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Abstract

Sequence labeling remains a significant chal-
lenge in low-resource, domain-specific scenar-
ios, particularly for character-dense languages.
Existing methods primarily focus on enhanc-
ing model comprehension and improving data
diversity to boost performance. However, these
approaches still struggle with inadequate model
applicability and semantic distribution biases in
domain-specific contexts. To overcome these
limitations, we propose a novel framework
that combines an LLM-based knowledge en-
hancement workflow with a span-based Knowl-
edge Fusion for Rich and Efficient Extraction
(KnowFREE) model'. Our workflow employs
explanation prompts to generate precise con-
textual interpretations of target entities, effec-
tively mitigating semantic biases and enrich-
ing the model’s contextual understanding. The
KnowFREE model further integrates extension
label features, enabling efficient nested entity
extraction without relying on external knowl-
edge during inference. Experiments on multi-
ple domain-specific sequence labeling datasets
demonstrate that our approach achieves state-
of-the-art performance, effectively addressing
the challenges posed by low-resource settings.

1 Introduction

Sequence labeling is a fine-grained information ex-
traction (IE) task that includes sub-tasks such as
named entity recognition (NER), word segmenta-
tion, and part-of-speech (POS) tagging, playing
a critical role in various downstream natural lan-
guage processing (NLP) applications.

In low-resource scenarios, sequence labeling re-
mains a persistent challenge, primarily due to the
scarcity of domain-specific data, which limits the
model’s capacity to learn accurate label distribu-
tions. Moreover, character-dense languages such as
Chinese pose additional difficulties, as the absence

'Our code: https:/github.com/aleversn/KnowFREE
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Figure 1: Distinctions between our method and existing
methods in terms of model-centric and data-centric.

of explicit word boundaries greatly complicates
label inference.

Previous studies predominantly focus on two
main directions to enhance sequence labeling in
low-resource scenarios: (1) Model-Centric Op-
timization. These methods focus on enhancing
the model’s comprehension to detect implicit word
boundaries and contextual signals through feature
engineering. For instance, lexical features are in-
jected via lexicon matching networks (Zhang and
Yang, 2018a; Li et al., 2020; Liu et al., 2021; Wu
et al., 2021) or prompt templates (Ma et al., 2022b;
Shen et al., 2023; Chen et al., 2021b; Das et al.,
2023) to strengthen entity boundary or type de-
tection. Other methods employ knowledge trans-
fer techniques such as Gaussian embeddings (Si
etal., 2024; Das et al., 2022), prompt-based metrics
(Chen et al., 2023; Lai et al., 2022), and contrastive
learning (Huang et al., 2022; Zhang et al., 2024)
to distill knowledge into target domains. (2) Data-
Centric Augmentation. Meanwhile, data-centric
methods concentrate on using data augmentation
through altering entity label information (Hu et al.,
2023; Yang et al., 2018), back translation (Paolini
et al., 2021; Yaseen and Langer, 2021), and extract-
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ing knowledge from the external environment (Cai
et al., 2023; Chen et al., 2021a; Yaseen and Langer,
2021) to enrich the dataset. With the advent of large
language models (LLMs), recent findings leverage
their generative capabilities to enhance the diver-
sity of entity and sentence synthesis (Kang et al.,
2024; Ye et al., 2024).

However, as illustrated in Figure 1, significant
limitations remain when applying these solutions
to specialized domains: (1) Limited Model Ap-
plicability. Existing model-centric approaches for
character-dense languages often struggle to effec-
tively incorporate diverse feature types and label
structures, limiting the flexibility and expressive-
ness of feature injection. These methods also
face difficulties in handling nested entities, further
reducing their adaptability. Moreover, many ap-
proaches rely on rigid feature integration pipelines
and complex input configurations to improve word
features, leading to increased reliance on supple-
mentary structures during inference and raising de-
ployment costs. (2) Variability in Label Distribu-
tion. Existing data-centric augmentation methods
frequently suffer from domain distribution biases.
Inconsistencies in entity type definitions and se-
mantic contexts across domains lead to mismatches
in label priors and entity representations, undermin-
ing the quality of synthesized data and weakening
zero-shot generalization.

These challenges, including structural rigidity
and distributional mismatch, collectively hinder
the practical effectiveness of current methods. This
motivates our development of a unified framework
that addresses both architectural constraints and do-
main adaptation challenges in a holistic manner. In
this task, we adopt two key strategies for improving
low-resource sequence labeling in character-dense
languages: (i) enhancing the utilization of non-
entity features through the span-based model and
(i) improving the model’s contextual understand-
ing of target entities.

To achieve these objectives, we propose a novel
LLM-based data augmentation framework. Our
approach begins by designing extraction prompts
to identify and extract informative non-target en-
tity features from the input text, thereby max-
imizing the utilization of non-entity informa-
tion. To address the issue of limited model
applicability, we introduce a span-based model
called Knowledge Fusion for Rich and Efficient
Extraction (KnowFREE), which supports nested
entity annotation and integrates extension label fea-

tures through a local multi-head attention mod-
ule. Unlike previous methods, KnowFREE cap-
tures rich contextual representations during training
without relying on external knowledge at inference
time. To tackle the issue of variability in label dis-
tribution, we incorporate explanation prompts in-
spired by label explanation techniques (Golde et al.,
2024; Yang and Katiyar, 2020; Ma et al., 2022a),
enabling the generation of precise, context-aware
explanations for target entities. This enhances the
model’s contextual understanding and mitigates se-
mantic distribution biases. By leveraging LLMs
for label interpretation synthesis, our framework
outperforms other related data augmentation tech-
niques in low-resource settings. We evaluate it on
multiple Chinese and English domain-specific se-
quence labeling datasets, and experimental results
demonstrate its effectiveness in overcoming the key
limitations of low-resource scenarios.

The contributions of our work can be summa-
rized as follows:

(1) New method. We propose a span-based
KnowFREE model that supports nested label anno-
tations and integrates multi-label features by a local
multi-head attention module, which can be used
without relying on external knowledge at inference.

(2) New perspective. To the best of our knowl-
edge, we are the first to propose an approach that
supports the seamless integration of extension la-
bel features within the model while eliminating the
need for external features during inference.

(3) State-of-the-art performance. Experimental
results demonstrate that our approach achieves out-
standing performance on low-resource sequence
labeling tasks.

2 Related Work

Span-based Sequence Labeling Methods Span-
based sequence labeling methods have gained
prominence for their ability to address overlapping
and nested entities effectively (Yang and Tu, 2022;
Fu et al., 2021). Early works, such as Dozat and
Manning (2017); Yu et al. (2020) introduced Bi-
affine models to capture sentence-wide structures
and score span boundaries for accurate information
extraction. Based on this, Su et al. (2022) proposed
the Global Pointer model, optimizing the Biaffine
transformation’s weight matrix and bias terms to
boost efficiency and precision in span-based NER.
In parallel, Shen et al. (2022) introduced a paral-
lel instance query network for simultaneous en-
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tity extraction. Then, (Yan et al., 2023) proposed
a multi-head Biaffine mechanism combined with
CNNs to capture local span features, achieving
improved performance, while (Li et al., 2022) com-
bined bilinear classifiers with dilated convolutions
post-CLN to refine span-level relation classifica-
tion. For few-shot NER, (Wang et al., 2022) intro-
duced SpanProto, which integrates prototype-based
classification with a contrastive loss to effectively
separate non-target spans from prototype clusters,
demonstrating strong performance in low-resource
scenarios.

Sequence Labeling via LLMs

Recent advances in LLMs (OpenAl, 2023;
DeepSeek-Al et al., 2025; Touvron et al., 2023)
have introduced new paradigms for sequence label-
ing. Generative methods based on in-context learn-
ing (ICL) allow LLMs to perform labeling tasks
directly without task-specific fine-tuning (Jiang
et al., 2024). In zero-shot settings, InstructUIE
(Wang et al., 2023) adopts a single-turn instruc-
tion framework across diverse IE tasks, Univer-
saINER (Mayhew et al., 2024) demonstrates im-
proved performance by querying one entity type at
a time, and GoLLIE (Sainz et al., 2024) enhances
generalization via structured code-style prompt-
ing. LLMs have also shown promise in handling
cross-domain and nested entity recognition (Nandi
and Agrawal, 2024; Kim et al., 2024). In parallel,
LLM-based data augmentation strategies synthe-
size high-quality training data by injecting domain-
specific features (Ye et al., 2024; Heng et al., 2024),
while others combine lightweight span detectors
with LLM validation to improve span selection in
specialized domains (Chen et al., 2024).

3 Method

In this section, we will introduce the knowledge en-
hancement workflow in § 3.1 and the specific struc-
ture of our sequence labeling KnowFREE model in
§ 3.2. The overall framework is shown in Figure 2.

3.1 Workflow of Knowledge Enhancement

In the knowledge enhancement workflow, we lever-
age LLMs to annotate potential entity information
in the source sample and provide additional de-
scriptions of entities. This enhances the utilization
of non-entity features and improves the model’s
comprehension of the context in which the target
entity appears. Our workflow consists of two main
pipelines, which we describe in detail below.

Label Extension Annotation. In low-resource
scenarios, non-entity segments in the sentence may
contain additional non-target entity features, while
data samples with flat-only entities may potentially
contain nested entity information around the target
entities. Leveraging this potential feature infor-
mation can enhance the model’s capacity to com-
prehend the fine-grained semantics and the abil-
ity to distinguish entity boundaries in character-
dense languages. To achieve this, we utilize the
LLM’s general knowledge to generate extension
entity tags, word segmentation tags, and part-of-
speech (POS) tags for the source samples.

Formally, we can denote the source samples as
S = {s1,52,...,8n}, and the LLM as L, where n
is the number of samples. We then constructed a
prompt for each type of tag extraction, denoted as
Pent> Pseg> and Ppos, correspondingly. The exten-
sion tags set can be computed as:

B® = (JEW, BY —1(sP, (1)
=1

where Efk) represents the extension set using
prompt Py extracted from sentence s;.

We assume that accurate and diverse extension
tags can significantly improve the model’s compre-
hension of context and its capacity for entity detec-
tion. Then, there are several issues that need to be
solved in the results of extraction. (1) The inher-
ent uncertainty in LLM generation often produces
extension entity tags in multiple textual forms that
nonetheless correspond to the same label category,
a phenomenon known as Surface Form Competi-
tion (Holtzman et al., 2021). Directly introducing
these labels will significantly disrupt the model’s
assessment of the entity type. (2) Word segmen-
tation usually produces boundary labels with low
information entropy. However, POS tagging based
on LL.Ms sometimes has missing annotations. No-
tably, POS tagging labels inherently include im-
plicit word boundary information. Therefore, com-
bining the outputs of these two processes is ex-
pected to yield better results.

To address the first issue, we use LLM to gener-
ate synonymous label mapping, and combine entity
clustering algorithm to achieve synonymous label
merging. Let denote the extension entity set as
Fent — {(ei,ti) | e; € E,t; € T}, where & is
the set of entities and 7 is the set of entity types.
We compute the synonymous tag set by using the
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synonymous tag merge prompt Pperge:

7; = L(T7 Pmerge)a (2)
To ={T;, : {T, Tia, ..., Tir} | i € [1,m]}, (3)

where T is the standard label, T;j is the synony-
mous label, and m, r is the number of standard
label and its corresponding synonymous labels,
respectively. This method is determined by the
LLM’s literal interpretation of the label, which may
not accurately align the semantic spatial distribu-
tion of entities in the target domain, and therefore
is not completely reliable. We further compute the
vector representation of each entity-label pair by
using a sentence embedding model M, and the
vector set of T}, can be represented as:

Vi ={vi]| (e t;) € B t; € T}, (4

where v; refers to M(z;), x; is the concatenation
of e; and t; with the template of “[e;] is [¢;]”. The
center point and mean radius of the vector set for
T} can be calculated as:

1
Cp = —— Vi, )
VL%
Vi k
1 p
re ==Y |v; —ell, (6)
P =

where p denotes the Top-p samples that exhibit the
greatest distance from c;. For each standard label

T;, we identify the synonymous label vector set
Vi maz that contains the largest number of samples
and has the largest radius, designating it as the
reference vector set. We then evaluate whether
each remaining synonymous label vector set V; ;
satisfies the condition ||Cj —Cpnqz || < € Timqy. If the
condition is met, T} is merged into ﬂ otherwise,
T} is treated as an independent standard label.

To address the second issue, we first compute the
word segmentation set Frses using Pgeq. Then, we
combine £5°8 , Ppos, and the original source sample
as input to the LLM to generate part-of-speech tags
without omissions. This approach ensures compre-
hensive POS tagging for all words in the sample
while enhancing the diversity of word segmentation
features.

Finally, we merge all the extension entities with
standardized labels into the original data to obtain
the fusion samples. We use our KnowFREE model
to first train an annotation model on the fusion
samples, which is then employed to annotate target
entities in the synthetic samples generated by the
subsequent pipeline.

Enriched Explanation Synthesis. Injecting ex-
tension entity features has been proven to enhance
model performance in many cases, its impact re-
mains constrained in the following situations: (1)
The datasets with short sentence contains a high
proportion of target entities, leading to a relatively
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low amount of non-entity information in the sam-
ple. This results in a diminished validity of the
external features introduced. (2) As the quantity of
samples diminishes, their scarcity will emerge as
the principal factor limiting performance enhance-
ment. Enhancing the exploitation of non-entity
features in the sample yields marginal performance
enhancement. Both instances highlight the neces-
sity of expanding the sample size. Nonetheless,
the divergence in semantic distribution indicates
that incorporating samples from outside the source
domain, along with directly employing LLM to
generate new sentences from existing entities, may
introduce potential noise that could significantly
affect model performance.

To tackle the aforementioned challenges, we em-
ploy LLM to generate entity explanations within
the current samples, which aims to leverage the
knowledge embedded within the LLM and the con-
nections between samples and entities to produce
the precise meaning of target entities within their
context. This approach can mitigate noise caused
by semantic distribution shifts in synthetic samples.
Specifically, we define two types of explanation
prompts: the Entity Explanation Prompt P, and
the Extension Description Prompt P,y for sam-
ples with and without target entities, respectively.
The function of P, takes the source sample and
its corresponding target entity as input, aiming to
generate a detailed explanation of the entity’s con-
textual meaning. Meanwhile, P,,; focuses on ex-
tracting and explaining key phrases from the text,
with only the source sample as input. Addition-
ally, to enrich the semantic representation of the
source data, both prompts instruct the LLM to act
the role of a domain expert, providing accessible
and detailed explanations of the target entities to
a hypothetical audience. This strategy encourages
the LLM to generate comprehensive, contextually
relevant, and easy-to-understand explanations, en-

hancing the overall semantic clarity of the dataset.

Next, we generate enriched explanations using
explanation prompts and annotate entities in the
synthetic texts through two branches: one for tar-
get entity annotation and the other for extension
entity extraction. The frozen KnowFREE model
trained in Pipeline 1 is used to annotate target enti-
ties, while extension entities are extracted by reap-
plying Pipeline 1 to the synthetic texts. Finally, the
fusion entities of synthetic samples are obtained
by integrating both extension and target entities.
As shown in Figure 2, we combine these fusion
samples with synthetic samples and retrain the
KnowFREE model to further improve its perfor-
mance in low-resource scenarios.

3.2 Structure of KnowFREE Model

To support the fusion of multi-label knowledge, the
KnowFREE model is built upon a Biaffine archi-
tecture, as illustrated in Figure 3. Unlike previous
methods that rely on external feature injection, our
approach eliminates the need for additional injec-
tion modules at the input stage.

Formally, let denote X, X as inputs of the fusion
sample and the synthetic sample, respectively. The
target entity spans of each sample is represented as
[si, €, l;], where s;, e; are the start and end indices
of the entity span, and [; is the label type. The
extension entity span is represented as [s;, ¢;, ],
where [. ; 1s the extension label type. We adopt a pre-
trained encoder to compute the hidden states H €
RE*P for each input, where L is the length of the
input sequence, D is the dimension of hidden states.
We then compute the encoding of the entity’s start
and end positions:

Hy,=o(HW,), H.=oc(HW.), (7)

where W, W, € RP*D" are learnable weight
matrics, D’ is the feature hidden size, and o is the
activation function. The Biaffine matrix of spans is
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computed by a multi-head Biaffine decoder Fyiup
(Yu et al., 2020):

Hyg = Fvns(Hs, He), (8)

where Hg € RLXLXD D) ig the hidden size of
the Biaffine matrix. To improve the interactivity
between multi-label features and span neighbor-
hoods, we introduce a local multi-head attention
layer to generate a mask for local multi-head atten-
tion. Each token is restricted to attend only within a
local window of size w through a masking scheme:

—oo otherwise.

if i — §| < w,
i —j| < ©)

where M € REXE 4, 4, refer to the row and col-
umn indices in M. For input features Hg, the atten-
tion computation follows the standard multi-head
paradigm with K heads, but incorporates the local
mask M:

A(Q, K, V, M) = Softmax (Q—@Z T M) vV, (10)

The outputs H,y, from all heads are concatenated
and processed with layer normalization. We main-
tain training stability through residual connections:

Hg = LayerNorm(Hg + Hyyy )- (11)

We then use the fully connected layer to map the
sum of Hg and Hpg into the number of entity tags:

P =0"(Wo(Hp + Hg) +b), 12)
where W € RP*WNatNew) g the learnable
weight matrix, ¢* is the activation function, and
b € R(WertNew) g the bias. Nyg, Nex: are the num-
ber of target entity label and extension entity label,
respectively. The binary cross entropy is employed
to compute the loss. To prevent the model from
overly concentrating on features of extension enti-
ties, the loss function is defined as:

L=—(3 osi, yiglog Pij+aYng<i vijlog Pij), (13)
<N 7<New

where y refers to the ground truth labels, « is the
weight parameter, and ¢, j denote the indices of dif-
ferent label types. Similarly, we control the influ-
ence of the quantity and noise in synthetic samples
with another weight parameter. The final loss is a
weighted sum of the original and synthetic losses:

Eﬁnal =L+ Bﬁsyn- (14)

During inference, the weights associated with the
extension entity labels are masked, ensuring that
the model exclusively predicts the target entities.
This design simplifies the overall architecture while
enhancing model efficiency.

4 Experiment

4.1 Experiment Setup

Training: To comprehensively evaluate the effec-
tiveness of our data augmentation strategy on dif-
ferent LLMs, and to fairly compare previous re-
lated methods. We use ChatGLM3-6B, GLM4-
9B-Chat, Qwen2.5-14B-Instruct, Llama3.1-70B-
Instruct, GPT-40 and Deepseek-V3 (GLM et al.,
2024; Yang et al., 2024b,a; Dubey et al., 2024; Ope-
nAl, 2023; DeepSeek-Al et al., 2025) as LLMs for
label extension annotation and enriched explana-
tion synthesis. We choose BERT (Devlin et al.,
2019) as the backbone encoder of the KnowFREE.
More detail settings are presented in Appendix H.

Evaluation: To assess the performance of our
method in low-resource scenarios, we conducted
experiments on a variety of datasets. These in-
clude Chinese flat NER datasets (Weibo (Peng and
Dredze, 2015), Youku (Jie et al., 2019), Taobao
(Jie et al., 2019), and Resume (Zhang and Yang,
2018b)); English flat NER datasets (CoNLL’03
(Sang and De Meulder, 2003) and MIT-Movie
(Liu et al., 2013)); a Chinese nested NER dataset
(CMEeEE-v2 (Zhang et al., 2022)); word segmen-
tation datasets (PKU and MSR (Emerson, 2005));
and a POS tagging dataset (UD (Nivre et al., 2016)).
To evaluate our method under data scarcity and
explore the limits of performance gains from sam-
ple synthesis, we conducted both many-shot and
few-shot experiments. In the many-shot setting,
we simulated low-resource conditions by randomly
sampling subsets of 250, 500, and 1000 training
instances. In the few-shot setting, we adopted the
standard “n-way k-shot” paradigm, using a greedy
sampling strategy to ensure each target label ap-
peared at least k£ times. To ensure consistency, each
larger subset included all samples from the smaller
ones. Dataset statistics are provided in Appendix G.
We then discuss the effectiveness of each module
in the analysis section. Additionally, we report the
results on the full datasets in Appendix B, conduct
further ablation studies on the number of heads in
local attention in Appendix D, and provide visual-
izations of the logit scores for the extension labels
in Appendix F.
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Model ‘Weibo Youku Taobao Resume CMeEE-v2 PKU MSR uD

250 500 1000 | 250 500 1000 | 250 500 1000 | 250 500 1000 | 250 500 1000 | 250 500 1000 | 250 500 1000 | 250 500 1000
BERT-CRF (Devlin et al., 2019) 56.57 6091 66.52 | 68.02 70.57 7492 | 68.78 71.88 74.74 | 90.19 9235 93.43 93.49 9431 95.02 | 90.60 91.73 9293 | 87.11 89.87 91.98
FLAT (Li et al., 2020) 5775 59.47 6572 | 7231 76.01 78.73 | 69.84 71.72 76.21 | 91.35 93.04 93.61 78.28 80.10 80.22 | 77.72 7827 7844 | 7776 78.39 80.11
MECT (Wu et al., 2021) 5855 60.77 66.13 | 72.82 7585 79.16 | 70.54 73.87 7648 | 9152 9363 93.90 8728 87.54 87.58 | 87.48 8753 8771|8712 87.30 87.61
LEBERT (Liu et al., 2021) 6123 64.03 67.63 | 72.39 7500 77.88 | 7112 7446 77.44 | 93.08 94.16 9505 9342 9409 9497 | 90.64 9195 9327|8893 9185 93.43
PCBERT (Lai et al., 2022) 70.73 7078 7281 | 77.67 8196 83.66 | 73.32 7541 79.21 | 93.63 9431 95.18 93.47 94.07 94.54 | 90.01 92.18 93.10 | 89.81 91.70 93.67
BiaffineNER (Yu et al., 2020) 58.74 66.41 69.70 | 77.28 80.21 81.68 | 74.62 76.98 79.46 | 93.30 94.61 9549 | 61.26 6556 68.40 | 93.20 9439 9494 | 91.60 92.63 93.64 | 88.84 90.74 92.68
W2NER (Li et al., 2022) 5457 6321 71.09 | 79.20 81.40 83.28 | 74.68 76.80 79.71 | 9439 9582 96.35 | 61.10 65.67 68.72 | 93.90 94.64 9541 | 91.61 92.76 93.82 | 90.12 9291 94.86
CNN Nested NER (Yan et al., 2023) 6481 67.75 69.96 | 79.28 81.58 83.94 | 75.39 77.86 80.06 | 93.10 94.54 9539 | 6232 6643 69.06 | 94.00 9459 9547 | 9172 92.86 93.67 | 9021 9248 94.70
DiFiNet (Cai et al., 2024) 6735 69.02 72.19 | 79.81 81.32 8329 | 7540 77.05 79.61 | 93.81 9475 9593 | 63.55 66.26 67.28 | 93.81 94.76 95.26 | 91.46 92.45 93.24 | 90.94 92.82 94.62
KnowFREE-F (ChatGLM3-6B) 66.76  71.59 7299 79.30 82.13 84.50 | 76.31 78.55 80.53 | 94.03 95.04 96.14 63.64 6747 69.52 94.07 9494 9551 | 91.73 9291 93.92 | 90.99 9271 95.00
KnowFREE-F (GLM4-9B-Chat) 66.40 73.08 7259 79.40 8216 84.37 | 76.02 78.21 80.48 | 94.05 9543 9625 6398 67.41 69.38 9457 9501 9549 | 91.83 92.73 9391 | 90.58 92.72 94.98
KnowFREE-F (Qwen-14B) 68.07 7339 7341 8030 8210 8420|7638 78.00 80.50 | 9421 9532 9640 6323 6725 69.19 94.36 9494 9551|9176 9293 93.89 | 9053 93.03 94.97
KnowFREE-F (Llama3.1-70B-Instruct) ~ 67.72 73.08 7259 80.18 82.17 84.37 | 7624 7832 80.51 | 94.11 9524 96.18 6392 67.47 69.18 9428 9498 9551 | 91.77 92.89 9391 | 90.76 92.69 9496
KnowFREE-F (GPT-40) 68.18 7351 74.06 8030 82.18 84.62 | 76.47 78.18 80.64 | 9455 95.50 96.37 63.66 67.59 69.76 9459 95.09 95.62 | 91.97 9296 93.98 | 91.01 93.13 95.05
KnowFREE-F (Deepseek-V3) 68.12 7342 74.12 80.28 82.13 84.39 | 76.29 78.19 80.50 | 94.50 95.49 9642 63.79 67.51 69.73 94.52 9504 95.61 | 91.79 9297 93.88 | 91.10 93.30 95.12
KnowFREE-FS (ChatGLM3-6B) 7478 7718 7678 8029 83.09 8445|7649 77.94 7954 | 9471 9540 9618 66.80 68.67 6929 9454 9509 95.50 | 92.11 9301 9367 | 9209 93.65 9477
KnowFREE-FS (GLM4-9B-Chat) 7390 7686 76.57 8186 83.17 84.48 | 7647 77.89 7936 | 9495 9545 9621 68.12 6845 68.85 9473 9505 9547 | 92.18 9296 9350 | 91.23 93.02 93.42
KnowFREE-FS (Qwen-14B) 73.09 7396 7409 81.39 82.82 83.71 | 7648 77.83 79.19 | 9455 9533 96.06 66.58 67.61 68.53 94.59 95.04 9548 | 9247 93.14 93.59 | 92.73 93.88 94.36
KnowFREE-FS (Llama3.1-70B-Instruct) 74.18 7691 76.68 81.69 83.09 84.36 | 76.48 77.91 79.69 | 94.86 9546 9621 68.12 6845 6885 94.62 9502 9547 | 92.16 93.02 93.66 | 92.68 93.76 94.23
KnowFREE-FS (GPT-40) 7425 77.12 77.16 81.98 83.16 84.48 | 7647 78.12 80.02 | 9459 9549 9631 6831 68.73 69.78 9472 95.10 9551 | 92.62 93.16 93.96 | 93.72 93.98 95.33
KnowFREE-FS (Deepseek-V3) 7477 7719 7718 8172 8324 8497 | 7652 7821 80.56 | 9497 9551 9646 68.51 6840 69.12 9493 09502 9549 | 92.83 93.17 9342 | 9318 9381 95.35

Table 1: The overall results on many-shot sequence labeling tasks. KnowFREE-F denotes the variant using only the
label extension annotation pipeline, while KnowFREE-FS incorporates the enriched explanation synthesis pipeline.
The bold values indicate the best performance, and the underlined values represent the second-best.

Baselines: To ensure a fair comparison, we
evaluate our method against both model-centric
and data-centric baselines. On the model-centric
side, we compare with general baselines such as
BERT-CRF (Devlin et al., 2019) and BiaffineNER
(Yu et al., 2020), as well as models specifically
designed for Chinese sequence labeling, includ-
ing FLAT (Li et al., 2020), MECT (Wu et al,,
2021), and LEBERT (Liu et al., 2021). We also
include comparisons with state-of-the-art nested
NER methods such as W2NER (Li et al., 2022),
CNN Nested NER (Yan et al., 2023), and DiFiNet
(Cai et al., 2024). From the data-centric perspec-
tive, we compare with the transfer learning ap-
proach PCBERT (Lai et al., 2022), and LLM-
enhanced methods including LLM-DA (Ye et al.,
2024), ProgGen (Heng et al., 2024), and MELM
(Zhou et al., 2022). In addition, Appendix A pro-
vides results comparing vanilla LLMs and LoRA
fine-tuned models on sequence labeling tasks.

4.2 Main Results

Many-shot Results. As shown in Table 1, our
method consistently achieves higher average per-
formance across all datasets. We observe that larger
backbone LLMs generally bring greater perfor-
mance improvements to our approach. Although
the scaling law is not strictly linear, even the small-
est model, ChatGLM3-6B, delivers strong results.
Under the 250-sample setting, our method sur-
passes the strongest baseline by an average of
1.95%, especially with a 4.05% gain on the Weibo
dataset. In low-resource settings, KnowFREE-FS
outperforms KnowFREE-F. However, as the num-
ber of training samples increases, especially be-
yond 500, the performance of KnowFREE-FS be-

comes comparable to or slightly lower than that
of KnowFREE-F. This indicates that enriched data
synthesis is more effective when training data is
limited. When more data is available, the noise
introduced by synthetic samples may outweigh the
benefits. Further analysis of noise effects is pro-
vided in Appendix E. Even when data synthesis
becomes less effective in higher-resource scenar-
ios, KnowFREE-F maintains strong performance.
With 1000 training samples, it still outperforms the
strongest baseline by an average of 0.95% across
all NER datasets, demonstrating the robustness and
effectiveness of the label extension annotation strat-
egy.

Few-shot Results. To assess the effectiveness
of our method in few-shot settings, we compared it
with state-of-the-art nested NER models and sev-
eral LLM-based data augmentation strategies, in-
cluding LLM-DA, ProgGen, and MELM, on both
Chinese and English NER datasets. For fair com-
parison, all synthesized samples were annotated
using the KnowFREE model trained solely on the
original data, and the resulting data were used
to retrain KnowFREE. As shown in Table 2, our
method consistently outperforms the baselines un-
der few-shot settings. On the Weibo dataset with
k=5, while other methods yield zero performance,
our approach achieves the performance of 35.58%.
Moreover, for k < 15, LLM-based augmentation
strategies often perform worse than CNN Nested
NER and DiFiNet, indicating limited domain adapt-
ability and the adverse effects of noise introduced
by data synthesis. The performance gains are
more pronounced on Chinese datasets compared to
English ones, demonstrating the method’s robust-
ness across languages and its particular strength
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Size

Ours

LLM-DA

ProgGen

MELM

Weibo

C.N.-NER

DiFiNet

k=5

k=10
k=15
k=20

35.58 (2.33)
48.53 (1.57)
60.61 (2.58)
68.62 (2.04)

0.00 (0.00)
0.95 (0.23)
17.28 (1.93)
39.49 (2.41)

0.00 (0.00)
0.48 (0.19)
1236 (1.22)
34.16 (2.09)

0.00 (0.00)
0.03 (0.04)
2.98 (0.58)
16.71 (1.67)

0.00 (0.00)
0.95 (0.21)
20.68 (1.88)
31.10 2.01)

0.00 (0.00)
0.98 (0.18)
27.43 (2.30)
3271 (2.31)

Youku

k=5

k=10
k=15
k=20

38.76 (2.30)
68.95 (3.85)
71.76 (3.33)
72.83 (2.29)

12.03 (2.24)
33.10 (2.34)
59.72 (3.94)
64.58 (2.53)

13.76 (1.32)
3352 (2.01)
56.55 (1.56)
61.80 (1.60)

9.98 (2.01)
16.17 (1.30)
50.18 (1.67)
5238 (1.59)

24.70 (2.55)
4639 (2.48)
60.41 (1.88)
67.38 (1.92)

23.83 (2.52)
46.62 (2.43)
60.61 (1.91)
68.38 (1.58)

Taobao

k=5

k=10
k=15
k=20

62.96 (2.34)
64.64 (3.58)
69.26 (2.65)
68.93 (2.36)

13.95 (2.32)
54.05 (2.92)
59.69 (2.58)
61.79 (1.51)

22.74 (2.62)
50.75 (1.66)
59.77 (1.51)
61.77 (1.63)

8.97 (0.88)
3241 (1.37)
55.32(1.57)
43.13 (1.62)

22.40 (1.61)
53.33 (2.01)
60.45 (1.83)
63.36 (1.86)

23.82 (1.56)
53.75(2.03)
61.01 (1.54)
64.08 (1.53)

Resume

k=5

k=10
k=15
k=20

65.28 (0.97)
78.89 (0.53)
85.43 (1.17)
85.56 (1.11)

30.44 (0.66)
45.40 (0.58)
58.77 (1.15)
75.13 (1.36)

27.63 (0.34)
50.39 (0.82)
60.32 (1.26)
82.96 (1.28)

20.67 (1.26)
42.34(1.28)
53.18 (1.18)
69.15 (1.21)

2550 (1.22)
49.78 (1.53)
56.04 (1.31)
67.51 (1.17)

29.97 (1.17)
50.19 (1.49)
56.92 (1.16)
68.83 (1.19)

CMeEE-v2

k=5

k=10
k=15
k=20

49.68 (1.89)
60.46 (1.67)
62.46 (1.51)
63.83 (1.68)

35.03 (1.65)
4891 (1.61)
48.97 (1.54)
57.18 (1.63)

39.18 (1.52)
44.80 (1.59)
4932 (1.61)
57.76 (1.51)

12.78 (1.01)
32.76 (1.65)
38.79 (1.53)
50.12 (1.67)

6.49 (0.56)
47.40 (1.56)
48.90 (1.65)
56.38 (1.58)

5.62 (0.47)
4725 (1.50)
4872 (1.59)
56.22 (1.55)

CoNLL'03

k=5

k=10
k=15
k=20

64.18 (1.62)
75.83 (1.52)
78.68 (1.39)
$3.24 (1.21)

57.84 (1.93)
69.07 (2.44)
78.18 (2.22)
81.94 (2.17)

57.11 (2.56)
69.10 (2.39)
78.32 (2.19)
82.09 (1.55)

30.00 (2.13)
63.48 (2.18)
76.16 (2.03)
79.41 (2.21)

27.75 (1.61)
62.93 (1.94)
75.93 (1.86)
77.92 (1.58)

26.86 (1.36)
59.17 (1.88)
75.85 (1.89)
77.74 (1.81)

MIT-Movie

k=5

k=10
k=15
k=20

57.34 (1.88)
64.08 (1.66)
67.03 (1.68)
69.28 (1.63)

53.97 (2.07)
63.03 (2.35)
65.77 (1.46)
69.12 (1.08)

52.82 (2.44)
63.41 (2.14)
65.93 (1.17)
69.19 (1.59)

38.49 (2.23)
50.56 (2.29)
58.32 (1.87)
62.02 (1.91)

36.81 (1.26)
49,08 (1.60)
58.03 (1.69)
60.81 (1.60)

37.62 (1.33)
49.43 (1.58)
58.54 (1.51)
61.07 (1.64)

Table 2: Results of few-shot sequence labeling tasks.
Our default method is KnowFREE-FS (ChatGLM3-6B).
C.N.-NER refers to the abbreviation of CNN Nested
NER. Values in parentheses indicate standard deviation.
bold numbers highlight the best performance.

in character-dense languages. Further analysis of
performance trends of LLM-based methods under
varying data sizes is provided in Appendix E.

4.3 Analysis

Method Weibo Youku Taobao Resume CMeEE-v2 PKU MSR UD

Default 7299  84.50 80.53 96.14 69.52 95.51 9392 95.00
w/o LE.A. 7232 84.26 79.93 96.02 69.49 93.75 93.67 94.88
w/olocal attn & LE.A.  69.87  81.65 79.01 95.49 68.42 94.93 93.64 92.66
w/o local attn w cnn 7221  84.28  80.26 95.94 69.31 9550 93.72 9476
w/o S.L. 7226 8419  79.80 95.74 69.18 94.86  93.87 94.85
w/o entity 7225  84.37 80.14 95.86 69.08 95.51 9391 9497
w/o pos 72.39  84.45 80.48 96.14 69.26 95.51 93.93 95.01

Table 3: Results of F1 scores in ablation studies, all
results are trained on datasets with 1000. The backbone
LLM is ChatGLM3-6B.

Ablation Studies: To evaluate the contribution
of each component in our approach, we conducted
ablation studies by selectively removing modules
and analyzing their impact on model performance,
as shown in Table 3. “w/o L.E.A.” removes the
Label Extension Annotation module and uses the
vanilla KnowFree model. Although this leads to a
performance drop, it still outperforms nested NER
baselines across several datasets. “w/o local attn &

(a) Weibo (b) Youku
80 80
70 70
60 60
o 50 o 50
H H
& 40 & 40
=30 =30
20 20
10 wlo Synthetic 10 wlo Synthetic
w Synthetic w Synthetic
0 Li— 0
5 10 15 20 25 30 35 40 45 S50 S 10 15 20 25 30 35 40 45 50
Sampling Size Sampling Size
(¢) Taobao (d) Resume
80 100
70 90
80
60
70
o 50 & 60
H H
G 40 & 50
=30 =40
30
20
20
10 wlo Synthetic 10 wlo Synthetic
w Synthetic w Synthetic
0 0
5 10 15 20 25 30 35 40 45 S50 5 10 15 20 25 30 35 40 45 50
Sampling Size Sampling Size

Figure 4: Performance comparison with and without
enriched explanation synthesis under k-shot sampling.

L.E.A.” disables both the local attention and L.E.A.
modules, resulting in a significant average perfor-
mance drop of 1.56%, highlighting their combined
effectiveness. In “w/o local attn w CNN,” the lo-
cal attention module is replaced by the masked
CNN module from CNN Nested NER. While this
improves performance over CNN Nested NER, it
underperforms compared to our attention-based
model, confirming the advantage of local multi-
head attention for capturing neighborhood interac-
tions. “w/o S.L.” removes the synonymous label
merging strategy and causes a 0.42% drop in perfor-
mance, indicating that failing to unify semantically
equivalent labels introduces confusion and weak-
ens model predictions. In “w/o entity” and “w/o
pos,” we exclude extension entity features and POS
features, respectively. Removing entity features
leads to a larger performance drop, showing their
stronger impact on entity recognition. Interestingly,
removing POS features improves results on MSR
and UD, possibly due to noise introduced by im-
perfect or overly correlated POS tags.

Impact of Enriched Explanation Synthesis
in K-Shot Sampling: To further evaluate the im-
pact of enriched explanation synthesis on model
performance in low-resource scenarios, we con-
ducted experiments following the “n-way k-shot”
paradigm. The sampled data was then augmented
with ChatGLM3-6B. We compared the model’s per-
formance with and without enriched explanation
synthesis, as shown in Figure 4. Here, “w Synthetic’
indicates the performance with enriched explana-
tion synthesis, while “w/o Synthetic” reflects the

2
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Figure 5: t-SNE visualization of the training, test and enriched explanation samples under different sampling sizes.
The synthetic enriched explanation samples are generated by ChatGLM3-6B, and they are represented by the

“Synthetic” in the legend.

performance without it. The results demonstrate
that “w Synthetic” achieves a substantial perfor-
mance boost over “w/o Synthetic” from the out-
set. Notably, when k is less than 15, enriched
explanation synthesis consistently delivers rapid
performance improvements across all datasets. As
k increases, the performance gap narrows, but “w
Synthetic” continues to outperform “w/o Synthetic”
across all settings. These findings highlight that
in resource-scarce scenarios, synthesizing enriched
data is more effective than directly injecting fea-
tures into raw samples. These findings highlight
the critical role of enriched explanation synthesis in
enhancing model performance, particularly when
labeled data is limited.

Visual Analysis of Enriched Explanation Syn-
thesis: We use the text2vec embedding model
(Ming, 2022) to generate sentence embeddings for
the original training and test samples, as well as for
the enriched explanation samples from the Weibo,
Youku, Taobao, Resume, and CMeEE-v2 datasets.
These embeddings are projected into two dimen-
sions using t-SNE, with results shown in Figure 5.
At a sample size of 250, the training data in datasets
such as Weibo, Youku, Taobao, and Resume pro-
vides sparse semantic coverage, leaving portions of
the test set insufficiently represented. This limita-
tion is observed across all datasets. The synthesized
samples help bridge these gaps in semantic space,
which explains the substantial performance gains
in low-resource scenarios. As the number of train-

ing samples increases, the coverage of the seman-
tic space becomes more comprehensive for most
datasets. However, at a sample size of 1000, seman-
tic discrepancies appear between training and syn-
thesized samples in datasets such as Youku, Taobao,
and CMeEE-v2, which may introduce noise and
hinder model performance. In the Weibo dataset,
certain regions of the test semantic space remain
underrepresented even at this larger sample size.
This observation explains why models trained with
synthesized samples continue to outperform those
trained solely on original data at this sample size.
These findings underscore the effectiveness of
enriched explanation synthesis in enhancing model
performance under low-resource conditions. How-
ever, they also reveal that as the sample size grows,
the potential drawbacks of synthesized data, such
as semantic noise, become increasingly evident.

5 Conclusion

In this paper, we propose a novel framework that
integrates an LLM-based knowledge enhancement
workflow with a span-based sequence labeling
model. Our approach improves model performance
by generating contextual interpretations of target
entities and annotating extension labels. Addition-
ally, our KnowFREE model effectively incorpo-
rates extension label features to enhance extraction
capabilities. Extensive experiments demonstrate
that our method achieves state-of-the-art perfor-
mance, showcasing its effectiveness and efficiency.
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Limitations

While enriched explanation synthesis significantly
improves model performance in low-resource sce-
narios (e.g., with fewer than 500 original samples),
its effectiveness diminishes as the size of the origi-
nal dataset increases. Specifically, when the num-
ber of original samples exceeds this threshold, dis-
tributional discrepancies between synthetic sam-
ples and target domain semantics can lead to the
synthetic data having a negative impact that out-
weighs its benefits. In future work, we plan to
explore adaptive alignment mechanisms to better
align synthetic and original data across different
data scales.

Ethics Statement

Our data augmentation method utilizes LLMs to
generate data independently of the existing train-
ing set. However, the generated data may reflect
social biases inherent in the pre-training corpus.
To mitigate the risk of propagating biased informa-
tion into sequence labeling models, we recommend
conducting manual reviews before integrating the
synthesized data into practical applications.
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Model Weibo Youku Taobao Resume CMeEE UD PKU MSR

ChatGLM3-6B 3.28 9.84 9.21 13.71 241 LIS 376  6.69
Llama3-8B-Instruct 1506 13.89 9.67 41.45 11.27 14.06 23.88 28.84
GLM4-9B-Chat 1243 31.69 14.90 47.12 16.28  26.38 26.18 31.12
Qwen2.5-14B-Instruct ~ 31.06  51.00 5.89 51.67 22.38 1006 233  3.02
Llama3.1-70B-Instruct ~ 34.69  49.54 13.77 66.60 40.86  37.82 396 744
Deepseek-V3 3333 1091 15.91 60.88 4220 38.66 596 245

Table 4: Results on sequence labeling tasks with vanilla
LLMs on zero-shot learning.

A Sequence Labeling with LLMs

To evaluate the performance of directly using
LLMs for sequence labeling tasks in low-resource
scenarios, we present the results of vanilla LLMs
in Table 4 and the performance of LoRA-finetuned
models trained on sampled datasets in Table 5.
During zero-shot inference, LLMs extract entities
based on the input text and target labels. As shown
in Table 4, vanilla LL.Ms exhibit significantly poor
performance on all datasets, likely due to their lim-
ited understanding of target label definitions. More-
over, models with different parameter scales show
varying performance across datasets, and no clear
positive correlation is observed between model size
and performance. This may be improved through
more advanced designs of the sequence labeling
prompts used in our setting. Therefore, for domain-
specific sequence labeling tasks, incorporating few-
shot examples into the prompt or fine-tuning the
model with LoRA could be a more effective and
practical approach.

In the experiments with LoRA fine-tuning, all
LLMs show performance improvements compared
to zero-shot inference. Compared to other LLMs,
ChatGLM3-6B still underperforms in LoRA fine-
tuning, likely due to its weaker ability to align with
the target domain of sequence labeling. As a re-
sult, the synthesized data produced by ChatGLM3-
6B contains a considerable amount of irrele-
vant information. With the 250-sample setting,
Qwen2.5-14B-Instruct demonstrates outperforms
other LLMs on most datasets, suggesting that
models with larger parameters tend to show en-
hanced initial performance in low-resource con-
texts. Nonetheless, with the sample size increases,
the performance improvements of Qwen2.5-14B-
Instruct on datasets such as Weibo, Taobao, and
MSR fell short compared to GLM4-9B-Chat. This
could be due to variations in model performance
when applied to different domain-specific data dis-
tributions. It is important to highlight that the per-
formance of LLMs on most datasets was still below
that of conventional sequence labeling baselines,

including the the relatively simple BERT-CRF. The
findings from the main results indicate that the
knowledge contained in LLMs can significantly
improve sequence labeling performance. However,
they lack the necessary expertise and alignment
capabilities for handling domain-specific datasets.
Due to biases in domain data distribution, LLMs
struggle to identify target entities in particular fields
as efficiently as conventional sequence labeling
techniques.

In addition, we perform LoRA-based SFT on
both source and synthetic data, with the results
presented in Table 6. For GLM4-9B-Chat and
Qwen2.5-14B-Instruct, fine-tuning on synthetic
data does not consistently outperform the results re-
ported in Table 5. This suggests that performance is
influenced more by training dynamics and stochas-
tic variations during generation and fine-tuning
than by the presence of additional synthetic data.
Furthermore, we observe a notable performance
decline in ChatGLM3-6B and Llama3-8B-Instruct.
Prediction analysis reveals that these models tend
to overpredict non-target entities, likely because the
frequent co-occurrence of entities in both synthetic
and original samples makes them overly sensitive
to spurious patterns.

Considering the trade-offs between cost and per-
formance, the data augmentation approach leverag-
ing LLMs proposed in this study offers a more prac-
tical and efficient solution. This method bridges
the gap between LLMs’ general knowledge and
the specialized requirements of domain-specific
sequence labeling tasks.

B Results on Full Datasets

To evaluate the effectiveness of Label Extension
Annotation at the full data scale, we conducted ad-
ditional experiments comparing our method with
W2NER, CNN Nested NER, and DiFiNet. The re-
sults are shown in Table 7. While performance
improvements become less pronounced on cer-
tain datasets (e.g., Weibo, Youku, and Resume)
compared to the 1000-sample setting, KnowFREE
and KnowFREE-F (Deepseek-V3) still outperform
all baseline methods on the full datasets, demon-
strating their robustness even under high-resource
conditions. Although the impact of label exten-
sion annotation diminishes as the dataset size in-
creases, it consistently offers improvements over
the vanilla KnowFREE, confirming its continued
utility. As for enriched explanation synthesis, one
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Model Weibo Youku Taobao Resume

250 500 1000 | 250 500 1000 | 250 500 1000 | 250 500 1000
ChatGLM3-6B (LoRA) 12.29 2044 2822 | 3452 38.62 39.29 | 2991 30.02 30.03 | 39.92 40.76 39.98
GLM4-9B-Chat (LoRA) 4920 54.54 60.30 | 73.79 7456 74.84 | 58.84 63.63 69.20 | 83.31 86.24 88.27
Llama3-8B-Instruct (LoRA) 10.09 17.08 44.24 | 49.59 60.97 64.33 | 23.84 34.65 4298 | 6536 70.82 74.86
Qwen2.5-14B-Instruct (LoRA) | 50.93 56.87 56.30 | 72.89 75.10 78.83 | 61.58 59.43 6698 | 84.45 88.12 88.65
Model CMEeEE-v2 PKU MSR UD

250 500 1000 | 250 500 1000 | 250 500 1000 | 250 500 1000
ChatGLM3-6B (LoRA) 12.75 1330 13.55 | 20.62 26.27 29.21 | 23.53 26.04 29.38 | 32.20 37.57 37.81
GLM4-9B-Chat (LoRA) 50.67 54.50 5622 | 71.41 73.68 75.02 | 7570 78.64 80.94 | 72.32 77.50 79.69
Llama3-8B-Instruct (LoRA) 2327 41.52 4441 | 6250 64.53 68.88 | 66.17 68.52 69.72 | 32.16 35.51 44.85
Qwen2.5-14B-Instruct (LoRA) | 53.59 53.80 59.31 | 71.94 72.71 7591 | 77.83 79.89 80.07 | 74.40 77.04 80.70

Table 5: Performance of LLM fine-tuning with LoRA on sequence labeling tasks with source datasets.

Model Weibo Youku Taobao Resume

250 500 1000 | 250 500 1000 | 250 500 1000 | 250 500 1000
ChatGLM3-6B (LoRA) 581 611 6.09 | 1198 1233 1237 | 3.69 392 398 | 10.88 12.69 13.98
GLM4-9B-Chat (LoRA) 40.22 58.18 62.38 | 69.81 75.72 74.68 | 59.03 63.22 69.03 | 83.47 86.34 88.10
Llama3-8B-Instruct (LoRA) 22,08 1242 11.79 | 1897 19.85 20.35 | 20.22 16.76 16.12 | 49.10 46.11 45.65
Qwen2.5-14B-Instruct (LoRA) | 46.22 51.20 56.06 | 31.92 19.40 20.60 | 62.25 6226 65.10 | 82.50 87.28 88.54
Model CMeEE-v2 PKU MSR UD

250 500 1000 | 250 500 1000 | 250 500 1000 | 250 500 1000
ChatGLM3-6B (LoRA) 1.14 1.02 1.16 1.89 1.78 1.69 | 4.71 7.62 7775 | 565 6.17 6.68
GLM4-9B-Chat (LoRA) 50.02 5442 56.79 | 70.57 7318 75.01 | 75.33 78.28 80.26 | 70.94 78.41 79.08
Llama3-8B-Instruct (LoRA) 20.69 19.86 19.29 | 10.56 948 8.69 | 27.36 26.37 25.64 | 31.25 30.18 30.02
Qwen2.5-14B-Instruct (LoRA) | 52.17 54.19 60.83 | 72.01 72.81 75.55 | 7748 79.22 8095 | 74.09 77.41 80.55

Table 6: Performance of LLM fine-tuning with LoRA on sequence labeling tasks augmented with synthetic datasets.

Model Weibo Youku Taobao Resume CMeEE PKU MSR UD CoNLL’03 MIT-Movie
W2NER 72.59 83.62 88.27 96.88 7297 9551 97.72 95.00 91.71 74.62
CNN Nested NER 7231  83.79 88.86 96.67 73.83 9375 97.69 94.88 91.16 74.86
DiFiNet 73.33  83.69 88.19 96.59 7229  94.86 97.28 94.85 90.72 74.49
KnowFREE 73.87 84.52 88.97 96.82 7392  96.59 97.72 95.93 92.28 75.32
KnowFREE-F (Deepseek-V3) 7415  84.57 89.12 96.93 7395 96.67 97.76 96.02 92.27 75.38

Table 7: Results of sequence labeling tasks on full datasets. The bold values indicate the best performance.

of our main motivations was to investigate its per-
formance boundary in low-resource settings. Our
analysis shows that its benefits significantly de-
crease as the sample size grows, with little gain
beyond the 500-sample mark. Thus, we can reason-
ably conclude that enriched explanation synthesis
provides limited added value in full-data scenarios.

C Cross-Lingual Adaptability

Our method also extends to other languages, partic-
ularly character-dense languages in low-resource
settings. To assess its cross-linguistic performance,
we conducted additional experiments on Japanese
and Korean sequence labeling datasets, as summa-
rized in Table 8.

+ Stockmark-NER (Japanese)’: A Wikipedia-
style dataset containing eight entity types, in-
cluding person, organization, and location
names.

 Naver Changwon NER (Korean)*: A social
media dataset containing fourteen entity types,
including person names, dates, organizations,
and locations.

In these experiments, we used GLM4-9B-Chat
for data augmentation. The results demonstrate
that our method consistently outperforms baseline
approaches on both datasets, confirming its effec-

*https://github.com/stockmarkteam/ner-wikipedia-
dataset/

3https://github.com/naver/nlp-
challenge/tree/master/missions/ner
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tiveness and adaptability in character-dense, low-
resource, multilingual scenarios.

Table 8: Results of sequence labeling tasks on cross-
lingual datasets. Bold values indicate the best perfor-
mance.

Naver Changwon NER
Model 250 500 1000

Stockmark-NER
250 500 1000

W2NER 68.27 74.84 78.04 | 66.53 69.17  73.19
CNN Nested NER 69.18 7579 79.18 | 68.24 70.83  74.55
DiFiNet 65.83 71.76 76.68 | 68.67 70.87 72.62

KnowFREE-F (GLM4-9B-Chat)
KnowFREE-FS (GLM4-9B-Chat)

69.26 76.17 79.97 | 68.70 70.92  75.66
73.82 7812 79.87 | 69.98 71.23 75.69

D Impact of the Number of Heads in
Local Attention

To analyze the impact of different numbers of atten-
tion heads on model performance, we conducted ex-
periments on four flat NER datasets: Weibo, Youku,
Taobao, and Resume, using a sampling size of 1000.
The model was trained on the sampled data with
extension labels extracted by GLM4-9B-Chat, and
the results are presented in Figure 7.

The results suggest that the number of attention
heads has a relatively moderate influence on model
performance. Notably, increasing the number of
heads from 8 to 10 yields the most substantial im-
provement. Moreover, how feature vectors are dis-
tributed across heads proves to be a critical fac-
tor. To maintain compatibility as the number of
heads increases, we adjusted the feature size to en-
sure it remains divisible by the number of heads.
However, this adjustment did not result in further
performance gains and significantly increased com-
putational overhead. Therefore, we adopt ten at-
tention heads in this study as a trade-off between
performance and efficiency.

E Comparison of different data synthesis
strategies

To evaluate the effectiveness of the enriched expla-
nation synthesis strategy, we reproduced and com-
pared two LLM-based data synthesis methods de-
signed for sequence labeling tasks: LLM-DA and
ProgGen. These methods were used to synthesize
data from k-shot samples of the original datasets.
For consistency, all synthesized samples were an-
notated using the KnowFREE model trained on the
original data without synthesized samples. We con-
ducted experiments on the Weibo, Youku, Taobao,
and Resume datasets, all results are presented in
Figure 6. The results show that the performance

gains from all data synthesis strategies decrease
as the number of samples increases. Notably, in
scenarios with k < 30 on the Youku and Taobao
datasets, both LLM-DA and ProgGen lead to per-
formance degradation compared to models trained
without synthesized data. This suggests that the
synthesized samples generated by these methods
may contain inherent semantic distribution biases,
which diminish their effectiveness in enhancing
performance in certain low-resource domains.

In contrast, our method consistently delivers sig-
nificantly better performance improvements for
k < 50, with particularly notable gains on the
Weibo dataset. These results demonstrate that the
samples synthesized by our approach are more
closely aligned with the target domain’s distribu-
tion and exhibit superior robustness.

F Visualization of the Logits with
Extension Labels

To further investigate the interaction between the
introduced extension labels and target labels in the
model, we visualized the logit scores of extension
labels corresponding to each predicted target label
position in the test set. These scores were aggre-
gated by summing and averaging across label cate-
gories, and the results are displayed as a heatmap in
Figure 8. In each heatmap subplot, the horizontal
axis represents the target labels, while the vertical
axis corresponds to the extension labels.

The results reveal that certain extension labels
exhibit strong correlations with specific target la-
bels. For instance, in the Weibo dataset, both
“PER.NAM” and “PER.NOM?” show a notable asso-
ciation with the extension label “PERSON”. Sim-
ilarly, in the Resume dataset, “COUNT” demon-
strates strong correlations with the extension labels
“Country,” “Location,” and “description”. Incorpo-
rating these significant relationships during training
allows the model to leverage co-occurrence pat-
terns, enhancing its ability to perform fine-grained
semantic understanding and improving target entity
prediction.

However, some extension labels were observed
to have strong correlations with all target labels.
Since the KnowFREE model produces indepen-
dent probability scores for each target label, the
influence of such extension labels on target entity
predictions is generally limited when their number
is small, as their training weights are relatively low.
Conversely, when these extension labels become
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Figure 6: Performance comparison between different data synthesis strategies under k-shot sampling.
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Figure 7: Performance variation with different numbers
of heads in the local attention module.

overly numerous, they can negatively impact model
training. In such cases, reducing their weights fur-
ther can help mitigate these effects and enhance
overall model performance.

G Statistics of Datasets
Dataset Dev  Test Label Types Domain
Weibo 0.27k  0.27k 8 Social Media
Youku 1.00k  1.00k 3 Video Content
Taobao 1.00k 1.00k 4 E-commerce
Resume 0.46k 0.48k 8 Human Resources
CMeEE-v2 498k 4.98k 9 Medical
PKU 1.00k  2.04k 1 News
MSR 1.00k  3.99k 1 News
UD 0.50k 0.50k 16 News, Literature
CoNLL'03 347k 3.68k 4 News
MIT-Movie 1.00k 1.95k 12 Entertainment

Table 9: Statistics of development sets, test sets, label
types and domains of all datasets.

The detailed statistics of the datasets are shown
in Table 9. These datasets span various domains,
including Social Media, E-commerce, and Medical,
enabling a comprehensive evaluation of the model’s

performance across different fields.

H More Experiment Settings

In this section, we describe the additional exper-
imental parameter settings for our method. In
the pipeline of label extension annotation, the pre-
trained embedding model of M is set as “text2vec”
(Ming, 2022), the Top-p value is set as five, and the
threshold ¢ is set as 1.5. In the training stage, the
hidden size D, D’, and D are set as 768, 200, and
200, respectively. The activation function of o and
o* are defined as Leaky ReLLU and GeLU, respec-
tively. In the local multi-head attention module, the
window size w is set as three and the number of
attention heads /C is set as ten. In the sequence la-
beling model, we distinguish between the learning
rate for the PLM and other modules, setting them
to 2e-5 and le-3, respectively. For the weight o of
extension labels, we introduce a dynamic weight
calculation mechanism to handle the influence of
frequently occurring extension labels (e.g., POS
tags). These frequent labels can affect the gradient
calculation, leading to reduced attention to target
labels. To address this, we calculate the count C; of
each extension label and the average count C of tar-
get labels, and then compute the weight coefficient
«; as follows:

o =0.5x (C/Cy). (15)

The training weight for synthesized samples (5)
and the weight decay parameter are provided in
Table 10. As shown, for most NER datasets with
more complex entity semantics, we use a smaller
weight decay parameter to improve model fitting
during training. In contrast, for POS tagging and
tokenization datasets, we apply a larger weight de-
cay to prevent overfitting. Additionally, for NER
datasets, where entity labels are more prone to
noise from synthesized samples, we set 5 = 0.4.
On the other hand, for datasets with strong baseline
performance, increasing /3 to 1.0 helps the model
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Figure 8: Heatmap visualization of logits scores between target labels and extension labels on the test sets.

Dataset Weight Decay 3  Type I Prompts

Weibo le-3 1.0 Flat NER In this section, we present detailed examples of our
Youku le-2 04 Flat NER workflow prompts for label extension annotation in
Taobao le-3 0.4 Flat NER Figure 9, 10 and enriched explanation synthesis in
Resume te-3 04 Flat NER Figure 11, 12. Since the target dataset is entirely in
CMEeEEv2 le-3 0.4 Nested NER . T . . )
PKU le2 1.0 Word Segment Chinese, 2.111 orlgu?al prf)mpts are written in Chinese.
MSR le-2 1.0 Word Segment The English portions in the prompt examples are
UD le-2 1.0 POS Tagging translations of the original prompts.

CoNLL’03 le-3 0.4 Flat NER

MIT-Movie le-2 0.4 Flat NER

Table 10: Settings of S and weight decay across differ-
ent datasets.

better utilize synthesized samples during training.
Our implementation is built on the Huggingface
Transformers (Wolf et al., 2020), and all experi-
ments are conducted using two NVIDIA A6000
GPUs for both training and inference.
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B AF I ) T A A SR, JREA
JSON#E M HLHBEATIR B, 7 Il entity Mtype&
1

A 1. RS EON] {entity: ", type: "], H: Aentity#
TN AT RE B AR SO, typeR o FITHE B SR 2 A, —
Aentity X} N —Mtype

2. WARAAEAEATAT SR, 33 i S 4]

Instruction: Please identify and extract the named
entities from the input sentence and return them in a
JSON array format. Each item should include the
attributes ‘entity" and ‘type':

Conditions: 1. The output format should be [{entity: ",
type: "}], where ‘entity’ represents the extracted entity
text, and "type’ represents the extracted entity type. Each
entity corresponds to one type.

2. If no entities exist, output an empty array [].

Figure 9: The entity extraction prompt in label extension

annotation.

B4 IEAMEEEMIREENER, FERER
A IREBIEATEES |, A ENRRRG A
SRR S, BRI AN LA R S AR D sz
HKA, EEEBREBINGE S, IR SLARTERE )
A e

BB BT E R R b P EDIS S
THESFRIFER. EE XGRS CISE N,
FZEFEASA. IMSL .

Ltk b E R KR

' "]

Instruction: As an expert with extensive knowledge,
you are required to continue writing based on the
provided sample and explain the entities included in the
sample for students. I will give you a sample along with
the entities it contains and their corresponding entity
types. Please continue writing the sample and explain
what each entity means in the sample.

Sample: Currently the Dean of the School of
Management at the University of Science and
Technology of China, Vice Chairman of the Chinese
Society of Probability and Statistics, Communications
Editor of the Contemporary Index of Statistics (CIS) in
the United States, and a member of the American
Statistical Association (ASA) and the Institute of
Mathematical Statistics (IMS).

["‘h | \,‘_V 1t th 11 ’\ 1

Entities:

Dea .

Figure 11: The entity explanation prompt in enriched

explanation synthesis.

B4 IHIREURA AT 1R M (POS), H#1H ISONHE
B AHBATIR A, F I FEwordfipos )& M«

. 1. HH AN {word: ©, pos: } ], HiFFword®
TN FTEEEURI SO, posFzn BT Bl 1, — A >word X
N.—>pos

;. T 55 NG AN R % BT S R o R A e E AT
NES

Instruction: Please extract the Part-of-Speech (POS) of
the input sentence and return them in a JSON array
format. Each item should include the attributes ‘word"
and ‘pos’:

Conditions: 1. The output format should be [{word: ",
pos: "}], where ‘word" represents the extracted text, and
‘pos’ represents the corresponding part-of-speech. Each
word corresponds to one ‘pos’.

2. Ensure that all **characters** and **punctuation**
marks in the input are annotated.

Figure 10: The POS tag extraction prompt in label

extension annotation.

B4 IENIEFEZMIREENER, FEERS
H R A7) F LA ) < SR B RS (o SR+ B+ 3]
#OHATIE, s 22 AR A AR X e S A VB AL
P S, RS EREE B, 15 OB IE i
R, LR AR oo ks a5 R A L,
FEIRRRAE N OB ERE B T & o

BBl UL P ERHHE R 2K« P EBESS
TH R ER . RE RS TER L] CISHE AR,
HFEFEASA. IMSL .

Instruction: As an expert with extensive knowledge,
you are required to extract "key phrases" (such as
**entities** or **phrases**) from the given sample and
explain their meaning in the context of the sample to
students. I will provide you with a sample. Next, you
should extract the "key phrases," then continuous
generate the sample's content based on these "key
phrases" and explain the meaning of each "key phrase"
in the sample.

Sample: Currently the Dean of the School of
Management at the University of Science and
Technology of China, Vice Chairman of the Chinese
Society of Probability and Statistics, Communications
Editor of the Contemporary Index of Statistics (CIS) in
the United States, and a member of the American
Statistical Association (ASA) and the Institute of
Mathematical Statistics (IMS).

Figure 12: The extension description prompt in enriched
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explanation synthesis.



