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Abstract

Visual Question Generation (VQG) research
focuses predominantly on natural images while
neglecting the diagram, which is a critical
component in educational materials. To meet
the needs of pedagogical assessment, we pro-
pose the Diagram-Driven Course Questions
Generation (DDCQG) task and construct Dia-
gramQG, a comprehensive dataset with 15,720
diagrams and 25,798 questions across 37 sub-
jects and 371 courses. Our approach employs
course and input text constraints to generate
course-relevant questions about specific dia-
gram elements. We reveal three challenges of
DDCQG: domain-specific knowledge require-
ments across courses, long-tail distribution in
course coverage, and high information density
in diagrams. To address these, we propose
the Hierarchical Knowledge Integration frame-
work (HKI-DDCQG), which utilizes trainable
CLIP for identifying relevant diagram patches,
leverages frozen vision-language models for
knowledge extraction, and generates questions
with trainable T5. Experiments demonstrate
that HKI-DDCQG outperforms existing mod-
els on DiagramQG while maintaining strong
generalizability across natural image datasets,
establishing a strong baseline for DDCQG.

1 Introduction

Visual Question Generation (VQG) represents a
pivotal and promising research domain with sig-
nificant educational applications (Xie et al., 2025;
Luo et al., 2024). While VQG focuses on auto-
matically generating questions from visual inputs,
current research predominantly addresses natural
images while neglecting diagrams (Wang et al.,
2024; Zhang et al., 2025; Wang et al., 2025a), a
fundamental component of educational materials.
This critical gap impedes the advancement of deep
learning technologies in educational contexts.

*Corresponding author

Text constrained:

(1) Answer: Decrease

(2) Answer & Answer type: Decrease, Relationship

(3) Region: the bounding box of Bivalves

(4) Question type: Relationship

(5) Knowledge triple: (Bivalves, impact, [mask])

(6) Input & Course: Bivalves & Ecological interactions

Question: If the number of Bivalves suddenly 

decreases, what will happen to the number of Geese 

and Mute Swans?

Figure 1: Comparison of different text constraints for
an example in DiagramQG.

The diagram plays a crucial role in pedagogical
assessment by facilitating structured information
presentation and evaluating students’ comprehen-
sion of knowledge (Cook, 2006). Therefore, we
propose the Diagram-Driven Course Questions
Generation (DDCQG) task, which aims to encour-
age models to generate questions based on dia-
grams for specific courses. These questions are
essential for evaluating students’ abilities to ex-
plain, analyze, and apply course knowledge based
on the diagrams (Lambertus et al., 2008).

Furthermore, current VQG research extensively
employs various text constraints—including an-
swers (Xie et al., 2025; Mi et al., 2024), answer
types (Krishna et al., 2019), image regions (Ue-
hara et al., 2018), question types (Fan et al., 2018),
and knowledge triples (Uehara and Harada, 2023).
However, these constraints face significant limi-
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tations when applied to DDCQG task. Research
demonstrates that existing approaches frequently
produce context-independent questions (Liu et al.,
2024a), fail to align with intended assessment ob-
jectives (Uehara and Harada, 2023), or merely gen-
erate superficial expansions lacking pedagogical
depth (Mi et al., 2024), highlighting the need of
specific text constraint for DDCQG task.

To address these issues, we present DiagramQG,
a comprehensive dataset comprising 15,720 dia-
grams and 25,798 questions spanning 6 disciplines,
37 subjects, and 371 courses. We propose a novel
text constraint with course and input, as shown in
Figure 1, where course constraint ensure question
relevance to specific educational contexts, and in-
put constraint guide question generation around
targeted diagram elements. Through analysis of
DiagramQG, we identify three fundamental chal-
lenges of DDCQG: domain-specific knowledge
requirement, with models needing to possess spe-
cialized knowledge across various disciplines un-
like existing VQG datasets that rely primarily on
general common sense; long-tail distribution phe-
nomenon, where course coverage ranges from
abundant to limited, challenging models to gen-
eralize across both well-represented and underrep-
resented courses; and high object information
density, as diagrams contain concentrated visual
information that complicates content interpretation
and risks overlooking critical details.

To address these challenges, we propose the Hi-
erarchical Knowledge Integration framework for
DDCQG task (HKI-DDCQG) as a strong baseline.
This framework employs a trainable CLIP to iden-
tify relevant multi-scale diagram patches, utilizes
vision-language models like BLIP (Li et al., 2022)
and Qwen2.5-VL (Bai et al., 2025) for knowl-
edge extraction, and implements T5 for filtering
extracted knowledge to generate the question based
on text constraints. The framework then integrates
these filtered insights with text constraints and
multi-scale diagram patches for question genera-
tion. Notably, this frame freezes the VLM’s pa-
rameters and trains only the remaining parts, thus
improving scalability and cost-efficiency.

We evaluate HKI-DDCQG against existing VQG
and vision-language models on our DiagramQG
dataset and validate its generalizability through ex-
periments on four natural image VQG datasets. Our
primary contributions include the following:
• We construct the DiagramQG dataset, incorpo-

rating course and input constraints to guide the

generation of Diagram-Driven Course Questions
that align with educational requirements.

• We propose the HKI-DDCQG, which leverages
frozen-parameter vision-language models to en-
able cost-effective diagram-driven course ques-
tion generation. The framework demonstrates
excellent performance across both DiagramQG
and various natural image VQG datasets.

• We conduct comprehensive evaluations of main-
stream VQG models, diverse vision-language
models, and our HKI-DDCQG on the novel Dia-
gramQG dataset, establishing new benchmarks
for diagram-based question generation.

2 Related Work

2.1 Visual Question Generation
VQG has evolved from rule-based approaches to
sophisticated neural architectures. While uncon-
strained approaches often generate generic ques-
tions lacking image specificity (Bi et al., 2022),
constrained methods have shown success through
various strategies, including answer guidance (Xu
et al., 2020; Liu et al., 2024c), knowledge enhance-
ment (Xie et al., 2022; Chen et al., 2023), cross-
topic models (Liu et al., 2024b), and contrastive
learning (Mi et al., 2024). There are also some stud-
ies (Xie et al., 2025) on the generation of visual
problems with controllable difficulty. However,
challenges persist in balancing question diversity
with effective visual information utilization, neces-
sitating innovative constraint mechanisms.

2.2 Diagram Question Answering
Diagram Question Answering (DQA) often de-
mands enhanced reasoning capabilities and domain
knowledge. Prior research has focused on improv-
ing diagram comprehension through pre-training
methods (Gómez-Pérez and Ortega, 2020; Ma et al.,
2022; Xu et al., 2023) and utilizing Large Lan-
guage Models via advanced prompting techniques
(Lu et al., 2022; Zhang et al., 2024b; Yao et al.,
2024a; Wang et al., 2024; Huang et al., 2025b,a).
The effective integration of visual diagrammatic in-
formation with background knowledge remains ab-
solutely crucial for improving DQA performance.

3 DiagramQG Dataset

3.1 Data Collection
The data collection process consisted of three dis-
tinct phases. First, we gathered diagrams and
related questions from existing diagram-related

5997



⚫ Discipline: Basic sciences 

⚫ Subject: Biology

⚫ Course: Ecological interactions

⚫ Target Text: Bivalves

⚫ Question: If the number of Bivalves suddenly 

decreases, what will happen to the number of 

Geese and Mute Swans?

⚫ Discipline: Earth and environmental sciences 

⚫ Subject: Climate Science

⚫ Course: Climate zones and biomes

⚫ Target Text: Negative acceleration

⚫ Question: In which biome is tree growth stunted 

by low temperatures and a short growing season?

⚫ Discipline: Humanities and social sciences 

⚫ Subject: History

⚫ Course : Age of exploration

⚫ Target Text: Columbian Exchange

⚫ Question: Based on the definition of the 

Columbian Exchange, which arrow could 

show a part of the Columbian Exchange?

⚫ Discipline: Engineering and technology 

⚫ Subject: Computer Science

⚫ Course: Network topology

⚫ Target Text: Topology

⚫ Question: What is the type of topology in 

the graph?

Figure 2: Four different examples of different subjects in DiagramQG dataset.

Humanities and social sciences (10.6%)
◼ Art Theory

Aesthetics, Printmaking, Sculpture, …

◼ Civics

Government, Reconstruction, …

◼ Cognitive Science

Abstract Tangram Recognition, …

◼ Grammar

Sentences, fragments, and run, …

◼ History

European history, The silk road, …

◼ Literature

Children's literature, Drama, Fiction, …

◼ Music

Music, …

◼ Psychology

Abnormal psychology, Clinical psychology, …

◼ Sociology

Social economics, Sociology theory, …

◼ Writing

Persuasive strategies, …

Engineering and technology (10.2%)
◼ Architecture

Agricultural economics, …

◼ Computer Science

Array, Binary tree, Database

Network topology…

◼ Design

Fashion design, Graphic design, 

Industrial design, Interior design, …

◼ Electrical Engineering

Logic circuit, Electromagnetic spectrum, …

◼ Integrated Sciences

Context clues, Designing experiments, …

◼ Materials Science

Mechanics of materials, …

◼ Mechanical Engineering

Engineering dynamics, Fluid dynamics

Mechanical design, …

Earth and environmental sciences (14.9%)
◼ Agriculture

Water resources engineering, …

◼ Climate Science

Clouds, Greenhouse effect, …

◼ Environmental Science

Effects of air pollution, …

◼ Geography

Asia society and environment, Maps, …

◼ Geology

Continental drift, Fossils, …

◼ Oceanography

Ocean movements, Surface ocean currents, …

Healthcare and health (11.2%)

◼ Medicine

Circulatory, Dental, Radiology, …

◼ Pharmacy

Pharmaceutical microbiology, …

◼ Physiology

Digestive system, Nervous system,…

◼ Public Health

Biostatistics, Epidemiology

Basic sciences (41.7%)
◼ Astronomy

Eclipses, Revolutions of earth, Rotation of earth

The sun and the earth moon system, …

◼ Biology

Adaptations, Biochemistry, Cell structures, 

Ecological interactions, Genetics, 

Reproduction and life stages, Protists, …

◼ Chemistry 

Atoms and molecules, Biochemistry

Chemical bonds, Hydrocarbons, …

◼ Mathematics

Geometry, Number theory,

Probability and statistics, …

◼ Physics

Acceleration, Heat transfer, Nuclear energy

Thermodynamics, Wave, …

Business and economics (11.4%)
◼ Accounting

Financial accounting, Investment, …

◼ Economics

Fiscal deficits calculation,

Inflation rate trend analysis, …

◼ Finance

Financial management, …

◼ Management

Cost management, Strategic management, …

◼ Marketing

Market research, …

Figure 3: Domain diversity in DiagramQG where each color corresponds to one discipline.

datasets (Kembhavi et al., 2017; Wang et al., 2022;
Zhang et al., 2024a; Lu et al., 2022; Yue et al.,
2024; Chen et al., 2024), supplemented by dia-
grams available for academic use from platforms
such as Hugging Face and Roboflow. This initial
phase yielded a substantial raw dataset containing
over 25,000 diagrams and 60,000 questions.

Subsequently, we organized the collected dia-
grams and questions into six primary disciplines
and further categorized them into 37 specific sub-
jects. This structuring process involved mapping
questions to their corresponding courses, resulting
in the identification of 371 distinct courses.

Finally, highly experienced subject-specific an-
notators with relevant knowledge backgrounds an-
notated input text constraints for each diagram-
question pair within their specialized domains. A
separate group of subject annotators evaluated all
samples based on their educational utility using a
100-point scale. Samples scoring below the thresh-

old of 70 are removed, and only the highest-scoring
set of text constraints is retained for each diagram-
question pair. The resulting DiagramQG dataset
contains 25,798 samples associated with 15,720
unique diagrams. Examples from four subjects in
the DiagramQG dataset are shown in Figure 2.

3.2 Data Analyse

3.2.1 Domain & Question diversity.
As illustrated in Figure 3, the DiagramQG dataset
encompasses 6 disciplines, 37 subjects, and 371
courses across multiple academic domains, with an
average of 17.45 words per question. The dataset
follows a hierarchical structure, with samples first
classified by discipline, then divided into specific
subjects (e.g., Biology), and ultimately categorized
into courses (e.g., Ecological interactions). For fur-
ther research, we split DiagramQG into train, val,
and test sets with a ratio of 70:5:25. Considering
that some courses contain fewer than 5 samples,
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Table 1: Comparing characteristics of other datasets and DiagramQG, where Q. and I. mean question and image.

Num. of Q. Num. of I. Object on I. Images Text Constraint Subjects
VQAv2.0 1.1M 20k 3.5 natural answer N/A

FVQA 5,826 2k 2.9 natural answer N/A
VQG-COCO 25,000 5k 3.3 natural image caption N/A

K-VQG 16,098 13K 2.7 natural knowledge triple N/A
TQA 26,260 3,455 7.2 diagram - 10

CSDQA 3,494 1,294 5.2 diagram - 1
ADE 3.945 3.945 7.4 diagram - 8

ScienceQA 21,208 10,332 4.3 diagram & natural - 12
MMMU 11,550 11,264 4.5 diagram & natural - 30
M3CoT 11,459 11,293 5.4 diagram & natural - 17

DiagramQG 25,798 15,720 10.5 diagram input, course 37

we prioritized allocating these courses to the test
set to ensure a comprehensive evaluation.

As illustrated in Figure 4, the ratio of questions
and diagrams for each course exhibits a pronounced
long-tail distribution. This asymmetric distribu-
tion indicates that the DiagramQG dataset covers
a wide range of courses, some courses have no-
tably limited samples. However, this is a common
characteristic in educational scenarios that accu-
rately reflects typical resource allocation patterns
in real-world educational environments.

3.2.2 Comparisons to Other Datasets
Table 1 presents a comprehensive comparison
between DiagramQG and existing VQG-related
and diagram-related datasets, highlighting Dia-
gramQG’s distinctive characteristics. DiagramQG
encompasses 25,798 questions and 15,720 unique
diagrams, substantially surpassing the scale of ex-
isting multidisciplinary datasets (such as M3CoT),
including those that incorporate both natural im-
ages and diagrams. Unlike conventional VQG
datasets that primarily focus on image caption and
common-sense reasoning, DiagramQG is specifi-
cally engineered for educational applications.

DiagramQG demonstrates three significant ad-
vantages. First, it exhibits unprecedented edu-
cational breadth, spanning 37 distinct academic
courses, which exceeds the domain coverage of
existing datasets. Second, the dataset introduces a
novel constraint that integrates both input phrases
and course-specific contextual information, tran-
scending traditional constraint formats. Third, each
diagram contains an average of 10.5 objects, repre-
senting significantly higher complexity compared
to existing datasets in the field. This unique com-
bination of comprehensive course coverage, so-
phisticated constraint mechanisms, and enhanced

Chemistry (1421)

Geography (1396)

Physics (4000) Economics (1843)

…
Agriculture (46)

Mechanical Engineering (71)

Oceanography (239)

History (235)

…

Figure 4: Distribution of diagrams, questions ratios
across different courses in DiagramQG.

diagram complexity establishes DiagramQG as
the first extensive dataset specifically designed for
diagram question generation across diverse edu-
cational domains. The dataset facilitates the de-
velopment of more robust and versatile question-
generation systems for educational applications.

3.2.3 Challenges in DiagramQG Dataset

Our comparative analysis reveals three distinctive
challenges in DiagramQG that set it apart from
existing visual question generation datasets:
• Domain-specific knowledge requirement: Un-

like other existing VQG datasets that focus on
general common sense, DiagramQG dataset con-
sistently requires models to possess and apply
different courses across various subjects to gen-
erate meaningful and practical questions.

• Long-tail distribution phenomenon: The inher-
ent complex long-tail distribution in DiagramQG
dataset, where course samples range from abun-
dant to limited, challenges the generalization and
performance of models across both sample-rich
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and sample-limited courses.
• High object information density: The signif-

icantly high density of object information in
the diagrams complicates content interpretation
and risks overlooking critical details, demanding
models to possess capabilities in capturing and
processing complex visual information.

4 Baseline

4.1 Problem Definition

The Diagram-Driven Course Questions Generation
(DDCQG) task aims to generate a pedagogically
appropriate question q given a diagram d, an in-
put text t, and a course text c specifically. The
generated questions are used to effectively assess
students’ understanding of the specified course c.
This task can be formulated as a conditional gen-
eration problem, represented as p(q|d, t, c), where
a multimodal model coherently maps visual and
textual information into a joint embedding space
before decoding questions that satisfy both the text
constraint and the course assessment requirement.

4.2 Architecture

We propose the Hierarchical Knowledge Integra-
tion (HKI-DDCQG) framework as a baseline for
the DDCQG task. This framework is designed to
be compatible with any vision-language foundation
model and implements a three-stage pipeline for
question generation: HierKnowExtract, KnowS-
elect, and KnowFusionQG, as shown in Figure
5. The HierKnowExtract stage extracts knowl-
edge Ks from multi-scale diagram patches Ps us-
ing vision-language models with frozen parameters.
The KnowSelect stage selects the m most relevant
knowledge sentences K(t,c) based on text t and
course c. The KnowFusionQG stage integrates t,
c, Ps, and K(t,c) to generate the final question q̂.

4.2.1 HierKnowExtract

The HierKnowExtract stage obtains diagram
patches Ps of different scales related to the input &
course and uses vision-language models to extract
the knowledge Ks contained in all patches. This
process begins with a hierarchical decomposition
of diagram d into ordered patches Pd across an
n-layered pyramid structure, followed by visual
encoding using the CLIP Image Encoder (Radford

et al., 2021) to get F l, as formulated in Equation 1.




Fd = {F l}nl=1

Pd = {pli,j | l ∈ [1, n], i, j ∈ [1, l]}
F l = {f l

i,j = CLIP(pli,j) | pli,j ∈ Pd}

pli,j = d

[
i− 1

l
H :

i

l
H,

j − 1

l
W :

j

l
W

]
(1)

where H and W denote the height and width of the
input diagram, respectively.

For textual components, the T5 Encoder (Raf-
fel et al., 2020) is employed to process both the
input text t and course text c independently. We
introduce a learnable linear transformation Wh to
ensure seamless compatibility between the CLIP
Image Encoder (Radford et al., 2021) and T5 En-
coder (Raffel et al., 2020) feature spaces. This ef-
fectively facilitates unified similarity computation
and subsequent operations in the KnowFusionQG
phase. The process ultimately culminates in the
selection of the most semantically relevant patch
from each hierarchical layer to form the patch set
Ps, as shown in Equation 2.




et = T5enc(t), ec = T5enc(c)

sli,j = sim(Whf
l
i,j , et) + sim(Whf

l
i,j , ec)

Ps = {pli∗,j∗ | (i∗, j∗) = argmax
i,j

sli,j , l ∈ [1, n]}
(2)

The selected patches Ps, input text t, and course
text c are carefully fed into a large-scale vision-
language model (VLM) like Qwen2.5-VL (Bai
et al., 2025) or BLIP (Li et al., 2022) to obtain
diverse knowledge which is related with patch, in-
put and course. The resulting knowledge set Ks is
systematically generated according to Equation 3.
{
Ks = {kl | l ∈ [1, n]}
kl = VLM(pli∗,j∗ , t, c), ∀pli∗,j∗ ∈ Ps

(3)

where kl is the text paragraph retrieved by the
VLM, containing several knowledge sentences. To
optimize the learning process, the CLIP Image En-
coder (Radford et al., 2021), T5 Encoder (Raffel
et al., 2020), and the linear transformation Wh em-
ployed in this phase share parameters with their
counterparts in the third phase, where gradient up-
dates are effectively propagated.

4.2.2 KnowSelect
The KnowSelect stage selects the m most rele-
vant knowledge sentences K(t,c) from the exten-
sive knowledge set Ks based on input text t and
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(a) Pyramid Layout

CLIP

𝑡:Bivalves

𝑐:Ecological 

interactions

(b) Framework

𝑃𝑠

VLM

…

𝐾𝑠

cos

T5 Enc

T5 Enc

cos

𝐾(𝑡,𝑐)

𝑃𝑠 CLIP

T5 EncPrompt

𝑡 & 𝑐

W Attention

+

𝑡𝑎𝑛ℎ(𝛾)

T5 Dec

ො𝑞

HierKnowExtract KnowSelect KnowFusionQG

𝐻(𝑡,𝑐)𝑒𝑡 , 𝑒𝑐

Figure 5: (a) Process the diagram into a pyramid structure of patches. (b) Our DiagramQA baseline, HKI-
DDCQG, consists of three distinct stages: HierKnowExtract, KnowSelect, and KnowFusionQG. In this framework,
orange modules indicate trainable parameters, blue modules represent fixed parameters, and gray modules denote
components without learnable parameters.

course text c. The process begins with encoding the
knowledge set Ks and the t, c text constraints using
the T5 Encoder (Raffel et al., 2020), as formulated
in the following Equation 4.

{
HK = T5enc(Ks)

Ht,c = T5enc(Prompt(t, c))
(4)

where Prompt(t, c) combines t and c into a prompt
following the template: Given the input text t, iden-
tify key knowledge related to the course c.

For the semantic relevance between the knowl-
edge set (K(t,c)) and text constraints (t and c), we
employ a scaled dot-product attention mechanism.
This computes attention scores between the knowl-
edge tokens and the text constraint, followed by
knowledge selection, as formulated in Equation 5:




A = softmax

(
HKHT

t,c√
dk

)

K(t,c) = top-m(AHK)

(5)

where dk denotes the dimensionality of the hidden
representations. The top-m() operator selects the
m most semantically relevant knowledge sentences
based on attention scores, creating a knowledge set
K(t,c) that best matches the text constraints.

4.2.3 KnowFusionQG
The KnowFusionQG stage integrates the selected
diagram patches Ps, input text t, course text c,
and knowledge set K(t,c) to generate the diagram-
driven course question through a multimodal fusion
mechanism. This process begins with encoding the
visual and textual inputs into language and vision
representations, as shown in Equation 6.

{
Ht = T5enc(Prompt[t; c;K(t,c)])

Hv = Wh · CLIP(Ps)
(6)

where Wh is also used in HierKnowExtract phase.
This Prompt[t; c;K(t,c)] synthesizes t, c and K(t,c)

into a coherent prompt following the template:
Generate the question including input t to assess
course c with the knowledge K(t,c). To capture
the intricate relationships between textual and vi-
sual representations, a cross-modal attention mech-
anism followed by a gated fusion network is em-
ployed, as formulated in Equation 7.





Hattn
v = Softmax(

HtH
T
v√

dk
)Hv

λ = WtHt +WvH
attn
v

Hfuse = Ht + tanh(λ) ·Hattn
v

(7)

Finally, the fused output Hfuse is fed into the T5
decoder (Raffel et al., 2020) to predict the input
question q̂. This integration of visual and text in-
formation through cross-modal attention and gated
fusion enables the model to generate questions that
are contextually relevant and conceptually focused.

5 Experiments

5.1 Implementation Details
The experimental framework uses T5-Base and
T5-Large architectures along with the CLIP (ViT-
B/32) model. Optimization is performed with the
AdamW optimizer, applying a learning rate of 1e-5
for CLIP and 5e-5 for others, running through 10
epochs of fine-tuning. Key parameters include a
maximum input sequence length of 256, an output
sequence length of 64, and a batch size of 32, with
experiments conducted on one NVIDIA A800 80G
GPU. The DiagramQG is split into training, vali-
dation, and testing sets with a ratio of 70:5:25, en-
suring no overlap of diagrams and questions across
these sets. Additionally, each course is represented
in both validation and testing sets, despite some
courses having relatively few samples.

5.2 Baselines
VQG approaches can be classified into two main
categories: Fine-tuned and In-Context Learning
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Table 2: Results on DiagramQG, where GPT-4o (T) and Claude-3.5-Sonnet (T) are meant to generate questions
using only text, where, Q-3B, Q-7B, T5-B, T5-L mean, Qwen2.5-VL-3B, Qwen2.5-VL-7B, T5-Base and T5-Large.

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 Bert-Score METEOR CIDEr ROUGE-L Fleur
In-Context Learning
InternVL2.5 (26B) (Wang et al., 2025b) 32.52 19.78 13.14 9.52 92.37 18.51 0.42 28.10 60.31
InternVL2.5 (38B) (Wang et al., 2025b) 33.34 21.15 14.68 10.68 93.76 20.13 0.44 29.66 62.13
MiniCPM-V2(8B) (Yao et al., 2024b) 28.37 15.34 9.66 6.31 88.15 14.26 0.33 25.69 55.14
DeepSeek-VL(7B) (Lu et al., 2024) 28.27 17.13 10.68 7.27 89.88 17.85 0.35 27.17 53.75
Qwen2.5-VL(3B) (Bai et al., 2025) 31.44 18.75 11.64 7.36 88.76 15.51 0.34 27.15 58.95
Qwen2.5-VL(7B) (Bai et al., 2025) 33.51 21.06 13.93 10.52 90.53 18.11 0.51 29.00 61.34
Qwen2.5-VL(72B) (Bai et al., 2025) 41.91 29.45 22.16 17.56 96.86 23.21 0.80 36.57 64.15
GLM4-V pro 37.31 23.81 16.34 12.85 95.66 19.68 0.70 32.07 63.12
Claude-3.5-Sonnet (T) 27.21 15.93 10.00 6.62 92.75 16.10 0.51 24.35 22.76
GPT-4o (T) 23.18 12.78 8.04 4.74 94.82 13.60 0.41 24.22 21.25
Claude-3.5-Sonnet 48.98 40.66 34.68 30.07 98.21 34.62 2.05 45.23 67.69
GPT-4o 51.15 43.08 37.16 32.33 98.94 35.92 2.20 49.60 65.29
Fine-tuned
K-VQG (Uehara and Harada, 2023) 20.54 15.31 11.98 9.58 73.66 24.76 0.41 26.29 54.25
Patch-TRM (Lu et al., 2021) 21.13 15.90 12.49 10.12 74.46 25.91 0.42 28.09 55.42
ConVQG (BLIP) (Mi et al., 2024) 28.65 21.12 16.38 13.06 74.49 26.93 0.50 28.77 55.75
KC-VQG (BLIP) (Liu et al., 2024a) 30.41 23.95 19.29 15.19 79.62 28.46 0.93 31.55 56.51
KC-VQG (Q-3B) (Liu et al., 2024a) 33.15 25.92 20.92 17.10 83.32 30.57 1.19 34.57 59.76
Qwen2.5-VL-3B (Lora) 50.75 45.37 39.36 35.52 86.04 41.72 3.05 48.21 65.78
Qwen2.5-VL-7B (Lora) 53.64 48.04 41.50 37.56 88.57 44.12 3.22 50.89 68.12
Ours
HKI-DDCQG(BLIP, T5-B) 44.05 36.31 31.32 27.63 84.02 37.55 2.62 42.65 58.87
HKI-DDCQG(Q-3B, T5-B) 54.55 48.04 43.42 40.90 88.86 47.61 3.74 54.17 64.75
HKI-DDCQG(Q-7B, T5-B) 56.69 49.91 45.07 41.56 89.81 48.22 3.78 55.45 67.84
HKI-DDCQG(BLIP, T5-L) 46.48 39.34 34.54 30.94 85.18 39.50 2.80 45.82 59.25
HKI-DDCQG(Q-3B, T5-L) 57.54 51.12 46.24 44.16 90.11 50.09 4.01 58.18 65.20
HKI-DDCQG(Q-7B, T5-L) 59.63 53.06 48.00 44.85 90.98 50.73 4.04 59.57 69.31

Table 3: Evaluation results on K-VQG dataset.

Dataset Model BLEU-4 CIDEr METEOR

K-VQG

IM-VQG 11.44 17.07 0.26
K-VQG 18.84 22.79 1.31

ConVQG 20.01 22.66 1.53
HKI-DDCQGB 25.34 26.52 1.82
HKI-DDCQGQ 32.12 30.12 2.08

methods. Fine-tuned methods use models like
BERT (Devlin, 2018), T5 (Raffel et al., 2020), or
GPT-2 (Radford et al., 2019) for question genera-
tion, with examples including IM-VQG (Krishna
et al., 2019), K-VQG (Uehara and Harada, 2023),
Patch-TRM (Lu et al., 2021), ConVQG (Mi et al.,
2024), LV2-Net (Liu et al., 2024c), and KC-VQG
(Liu et al., 2024a). In-Context Learning methods
utilize large vision-language models to extract rele-
vant information from diagrams and generate ques-
tions using three reference questions. This includes
open-source models like Qwen2.5-VL (Bai et al.,
2025), MiniCPM-V (Yao et al., 2024b), DeepSeek-
VL (Lu et al., 2024), and InternVL2.5(Wang et al.,
2025b), as well as closed-source models such as
GLM4-V pro, Claude-3.5 Sonnect, and GPT-4o.

5.3 Evaluation metrics
We evaluate our model using established language
generation metrics, including BLEU (Papineni
et al., 2002), Bert Score, METEOR (Denkowski
and Lavie, 2014), CIDEr (Vedantam et al., 2015),

and ROUGE (Lin, 2004). We evaluate model per-
formance using the pycocoevalcap package to mea-
sure alignment between generated and ground truth
questions. At the same time, in order to evaluate
the relevance of generated questions to diagrams,
we introduce the FLEUR evaluation index (Lee
et al., 2024) to supplement the evaluation metrics.

5.4 Results

We comprehensively evaluate various models on
our DiagramQG dataset, as shown in Table 2.
Among the in-context learning methods that utilize
Vision-Language Models (VLMs), models with
larger parameter counts generally perform signifi-
cantly better, indicating their abundant knowledge
across different subjects. Interestingly, Qwen2.5-
VL 3B achieves impressive and competitive results
despite having fewer parameters, making it a suit-
able base model for further comprehensive experi-
ments. Tests conducted with GPT-4o and Claude-
3.5-Sonnet using only text inputs result in reduced
generation performance, highlighting the critical
importance of incorporating diagrams in the ques-
tion generation process. Among the fine-tuned
methods, KVQG and Patch-TRM do not leverage
VLMs for additional knowledge, while ConVQG
and KC-VQG do. The latter models demonstrate
superior performance, with KC-VQG showing im-
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Table 4: Results on three VQG datasets.

Dataset Model BLEU-1 CIDEr METEOR

VQG-COCO

MDN 36.0 23.4 0.51
MC-BMN 40.7 22.6 0.50
ConVQG 50.2 26.4 0.56

HKI-DDCQGB 55.6 43.4 0.74
HKI-DDCQGQ 58.7 47.6 1.08

OK-VQA

IM-VQG 36.47 30.25 0.15
KVQG 27.18 55.38 0.13

LV2-Net 29.90 92.17 0.15
HKI-DDCQGB 31.51 112.61 0.20
HKI-DDCQGQ 33.82 128.31 0.24

A-OKVQA

IM-VQG 39.30 22.11 0.12
KVQG 30.56 40.97 0.13

LV2-Net 32.11 60.06 0.14
HKI-DDCQGB 33.21 78.42 0.18
HKI-DDCQGQ 35.31 93.56 0.22

Table 5: Results on DiagramQG with Qwen2.5-VL
3B & T5-Base, where H.K.E, K.S and K.F mean Hier-
KnowExtract, KnowSelect and KnowFusionQG.

H.K.E K.S K.F BLEU-4 METEOR CIDEr
✓ ✓ ✓ 40.90 47.61 3.74
✓ ✓ 38.85 45.42 3.48
✓ ✓ 35.57 44.02 2.95
✓ 34.04 42.52 2.82

✓ 14.32 25.64 0.48

proved results as VLM parameters scale up. By
observing the Fleur metrics, we find that T5-Base
and T5-Large do not show significant improve-
ment in image information understanding, indi-
cating that VLM’s contribution to the correlation
between the image and the question is more obvi-
ous than T5. HKI-DDCQG framework achieves
the best performance across all quantitative eval-
uation metrics, regardless of whether it is based
on T5-Base or T5-Large, particularly when us-
ing the larger-scale Qwen2.5-VL (Bai et al., 2025)
model. These impressive results convincingly vali-
date HKI-DDCQG as an effective baseline for fu-
ture research by demonstrating the value of incor-
porating subject knowledge in the DDCQG task.

5.5 Results on Other Dataset

We evaluate HKI-DDCQG’s generalization capa-
bilities on four natural image VQG datasets: VQG-
COCO, OK-VQA, A-OKVQA, and K-VQG (Ta-
bles 3 and 4). Our model consistently outperforms
existing approaches, particularly in CIDEr and ME-
TEOR metrics, indicating superior semantic com-
prehension and contextual coherence.

5.6 Ablation experiment

Since KnowSelect inherently builds upon Hier-
KnowExtract, we cannot evaluate it in isolation.
Ablation results (Table 5) demonstrate that knowl-
edge incorporation systematically enhances ques-

Table 6: Results on DiagramQG under different settings.
We employ HKI-DDCQG (Qwen2.5-VL 3B & T5-Base)
to obtain the results.

Setting BLEU-4 METEOR CIDEr
n=1,m=4 35.45 41.70 2.98
n=2,m=4 38.13 46.01 3.28
n=4,m=4 40.63 47.25 3.72
n=3,m=1 37.14 44.32 3.35
n=3,m=2 38.85 45.63 3.50
n=3,m=4 41.16 47.74 3.77
n=3,m=5 41.41 48.12 3.78
n=3,m=3 40.90 47.61 3.74

GT

Our

If the number of Bivalves suddenly decreases, what 

will happen to the number of Geese and Mute Swans?

If Bivalves suddenly decline in numbers, what 

would happen to the populations of Sea Ducks?

Input Input: Bivalves; Course: Ecological interactions

GPT-4o What kinds of organisms do bivalves eat?

GT

Our

Which represents the part that is used 

to filter food out of water?

Which represents the part used to filter 

food from the water?

Input

GPT-4o What is the function of the filter?

Input: Filter; Course: Echinoderms and 

invertebrate chordates

Figure 6: Comparison between HKI-DDCQG and GPT-
4o using two examples from the DiagramQG dataset.

tion generation quality. KnowSelect shows greater
impact than KnowFusionQG, indicating its effec-
tiveness in filtering and retaining relevant informa-
tion from HierKnowExtract’s output.

5.7 Parameter Sensitive Study

We examine two parameters: the number of pyra-
mid layers (n) for diagram division and the number
of knowledge sentences (m) selected for question
generation. Results in Table 6 show optimal perfor-
mance at n = 3, with finer divisions adding noise
in knowledge extraction. However, performance
continues to improve after m = 3, although the
marginal gains come at the cost of increased input
length and computational overhead.

5.8 Case Study

Figure 6 compares HKI-DDCQG with GPT-4o on
DiagramQG examples. While GPT-4o generates
fluent questions, HKI-DDCQG demonstrates supe-
rior capability in producing course-relevant ques-
tions that better assess student understanding. More
cases are provided in supplementary materials.

6 Conclusion

We present DiagramQG, the first diagram-specific
question generation dataset, and HKI-DDCQG, a
framework leveraging hierarchical knowledge in-
tegration for diagram-driven course question gen-
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eration. Experimental results demonstrate HKI-
DDCQG’s superior performance over existing
VQG and vision-language models, advancing intel-
ligent education (Misra et al., 2018) through auto-
mated, personalized question generation.
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8 Limitation

Our DiagramQG dataset and HKI-DDCQG frame-
work, while advancing educational question gen-
eration, face two main limitations. First, our ap-
proach generates questions without multiple-choice
options. Adding the capability to generate both
questions and plausible distractors would enhance
the system’s educational value, as multiple-choice
questions effectively assess student understanding
across knowledge levels. However, DiagramQG
also establishes the groundwork for future research
in the simultaneous generation of diagram-based
questions and distractor options. Second, the long-
tail distribution across 371 courses poses chal-
lenges for uniform performance. Models may show
lower effectiveness for underrepresented courses
with fewer training examples. However, this dis-
tribution reflects real-world educational patterns,
and our framework maintains strong generaliza-
tion across diverse domains. Despite these con-
straints, DiagramQG significantly advances educa-
tional AI research, providing a robust foundation
for diagram-driven course question generation.

9 Ethical Statement

In developing DiagramQG, we prioritized ethical
considerations throughout the entire process. Our
data collection strictly adhered to copyright guide-
lines, utilizing only publicly available educational
resources with appropriate permissions or fair use
provisions. All data comply with CC BY-SA 4.0,
CC BY-NC-SA, and MIT licenses and have been
reviewed to ensure educational value and accu-
racy. We will publicly release complete datasets
under appropriate licenses, both reducing unnec-
essary carbon footprint and optimizing processing
pipelines to lower computational overhead. We
fully recognize the broad impacts of automated
question-generation systems. Our work aims to
assist educators, with these systems designed to
complement. To address representation bias, we
constructed a diverse dataset spanning 6 disciplines,
37 subjects, and 371 courses. While natural imbal-
ances exist in educational content availability, our
dataset provides broader coverage than previous
work, enabling contextually appropriate question
generation across various educational domains. As
an important resource driving AI capabilities in ed-
ucational reasoning, DiagramQG maintains high
standards for data quality and ethical considera-
tions. In all experiments, we strictly comply with
all licensing requirements for models and data.
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10 Appendix

In this supplementary material, we provide more
details on our implementation and experiments as
follows:

• Section A: More details on implementation;

• Section B: More details on baselines;

• Section C: More details on DiagramQG;

• Section D: More case studies on Diagram.

A. More details on implementation

In our experimental setup, we developed a frame-
work based on the T5 architecture, utilizing both
its Base and Large variants respectively, alongside
CLIP (ViT-B/32) for visual understanding capabil-
ities. The framework’s trainable parameters, ex-
cluding pre-trained components, were initialized
following a normal distribution (µ = 0, σ = 0.02).
For optimization, we implemented the AdamW op-
timizer with a dual learning rate strategy: a conser-
vative 1e− 5 for CLIP components to maintain vi-
sual feature integrity, and a higher 5e−5 for remain-
ing components. The training process spanned 20
epochs, incorporating linear learning rate warmup
during the initial 2 epochs followed by cosine de-
cay. Our implementation featured specific config-
urations including 256 tokens for maximum input
sequence length, 32 tokens for output sequence
length, a batch size of 32, 4 gradient accumulation
steps, 0.01 weight decay, and 0.1 dropout rate, with
FP16 mixed precision training enabled. All exper-
imental procedures were executed on a hardware
setup consisting of two NVIDIA A100 80G GPUs,
utilizing CUDA 11.8 and PyTorch 1.13.1.

B. More details on baselines

Visual Question Generation (VQG) approaches can
be classified into two main categories: fine-tuning-
based methods and large vision-language models.

For Fine-tuning-based methods, using the
same data split approach as our method, the dataset
is divided into training, validation, and test sets in a
ratio of 70:5:25. Models are trained on the training
set, validated on the validation set, and final results
are reported on the test set.

K-VQG (Uehara and Harada, 2023) integrates
UNITER, a multi-modal transformer, to encode
both visual features (extracted via Faster R-CNN)
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and masked knowledge triplets. The model pro-
cesses visual region features with positional infor-
mation and combines them with tokenized knowl-
edge triplets through a BART-based decoder, gen-
erating questions

Patch-TRM (Lu et al., 2021) employs a hier-
archical patch-based transformer that processes
diagrams by decomposing them into meaningful
patches through a pyramid layout. The model com-
bines ResNet and vision Transformer for visual
processing, using attention mechanisms to fuse vi-
sual and textual features, enabling effective capture
of both local details and global relationships for
diagram-focused question generation.

ConVQG (Mi et al., 2024) introduces a con-
trastive learning framework with dual modality-
specific objectives for visual question generation.
By contrasting image-specific and text-guided fea-
tures, the model generates diverse questions that
are both image-specific and controllable through
flexible textual constraints such as answers, cap-
tions, or knowledge triplets, enabling precise con-
trol over question content while maintaining visual
grounding.

KC-VQG (Liu et al., 2024a) presents a
knowledge-guided framework that combines topic-
aware visual attention and Large Language Model
(LLM) generated knowledge for question genera-
tion. The model integrates three components: a
topic-aware visual feature extractor, a knowledge
extractor with discriminative filtering, and a GPT-2
based decoder, enabling it to generate questions
that incorporate both explicit visual information
and implicit commonsense knowledge about speci-
fied topics.

LV2-Net (Liu et al., 2024c) integrates logical
verification into both knowledge acquisition and
question generation processes, hence its designa-
tion as LV^2-Net. By performing a dual logical
structure check—examining the relationships be-
tween visual content (V), attributes (A), knowl-
edge (K), ground-truth answers, and the gener-
ated questions (Q) at two distinct stages within the
knowledge-based visual question generation (KB-
VQG) pipeline—LV2-Net is capable of producing
a diverse range of insightful knowledge-driven vi-
sual questions.

For large vision-language models (VLMs),
whether open-source or closed-source, we selected
three reference questions for each course. These
reference questions, along with target and course
textual constraints, are incorporated into the prompt

during the VLM’s question generation process to
obtain final outputs.

Open-Source Large vision-language models:
Qwen2.5VL (Bai et al., 2025) is a multimodal

model with key enhancements in document pars-
ing, object grounding, and video understanding. It
boasts powerful omnidocument parsing capabili-
ties, excelling in diverse document types and lan-
guages, including complex elements like tables,
charts, and formulas. The model offers precise
object grounding with support for various coordi-
nate formats, enabling advanced spatial reasoning.
Its ultra-long video understanding is enhanced by
dynamic resolution in the temporal dimension, al-
lowing for comprehension of hours-long videos
and fine-grained event localization. Furthermore,
Qwen2.5VL features improved agent functional-
ity for computer and mobile devices through en-
hanced grounding, reasoning, and decision-making.
Architecturally, it incorporates dynamic FPS sam-
pling and temporal mRoPE for video understand-
ing, along with a streamlined vision encoder uti-
lizing window attention, SwiGLU, and RMSNorm.
Available in 3B, 7B, 32B, and 72B parameter ver-
sions, its streaming architecture ensures efficient
processing of various inputs and strong perfor-
mance on diagram-related tasks.

MiniCPM-V (Yao et al., 2024b) presents a com-
pact yet effective vision-language model that com-
bines SigLip-400M visual encoder with Qwen2-
7B language model, totaling 8B parameters. The
model offers efficient multi-image and video un-
derstanding capabilities while maintaining compet-
itive performance on vision-language tasks through
its streamlined architecture and parameter-efficient
design.

DeepSeek-VL (Lu et al., 2024) introduces a
balanced approach to vision-language modeling
that builds upon the DeepSeek language model se-
ries. The model emphasizes maintaining strong
language capabilities while developing visual un-
derstanding, featuring high-resolution processing
capabilities and a carefully curated training strategy.
Through its systematic scaling methodology from
1B to 7B parameters, it achieves competitive perfor-
mance in practical applications while maintaining
efficiency in multi-modal processing.

InternVL 2.5 (Wang et al., 2025b) is an advanced
open-source Multimodal Large Language Model
(MLLM) series, building on InternVL 2.0 with
enhanced training, testing, and data quality. It
rivals top commercial models like GPT-4o and
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GT

Pred.

Please judge whether  it is a hybrid structure.

What is the difference between the wired and 

wireless structure?

Input
Input text: hybrid structure

Course text: Network topology

How many years passed between the signing of the Treaty 

of Versailles and the beginning of World War II in Europe?

What happened after Theory of Versailles?

Input text: World War II

Course text: 20th century american history

Which of these causes light to converge?

What causes the meniscus to curvature?

Input text: converge

Course text: Optics

GT

Pred.

Input

GT

Pred.

Input

Figure 7: Three different cases (Text Constraint Lost) in DiagramQG dataset.

GT

Pred.

Which part controls the diameter and size of pupil?

What is the function of the pupil?

Input
Input text: Bivalves

Course text: Vision and the eye

Which has more energy Kr or Ba?

During this process, what energy is emitted 

from the nucleus?

Input text: energy

Course text: Nuclear energy

In terms of altitude, what are clouds that is in between 

Stratus and Cirrostratus?

What is the top layer of the Stratus?

Input text: Stratus

Course text: Clouds

GT

Pred.

Input

GT

Pred.

Input

Figure 8: Three different cases (Diagram Interpretation Bias) in DiagramQG dataset.

Claude-3.5-Sonnet, notably being the first open-
source MLLM to exceed 70% on the MMMU
benchmark. Key innovations include a Progres-
sive Scaling Strategy for efficient vision encoder
and LLM alignment, improved training with Ran-
dom JPEG Compression and Loss Reweighting,
and Well-structured Data Organization for higher
quality and training efficiency. InternVL 2.5 aims
to advance the open-source multimodal AI commu-
nity.

Closed-Source Large vision-language models:

GLM4-V is a large-scale multimodal language
model developed by ZhiPu, featuring outstanding
visual understanding and language generation ca-
pabilities. It employs a unified pre-training frame-
work, capable of handling multiple modalities such
as text, images, and audio. GLM4-V demonstrates
strong performance in tasks like visual question
answering, image description, and cross-modal rea-
soning, and can quickly adapt to new scenarios
through few-shot learning. The model supports
both Chinese and English, excelling in multilin-
gual understanding and generation.

Claude-3.5-Sonnet is a next-generation multi-
modal assistant developed by Anthropic, exhibit-
ing exceptional performance in both visual and
language understanding. It utilizes an innovative

neural network architecture that allows for deep
comprehension of image content and complex rea-
soning. The model has strict controls in terms of
safety and ethics, capable of identifying and fil-
tering inappropriate content. A notable feature is
its strong contextual understanding and coherent
conversational abilities.

GPT-4o is the latest large language model devel-
oped by OpenAI, possessing powerful multimodal
understanding and generation capabilities. It can
process image and text inputs and perform complex
reasoning and knowledge integration. This model
showcases remarkable few-shot learning abilities,
quickly mastering new tasks with only a few exam-
ples. GPT-4o also excels in creativity, generating
high-quality text, code, and other creative content.

C. More details on DiagramQG
The DiagramQG dataset is a comprehensive col-
lection of questions covering 6 disciplines, 37 sub-
jects, and 371 courses, consisting of 25,798 ques-
tions and 15,720 diagrams. This dataset aims to
encourage models to generate questions that as-
sess students’ course understanding by leveraging
the provided input & course text constraints and
diagrams, as shown in Figure 2. Accomplishing
this task requires two key capabilities from com-
putational models. First, they must demonstrate
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During a total lunar eclipse, the moon is 

in what part of the Earth's shadow?

Where does the Earths shadow fall?

Input text: Earth's shadow

Course text: Eclipses

GT

Pred.

Input

What connects the larynx to windpipe in lungs?

How many windpipes are there?

Input text: windpipe

Course text: Optics

GT

Pred.

Input

Where is eroded intertidal beach sediment deposited 

in a storm weather beach system?

How many storm weather beach system are there?

Input text: storm weather beach system

Course text: Erosion and deposition by flowing water

GT

Pred.

Input

Figure 9: Three different cases (Course Ambiguity) in DiagramQG dataset.

Statistic Number

Total Diagram 15,720
Total Question 25,798
Total Discipline 6

Total Subject 37
Total Course 371

Train Diagram 11,817
Train Question 17,880

TotTrainal Discipline 6
Train Subject 37
Train Course 351

Val Diagram 1,151
Val Question 1,104
Val Discipline 6

Val Subject 33
Val Course 310

Test Diagram 6,767
Test Question 5,565
Test Discipline 6

Test Subject 37
Test Course 371

Table 7: Main statistics in DiagramQG

sophisticated visual comprehension abilities. Sec-
ond, they need comprehensive domain knowledge
across multiple academic disciplines. Following
established methodological practices in machine
learning, we implemented a stratified partitioning
of the dataset, allocating 70% for training, 5% for
validation, and 25% for testing purposes. The com-
prehensive statistical distribution across these par-
titions, along with the aggregate dataset metrics, is
presented in Table 7. It can be seen that some im-
ages have intersections, but this does not affect the
experimental results, because its course and ques-

tion, and can effectively detect overfitting, because
overfitting will cause the generated questions to be
inconsistent with the current requirements

D More case studies on Diagram

Through extensive examination of the DDCQG
(Diagram-based Question Generation) task, we
have identified and analyzed three critical bottle-
necks: Text Constraint Lost, Diagram Interpre-
tation Bias, and Course Ambiguity. Detailed case
studies illustrating these challenges are presented
in Figures 7, 8, and 9, respectively.

The first challenge, Text Constraint Lost (Fig-
ure 7), manifests when the generated questions fail
to maintain fidelity to the target text, resulting in
contextually inconsistent question generation. Our
analysis suggests that this phenomenon stems from
limitations in the model’s instruction processing
capabilities. Specifically, the neural architecture ap-
pears to inadequately preserve and integrate the tar-
get text constraints during the generation pipeline,
leading to divergent outputs that, while potentially
coherent, deviate from the intended textual context.

The second challenge, Diagram Interpretation
Bias (Figure 8), reveals a notable gap between the
model-generated questions and ground truth ques-
tions in terms of course application depth. While
the generated questions demonstrate basic assess-
ment of students’ course comprehension, they often
exhibit simplified or superficial understanding of
course concepts. To investigate this phenomenon,
we conducted a visualization analysis of the knowl-
edge retrieval process during question generation,
as illustrated in Figure 8. Our findings reveal a sig-
nificant limitation: the retrieved background knowl-
edge corpus lacks crucial content related to key
concepts such as “filter blood,” thereby constrain-
ing the model’s ability to generate sophisticated,
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course-relevant questions.
The third challenge, Course Ambiguity (Fig-

ure 9), represents a important limitation in cur-
rent DDCQG systems. In these cases, the gener-
ated questions demonstrate minimal engagement
with course-specific content, instead defaulting to
surface-level expansions of the target text. This
suggests a deeper architectural limitation in con-
necting diagram elements with relevant course con-
cepts and pedagogical objectives.

11 Details of human annotators

For data annotation and evaluation, we engaged six
graduate students (including both PhD and Mas-
ter’s students) from engineering disciplines who
are also co-authors of this paper. All annotators
possessed strong backgrounds in different subjects,
making them well-qualified for this task. Since
the annotators were co-authors actively involved
in the research, no formal recruitment process or
compensation was required, and they were fully
aware of how the data would be used in the study.
The annotation process focused solely on content
evaluation and did not involve collecting any per-
sonal identifying information or expose annotators
to any risks. As this research involved co-authors
analyzing academic content rather than external
human subjects, it was determined to be exempt
from formal ethics review board approval. The
annotation work was conducted as part of regular
academic research activities within our institution.
No protected or sensitive demographic information
was collected or used in this research.

12 Details of Ai Assistants In Research
Or Writing

We used Claude-3.5-Sonnet, o1, o3-mini-high, and
Deepseek-R1 to help us write code and polish the
paper.
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