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Abstract

In-Context derived Vector (ICV) methods ex-
tract task-relevant representations from large
language models (LLMs) and reinject them
during inference, achieving comparable perfor-
mance to few-shot In-Context Learning (ICL)
without repeated demonstration processing.
However, existing ICV methods remain sen-
sitive to ICL-specific factors, often use coarse
or semantically fragmented representations as
the source of the vector, and rely on heuristic-
based injection positions, limiting their appli-
cability. To address these issues, we propose
Dynamic Vector (DyVec), which incorporates
an Exhaustive Query Rotation (EQR) strategy
to extract robust semantically aggregated latent
representations by mitigating variance intro-
duced by ICL. It then applies Dynamic Latent
Segmentation and Injection to adaptively parti-
tion representations based on task complexity
and leverages REINFORCE-based optimiza-
tion to learn optimal injection positions for each
segment. Experiments results show that DyVec
outperforms few-shot ICL, LoRA, and prior
ICV baselines. Further analysis highlights the
effectiveness of dynamically segmenting and
injecting semantically aggregated latent repre-
sentations. DyVec provides a lightweight and
data-efficient solution for inference-time task
adaptation.

1 Introduction

Large Language Models (LLMs) have demon-
strated emergent capabilities in few-shot learning,
allowing them to perform new tasks by condi-
tioning on just a few demonstrations in the input
prompt—without any parameter updates (Brown
et al., 2020). This paradigm is known as In-Context
Learning (ICL). Despite its success in low-resource
settings, it incurs substantial computational over-
head, as each inference requires repeatedly en-
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Figure 1: General pipeline of In-Context derived Vector
(ICV) methods, illustrating how task-specific represen-
tations are extracted from LLMs during few-shot ICL
to construct vectors, which are then injected back into
frozen LLMs for inference-time intervention and task
adaptation. These representations can be either raw ac-
tivations (e.g., attention heads) or more abstract latent
states (e.g., transformer layer outputs).

coding lengthy prompts with demonstration exam-
ples. This inefficiency hinders its scalability in
real-world applications.

Recent studies have introduced In-Context de-
rived Vector (ICV) methods (Hendel et al., 2023;
Todd et al., 2024), which extract internal activations
or latent representations of LLM that capture task-
specific information during ICL inference. These
vectors can then be injected into LLLMs at inference
time to approximate few-shot performance (Ho-
jel et al., 2024), as illustrated in Figure 1. ICV
methods have shown promise in various applica-
tions—such as promoting honesty (Li et al., 2023),
reducing harmful outputs (Liu et al., 2024), and en-
abling role-playing (Poterti et al., 2025)—all while
maintaining the efficiency of zero-shot inference.

While ICV presents a promising alternative to
standard few-shot ICL, it still suffers from three key
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limitations: (1) Existing methods construct vectors
from sources that are either too coarse (e.g., trans-
former layer outputs) or too semantically isolated
(e.g., the raw activations of independent attention
heads). Both strategies fail to fully capture rich
task semantics, resulting in performance that lags
behind few-shot ICL. (2) Prior methods improve
robustness by averaging the extracted latent repre-
sentations from repeated inferences, partially miti-
gating ICL sensitivity. However, this strategy offers
limited gains and fails to fundamentally resolve the
sensitivity inherent to ICL. (3) Finally, selecting
the optimal vector injection location often requires
extensive validation data and exhaustive searches
across layers or heads, making the process both
inefficient and impractical.

To tackle these challenges, we propose Dy-
namic Vector (DyVec)—a inference-time interven-
tion method designed to directly address these three
limitations:

(1) To overcome the coarse or semantically iso-
lated nature of prior representations, Dy Vec uses
the semantically aggregated projections in Multi-
Head Attention (MHA) as the source for vector
construction, enabling the model to capture richer
task semantics through inter-head interactions.

(2) To enhance robustness against ICL sensi-
tivity, we introduce Exhaustive Query Rotation
(EQR), which systematically rotates the query posi-
tion within a fixed set of demonstrations and aggre-
gates the extracted latent representations, providing
a more stable representation to construct vector.

(3) To eliminate reliance on validation data and
heuristics, we propose Dynamic Latent Segmenta-
tion and Injection, which adaptively partitions the
extracted representations based on task complexity
and resource constraints. We further employ RE-
INFORCE to learn optimal injection positions for
each segment in a data-driven manner.

Finally, the constructed Dynamic Vectors are
utilized to perform Inference-Time Intervention by
injecting them back into the LLM for task adapta-
tion. Empirical results demonstrate that our three
strategies not only outperform standard few-shot
ICL under comparable inference costs, but also
achieve superior results compared to existing ICV
methods. Table 1 provides a comparison between
DyVec and existing ICV-based methods.

Our contributions are summarized as follows:

* We propose Dynamic Vector, a novel ICV-
based inference-time intervention method that

injects task-specific vectors into frozen LLMs,
achieving few-shot performance while retain-
ing the efficiency of zero-shot inference.

* We introduce Exhaustive Query Rotation
and a dynamic segmentation strategy with
REINFORCE-based injection, enabling the
extraction of robust task representations and
their flexible integration into the model’s la-
tent space to support vector construction.

* We conduct extensive experiments across mul-
tiple tasks, demonstrating the effectiveness
and generality of our approach.

2 Related Work

In-Context Learning (ICL) ICL enables LLMs
to perform new tasks without parameter updates
by conditioning on a few task-specific examples
in the input prompt (Brown et al., 2020), and has
been extended to various applications (Wei et al.,
2023; Wang et al., 2023; Yao et al., 2023). How-
ever, ICL faces two major challenges: (1) Ineffi-
ciency — each inference involves a full forward
pass over lengthy prompts with repeated demonstra-
tions, leading to high memory and compute costs,
especially in resource-limited settings (Liu et al.,
2022); (2) Instability — performance is highly sen-
sitive to prompt design, including example order
and selection (Liu et al., 2021; Rubin et al., 2022).

In-Context Vector (ICV) Transformers encode
the semantics of ICL demonstrations within their
internal activations (Hendel et al., 2023; Todd et al.,
2024; Rimsky et al., 2024; Huang et al., 2024).
These activations, termed in-context vectors, cap-
ture task-specific signals and can be injected at
inference time to emulate few-shot behavior in a
zero-shot setting—achieving comparable perfor-
mance while retaining the efficiency of zero-shot
inference.

ICVs have been applied to guide model behavior
across tasks, such as promoting honesty (Li et al.,
2023), reducing harmful outputs (Panickssery et al.,
2024; Liu et al., 2024; Wang et al., 2025), or en-
abling role-playing (Poterti et al., 2025). ICVs have
also been explored in vision (Hojel et al., 2024) and
multimodal models (Huang et al., 2024), demon-
strating broad applicability.

However, prior ICV-based methods often fail to
outperform standard ICL (Todd et al., 2024), or
require extra training data (Huang et al., 2024). In
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Dynamism Vector Construction
Method Seg. Inj. Source Computation Granularity Injection Position
TV X X Transformer Layer Output Avg. Layer L Valid.
FV X X Attention Head Activation Avg. Attention Head H CIE + Valid.
DyVec v v Semantically Aggregated Latent ~EQR + Avg.  Dynamic Segment .S REINFORCE

Seg. = Segmentation, Inj. = Injection, Avg. = Averaging, EQR = Exhaustive Query Rotation, CIE = Causal Indirect Effect, Valid. = Validation-Driven Layer Search.

Table 1: Comparison of DyVec with existing ICV methods across key aspects of vector construction.

contrast, our proposed DyVec improves over few-
shot ICL without any additional data.

3 Preliminary

In ICL, LLMs are prompted with a few input-
output demonstrations followed by a query. For-
mally, an ICL prompt is defined as:

P: (xlayl)a”'7(xK7yK)7‘Tquery (1)

where the model processes P in a single forward
pass and generates y9"*"Y as the prediction.

Recent work has shown that LLMs encode task-
specific signals from ICL demonstrations into their
hidden states (Hendel et al., 2023; Todd et al., 2024,
Huang et al., 2024). These representations, which
we refer to as ICVs, can be extracted and reused
to induce few-shot-like behavior during zero-shot
inference.

Most existing ICV methods (Todd et al., 2024;
Huang et al., 2024) construct vectors from raw at-
tention head activations. Specifically, for attention
head j in layer 4, the output is given by:

QK]
(i.9) (4,9) Vi, (2)
Vs (4,9)

During inference, the extracted ICV A ;) is in-
jected back into the same location in the frozen
model, scaled by a factor 5:

A(Z,]) = Softmax (

A infer
Aj) = Ay 8- Auy), 3)

This injection shifts the model’s internal activations
in a task-specific direction, effectively adapting the
model without demonstrations in the prompt.

The performance of ICVs is primarily deter-
mined by two critical aspects: (1) the quality of
the extracted representation to construct vectors,
and (2) the informativeness of the positions in the
model where these vectors are injected.

Existing approaches typically extract ICVs by
running ICL with randomly sampled demonstra-
tions and averaging the resulting representations.

While this mitigates the model’s sensitivity to fac-
tors such as demonstration position and composi-
tion, it does not fully resolve the issue. Moreover,
prior methods construct vectors directly from raw
attention head outputs A, overlooking potential
inter-head interactions that capture richer semantic
information. To determine the optimal injection
locations for these vectors, existing approaches ei-
ther rely on validation performance (Hendel et al.,
2023), or incur significant computational overhead
by exhaustively searching across tasks (Todd et al.,
2024). To address these issues, we propose Dy Vec.

4 Dynamic Vector Construction from
Latent Representations

Figure 2 provides an overview of the complete
DyVec pipeline, which consists of three key stages:
(1) an Exhaustive Query Rotation strategy for ex-
tracting robust, semantically aggregated latent rep-
resentations, (2) Dynamic Segmentation and In-
Jjection for constructing vectors, and (3) Inference-
Time Intervention via vector injection.

4.1 Exhaustive Query Rotation for Robust
Latent Extraction

To enhance robustness against biases introduced
by the order and composition of demonstrations,
we propose an Exhaustive Query Rotation (EQR)
strategy for reliable and semantically aggregated
latent representation extraction. Given a sampled
subset of V labeled instances from the training set,
we systematically rotate through each instance by
treating it once as the query and using the remain-
ing N — 1 examples as demonstrations. This results
in N distinct ICL prompts:

Pr ={(@m,ym) |m#£n, n€{1,2,..,N}}U{zn} 4

For each prompt P,,, we perform a forward pass
through the model. At the last token position of
the prompt, we extract latent representations from
the semantically aggregated projections within the
MHA modules across all transformer layers. The
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Figure 2: The overview of our proposed model.

latent representation of layer ¢ is denoted as:

Ay =[Aunl-I[AGm] )
_ o}

O =AW
where Wg) € R?*4 is the output projection matrix
at layer i, and o(; ,) denotes the latent representa-
tion at the last token position for layer ¢ and prompt
n. We then average the latent representations ex-
tracted from all IV rotated prompts to obtain a ro-
bust representation, which will serves as the basis
for vector construction:

1 N
0 = 3 2_ O (6)
n=1

The EQR strategy produces a stable and sementic
aggregated task-specific latent representation by en-
suring each instance contributes equally. However,
using the entire 0(;) as a monolithic vector is overly
rigid. To introduce greater task-specific flexibility,
we propose a dynamic segmentation and injection
mechanism that enables more fine-grained, task-
centric control.

4.2 Dynamic Latent Segmentation and
Injection

To extract task-specific information in a more dy-
namic manner, we re-partition the latent repre-
sentation O(;) into S segments, where S € {s |
d mod s = 0} denotes the set of values that evenly
divide the hidden dimension d of the LLM. We

obtain a list of latent segments, denoted as:

H(iy = [M(i,1),u(i,z)w'- aM(i,S)] @)

Each dynamic latent segment p(; ;) € R repre-
sents a contiguous slice of the latent representation
0(;), where the dimensionality of each segment is
d,=4d/S.

When S = H (i.e., the number of attention
heads in the model), this segmentation corresponds
to a standard split. Increasing S leads to finer-
grained segments with smaller d,,, enabling more
detailed inspection of attention behavior across
more localized subspaces; decreasing S yields
coarser segments with larger d,,, potentially re-
ducing computational cost and still preserve the
key task semantics. Notably, when S = 1, the p ;)
degenerates into a layer-shape representation. This
segmentation flexibility allows DyVec to adjust the
granularity of vector construction according to the
task’s complexity and the available computational
resources.

By segmenting 0;), we capture how task sig-
nals are distributed across layers and subspaces.
However, not all positions—indexed by layer ¢ and
segment j—contribute equally to task-specific be-
havior. To identify the most informative positions
in the latent space, we introduce the notion of the
Dynamic Vector: a selected set of latent represen-
tations that collectively represent the task-specific
distribution. Formally, we aim to select an optimal
subset V* C {(4,7)}, and construct the Dynamic
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Algorithm 1 REINFORCE

Require: Positions L x .S, learning rate «p, steps T'
1: Initialize p; ; < 0.5, ¥(4, j)
2: fort =1toT do

3: Sample m; ; ~ Bernoulli(p; ;)

4. 0« {,LLZ',J' | mg,; = 1}

5: R+ —CE(E(M,G),Dtrain)

6: for (7,j) do

8: end for

9: end for

10: Y* < TopK(pi,j, [>_ i)

11: return {y; ; : (4,5) € Y}
Vector as:

0= {nauy | (j5) eI} @®)

We define an intervention function £, which in-
jects the Dynamic Vector 6 into the corresponding
positions during zero-shot inference, thereby modi-
fying the model’s output distribution. The function
L operates as a linear intervention strategy, com-
bining the selected latent segment (; ;) with the
model’s native activations via weighted summation.

To discover the most effective intervention posi-
tions, we adopt REINFORCE (Williams, 1992), a
policy gradient method from reinforcement learn-
ing. The optimization over the candidate set of posi-
tions L x S is detailed in Algorithm 1. Specifically,
we first parameterize a Bernoulli distribution over
all possible insertion positions, where each element
corresponds to a latent segment at a given layer. At
each optimization step, binary masks are sampled
from this distribution to determine which segments
are activated for constructing the dynamic vector
0. This vector is then injected into the model us-
ing strategy £, and the model output £(M, 0) is
evaluated via cross-entropy loss on the training set
Dirrain- The reward R is defined as the negative of
this loss. We update the Bernoulli parameters using
the REINFORCE algorithm to encourage selection
of positions that improve downstream performance.
We also apply Clip(z, €) to keep each parameter
within the interval [e, 1 — €].

Notably, this optimization process does not re-
quire any additional training data. All queries and
corresponding labels in Dy,j, are drawn directly
from the original example set, allowing Dy Vec to
operate effectively even under extremely limited
supervision. In the next section, we elaborate on
how to select the optimal intervention function £
from a set of candidate strategies.

4.3 Dynamic Vector Injection for
Inference-Time Intervention

During zero-shot inference, for each position
(i,7) € Y*, we modify the latent representaion
O ;) by injecting the corresponding DyVec seg-
ment scaled by a strength factor 3:

Oijy = - Oijy + B+ 1) )

Here, o € {0, 1} acts as a binary gating mechanism
that dynamically controls whether the original out-
put is retained, while 5 modulates the influence of
the injected dynamic latent segment. We explore a
small set of such intervention strategies and select
the one that yields the lowest cross-entropy loss on
the training data.

Through the above three steps, our method is
able to automatically construct and inject DyVec
into the model using a limited number of ICL
demonstrations, without relying on additional train-
ing data or updating any model parameters. This
significantly enhances the generalization ability of
large language models in the zero-shot setting.

5 Experimental Setup

We evaluate Dy Vec on three 7B-scale open-source
LLMs: LLaMA-2-7B-Chat (Touvron et al., 2023),
Qwen2-7B (Yang et al., 2024), and DeepSeek-
LLM-7B-Chat (DeepSeek-Al et al., 2024).

Our main experiments focus on six classifi-
cation tasks covering sentiment analysis, sar-
casm detection, medical relation extraction, and
topic/question classification, using datasets such as
NHSD (Misra, 2022), Sarcasm (Nikesh66, 2023),
SST2 (Socher et al., 2013), ADE (Gurulingappa
et al., 2012), AG_News (Zhang et al., 2016), and
TREC6 (OxAISH-AL-LLM, 2023).We randomly
sample 1,000 instances per task to form the test set
for evaluation.

In addition, we include six generation tasks
adapted from Todd et al. (2024), involving lexical
and grammatical transformations (e.g., Antonym,
Capitalize, English-French). These tasks are used
to assess generalization beyond classification but
are not the primary focus of this work. Full results
are reported in Table 12.

To evaluate the effectiveness of our proposed
method DyVec, we conduct comparisons in two di-
rections: (1) against standard adaptation baselines,
including both non-trainable approaches such as
Few-Shot ICL, and trainable paradigms such as
LoRA and Linear Probing (LP); and (2) against
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ICV methods, including Task Vector (TV) and
Function Vector (FV).

Further implementation details are provided in
Appendix A (Prompt Construction Details), Ap-
pendix B (Data Construction Details), Appendix C
(Baselines), and Appendix I (DyVec intervention
strategy).

6 Results and Analysis
6.1 Main Results

Comparison with Adaptation Baselines. We
evaluate DyVec on six diverse tasks, using the ac-
curacy as the main metric. We report full results in
Table 2, and summarize the averaged performance
in Table 3.

As shown in Table 2, DyVec outperforms both
few-shot ICL and the LoRA tuning method across
most settings. This demonstrates Dy Vec’s ability
to construct effective task representations from lim-
ited labeled data, without requiring any parameter
updates or additional training data. Table 3 further
quantifies the relative improvements across three
models. In low-resource settings, Dy Vec achieves
8.5% relative improvement over 4-shot ICL, 39.5%
over LORA and 14.3% over LP; under 8-shot, the
gains remain substantial at 8.5%, 31.5% and 10.6%,
respectively. These results confirm DyVec’s strong
generalization ability in low-resource scenarios.

DataSize ICL LoRA LP DyVec

4 51.17 (18.5%) 39.78 (139.6%) 48.56 (114.3%) 55.51
8 56.13 (18.6%) 46.31 (131.5%) 55.08 (110.6%) 60.93
16  65.04 (10.1%) 52.69 (123.6%) 61.39 (16.1%) 65.11

Table 3: Average performance across models and tasks
at varying data sizes. Relative improvements of DyVec
over each baseline are highlighted in red.

Comparison with ICV Methods. We compare
DyVec with three ICV baselines: Task Vector (TV),
Function Vector (FV) and Multimodal Task Vector
(MTYV), under 8-shot settings using LLaMA-2-7B-
Chat, with the accuracy as the primary evaluation
metric. FV uses a Causal Indirect Effect-based
signal which require inferencing on extensive data
to locate informative attention head positions to
inject vector, while TV use validation set to select
injection position for each task.

As shown in Table 4, Dy Vec outperforms all ICV
methods by large margins, demonstrating the clear
advantage of dynamic over other ICV methods.

Model FV TV DyVec
gpt-j-6b 42.27 (132.1%)  37.95 (147.0%)  55.80
llama-2-7b-chat ~ 45.47 (133.0%) 22.47 (1168.9%) 60.48
llama-2-13b-chat 43.73 (143.2%) 40.70 (153.9%) 62.63

Table 4: Average accuracy across six tasks. Red text
indicates relative improvement of Dy Vec over each base-
line.

6.2 Inference Efficiency Analysis

To assess efficiency, we measure the total runtime
on an A100 GPU for completing six tasks using
DyVec and Few-shot ICL, with 1000 test samples
per task. Results are shown in Figure 3.

Unlike ICL, which incurs increasing over-
head due to longer prompts, DyVec employs a
lightweight inference-time intervention that re-
quires minimal computational cost. Despite its effi-
ciency, DyVec not only matches but significantly
outperforms ICL in accuracy, demonstrating that ef-
fective task adaptation can be achieved without the
expense of costly prompt-based conditioning. De-
tailed timing statistics are provided in Appendix D.

10

. Llama 8.558.7%
Qwen

| Il Deepseek

Relative Time

1 1.0x1.0x10x_

8
6
4
2
0

DyVec

4-shot ICL 8-shot ICL  16-shot ICL

Figure 3: Relative inference time across different mod-
els and methods.

6.3 Ablation Study

To better understand the impact of key design com-
ponents in DyVec, we conduct ablation studies
under 8-shot settings across three tasks (NHSD,
ADE, AG_News) and three LLMs (LLaMA, Qwen,
DeepSeek). Specifically, we examine the effects
of: (1) the source of representations used for vector
construction, (2) the EQR strategy to compute ro-
bust representations, (3) the granularity of dynamic
latent segment d,,, and (4) the robustness of Dy Vec
to changes in latent segment source.

Semantically Aggregated Latent Representa-
tions Enable More Informative Vector Construc-
tion. To evaluate the impact of representation
source on vector construction, we compare two
approaches. Prior methods typically use raw Atz-
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Model Data size Method NHSD Sarcasm SST2 ADE AG_News TREC6 \ Average
ICL 34.80 50.70 90.20 52.60 45.80 21.90 49.33
4 LoRA 47.10 27.90 4340 47.00 40.30 16.70 37.07
LP 60.30 59.10 50.20 52.40 44.20 22.70 48.15
DyVec 48.50 57.40 55.60 56.90 64.20 26.40 51.50
ICL 24.00 64.90 93.10 57.10 71.20 24.10 55.73
LLaMA 3 LoRA 41.90 59.70 81.00 55.00 46.80 31.30 52.62
LP 66.90 61.60 72.50 59.20 52.70 33.40 57.72
DyVec 49.00 50.40 91.50 67.40 79.20 25.40 60.48
ICL 48.60 75.60 9430 60.20 81.20 28.10 64.67
16 LoRA 58.80 73.50 69.70  56.40 51.20 25.00 55.77
LP 72.90 73.30 75.10 61.60 61.10 38.30 63.72
DyVec 59.90 82.90 91.30 68.20 81.80 24.60 68.12
ICL 29.10 37.80 9420 52.10 72.20 25.30 51.78
4 LoRA 50.40 53.80 53.30 60.80 64.70 10.90 48.98
LP 48.60 48.50 47.60 58.90 44.60 19.30 44.58
DyVec 51.70 46.80 63.00 59.90 85.00 24.10 55.08
ICL 34.50 56.00 9490 56.80 75.90 26.40 57.42
Qwen 3 LoRA 50.90 64.40 53.70  53.00 36.70 6.90 44.27
LP 51.60 51.30 5440 60.30 59.80 24.50 50.32
DyVec 53.90 50.50 92.70  60.10 80.40 25.20 60.47
ICL 63.40 79.60 9420 53.30 87.90 29.30 67.95
16 LoRA 66.70 72.60 53.70  57.70 51.30 7.80 51.63
LP 61.30 53.10 73.70  63.30 65.30 25.90 57.10
DyVec 67.00 50.50 91.00 58.70 68.50 26.20 60.32
ICL 39.60 47.90 92.90 53.10 70.28 10.51 52.38
4 LoRA 36.50 60.00 32.00 55.10 4.00 12.10 33.28
LP 57.00 56.60 51.80 53.20 62.50 36.50 52.93
DyVec 48.90 62.10 80.70  59.30 80.30 28.40 59.95
ICL 25.20 67.70 90.50 59.20 72.50 16.30 55.23
DeepSeck 3 LoRA 40.40 42.80 5490 58.20 34.20 21.70 42.03
LP 59.80 63.50 57.10 61.20 65.90 35.80 57.22
DyVec 49.60 50.60 92.50 64.40 78.80 35.20 61.85
ICL 57.80 68.00 93.90 67.90 77.56 9.85 62.50
16 LoRA 55.20 54.30 85.10 62.20 36.30 11.00 50.68
LP 65.50 80.00 61.20 62.30 73.10 38.00 63.35
DyVec 64.30 76.00 91.50 67.90 72.70 28.90 66.88

Table 2: Evaluation results of ICL, LoRA, LP, and Dy Vec across models (LLaMA, Qwen, DeepSeek), dataset sizes
(4/8/16 shots), and six tasks. Bold indicates best performance in each block. The gray column highlights average

performance.

tention Head Activations (AHA, Eq. 2) extracted
directly from selected attention heads (Huang et al.,
2024). In contrast, DyVec adopts a more structured
Semantically Aggregated Representation (SAR,
Eq. 5), obtained from the output projections of the
MHA module after cross-head fusion via a learned
linear transformation. For fair comparison, the
SAR in DyVec is segmented into S = H segments
to match the number of attention heads.

As shown in Table 5, SAR consistently outper-
forms AHA across all three models, highlighting
the superior informativeness and generalization of
semantically aggregated latent representations as
the source of vector construction.

Model Method NHSD ADE AG_News| Avg.

AHA 51.60 6420 7740 |64.40

LLaMA-2-7B-Chat  g,p' 4900 67.40 7920 |65.20
AHA 50.10 5450 82.10 |62.23

LLaMA-2-13B-Chat "gxp" 5590 66.60 86.00 [68.50
Qwen2-7B AHA 5170 5570 78.90 [62.10

e SAR 5390 60.10 8040 |64.80

AHA 4720 6480 7720 [63.07

DeepSeck-7B-LLM 'gAR 49,60 64.40 78.80 |64.27
AHA 5320 5020 6950 |57.63

GPT-J-6B SAR 56.10 5920 68.50 |61.27

Table 5: Comparison of sources for vector construction.

EQR Enhances Representation Robustness
Across Methods. Dy Vec incorporates an Exhaus-
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across different models. Results are averaged over three
tasks with 8-shot data. Solid lines represent perfor-
mance using different numbers of randomly constructed
prompts (N = 1,50, 100), while dashed lines indicate
performance using EQR strategy.

Method NHSD Sar. SST2 ADE AG. TREC6‘ Avg.

TV 25.21 26.81 27.82 23.51 18.34 13.11 (2247
+EQR 34.65 29.53 32.76 34.09 26.42 14.95 |28.74

46.70 58.70 77.50 58.20 58.90 34.30 ‘55.72

Dy Vec'

+EQR 49.00 50.40 91.50 67.40 79.20 25.40 |60.48

Table 6: Effectiveness of the EQR strategy on different
ICV methods. DyVec’ denotes Dy Vec without EQR.

tive Query Rotation (EQR) strategy, which system-
atically rotates the query position within a fixed
demonstration set and averages the resulting repre-
sentations to compute a robust task representation
for vector construction. To evaluate its effective-
ness, we compare EQR against a baseline that con-
structs prompts via random shuffling and computes
the representation by averaging outputs over N
iterations.

As shown in Figure 4, EQR consistently achieves
the highest average performance across all models.
Importantly, EQR is orthogonal to other ICV-based
representation strategies and can be seamlessly inte-
grated as a complementary enhancement for robust
vector construction, as further evidenced in Table 6.

To further analyze EQR, we compare it against
both partial and full permutation baselines, which
randomly shuffle demonstrations either partially or
entirely. As shown in Table 7, EQR consistently
yields more robust representations across tasks and
models, highlighting its effectiveness over naive
permutation strategies.

Finer Latent Segmentation Leads to Better Vec-
tors. In DyVec, the semantically aggregated la-
tent representation O(;) is divided into .S segments,
each corresponding to an independently optimized
subspace. The default setting S = H (number

Model Method NHSD ADE Ag news | Avg.
Full 4430 55.60 60.80 | 53.57
LLaMa Partial 50.60 5340 6020 |54.73
EQR 48.50 5690 6420 | 56.53
Full 52.80 54.10 73.60 |60.17
Qwen Partial 50.60 55.00 81.00 |62.20
EQR 5170 59.90 85.00 | 65.53
Full 4740 51.60 71.30 |56.77
DeepSeek Partial 50.60 50.00 77.90 |59.50
EQR 4890 5930 80.30 | 62.83

Table 7: Ablation Analysis of EQR with Respect to
Permutation Variants.

Model S NHSD ADE AG_News | Avg.
1 54.60 53.50 71.40 59.83

H/2 54.60 61.10 74.30 63.33

LLaMA "5 4900 6740 7920 | 6520
2H 53.10 66.00 78.40 65.83

1 50.60 51.20 28.70 43.50

Qwen H/2 5310 59.70 79.90 64.23
H 5390 60.10 80.40 64.80

2H 57.70 63.40 83.70 68.27

1 50.60 50.00 68.40 56.33

DeepSeck H/2 55.30 61.10 71.30 62.57
P H 49.60 64.40 78.80 64.27
2H 4940 69.10 77.00 65.17

Table 8: Effect of latent segmentation granularity (.5)
on DyVec performance across models and tasks.

of attention heads) serves as a standard granular-
ity. We compare three variants: (1) Fine-grained:
S = 2H; (2) Coarse-grained: S = H/2; (3)
Layer-grained: S = 1. As shown in Table 8, finer
segmentation (S = 2H) consistently yields the
best performance. Coarser settings lead to notice-
able drops, with S = 1 reducing DyVec to a global
layer-shaped representation similar to the Task Vec-
tor baseline. This confirms that finer-grained inter-
vention captures richer task signals, while overly
coarse representations lack sufficient capacity.

Robustness of Task Injection under Latent Seg-
ment Replacement. To further assess the robust-
ness and generalization ability of DyVec, we con-
duct a supplementary experiment by decoupling
the sources of vector construction and interven-
tion configuration. Specifically, we reconstruct the
latent segments ugf;.) from a dataset Dx, while
keeping the selected intervention positions Y*Px
and injection function £P¥ fixed, as determined
on a separate dataset Dy . Formally,

OF N = {ul) | (,4) € VPEY - (10)
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Method Vector Construction Search/Opt. Inference \ Total Cost
FV 2 forward passes (<1s)  CIE (~59min) + Layer search (114s X 32 ~ 61min) 114s ~120min
TV 1 forward pass (<1s) Layer search (118s x 32 ~ 63min) 118s ~63min
DyVec (Ours) N forward passes (~2s) REINFORCE (~17min) 120s ~19min

Table 9: Efficiency comparison across methods. Dy Vec achieves significant cost reduction compared to FV and TV.

In this setting, only the latent segments u; ;) are
updated using new examples from Dx, while the
injection location and strategy remain fixed. This
ensures that the intervention mechanism is con-
sistent, isolating the effect of changing the latent
source.

Despite being derived from entirely different ex-
amples, the injected vectors still lead to strong per-
formance across multiple tasks—sometimes even
surpassing the original configuration. These re-
sults highlight Dy Vec’s robustness to variation in
vector sources. Detailed results are provided in
Appendix H.

6.4 Efficiency Analysis

We have profiled the vector construction and train-
ing time of DyVec and the key ICV baselines
(FV, TV). The experiment was conducted on the
AG_News task (data size N = 8) using the LLaMA-
2-7B-Chat model, running on a single NVIDIA A40
GPU. The detailed breakdown of the time cost for
each method is presented in Table 9. Results show
that DyVec substantially reduces computational
cost: compared with FV (which requires costly
contrastive instance extraction and layer search)
and TV (which also depends on exhaustive layer
search), DyVec achieves a much lower overall cost
by leveraging efficient optimization.

7 Conclusion

We propose DyVec, a novel ICV method for effi-
cient and robust inference-time task adaptation in
LLMs. DyVec addresses key limitations of prior
approaches through three innovations: (1) extract-
ing semantically aggregated latent representations
as the source for vector construction, (2) employing
EQR to compute robust task representations, and
(3) performing dynamic latent segmentation and
flexible vector injection via REINFORCE optimiza-
tion. Experiments across diverse tasks and model
scales show that DyVec consistently outperforms
few-shot ICL, LoRA, and previous ICV baselines,
while preserving the efficiency of zero-shot infer-
ence. Beyond strong performance, DyVec offers

a lightweight, generalizable framework for vector-
based intervention, deepening our understanding
of latent task representations in LLMs.

Limitations

While DyVec demonstrates promising results on
classification and lexical generation tasks, it still
has several limitations. First, the current evaluation
is primarily focused on classification tasks, with
a limited number of generation tasks included for
auxiliary analysis. Further validation on more di-
verse and complex tasks, such as multi-hop reason-
ing, dialogue, or instruction following, is needed
to assess broader applicability. Second, our inter-
vention strategy is designed manually and remains
fixed during inference. Although we experiment
with different positions and segmentations, the cur-
rent approach does not explore adaptive or learned
intervention mechanisms, which may further en-
hance performance or stability.
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Use of AI Assistants We have employed Chat-
GPT as a writing assistant, primarily for polishing
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A Prompt Construction Details

For all tasks in our experiments, we adopt a uni-
fied prompt format based on a question—answering
template. Each example is framed as a pair of in-
put—output sentences in the form of:

Q: [input text] \n A: [label]

Few-shot ICL prompts are constructed by con-
catenating k£ such (Q, A) pairs as demonstra-
tions, followed by a query in the same format
but without the answer. A special delimiter to-
ken <|endoftext|> is prepended to mark the start
of the prompt. All tasks share the same prompt
structure, with only the task-specific examples sub-
stituted.

Example (SST2, 4-shot):

<|endoftext|>Q: plenty of warmth to go
around , with music and laughter and the
love of family \n A: positive

Q: comfort \n A: positive

Q: lacks a
negative

Q: attal ’s hang-ups surrounding
infidelity are so old-fashioned \n A:
negative

strong narrative \n A:

Q: painful elegy \n A:

Example (SST2, 0-shot):

<|endoftext|> Q: painful elegy \n A:

This template is applied uniformly across all
classification and generation tasks, enabling a fair
comparison between few-shot and intervention-
based methods.

B Data Construction Details

For all classification tasks used in our experiments,
we construct training data with an emphasis on
diversity, aiming to help in-context learning (ICL)
better capture task semantics and label structure.
When selecting k labeled examples, we ensure that
different label categories are represented as evenly
as possible.

For example, the AG_News dataset contains four
categories: World, Business, Sports, and Science.
When k£ = 4, we select one example from each
class. Below is a subset used under this setting:

Input: Linux puts another financial
feather in its cap... Output: Science

Input: War in Iraq Did Not Make World
Safer, Annan Says... QOutput: World

Input: US Treasuries cut early gains on
jobless drop... Output: Business

Input: Closing Ceremonies Host city
Athens bid a final farewell... Output:
Sports

We apply the same strategy to other datasets: for
instance, in SST2 (a binary sentiment task), we
use two positive and two negative sample when
k = 4; in TREC6, we attempt to sample across
all six question categories. This ensures that each
in-context demonstration set provides broad task
coverage, which is especially important in the few-
shot setting.

C Baselines

Few-Shot In-Context Learning (ICL) The
model is presented with 4/8/16 labeled examples
directly within the input prompt, without any mod-
ification to its parameters. This non-parametric
adaptation method is widely used due to its sim-
plicity and general applicability.

LoRA Fine-tuning This parameter-efficient fine-
tuning approach introduces low-rank adapters into
the attention projection layers. By updating only a
small number of additional parameters while keep-
ing the base model weights frozen, LoRA enables
efficient adaptation to specific tasks. Implementa-
tion details for LoRA are provided in Appendix E.

Task Vector (TV) This method encodes k
demonstrations combined with a dummy query and
extracts the representation of the last token from
an intermediate layer as the ICV. During inference,
this vector replaces the corresponding last token
representation in the same layer. We evaluate TV
at different layers and report the performance of
the best-performing layer based on test set results.

Function Vector (FV) The ICV is derived by av-
eraging the outputs of key attention heads over a
small validation subset. This vector is then added
to the last token representation at a selected layer
during inference, modulating the model’s behavior
for the target task. Similar to TV, we evaluate FV
across multiple layers and report the test perfor-
mance of the best-performing configuration.

Linear Probing (LP) The core idea of LP is to
freeze the pretrained LLM and train a lightweight
classifier on top of its final hidden representations
before the output logits layer. This provides a sim-
ple and efficient adaptation baseline, and we report
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its performance under the same settings as other
baselines.

Model Method Time | (min)
LoRA 5.16
DyVec 6.12
LLaMA  4-shot 15.75
8-shot 29.90
16-shot 51.73
LoRA 4.12
DyVec 4.95
Qwen 4-shot 16.16
8-shot 25.51
16-shot 43.29
LoRA 6.50
DyVec 9.40
DeepSeek  4-shot 15.15
8-shot 26.41
16-shot 45.51

Table 10: Inference time (in minutes) across different
models and methods.

D Inference Time

To further understand the practical efficiency of
DyVec, we compare the inference time of different
adaptation methods across LLaMA, Qwen, and
DeepSeek models. All evaluations are conducted
on the same hardware with a fixed test set size of
1000 examples per task, ensuring a fair comparison
of decoding speed. Results are reported in Table 10.
We observe that:

Few-shot ICL incurs the highest inference cost,
and this cost scales roughly linearly with the num-
ber of in-context examples. For instance, going
from 4-shot to 16-shot increases decoding time by
over 3 times for all models. This highlights the
inefficiency of prompt-based adaptation at scale.
LoRA offers the fastest inference, since it only
relies on a fixed set of fine-tuned parameters and in-
curs no additional prompt-related overhead. Dy Vec
achieves a favorable balance: while slightly slower
than LoRA due to runtime vector injection, it con-
sistently outperforms ICL in efficiency, especially
in higher-shot settings.

These results demonstrate that DyVec retains
non-parametric generality without the latency
penalty of few-shot prompting, making it more
suitable for efficient inference scenarios.

E LoRA Fine-tuning Details

To establish a strong parameter-efficient fine-tuning
(PEFT) baseline, we employ Low-Rank Adaptation

(LoRA) on top of pretrained LLMs. In this section,
we provide the detailed configuration and training
setup used in our experiments.

We adopt an enhanced LoRA configuration tai-
lored for causal language modeling (CLM). Specif-
ically, we apply LoRA modules to all attention pro-
jections: ‘q_proj‘, ‘k_proj*, ‘v_proj‘, and ‘o_proj°,
enabling full adaptation within the self-attention
mechanism. The rank of the low-rank matrices
is denoted by r, and we set the scaling factor to
a = 2r. A dropout rate of 0.2 is used within LoRA
to improve training stability. We freeze all origi-
nal model parameters and fine-tune only the LoRA
modules, while explicitly saving the embedding
(‘embed_tokens®) and output head (‘Im_head*) lay-
ers to ensure correct downstream decoding.

For data preprocessing, we format task-specific
input-output pairs and tokenize them using the
model’s tokenizer. Dynamic padding is applied
to ensure efficient GPU utilization with a padding
multiple of 8.

We train the LoRA-augmented model using the
HuggingFace ‘Trainer* API with the following set-
tings:

Batching: Per-device batch size of 4, with gra-
dient accumulation to simulate larger batch sizes.
Optimization: AdamW optimizer with 5; = 0.9,
B2 = 0.98, and weight decay of 0.001 for better
convergence. The learning rate follows a cosine
scheduler with 20% warmup.

Precision: Training is performed using bfloat16
(if supported) or fallback to fp16.

Stabilization: Gradient clipping is applied with a
norm threshold of 1.0, and gradient checkpointing
is enabled to reduce memory usage.

Epochs: The number of training epochs is task-
specific, selected via grid search on the develop-
ment set.

F Effect of Exhaustive Query Rotation
strategy

In this appendix, we provide a detailed analysis of
the Exhaustive Query Rotation (EQR) strategy and
its impact on model performance. EQR is designed
to enhance the robustness of in-context learning by
systematically rotating the query position within
the prompt. This approach enables the model to
better generalize across different query placements,
reducing potential positional biases.

As shown in Table 11, EQR consistently im-
proves performance across multiple datasets and
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Model Method \ NHSD Sarcasm SST2 ADE AG_News TREC6 \ Avg
EQR 49.00 50.40 91.50 67.40 79.20 25.40 60.48

llama N=1 46.70 58.70 77.50 58.20 58.90 34.30 55.72
N=50 49.10 50.10 57.10 54.40 57.70 24.10 48.75

N=100 | 50.60 50.50 55.10  50.00 25.10 24.10 42.57

EQR 34.50 56.00 9490 56.80 75.90 26.40 57.42

Qwen N=1 42.70 43.40 85.70  52.40 26.10 17.70 44.67
¢ N=50 49.40 50.50 66.30 50.40 36.40 24.10 46.18
N=100 | 50.60 50.50 46.30  50.20 25.10 16.50 39.87

EQR 25.20 67.70 90.50 59.20 72.50 16.30 55.23

deenseek N=1 45.80 60.20 86.50 63.00 52.10 33.20 56.80
P N=50 48.00 50.50 65.90 47.60 68.40 27.30 51.28
N=100 | 42.00 50.50 53.70  50.00 29.90 24.20 41.72

Table 11: Performance comparison of different models using the EQR method and varying the number of prompt

sampling iterations (/V) across six datasets.

Model Datasize Method Antonym Capitalize Country-capital English-french Present-past Singular-plural
ICL 67.66 100.00 97.62 78.57 95.24 100.00
4 LoRA 41.67 56.47 42.86 21.78 60.66 93.02
DyVec 56.55 98.24 97.62 66.36 96.72 100.00
Llama ICL  69.05 100.00 97.62 85.71 100.00 100.00
8 LoRA 40.67 74.71 88.10 31.21 88.52 90.70
DyVec 49.80 100.00 97.62 72.75 100.00 100.00
ICL 70.24 100.00 100.00 80.95 100.00 100.00
16 LoRA 53.17 85.29 88.10 41.54 90.16 97.67
DyVec 63.10 100.00 95.24 78.32 100.00 100.00
ICL 67.86 100.00 95.24 85.71 97.62 97.62
4 LoRA 15.87 53.53 35.71 10.84 31.15 34.88
DyVec 53.17 100.00 97.62 76.90 100.00 100.00
Qwen ICL 69.44 100.00 95.24 85.71 97.62 97.62
8 LoRA 35.12 54.71 47.62 32.12 54.10 76.74
DyVec 55.36 100.00 95.24 75.38 100.00 100.00
ICL 7242 100.00 95.24 85.71 97.62 97.62
16 LoRA 52.98 74.71 78.57 50.35 83.61 83.72
DyVec 61.11 100.00 100.00 76.39 100.00 100.00
ICL  70.04 97.06 90.48 83.33 95.24 97.62
4 LoRA 22.82 50.59 16.67 3343 60.66 25.58
DyVec 39.29 79.41 88.10 69.10 96.72 97.67
deepseck ICL 70.44 100.00 88.10 73.81 97.62 97.62
P 8 LoRA 22.62 65.88 35.71 38.20 67.21 65.12
DyVec 53.77 100.00 88.10 72.64 100.00 100.00
ICL 69.84 100.00 90.48 76.19 90.48 97.62
16 LoRA 33.33 92.94 73.81 50.96 83.61 83.72
DyVec 60.32 100.00 92.86 73.66 100.00 97.67

Table 12: Accuracy comparison (%) on six linguistic transformation tasks under different adaptation methods across
three models and varying data sizes. Bold numbers indicate the best results in each setting. DyVec consistently

achieves competitive or superior performance.

model architectures compared to Single Prompt
and Random Shuffle Averaging. The strategy ef-
fectively leverages the model’s attention capacity,
allowing for more comprehensive utilization of con-
textual information.

We also observe a degradation phenomenon
when the number of rotated prompts /N becomes

too large (e.g., N > 50). In such cases, the model
sometimes collapses to producing a single domi-
nant prediction across inputs, losing discriminative
power on certain classification tasks. This suggests
that while EQR enhances robustness under low-
resource settings, excessively large N may dilute
task-specific signals and harm decision diversity.
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Model Dy Dx NHSD Sarcasm SST2 ADE AG_News TREC6
4 48.50 57.40 55.60 56.90 64.20 26.40
4 8 50.60 52.10 90.10 57.50 65.00 27.00
16 50.60 56.90 59.70  50.00 60.60 24.60
Llama 4 57.40 50.50 73.40 67.60 65.00 24.10
8 8 49.00 50.40 91.50 67.40 79.20 25.40
16 54.20 50.50 84.80 50.20 76.40 26.20
4 54.10 65.60 82.20 51.50 56.40 28.70
16 8 50.70 74.90 92.10 50.50 78.90 27.20
16 59.90 82.90 91.30 68.20 81.80 24.60
4 51.70 46.80 63.00 59.90 85.00 24.10
4 8 50.30 50.10 79.80 59.00 75.30 27.60
16 50.40 50.50 71.70  56.10 80.80 23.20
Qwen 4 50.60 50.50 88.00 60.90 77.40 25.70
8 8 53.90 50.50 92.70  60.10 80.40 25.20
16 59.30 50.50 78.00 56.10 75.50 24.40
4 50.20 51.10 94.00 57.50 73.90 33.80
16 8 63.10 50.10 87.50 59.20 50.20 29.60
16 67.00 50.50 91.00 58.70 68.50 26.20
4 48.90 62.10 80.70 59.30 80.30 28.40
4 8 50.60 63.70 91.20 56.30 74.00 41.60
16 50.60 58.80 88.50 50.00 61.60 26.80
deepseck 4 50.60 50.50 84.30 65.80 62.80 24.10
p 8 8 49.60 50.60 92.50 64.40 78.80 35.20
16 50.60 50.50 84.50 50.10 66.70 28.30
4 50.60 69.10 86.40 50.30 38.30 23.20
16 8 56.10 84.90 89.80 54.70 69.40 24.20
16 64.30 76.00 91.50 67.90 72.70 28.90

Table 13: Dynamic Latent Segments extracted from the dataset Dx, and the intervention positions learned on
another dataset Dy . For the same task, fixed intervention positions generalize well across different activation

vectors.

Model | Datasize | NHSD Sarcasm SST2 ADE AG_News TRECG6
4 (L,4) (1,4) (L,1) 0,2) 0,2) (L,2)
LLaMA 8 (1,4) 14 (L)  (02) (12) (1)
16 0,1 0,1) 0,4) 0,1 0,1) 0,1)
4 0,1) 0,4) (1,1) 0,2) 0,4) 0,1)
Qwen 8 0,1) 0,1) (1,4) 0,1) (1,4) (L,1)
16 0,1) (1,4) (1,2) 0,1) 0,4) 0,1)
4 (1,4) 0,1) (1,1) 0,1) (1,4) (L,1)
Deepseek 8 0,4) 0,4) (1,2) (1,2) (1,4) 0,1)
16 0,1) 0,1) 0,2) 0,1) 0,1) 0,2)

Table 14: Optimal intervention configurations (c, 3) across models and tasks.The number of segmented positions .S

equals the number of attention heads H

G Evaluation on Generation Tasks

To further assess the general applicability of Dy Vec,
we evaluate it on six standard generation tasks
using accuracy as the metric. As shown in Ta-
ble 12, DyVec delivers competitive performance
without increasing the prompt length, enabling
more efficient inference. Although Few-shot ICL
slightly outperforms DyVec on a few individual
tasks, the overall results suggest that Dy Vec retains

strong generalization ability beyond classification
settings.

H Task Representation Transferability

To further evaluate the robustness of DyVec’s la-
tent modulation mechanism, we examine whether a
fixed intervention position—learned on a particular
dataset size—can generalize across activation vec-
tors computed from different dataset sizes, Details
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can be found in Equation 10.

As shown in Table 13, the fixed intervention posi-
tions remain effective across a wide range of activa-
tion sources. This suggests that while the extracted
activations may vary in granularity or representa-
tional strength, the optimal position for injecting
modulation remains relatively stable within each
model. This property enhances the flexibility of
DyVec in real-world scenarios where activation
extraction and position learning may occur under
different data conditions.

I Inference methods

Table 14 reports the best-performing intervention
configurations («, ) under the setting where the
number of segmented positions S equals the num-
ber of attention heads H. Each cell presents the
configuration that achieved the lowest training loss
for a specific model, task, and data size. These
results reflect how the optimal intervention strat-
egy can vary with both model architecture and the
amount of training data, emphasizing the need for
adaptive configuration in real-world applications.
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