
Act-S 6.65 25.65 28.66 37.84 44.20

CoT-Dec 23.12 25.00 23.66 50.05 49.40
Ours 37.38 80.56 45.66 68.45 56.80

Table 1: Problem solving accuracy compared with base-
lines across LLMs and datasets

LLMs Methods GSM8K MultiArith SVAMP WAMPS

M
is

tr
al

-7
b Cover Rate 85.44 91.65 90.33 94.33

F Agg/BoN 38.18/27.84 58.57/32.78 61.33/52.45 80.64/63.18
M Agg/BoN 38.21/24.92 55.15/33.42 58.44/51.52 77.33/61.42
IR Agg/BoN 42.92/ 23.52 57.53/35.63 60.21/47.42 79.33/64.21

Vote 39.21 56.15 59.44 78.33

G
em

m
a2

-2
b Cover Rate 79.65 84.33 88.44 90.74

F Agg/BoN 20.62/11.52 50.00/25.53 48.66/16.82 63.86/35.42
M Agg/BoN 18.15/10.83 47.77/27.63 45.33/23.63 61.33/43.85
IR Agg/BoN 21.53/13.53 51.21/34.42 47.44/19.42 62.33/40.91

Vote 19.21 48.15 46.44 62.33

Ph
i-

1.
5

Cover Rate 84.33 89.42 88.63 92.82
F Agg/BoN 37.38/21.72 80.56/56.86 45.66/29.74 68.45/49.72
M Agg/BoN 35.77/20.44 77.21/49.63 42.33/31.42 65.53/50.82
IR Agg/BoN 38.21/21.93 79.53/48.82 44.65/30.84 69.84/51.72

Vote 36.21 78.15 43.44 66.49

Table 2: Performance comparison of different an-
swer selection methods. F Agg/BoN, M Agg/BoN,
and IR Agg/BoN represent the accuracy of branch-
aggregation/best-of-N selection using final scores, mean
scores, and increase ratio respectively. Vote shows the
accuracy of majority voting baseline.

effectiveness and generalizability across different
model scales.

Cross-Dataset Analysis Our method shows
varying effectiveness across different datasets.
On GSM8K’s complex multi-step problems, we
demonstrate consistent superiority across all mod-
els. For MultiArith, while achieving strong perfor-
mance with Mistral-7b (58.57%) and Gemma-2-2b
(50.00%), Phi-1.5 shows slightly lower accuracy
(80.56%) compared to Zs CoT (83.88%), suggest-
ing simpler arithmetic problems might benefit less
from our approach. On SVAMP and MAWPS, we
maintain consistent improvements, with notable
gains on MAWPS (3.27%-12.17% over the best
baseline). On CoinFlips, we achieve 56.80% ac-
curacy, which is higher than the best baseline (Zs
CoT) by 12.20% in phi-1.5. Notably, we train our

6035



LLMs Dataset
LR SVM

MLP Attn Hidden states MLP Attn Hidden states

Mistral-7b

GSM8K 35.21/18.42 34.57/17.23 38.18/13.75 36.43/17.42 33.37/6.23 38.32/12.39
MultiArith 51.55/16.33 49.82/21.65 58.57/23.39 49.55/18.33 50.59/18.65 57.45/20.11

SVAMP 35.43/28.72 34.65/23.23 61.33/25.76 36.43/27.42 35.43/26.42 60.39/17.23
WAMPS 69.55/39.33 72.81/42.65 80.64/52.46 68.55/38.92 77.52/7.33 79.38/18.65

Gemma2-2b

GSM8K 15.41/6.51 20.62/15.86 17.41/12.39 18.41/5.62 18.41/4.81 19.91/9.71
MultiArith 42.41/17.74 50.00/21.23 40.92/29.72 46.41/6.23 48.41/10.63 41.65/15.85

SVAMP 35.43/13.92 48.66/27.23 45.33/30.76 36.43/16.42 47.43/5.42 44.81/13.84
WAMPS 48.55/28.74 63.86/29.65 47.64/23.59 49.55/27.33 64.55/26.37 46.84/16.65

Phi-1.5

GSM8K 15.41/8.69 37.38/11.82 14.14/9.28 16.41/4.84 36.41/23.48 13.83/7.93
MultiArith 46.41/24.82 80.56/21.23 45.41/24.61 47.41/15.71 75.41/34.72 44.28/19.47

SVAMP 34.43/16.71 45.66/27.75 43.39/25.76 35.43/21.42 46.43/24.24 43.14/24.85
WAMPS 47.55/27.48 68.45/49.65 46.64/32.53 48.55/26.33 67.55/45.62 45.72/29.38

Table 3: Performance comparison of different classifiers (LR and SVM) and representations (MLP, Attention,
Hidden states) using accuracy scores on top-3 and bottom-3 layers (reported as top-3/bottom-3) on math reasoning
datasets.

classifier only on GSM8K training set and use this
single classifier across all datasets, demonstrating
strong generalization to various mathematical rea-
soning datasets.

4.2 Answer Selection Analysis

Table 2 presents a comprehensive comparison of
different approaches for final answer selection from
the answer pool. We first examine the coverage
rate - the percentage of correct answers present
in the pool - which indicates an upper bound for
selection accuracy. The high coverage rates (79%-
94%) demonstrate that our exploration strategy ef-
fectively traverses the response space and captures
valid reasoning chains.

We then evaluate two main selection paradigms:
Best-of-N(BoN) selection and branch-aggregation
selection, across three score sequence metrics: fi-
nal scores, average scores, and increase ratio (de-
fined as the proportion of score improvements be-
tween adjacent nodes). Our analysis shows that
branch-aggregation selection consistently outper-
forms BoN selection across all metrics. Among
the three metrics, final scores yield the best perfor-
mance, followed by increase ratio, while average
scores show relatively inferior results. Additionally,
we benchmark these methods against the baseline
majority voting approach, which shows superior
performance to single-branch selection but falls
short of branch-aggregation selection.

4.3 Classifier Feature Analysis

Table 3 shows the performance comparison of dif-
ferent classifiers features, including classifier type,
representation type and layers range.

Classifier type Study We comparing Support

Vector Machine(SVM) and LR classifiers, we ob-
serve their comparable performance across differ-
ent representations, layers, and LLMs. While SVM
shows slightly better results in some cases, the dif-
ferences are marginal, suggesting both classifiers
can effectively guide the search process.

Representation Layer Analysis We analyze the
impact of layer by comparing top-3 and bottom-
3 layers based on their classification F1-scores.
The results show that across all LLMs, using top-
performing layers consistently outperforms bottom
layers. For GSM8K, the average improvements
are 31.36%, 29.79%, and 30.04% on Mistral-7b,
Gemma-2-2b, and Phi-1.5 respectively, demonstrat-
ing that layer selection significantly affects search
effectiveness.

Representation Type Study Hidden states yield
the best search performance for Mistral-7b, while
attention activations prove more effective for both
Gemma-2-2b and Phi-1.5. This pattern mirrors
the relative strengths we observed in classification
performance, suggesting a consistent relationship
between classifier logit and reward.

4.4 Tree Search Space Scaling Laws

We investigate how different search space size con-
figurations affect model performance by varying
beam width n and tree depth m. For each con-
figuration, we maintain the initial sampling size
k = 10 while adjusting width n ∈ {1, 2, 3, 4, 5, 6}
and depth m ∈ {1, 2, 3, 4, 5, 6}. All generated
chains are constrained to a maximum length of
240 tokens, with tokens evenly distributed across
depth steps (Ti = 240/m tokens per step). Figure
5 demonstrates how performance varies with differ-
ent combinations of width and depth, using Phi-1.5
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on GSM8K.
Beam Width Impact The accuracy improves

substantially as the beam width increases, demon-
strating the benefits of maintaining more parallel
branches at each expansion step. The improvement
trend begins to plateau around width = 4, suggest-
ing that maintaining 3-4 parallel reasoning trajecto-
ries provides sufficient exploration while remaining
computationally efficient. Further increasing the
beam width yields diminishing returns, possibly
due to the introduction of more noise than CoT
content.

Search Depth Study The accuracy improves as
search depth increases and reaches its peak at depth
3 or 4. Beyond this optimal depth, performance
gradually declines, suggesting that deeper searches
may accumulate errors and explore irrelevant rea-
soning paths. This optimal depth aligns with gen-
eral problem solving patterns, as most tree search
methods can solve reasoning problems within 3-4
key reasoning steps (He et al., 2024; Wang et al.,
2024).

Figure 5: The accuracy plot when scaling the search
space with different expansion depth and beam width.

5 Related Work

5.1 Reasoning Ability Enhancement in LLMs

Methods to improve LLMs’ reasoning ability can
be categorized into tuning-based and inference-
time approaches. Tuning-based methods focus
on fine-tuning LLMs with high-quality rationales.
STaR (Zelikman et al., 2022) iteratively bootstraps
rationales through generation and filtering. TRICE
(Hoffman et al., 2024) employs MCMC sampling
to construct training data with rationales and lever-
ages rationalization for failed cases. DeepseekR1
(Guo et al., 2025) uses outcome reward to rein-
forces the CoT ability. Inference-based methods
design structured reasoning frameworks to guide
LLMs during inference. Chain-of-thought (CoT)
(Wei et al., 2022; Kojima et al., 2022) breaks down
reasoning into sequential steps. Tree-of-thoughts
(ToT) (Yao et al., 2024; Long, 2023) enables multi-

path exploration with backtracking. Graph-of-
Thoughts (GoT) (Besta et al., 2024) extends to
arbitrary graph topologies for complex reasoning
patterns. Tree-based methods have emerged as
mainstream by balancing exploration capability
with structural simplicity.

5.2 Linear Representation Hypothesis in
LLMs

The Linear Representation Hypothesis (LRH), ini-
tially proposed in word embeddings (Mikolov et al.,
2013), suggests that semantic features exist as lin-
ear directions in activation space. Recent work
has extended this to LLMs (Luo et al., 2024; von
Rütte et al., 2024; Zou et al.; Park et al.), showing
that high-level concepts like truthfulness (Li et al.,
2024; Burns et al., 2022), morality (Zou et al.), and
factual knowledge (Gurnee and Tegmark, 2023)
can be represented linearly in model’s activation
space. This finding enables two key applications:
detection and guidance. For detection, linear classi-
fiers can effectively probe specific concepts (Chen
et al., 2024; Du et al., 2024), with their high per-
formance indicating the linear encoding of these
concepts. For guidance, these identified directions
can be leveraged to steer model behavior during
inference (Lee et al.; Li et al., 2024; Zhao et al.,
2024).

6 Conclusion

In this work, we present ThoughtProbe, a pure
inference-time framework that leverages LLMs’
hidden reasoning features to improve reasoning
performance. Our probing experiments reveal that
LLM architectures encode CoT differently across
representation types and layers, with simple lin-
ear classifiers achieving strong performance. We
also show theoretically and empirically that these
classifiers effectively score and rank candidates to
guide the search process. Building on this discov-
ery, we develop a classifier-guided beam search
algorithm that effectively explores the reasoning
space by prioritizing promising candidates. Our
framework combines tree-structured exploration
with branch aggregation for final answer determi-
nation, enabling systematic utilization of valid rea-
soning chains within response space. Extensive
experiments across multiple benchmarks demon-
strate the effectiveness of our approach, achieving
significant improvements over existing methods.
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Limitations

Despite our approach’s effectiveness, we acknowl-
edge several limitations that may warrant further
investigation. First, our current implementation
relies on fixed token lengths to segment interme-
diate thoughts during tree node expansion, which
may disrupt natural reasoning by forcing arbitrary
branching points. Future work should explore more
flexible, semantic-aware splitting criteria to bet-
ter preserve complete units of reasoning. Second,
while the answer pool achieves promising coverage
rates for correct answers, our final answer selection
process has room for improvement. The observ-
able gap between coverage and accuracy suggests
current chain evaluation and branch-aggregation
strategies may not optimally capture answer qual-
ity. Future research could develop more sophis-
ticated scoring metrics and aggregation methods.
Another limitation is increased inference-time cost:
ThoughtProbe’s tree expansion and classifier evalu-
ation require more computation and higher latency
than standard single-path or sampling methods, es-
pecially with greater search depth and beam width.
This may limit practicality in latency-sensitive set-
tings. Future work could reduce overhead via more
efficient pruning, early stopping, or lightweight
scoring.
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A Appendix

A.1 Justification of using classifier logit as a
scoring and ranking mechanism

In this section, we provide a brief proof that a
binary classifier’s logit implies ordering equiva-
lence with preference rewards in the Bradley-Terry
model(Sun et al., 2024b; Bradley and Terry, 1952).

Binary Classification Setting: Let X be the
input space. For any x ∈ X :

• P (y = 1|x) denotes the probability of posi-
tive class

• l(x) := logit is the classifier logit output

• P (y = 1|x) = sigmoid(l(x))

Bradley-Terry Preference Model: Given a
question q, for any two responses x1, x2 ∈ X :

• P (x1 ≻ x2|q) denotes preference probability
that response x1 is preferred to x2

• P (x1 ≻ x2|q) = exp(r(x1|q))
exp(r(x1|q))+exp(r(x2|q)) =

softmax(r(x1|q), r(x2|q)).

• r(·|q) is the underlying reward function that
evaluates the quality of a response. We omit
the question q in the following discussion for
brevity.

Lemma A.1 (Classification-Preference Connec-
tion). For any instance x ∈ X :

P (y = 1|x) = Ej∼p(j)[P (x ≻ j)] (1)

Proof. In binary classification, we can view the
process as a competition where:

• x competes against a random competitor j

• P (y = 1|x) represents the winning probabil-
ity of x

• When j is randomly sampled from p(j), this
probability equals Ej∼p(j)[P (x ≻ j)]

Suppose that the classifier is trained on prefer-
ence data derived from the Bradley-Terry model,
where preference pairs are treated as binary clas-
sification data, we have the following theorem to
connect the classifier logit and the reward function:
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Theorem A.2 (Logit implies reward ordering).
Given two instances x1 and x2:

l(x1) > l(x2) ⇒ r(x1) > r(x2) (2)

Proof. We prove l(x1) > l(x2) ⇒ r(x1) > r(x2)
using preference probabilities’ strict monotonicity.

Given l(x1) > l(x2), the sigmoid function’s
strict monotonicity means P (y = 1|x1) > P (y =
1|x2). Using the Classification-Preference Connec-
tionA.1 and Bradley-Terry model, we show:

∑

j

p(j)·
[

exp(r(x1))

exp(r(x1)) + exp(r(j))

− exp(r(x2))

exp(r(x2)) + exp(r(j))

]
> 0

Since p(j) > 0 and f(r, j) = exp(r)
exp(r)+exp(r(j))

is strictly increasing in r, at least one j has
f(r(x1), j) > f(r(x2), j), implying r(x1) >
r(x2).

Therefore, the logit ordering implies the reward
ordering.

Theorem A.3 (Logit is lower bounded by reward).
There exists a constant C dose not depend on x,
such that:

l(x) ≥ r(x)− C (3)

Proof. Under the Bradley-Terry model:

P (y = 1|x) = Ej

[
exp(r(x))

exp(r(x)) + exp(r(j))

]

(4)
By Jensen’s inequality, since f(t) = a

a+t is con-
vex in t for a > 0:

P (y = 1|x) ≥ exp(r(x))

exp(r(x)) + E[exp(r(j))]
(5)

Taking logit transformation:

l(x) = logitP (y = 1|x) = log
P (y = 1|x)

1− P (y = 1|x)
≥ r(x)− log(E[exp(r(j))])︸ ︷︷ ︸

C

The above theorem shows that we can use the
classifier logit as a scoring and ranking mechanism
for the responses during the tree search. As we
define CoT responses are preferred to non-CoT
responses and are treated as positive samples in
classifier training, the above theorem implies that

the logit of CoT responses are higher than that of
non-CoT responses.

It’s important to note that using classifiers as
complete substitutes for reward models in down-
stream optimization scenarios requires additional
theoretical constraints and considerations. We refer
readers to the comprehensive analysis presented in
(Sun et al., 2024b).

B Baselines Reproducing Details

For the activation steering method, we follow the
implementation described in (Højer et al., 2025),
calculating a control vector v using the difference-
in-mean approach. Specifically, we feed all positive
and negative responses to the LLM and compute
the mean hidden representations for both positive
and negative responses. The control vector v is
then derived as the difference between these two
means. During inference, we input a question to
the LLM and apply the control vector v to steer
the hidden representations in the forward pass. The
representation types and layers selected for steering
match those used in our ThoughtProbe method for
each LLM. We set the steering strength parameter
to 1 across all experiments.

For the zero-shot ToT, we follow the implemen-
tation described in the appendix B.1 of (Yao et al.,
2023). The task format prompt is "the answer is
n" where n is a number. The standard IO prompt
is ’Answer the following question with format: in-
put’. The thought generation prompt is Answer
the following question: input Make a strategy then
write. Your output should be of the following for-
mat: Strategy: Your strategy about how to answer
the question. Answer: Your answer to the question.
It should end with format. The voting/evaluation
prompt is Given an instruction and several choices,
decide which choice is most promising. Analyze
each choice in detail, then conclude in the last line
"The best choice is s", where s the integer id of the
choice..

C Computation Complexity Notion and
Discussion

We show computational complexity notions of all
methods.

The computational complexity analysis in Table
4 reveals several key insights about the efficiency
of different reasoning methods. Traditional ap-
proaches like Greedy decoding and ZS-CoT main-
tain linear complexity with respect to sequence
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Method Computational Complexity
Greedy O(T ) -

single sequence processing
ZS-CoT O(T + P ) -

P is prompt overhead
SC O(n× T ) -

n parallel sequences
CoT-Dec O(n× T ) + confidence scoring
Act-S O(T + L×H) -

L=layers number,
H=Steering overhead

ZS-ToT O(bd × (CT + CE)) -
d=tree depth,
b=thoughts number,
CT=thought prompt cost,
CE=evaluation prompt cost

ThoughtProbe O(k × nm × (C + 1)) -
n=beam width, m=depth,
C=classifier cost,
k=candidates per step

Table 4: Computational complexity comparison of dif-
ferent methods.

length, making them computationally efficient but
limited in reasoning capability. Self-consistency
methods (SC) scale linearly with the number of
parallel sequences, offering a reasonable balance
between computational cost and performance.

Activation steering (Act-S) introduces additional
overhead proportional to the number of layers be-
ing steered, but maintains the same asymptotic
complexity as standard decoding. In contrast, tree-
based methods like ZS-ToT face exponential com-
plexity growth (O(bd)) as tree depth increases,
severely limiting their practical application to com-
plex reasoning tasks despite their strong perfor-
mance.

Our ThoughtProbe method achieves a favorable
complexity profile of O(k×nm× (C+1)), where
n is the beam width, m is the exploration depth, k
is the number of candidates per step, and C repre-
sents the classifier cost. While this still involves
exponential growth with depth, our approach is
more efficient in practice than traditional tree-based
methods like ZS-ToT because: (1) we typically use
smaller beam widths and depths, (2) our classifier-
guided pruning effectively reduces the search space,
and (3) the linear classifier overhead is minimal
compared to token generation costs. This analysis
demonstrates that ThoughtProbe offers an effec-

tive balance between computational efficiency and
reasoning capability, making it practical for deploy-
ment in real-world applications while maintaining
comparable or superior performance to more com-
putationally intensive methods.
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D More Probing Experiments Details

D.1 Classifier Training Data Construction
Details

We first employ Top-K-Start Greedy Decoding,
which explores alternative top-k tokens at the first
decoding step, followed by greedy decoding for
subsequent steps, to sample 10 distinct responses.
To ensure response quality, we first filter the sam-
pled responses to remove potential repetitions of
input questions as LLMs occasionally exhibit a
pattern where they restate the original question
after providing their answer. We apply a post-
processing step to extract only the solution-relevant
content, ensuring each response contains purely
reasoning and answer components without redun-
dant question restatements. After filtering, we
prompt GPT4o as a judge to label the filtered re-
sponses as either CoT or non-CoT responses. The
prompt is as follows:

You are an expert at analyzing reasoning pat-
terns in AI responses. Given a question-response
pair, your task is to determine whether the response
follows a Chain of Thought (CoT) reasoning pat-
tern or not.

Chain of Thought (CoT) responses show explicit
step-by-step reasoning before arriving at the fi-
nal answer. They break down the problem, work
through intermediate steps, and show the logical
progression that leads to the conclusion.

Non-CoT responses provide direct answers with-
out showing the reasoning process or intermediate
steps.

For the question-response pair provided be-
low, analyze whether the response uses Chain of
Thought reasoning by checking if it: 1. Shows ex-
plicit reasoning steps 2. Breaks down the problem
into parts 3. Works through intermediate calcu-
lations or logical steps 4. Explains the thinking
process before giving the final answer

Reply with: - "COT" if the response demon-
strates Chain of Thought reasoning with clear in-
termediate steps - "NON-COT" if the response
gives a direct answer without showing the rea-
soning process Question: [Question will be in-
serted here] Response: [Response will be inserted
here] Our CoT/non-CoT dataset, constructed us-
ing Mistral-7b sampling and GPT-4o annotation,
directly transfers to train effective classifiers for
Phi-1.5 and Gemma2-2b without reconstruction.
The fundamental CoT vs. non-CoT distinction cap-
tures abstract reasoning patterns that generalize

across LLM architectures. The rationale behind
dataset reusability is that we only need paired data
capturing fundamental CoT vs non-CoT reasoning
patterns, which transfer across LLMs due to shared
training objectives and representational structures,

D.2 Classifier Training Settings

For our experiments, we collected a dataset com-
prising 1245 positive (CoT) and 1868 negative
(non-CoT) samples, with each sample represent-
ing a question-response pair. Analysis of response
lengths revealed that CoT responses averaged 131.7
tokens, while non-CoT responses averaged only
15.8 tokens.

We extracted token-wise hidden representations
from all layers of the LLM network and trained a
separate classifier for each layer. To address the
imbalance in response lengths between positive
and negative samples, we implemented a strategic
sampling approach: extracting hidden representa-
tions every five tokens for CoT responses and every
token for non-CoT responses, thereby creating a
more balanced training dataset.

We train the classifier using the Logistic Regres-
sion and Support Vector Machine (SVM) classi-
fiers. The epoch number is 100, the learning rate is
0.001, using stochastic gradient descent (SGD) as
the optimizer.

E More Probing Experiments Results

E.1 Classifier Classification Performance

Building upon our main findings, we conduct an ex-
tensive evaluation using both Logistic Regression
(LR) and Support Vector Machine (SVM) classi-
fiers, assessed through Accuracy, F1-score, and
AUC-ROC metrics. As shown in Figures 6 and 7,
these complementary metrics reinforce and extend
our key observations:

(1) Representation type analysis: The distinct
patterns observed across different LLMs are con-
sistently reflected across all metrics. In Mistral-7b,
hidden states maintain their superior performance
across both classifiers and all evaluation metrics,
with MLP and attention activations showing com-
parable but slightly lower performance. For Phi-
1.5, the notable fluctuation in hidden states and
the stable superiority of attention outputs are ro-
bustly captured by all metrics. In Gemma2-2b,
attention activations consistently demonstrate the
strongest discriminative power across all evalua-
tion criteria, while hidden states and MLP outputs
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show substantial variations. This consistent pattern
across different evaluation frameworks strengthens
our observation about model-specific architectural
strategies for encoding thoughtful reasoning.

(2) Layer-wise analysis: The layer-specific
trends identified in our main analysis persist across
different classification approaches and metrics.
Mistral-7b’s progressive improvement in deeper
layers is consistently observed in both LR and
SVM results, regardless of the evaluation metric
used. The more distributed patterns in Phi-1.5 and
Gemma2-2b, characterized by fluctuations with-
out clear directional trends, are similarly preserved
across all evaluation frameworks. These consis-
tent findings across multiple metrics provide strong
validation for our conclusions about how different
LLMs architecturally encode thoughtfulness fea-
tures.

E.2 Classifier logit value analysis
We conduct a detailed analysis of classifier logit
value distributions across multiple language mod-
els (Mistral-7b, Gemma2-2b, Phi-1.5). Using both
Logistic Regression and SVM classifiers, we com-
pare the distributional patterns between the most
discriminative layers (top-3 F1 scores) and least
discriminative layers (bottom-3 F1 scores).

Figures 8, 9 present comprehensive comparisons
of classifier logit values for Gemma2-2B. Figures
10, 11 present comprehensive comparisons of clas-
sifier logit values for Mistral-7B. Figures 12, 13
present comprehensive comparisons of classifier
logit values for Phi-1.5.

Specifically, Figure 8 compares thoughtful cor-
rect responses against intuitive responses, while
Figure 9 contrasts thoughtful correct responses
with thoughtful incorrect responses. These compar-
isons are conducted within both top-3 and bottom-3
performing layers (ranked by F1-scores), spanning
across different classifier architectures (Logistic
Regression and SVM) and various representation
types (attention activations, MLP activations, and
hidden states), providing a thorough validation of
the scoring and ranking ability of the classifier’s
logit.

Notably, in attention activations, which achieve
the best classification performance among all rep-
resentation types, thoughtful correct responses con-
sistently receive higher logit values than both in-
tuitive responses and thoughtful but incorrect re-
sponses, demonstrating the robust discriminative
ability of our approach. However, this clear rank-

ing pattern is occasionally violated in MLP activa-
tions and hidden states, where thoughtful correct re-
sponses sometimes receive lower logit values than
the other response types. Moreover, this ranking
trend is more pronounced in top-3 performing lay-
ers compared to bottom-3 layers, suggesting that
layers with stronger discriminative power better
preserve the desired response quality ordering.

Similar patterns are observed in Mistral-7B and
Phi-1.5 models, indicating that our trained classi-
fiers demonstrate strong scoring and ranking capa-
bilities across different model architectures, mak-
ing them reliable guides for thought space explo-
ration.
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Figure 6: LR classification performance across LLMs and representation types

Figure 7: SVM classification performance across LLMs and representation types
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Figure 8: Mean logit values and variance regions in Gemma2-2b, comparing lengthy thoughtful correct responses
with concise intuitive incorrect ones.
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Figure 9: Mean logit values and variance regions in Gemma2-2b, comparing lengthy thoughtful correct responses
with lengthy incorrect ones.
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Figure 10: Mean logit values and variance regions in Mistral-7b, comparing lengthy thoughtful correct responses
with concise intuitive incorrect ones.
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Figure 11: Mean logit values and variance regions in Mistral-7b, comparing lengthy thoughtful correct responses
with lengthy incorrect ones.
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Figure 12: Mean logit values and variance regions in Phi-1.5, comparing lengthy thoughtful correct responses with
concise intuitive incorrect ones.

6050



Figure 13: Mean logit values and variance regions in Phi-1.5, comparing lengthy thoughtful correct responses with
lengthy incorrect ones.
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