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Abstract

Recent advances in large video-language mod-
els have revolutionized video understanding
tasks. However, their efficiency is greatly con-
strained by processing high volumes of visual
tokens. Existing token compression strategies
apply a fixed compression ratio, ignoring vary-
ing semantic density across video clips. Conse-
quently, this leads to inadequate representation
of information-rich clips due to insufficient to-
kens and unnecessary computation on static or
content-poor ones. To address this, we propose
LangDC, a Language-aware Dynamic Token
Compressor. LangDC leverages a lightweight
language model to describe video clips, convert-
ing them into soft caption tokens as visual repre-
sentations. Trained with our proposed semantic
density-aware supervision, LangDC aims to 1)
cover key visual cues necessary for downstream
task reasoning and 2) dynamically adjust com-
pression ratios based on scene richness, re-
flected by description length. Our design mim-
ics how humans dynamically express what they
see: complex scenes (seeing more) elicit more
detailed language to convey nuances (saying
more), whereas simpler scenes are described
with fewer words. Experimental results show
that our method reduces FLOPs by 49% com-
pared to VideoGPT+ while maintaining com-
petitive performance. Furthermore, qualitative
results demonstrate our approach adaptively
adjusts the token compression ratio based on
video segment richness. Codes are available at
https://github.com/NIneeeeeem/LangDC.

1 Introduction

The field of video understanding has undergone a
revolution thanks to recent advancements in large
video-language models (LVLMs) (Liu et al., 2023,
2024a; Li et al., 2023b; Chen et al., 2023a; Lin
et al., 2023a; Luo et al., 2023). By mapping vi-
sual token features to the embedding space of large

* Equal contribution.
† Corresponding authors.

language models (LLMs) (Touvron et al., 2023a;
Zheng et al., 2023; Touvron et al., 2023b; Chowdh-
ery et al., 2023; Chung et al., 2022; Ouyang et al.,
2022), LVLMs provide a unified interface for video
understanding tasks, enabling the capture of inter-
task relationships and demonstrating exceptional
generalization and reasoning capabilities. These
breakthroughs pave the way for further progress in
artificial general intelligence (Yu et al., 2019; Guo
et al., 2019). However, the high computational cost
of LVLMs, resulting from the quadratic complexity
of processing numerous visual tokens with billion-
scale parameters, impedes their real-world deploy-
ment. To alleviate this, considerable efforts have
been made to derive compact, high-quality sets
of visual tokens through carefully designed multi-
modal resamplers. These approaches include cross-
attention-based methods (e.g., Q-Former (Li et al.,
2023a; Ren et al., 2024) and Resampler (Alayrac
et al., 2024; Li et al., 2024e,c)), convolution-based
techniques (e.g., C-Abstractor (Cha et al., 2024)
and LDP (Chu et al., 2023, 2024)), and channel
merging strategies such as pixel shuffle (Ren et al.,
2023; Chen et al., 2023b) and adjacent concatena-
tion (Bolya et al., 2022; Song et al., 2024).

While effective in improving efficiency, exist-
ing methods share a critical limitation: they apply
a fixed compression ratio to visual tokens, disre-
garding variations in semantic density across video
segments. For example, Figure 1 (a) shows two
clips with significantly different semantic densities:
one is static, with each frame presenting close-ups
of greenery, while the other is dynamic, showcas-
ing various characters, objects, and actions. De-
spite this difference, both clips are compressed into
the same number of visual tokens due to identi-
cal frame counts and resolutions. This uniform
compression paradigm fails to produce an effec-
tive compact token set, as it may fail to adequately
represent information-rich segments while wasting
tokens on less informative ones.
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(a) Clips with different semantic density. (b) Existing token compressors. (c) Language-aware dynamic compressor.
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Figure 1: Comparison of LangDC and existing token compressors. (a) illustrates two video segments with
distinct information densities; the bottom segment contains richer visual cues. However, existing token compression
methods (b) represent both segments to the same number of tokens. In contrast, our proposed method (c) dynamically
allocates tokens based on semantic density, drawing on the sequence length awareness of language.

Inspired by the dynamic way of human language
use in describing visual scenes, where simpler
scenes are typically described with fewer words
and information-rich scenes (“seeing more”) re-
quire more detailed descriptions (“saying more”),
we propose LangDC, a language-aware dynamic
token compressor. LangDC employs a lightweight
language model to describe video segments, and
then uses soft caption tokens (i.e., the hidden states
of the predicted text tokens) as compressed visual
representation. To ensure the compressed token set
size reflects visual richness, we propose semantic
density-aware supervision. Specifically, a strong
LVLM (Liu et al., 2024a) extracts key visual cues
from each segment, serving as targets for predic-
tions of the lightweight language model. This ex-
plicit guidance enables LangDC to: 1) capitalize
on the inherent correspondence between language
length and semantic density, facilitating the dy-
namic control of token compression ratio, and 2)
capture key visual clues that facilitating more com-
pact representations and enhancing reasoning capa-
bilities across diverse downstream tasks.

Experiments on diverse video understanding
benchmarks validate our method’s effectiveness
and efficiency. Results show that LangDC reduces
the FLOPs by 49% while maintaining competi-
tive performance compared to the strong baseline
VideoGPT+ (Maaz et al., 2024b). This demon-
strates that our method produces a more compact
and semantically rich set of visual tokens. Addi-
tionally, LangDC outperforms existing state-of-the-
art token compression techniques at similar com-
pression ratios. Qualitative results show that our
approach adaptively adjusts the token compression
ratio based on the scene richness of video segments.

To summarize, our contributions are threefold:
1) We propose LangDC, a novel language-aware
token compression strategy. Using soft language
tokens for visual representation, it adaptively ad-
justs compression ratios, improving token utiliza-
tion over fixed-ratio techniques. 2) We propose
semantic density-aware supervision for the token
compressors. By explicitly providing reconstruc-
tion targets for token compression, we enable the
derivation of a more compact feature set that is
not only aware of information richness but also
preserves key visual cues. 3) Experimental results
demonstrate that our method reduces FLOPs by
49% relative to the strong baseline VideoGPT+,
while maintaining competitive performance. Ad-
ditional qualitative results show adaptive compres-
sion based on video clip semantic density.

2 Related Work

Large video-language models. Large video-
language models (LVLMs) (Liu et al., 2023; Li
et al., 2023b; Chen et al., 2023a; Lin et al., 2023a,b;
Luo et al., 2023; Maaz et al., 2024b) have garnered
significant attention recently. Leveraging large
language models (LLMs) (Touvron et al., 2023a;
Zheng et al., 2023; Chowdhery et al., 2023; Chung
et al., 2022; Ouyang et al., 2022) as a unified task
interface, LVLMs adapt to diverse video under-
standing tasks through flexible language instruc-
tions. Typically, an LVLM comprises three core
components: a visual encoder to perceive frame-
level information, a multimodal connector to align
vision and language feature spaces, and an LLM
for understanding and generating language content.
Pretrained on large-scale visual-caption datasets
and fine-tuned on video instruction data, LVLMs
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Method # Tokens↓ Sub-tasks

Fine-grained Action Object Existence Moving Direction Scene Transition Moving Attribute Avg.

Source of Video – MiT V1 CLEVRER CLEVRER MoVQA CLEVRER –

AvgPooling 2× 2 3328 47.0 81.0 37.0 38.5 85.5 55.37
AvgPooling 4× 4 832 44.0 73.5 26.5 36.5 78.0 52.05
AvgPooling 8× 8 208 48.0 67.0 26.0 40.5 59.0 49.50
AvgPooling 16× 16 80 44.0 49.5 19.5 38.0 49.0 44.40

Oracle Performance – 63.0 96.5 64.0 91.0 96.5 72.4
Oracle Tokens – 260.3 274.3 757.8 156.5 514.0 354.48

Table 1: Performance comparison of LVLMs with varying compression ratios across multiple video under-
standing tasks. Here, Oracle denotes the ideal scenario where the highest compression ratio that yields the correct
response is selected for each test instance. Our key observations are: (1) The ideal number of visual tokens varies
significantly across different videos and tasks, and (2) an oracle model integrating multiple compression ratios
consistently achieves superior performance.

show superior performance over traditional task-
specific models. Previous methods have enhanced
LVLMs by: 1) collecting high-quality video in-
struction tuning data for versatile understanding (Li
et al., 2023b; Zhang et al., 2024a), 2) utilizing
stronger video encoders to capture fine-grained dy-
namics (Li et al., 2024b), and 3) designing efficient
connectors to improve efficiency (Li et al., 2024e).
Our proposed method further improves multimodal
connectors by enhancing flexibility through dy-
namic token customization based on visual infor-
mation density in videos.

Visual token compressors. Compressing visual to-
kens to enhance efficiency poses a crucial challenge
in large vision-language models. Handling a sub-
stantial number of tokens produced by long-context
visual inputs, such as videos and high-resolution
images, using LLMs substantially escalates mem-
ory consumption and latency, thereby impeding
real-world deployment. Various token compres-
sion techniques (Chen et al., 2024) have been pro-
posed to shorten visual sequences. For instance,
Q-Former and Resampler introduce a set number
of trainable tokens that interact with visual features
via cross-attention layers to capture essential visual
cues (Li et al., 2023a; Ren et al., 2024; Alayrac
et al., 2024; Li et al., 2024e,c). C-Abstractor
and LDP downsample feature maps using convo-
lutional layers, preserving spatial structure (Cha
et al., 2024; Chu et al., 2024). Other approaches
directly apply simple channel-wise merging oper-
ations (e.g., mean-pooling, pixel-shuffle) follow-
ing a multi-layer perceptron, effectively reducing
model complexity while demonstrating strong gen-
eralization capabilities (Ren et al., 2023; Chen
et al., 2023b; Bolya et al., 2022; Song et al., 2024).
Despite their effectiveness, these methods com-

press visual tokens using a fixed, predefined ratio,
limiting their ability to generalize across samples
with varying information density. In contrast, we
utilize a pre-trained captioner to evaluate informa-
tion density and generate soft caption tokens as
compressed visual tokens, enabling adaptation to
different visual inputs dynamically.

3 Motivation on Dynamic Compression

Intuitively, videos with varying information densi-
ties require different compression ratios. To vali-
date this hypothesis, we conduct an in-depth analy-
sis on five tasks of the MVBench (Li et al., 2024b).
Notably, this benchmark encompasses a wide range
of subtasks and diverse data sources, and includes
videos with distinct information densities—an at-
tribute that makes it well-suited for our validation.

We train the MLLM (Maaz et al., 2024b) with
different visual token compression ratio (imple-
mented via adaptive average pooling with different
stride), and evaluate their optimal trade-off between
token count and model performance. Specifically,
we employ the oracle metric following (Cai et al.,
2024), which identifies the highest compression
ratio that yields the correct response for each test
instance, and subsequently compute both the token
count and performance metrics.

As shown in Table 1, higher compression ra-
tios generally lead to reduced overall model per-
formance. However, the non-uniform distribution
of oracle token counts underscores the inherent
variability of video information density, revealing
the limitations of static token compression meth-
ods. Furthermore, the sensitivity of different task
videos to changes in visual token counts varies sig-
nificantly. For instance, in relatively static videos
(e.g., State Changes from Prception Tests (Puatru-
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Figure 2: Overview of the proposed method. LangDC utilizes dual visual encoders to extract visual features,
followed by dynamic compression using CapPruner. The compressed features are combined with the base pruner’s
output and fed into the LLM. The training pipeline consists of three stages: Stage I involves cross-modal pretraining
with video/image-caption pairs, Stage II focuses on CapPruner pretraining using an information density-aware
captions corpus, Stage III includes supervised fine-tuning with video instruction data.

aucean et al., 2023)), decreasing the token count
from 3k to 80 results in only a 2% drop in perfor-
mance. Conversely, videos rich in elements and
motion (such as those used in Moving Count task)
experience a steep decline in accuracy as token
counts decrease. These observations highlight the
critical need for dynamic compression strategies
adaptive to varying video content, suggesting this
is the future direction for video compression.

4 Methodology

We propose LangDC, a Language-aware Dynamic
Token Compressor, designed to dynamically com-
press visual content based on semantic richness. It
is achieved through the integration of CapPruner,
a lightweight language expert that transforms vi-
sual content into semantically rich token represen-
tations. Leveraging our proposed semantic density-
aware supervision, CapPruner adaptively allocates
the number of tokens according to the semantic
density of the input. We start this section by first
providing an overview of the LangDC’s pipeline.
Next, we detail the architecture and functionality
of CapPruner and the semantic density-aware su-
pervision mechanism. Finally, we outline the pro-
gressive training strategy employed for LangDC.

Overall architecture. We build our model based
on VideoGPT+ (Maaz et al., 2024b). As illustrated
in Figure 2, LangDC comprises dual visual en-

coders for spatial-temporal perception, a projec-
tor for vision-language feature alignment, token
pruners for visual compression, and an LLM for
language understanding and generation. The to-
ken pruner module incorporates a lightweight lan-
guage expert, termed the dynamic token pruner
(CapPruner), alongside an adaptive mean pooler
serving as the base pruner. Given an input video,
we first divide it several segments and encode each
seperately. The resulting features are subsequently
passed through the projector and token pruners.
The CapPruner dynamically reduces the number
of visual tokens within each segment, producing
pruned tokens of variable lengths. These tokens
are then temporally aggregated and combined with
the output of the base pruner before being fed into
the LLM for auto-regressive training or inference.

4.1 Language-Aware Compression
Dynamic compression hinges upon the effective
capture of video semantics, which necessitating
the integration of a pre-trained language model.
However, departing from previous approaches (Ye
et al., 2025; Shu et al., 2025) that simply extract
visual tokens, our method leverages the language
expert to also determine the appropriate compres-
sion ratio. Therefore, language-aware dynamic
token compressor capitalizes on the autoregressive
nature of a language model, while simultaneously
learning concise segment-level semantic represen-
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tations from teacher model. This section details the
training methodology and operational mechanism
of the dynamic compressor.
Captioner as pruner (CapPruner). The Cap-
Pruner consists of a lightweight language model
and two projection layers. In Figure 3, the language
model’s transformer layers are utilized at various
stages of training and inference to generate hidden
states. The two projectors have distinct roles and
are applied at different stages:

• The language modeling head from the
lightweight language model serves as one pro-
jector. It maps the hidden state to the vocab-
ulary, enabling supervised training based on
important visual cues provided by a teacher
model. This language modeling head is re-
sponsible for generating tokens and control-
ling their length. The "padding" token indi-
cates that the compact visual representation
are fully compressed.

• The other projector, known as the post pro-
jector, aligns the dimensions of the hidden
state with embeddings from the LLM, facil-
itating end-to-end instruction tuning and in-
ference. Notably, CapPruner can select the
optimal depth of hidden state for compressed
visual features. In practice, hidden state from
intermediate layers proves most effective, as
shallower representations often lack sufficient
semantic information, while deeper ones may
exhibit excessive abstraction (Toneva and We-
hbe, 2019). The detailed experimental results
are provided in the supplementary materials.

Semantic density-aware supervision. Effective
visual semantic compression necessitates concise
and dynamic supervision. Although manually an-
notated captions offer high accuracy, they are sus-
ceptible to annotator bias, resulting in discrepan-
cies between caption length and the actual density
of video information. Furthermore, manual anno-
tations are resource-intensive, leading to limited
dataset sizes and potential inconsistencies across
datasets. To address these challenges, we leverage
the consistent and descriptive capabilities of state-
of-the-art vision-language models. Specifically,
we employ LLaVA-OneVision (Li et al., 2024a)
to extract crucial visual cues from each video seg-
ment. By eliminating irrelevant and ambiguous lan-
guage, we refine the supervisory signals to provide
CapPruner with a focused stream that accentuates

Transformer layers

Visual Tokens

Language Modeling Head

Teacher Last hidden states

semantic density-aware supervision

LLM

Transformer layers

Post Projector

Selected hidden states

LM Head

Visual Tokens

LoRA

Length 
Control

(a) Teacher Model Supervises CapPruner.

(b) CapPruner enables dynamic compression.

CapPruner

CapPruner

Figure 3: Illustration of the dynamic compression
mechanism in CapPruner. (a) Captions generated
by a teacher model (a strong captioner) are used to
supervise the training of CapPruner, facilitating it to
allocate tokens according to scene richness. (b) By
leveraging the hidden states of predicted captions as
compact representation, CapPruner dynamically adjusts
the compression ratio according to the timing of the
“end-of-sentence” token prediction.

essential visual information. This approach en-
hances the representation of core visual semantics,
leading to more accurate compression results. The
detailed processing procedure is demonstrated in
the supplementary material. For a fair comparison
with VideoGPT+ (Maaz et al., 2024b), teacher de-
scriptions are constrained to video segments from
the instruction tuning dataset. This practice pre-
serves data consistency and isolates the influence
of dynamic compression.

4.2 Training Recipe

Traditional practices for LVLMs suggest that a pro-
gressive training strategy is essential to reduce the
semantic gap between visual and linguistic repre-
sentations. Our proposed method, LangDC, incor-
porates a lightweight language expert with built-
in knowledge of the semantic space. This expert
module is crucial for establishing links between vi-
sual representations and language embeddings, re-
quiring a distinctive progressive training approach
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Models LLM
# Params # Frames SFT

# Pairs
Video-MME MVBench Efficiency

FLOPs↓w/o subs w/ subs

Video-LLaVA (Lin et al., 2024) 7B 8 765K 39.9 41.6 – –
ST-LLM (Liu et al., 2024c) 7B 64 330K 37.9 42.3 54.8 –
VideoChat2 (Li et al., 2024b) 7B 16 2M 39.5 43.8 51.1 –
Chat-UniVi-V1.5 (Jin et al., 2024) 7B 64 649K 40.6 45.9 – –
VideoGPT+ (Maaz et al., 2024b) 3.8B 16 330K 44.5 49.9 58.7 49.85T
LangDC (ours) 3B 16 330K 44.3 51.3 57.1 25.15T

Table 2: Performance comparison with baselines on Video-MME and MVBench.

that aligns spatial representations across different
modalities. The training process comprises three
sequential stages (shown in Fig. 2):
Cross-modal pretraining. The pretraining phase
aims to establish alignment between visual and tex-
tual representations. Following (Liu et al., 2023),
the projectors connecting the visual encoders to
both the CapPruner and the LLM are trained, while
all other model components remain frozen.
CapPruner pretraining. We first train CapPruner
with a base caption dataset to enable it to capture
the fine-grained details of visual content. To fur-
ther ensure that CapPruner follows the principle of
"seeing more, saying more", further refinement is
required. As explained in the previous section, a
state-of-the-art LVLM assists the lightweight lan-
guage expert in producing descriptions of variable
lengths that match the information density of the
video segments. During this training phase, both
CapPruner and the associated visual encoder pro-
jectors are engaged, using the generated captions
as supervision signals. Subsequently, CapPruner is
linked to the base LLM through a post-projector,
which is initialized by the same data with the cross-
modal pretraining stage.
Supervised finetuning. During supervised fine-
tuning, the model is trained to understand human
instructions. The LoRA method with a rank of
128 is implemented on LLM. The interconnect-
ing projectors between the language expert and
LLM are fully trained, while all other components
are frozen. Furthermore, the Adapt Token Pruner
utilizes a teacher forcing mechanism to improve
training efficiency during this stage.

5 Experiments

5.1 Experiments Setup

Implementation details. Following VideoGPT+,
we adopt a dual-encoder setup comprising an im-
age encoder (CLIP-ViT-L/14-336 (Radford et al.,

2021)) and a video encoder (InternVideo2-stage-2-
1B (Wang et al., 2024)). Unless otherwise noted,
we apply 4× 4 pooling as the BasePruner, initial-
ize the CapPruner with Qwen-2.5-0.5B and employ
Qwen-2.5-3B (Team, 2024) for the LLM. For cross-
modal pre-training, the CC-595K dataset (Liu et al.,
2024b) is used to independently train the image and
video projectors. Supervised fine-tuning follows
the procedure in VideoGPT+ (Maaz et al., 2024b),
leveraging two instruction-tuning datasets tailored
for distinct task formats. Additional details are
provided in the supplementary material.
Evaluation benchmarks. We evaluate LangDC
on both multiple-choice and open-ended VideoQA
tasks. For multiple-choice benchmarks, we use
MVBench (Li et al., 2024b) and VideoMME (Fu
et al., 2025). For open-ended VideoQA, we
evaluate our model on MSVD-QA (Xu et al.,
2017), MSRVTT-QA, ActivityNet-QA and TGIF-
QA (Jang et al., 2019). Following prior work (Maaz
et al., 2024b), we utilize GPT-3.5-Turbo-0613 to
assess response accuracy, with scoring prompts de-
tailed in the supplementary material.

5.2 Main Results
Performance evaluation. Table 2 shows that
LangDC outperforms state-of-the-art LVLMs
while reducing computational costs. Compared
to VideoGPT +, LangDC reduces TFLOPs by
49% with only a performance drop of 1.6% on
MVBench. This highlights the efficiency of se-
mantic density-aware supervision in preserving
key visual information. On Video-MME, LangDC
achieves superior performance with fewer parame-
ters and less fine-tuning data. Notably, it drops only
0.2% without subtitles and exceeds VideoGPT+
by 1.4% with subtitles, excelling especially on
long-video tasks which demonstrating CapPruner’s
strength in long-range understanding.

Table 3 shows that LangDC also surpasses
VideoGPT+ by 1.6% on MSVD-QA and 2.2%
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Models LLM MSVD-QA MSRVTT-QA TGIF-QA ActivityNet-QA

# Params Accuracy Score Accuracy Score Accuracy Score Accuracy Score

VideoChat (Li et al., 2023b) 7B 56.3 2.8 45.0 2.5 34.4 2.3 26.5 2.2
LLaMA Adapter (Zhang et al., 2024b) 7B 54.9 3.1 43.8 2.7 - - 34.2 2.7
Video-LLaMA (Zhang et al., 2023) 7B 51.6 2.5 29.6 1.8 - - 12.4 1.1
Video-ChatGPT (Maaz et al., 2024a) 7B 64.9 3.3 49.3 2.8 51.4 3.0 35.2 2.8
ChatUniVi (Jin et al., 2024) 7B 65.0 3.6 54.6 3.1 60.3 3.4 45.8 3.2
LLaMA-VID (Li et al., 2024e) 7B 70.0 3.7 58.9 3.3 – – 47.5 3.3
Video-LLaVA (Lin et al., 2023a) 7B 70.7 3.9 59.2 3.5 70.0 4.0 45.3 3.3
VideChat2 (Li et al., 2024b) 7B 70.0 3.9 54.1 3.3 – – 49.1 3.3
VideoGPT+ (Maaz et al., 2024b) 3.8B 72.4 3.9 60.6 3.6 74.6 4.1 50.6 3.6
LongVLM (Weng et al., 2024) 7B 70.0 3.8 59.8 3.3 – – 47.6 3.3
LLAVA-Mini (Zhang et al., 2025) 7B 70.9 4.0 59.5 3.6 – – 53.5 3.5
LangDC (ours) 3B 74.0 4.0 59.9 3.6 76.8 4.2 50.3 3.5

Table 3: Performance comparison with baselines on four open-ended VideoQA benchmarks.

Models
Reference Metrics Efficiency

AS AP AA FA UA OE OI OS MD AL ST AC MC MA SC FP CO EN ER CI Avg. # Tokens↓

AvgPooling 2× 2 72.5 57.5 88.9 47.0 59.0 81.0 75.0 35.5 37.0 34.5 86.0 38.5 65.0 85.5 41.0 41.8 49.5 33.0 42.0 57.5 55.37 3328
AvgPooling 4× 4 67.5 54.0 73.7 44.0 57.0 73.5 70.5 35.0 26.5 35.0 85.5 36.5 54.5 78.0 40.0 40.5 43.0 34.0 40.0 52.5 52.05 832
AvgPooling 8× 8 66.0 52.5 76.8 48.0 53.5 67.0 69.5 40.0 26.0 34.0 79.0 40.5 50.0 59.0 39.5 37.0 38.5 33.5 36.0 44.0 49.50 208
AvgPooling 16× 16 57.5 45.0 69.7 44.0 49.5 49.5 68.5 33.0 19.5 28.0 80.0 38.0 47.0 49.0 39.0 34.5 33.0 32.0 35.5 36.0 44.40 80
LangDC (w/ AvgPooling) 68.5 51.5 88.5 49.5 57.0 79.5 65.5 34.0 37.5 31.5 87.5 42.5 67.0 76.5 41.0 39.5 47.5 30.5 39.5 56.0 54.52 1068†

LDPv2 (Chu et al., 2024) 65.5 56 82.3 45.5 57.5 69.0 68.5 36.5 25.0 32.5 83.0 39.5 51.5 61.5 37.5 36.5 37.5 32.5 38.5 50.5 50.29 512
LDPv2 (Chu et al., 2024) 71.0 54.5 84.8 48.0 58.0 79.5 75.5 35.5 31.5 34.5 82.0 43.5 59.5 79.5 39.0 42.0 36.5 33.5 36.5 57.0 54.08 1136
Resampler 67.0 51.5 79.8 43.5 54.0 62.0 70.5 29.0 26.0 30.5 85.0 46.0 49.5 54.0 42.0 40.0 38.5 31.5 35.0 45.0 49.0 832
C-Abstractor (Cha et al., 2024) 69.5 57.5 84.3 45.5 59.0 79.5 69.0 33.5 31.0 34.5 85.5 46.0 59.0 74.5 36.5 39.0 37.0 37.0 38.0 54.5 53.5 832
LangDC (w/ LDPv2) 66.0 55.5 86.0 46.5 57.0 74.0 72.0 37.5 36.5 35.0 86.5 43.5 63.0 74.0 40.5 40.0 44.5 33.0 40.0 51.5 54.13 748†

Table 4: Performance comparison of different token compressors on MVBench. w/ LDPv2 means LDPv2 is
utilized as base pruner. † indicates that the number of tokens varies across different test instances; we report the
average value across all samples.
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Figure 4: Comparison of GPU Memory and Latency.

on TGIF-QA, while remaining competitive on
MSRVTT-QA and ActivityNet-QA. These results
confirm CapPruner’s dynamic compression im-
proves efficiency and preserves key semantic de-
tails, boosting generalization in zero-shot settings.
Efficiency analysis. LangDC compress visual to-
kens from 3328 to approximately 1068, reducing
computational cost from 49.85 TFLOPs to 25.15
TFLOPs. As shown in Figure4, it also reduces GPU
memory and latency compared to pooling, even
with an added lightweight LLM. Notably, LangDC

’s efficiency gains scale with larger base LLMs.
And table 4 further compares LangDC with other
compression methods. Compared to the naive pool-
ing compression strategy, LangDC matches the per-
formance of a solution that uses three times as many
tokens, and surpasses carefully designed compres-
sion modules like LDPv2(Chu et al., 2024). Re-
placing BasePruner with LDPv2 further improves
efficiency, surpassing C-Abstractor and Resampler
by 0.6 and 5.1 points while requiring 100 fewer
tokens. For fairness, all methods use the same pre-
training and tuning data.

5.3 Ablation Studies

This section provides a comprehensive analysis of
CapPruner, exploring its dynamic characteristics,
training schemes, supervision signals and pruner
combinations. Qwen2.5-1.5B serves as the LLM.
Dynamic vs. fixed compression ratio. To high-
light the strength of dynamic compression, we com-
plement qualitative results in Figure 5, showing that
CapPruner allocates more tokens to visually rich or
action-intensive videos, and fewer to simpler ones.
Table 5 further confirms its ability.
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Question: What were doing Howard and Leonard when Sheldon entered in the 
room? (A) Howard and Leonard were jumping around.  (B) Howard and 
Leonard were fighting.  (C) Howard and Leonard cooking tacos.  (D) Howard 
and Leonard were playing Wii.  (E) Howard and Leonard were dreaming.

(D) Howard and Leonard were playing Wii.LangDC: 303 Tokens

Question: What unusual item is being received by the hand emerged from 
beneath the toilet door panel? (A) A set of keys. (B) A roll of tissue 
paper.  (C) Chopsticks and a spoon.  (D) A bottle of water.

LangDC: 135 Tokens (C) Chopsticks and a spoon.

LangDC: 281 Tokens LangDC: 122 Tokens

Question: what are the children s doing?

The children are getting off the bus 
and walking away from it.

Question: what does a monkey take easily form the hand of a man?

The monkey takes easily a piece of 
bread from the hand of a man.

Figure 5: Visualization of video QA examples alongside the corresponding number of allocated tokens.

Action Antonym Object Existence State Change Episodic Reasoning

143.2 184.7 249.1 257.2

Table 5: Comparison of exact token numbers of
LangDC across diverse tasks within MVBench.

BasePruner CapPruner Accuracy # Tokens FLOPs

✗ ✔ 51.50 236† 18.24T
AvgPooling 8× 8 ✗ 49.50 208 16.06T
AvgPooling 8× 8 ✔ 51.62 444† 19.51T
AvgPooling 4× 4 ✗ 52.05 832 17.57T
AvgPooling 4× 4 ✔ 54.52 1068† 21.38T

Table 6: Ablation of the combinations of BasePruner
and CapPruner on MVBench. † indicates that the #
tokens is not fixed.

Ablation of different pruners. Table 6 reports
ablation results on MVBench with different com-
binations of CapPruner and BasePruner. Using
CapPruner alone yields 51.50% accuracy with 236
tokens. In comparison, BasePruner with 8×8 pool-
ing achieved lower accuracy of 49.50% with a sim-
ilar token number, while 4× 4 pooling achieved a
slightly higher but at the cost of significantly more
tokens. Importantly, combining CapPruner with
either pooling strategy consistently improves accu-
racy. Furthermore, CapPruner is compatible with
other compressors: as shown in Table 4, pairing it
with LDPv2 yields substantial performance gains.
Ablation of the training scheme. Table 7 demon-
strates the critical role of CapPruner pretraining,
which improves average accuracy from 45.40% to
54.52%. Post-pretraining further strengthens the in-
tegration between CapPruner and the LLM, leading
to an additional increase from 49.12% to 54.52%.
Impact of caption supervision signal. Table 8
highlights the effect of caption supervision sig-

Training Schemes Accuracy

Full CapPruner Pretraining 54.52
w/o Post-Pretraining 49.12
w/o CapPruner-Pretraining 45.40

Table 7: Ablation of the training scheme on
MVBench.

Method Pooling 2× 2† Pooling 4× 4 LangDC

w/o captions 55.37 52.05 54.52
w/ caption 55.63 (↑0.26) 52.32 (↑0.27) 54.66 (↑0.14)

Table 8: Impact of caption supervision signal. † indi-
cates the same compression strategy as VideoGPT+.

nals in LangDC, particularly for regulating caption
length. While incorporating it during pretraining
yields only a modest improvement, the results sug-
gest its overall influence on pretraining is limited.

6 Discussion and Conclusion

This study introduced LangDC, a language-aware
dynamic token compressor for video understand-
ing. Addressing the limitations of fixed compres-
sion ratios, which often fail to capture the vary-
ing semantic density of video content, LangDC
leverages CapPruner to generate soft caption to-
kens as compressed visual representations. Guided
by semantic-aware supervision, it effectively cap-
tures key visual cues while adjusting compression
dynamically. Extensive experiments across bench-
marks with varying semantic densities demonstrate
the superior performance-computation trade-off of-
fered by LangDC’s adaptive token allocation. This
strategy not only enhances efficiency but also sets
a foundation for future research into more sophisti-
cated, adaptive video understanding methods.
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Limitations

While our dynamic compression mechanism
demonstrates human-aligned linguistic patterns and
significantly enhances computational efficiency,
two critical limitations warrant attention. First,
given current resource constraints, our experi-
ments focus on 1.5B/3B LLM configurations, leav-
ing open questions about architectural scaling ef-
fects. Second, though the visual density-optimized
compression strategy shows strong multi-turn dia-
log compatibility, its single-ratio implementation
may partially constrain adaptability for specialized
video QA tasks.
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A Additional Results

Comparison of downsampling rates for pool-
ing. Tab A1 confirms that different videos con-
tain varying information densities, necessitating
different token counts. We tested all subtasks of
MVBench with pooling strategies of varying com-
pression rates and calculated the Oracle, the sce-
nario where the best tradeoff between visual tokens
and performance is selected. The optimal num-
ber of tokens fluctuates across different videos and
tasks and the oracle model integrates multiple pool-
ing strategies achieves superior performance.
Tangible demonstration of dynamic capabilities.
To investigate the dynamic characteristics of our
video compression method, we analyzed the length
distributions of both the supervision signals during
training and the compressed tokens in inference on
the MVBench. Fig A1 showcases these distribu-
tions in two subplots. In subplot (a), we observe
the distribution of supervision signal lengths for
various video segments used in training, revealing
insights into how the model learns to compress
sequences of varying lengths. Moving to the infer-
ence phase, subplot (b) illustrates the distribution
of the final compressed token lengths for complete
videos from MVBench. This analysis not only
highlights the overall compression effectiveness of
LangDC but also sheds light on its adaptability to
diverse video content.
Ablation study on depth of hidden state. There is
an interesting phenomenon that among the variable-
length tokens generated by CapPruner, it is not
the last layer’s hidden states that perform the best
as soft caption tokens. Figure A3 illustrates that
among the depth of hidden states, the zeroth layer
performs the worst due to its weaker semantic in-
formation. Meanwhile, the middle layers exhibit
slightly better performance than the last layer, pos-
sibly because representations that are too closely
tied to the final classification task are more prone to
overfitting, which may weaken their general repre-
sentational capacity. In this ablation, we do not use
BasePruner and fix the LLM as Qwen-2.5-1.5B.
Effectiveness of semantic density-aware super-
vision. To enhance CapPruner’s sensitivity to
visual information density, increased training with
explicit supervision is essential. As shown in Ta-
ble A2, CapPruner trained without high-quality
vision-language pairs from the base caption dataset
fails to produce compact and effective visual repre-
sentations, resulting in poorer performance.
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Figure A3: Ablation of Hidden States Depth.

Furthermore, naive caption supervision is inad-
equate and our semantic supervision is critical for
achieving optimal results. For this ablation study,
the deepest hidden state was chosen as the com-
pressed representation.
Generalizability of LangDC. Table A3 below as-
sess the generalizability of LangDC from two com-
plementary perspectives. First, VSI-Bench (Yang
et al., 2025) introduces a novel indoor-video
benchmark, presenting scenes and configurations
not seen during training. Remarkably, LangDC
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"The video features a person holding a bunch of small, green, 
unripe limes in their hands. The background includes a 
bedspread with a floral pattern and a plastic bag, with some 
limes scattered around. The person appears to be sorting or 
inspecting the limes."

Teacher LVLM

A person holding small, green, unripe limes in their hands, a bedspread with a floral pattern, a 
plastic bag, with some limes scattered around.

Semantic density-aware supervision

Remove unnecessary / connective words Remove associative parts

Video SegmentPrompt

You are a helpful assistant. Please provide a brief 
description of the video, focusing on the main 
subjects, their actions, the background scenes.

Figure A2: The complete process of obtaining semantic density-aware supervision includes using a powerful LVLM
as teacher to generate segment descriptions and a subsequent post-processing procedure.

Method
Efficiency Reference Metrics

Token Num.↓ AS AP AA FA UA OE OI OS MD AL ST AC MC MA SC FP CO EN ER CI Avg.

Pooling 2× 2 3328 72.5 57.5 88.9 47.0 59.0 81.0 75.0 35.5 37.0 34.5 86.0 38.5 65.0 85.5 41.0 41.8 49.5 33.0 42.0 57.5 55.37
Pooling 4× 4 832 67.5 54.0 73.7 44.0 57.0 73.5 70.5 35.0 26.5 35.0 85.5 36.5 54.5 78.0 40.0 40.5 43.0 34.0 40.0 52.5 52.05
Pooling 8× 8 208 66.0 52.5 76.8 48.0 53.5 67.0 69.5 40.0 26.0 34.0 79.0 40.5 50.0 59.0 39.5 37.0 38.5 33.5 36.0 44.0 49.50

Pooling 16× 16 80 57.5 45.0 69.7 44.0 49.5 49.5 68.5 33.0 19.5 28.0 80.0 38.0 47.0 49.0 39.0 34.5 33.0 32.0 35.5 36.0 44.40

Oracle Performance – 88.5 74.0 95.5 63.0 72.5 96.5 86.0 67.5 64.0 60.0 91.0 49.0 81.5 96.5 51.0 61.5 71.0 50.0 57.0 72.0 72.4
Oracle Tokens – 355.4 270.6 405.9 260.3 256.7 274.3 233.4 373.8 757.8 381.2 156.5 253.2 507.9 514.0 211.4 386.0 497.4 244.7 263.5 485.5 354.48

Table A1: A detailed examination of the performance comparison of pooling strategies with various compression
rates on the entire MVBench benchmark. Oracle denotes the case where the best tradeoff between visual tokens and
performance is picked. Videos across different tasks have varying information loads, with the ideal token count
differing significantly.

Base Caption Dataset Semantic Supervision Accuracy

– ✗ 45.40

COCOrecap(Li et al., 2024d)
✗ 46.80 (↑1.40)
✔ 49.98 (↑4.98)

LLaV Arecap(Liu et al., 2024a)
✗ 47.26 (↑1.86)
✔ 50.30 (↑4.90)

Table A2: Ablation of the choice of base caption dataset
and semantic density-aware supervision on MVBench.

matches the baseline performance despite this un-
seen setting, demonstrating strong adaptability to
new environments. Second, VideoMME-Long
and LongVideoBench (Wu et al., 2024) assess the
model’s capability to extract salient information
from extended video sequences. LangDC main-
tains robust performance even without being explic-
itly trained on long-video data, indicating its ability
to dynamically allocate visual tokens and capture
key cues over long temporal spans. Together, these

results highlight LangDC’s strong generalization
across both unfamiliar indoor scenes and lengthy
video content, underscoring its potential as a versa-
tile video understanding framework.

B Implementation Details

Additional details for CapPruner pretraining.
To allow CapPruner to dynamically compress vi-
sual features, it is crucial to construct supervi-
sion signals of appropriate length for effective
guidance. This process begins with a powerful
LVLM that describes the scene. We selecte LLaVA-
OneVision (Liu et al., 2024a) as the teacher model
to articulate the subjects, actions, and background
in the video. However, these descriptions are often
overly verbose. To refine the descriptions, we uti-
lized a large language model, Qwen2.5-7B (Team,
2024), to eliminate unnecessary words, connec-
tives, and speculative elements, resulting in seman-
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Method Token Num
VSI-Bench VideoMME-long

LongVideoBench (val w/o subs)
Object Appearance Order Object Real Distance Overall Multi-choice w/o sub w/ sub

VideoGPT+ 3328 10.84 36.90 30.26 37.0 43.9 37.50
LangDC 1068 14.24 36.06 30.82 38.9 46.4 43.83

Table A3: Comparison of Methods on Various Video Benchmarks

tic density-aware supervision tailored for specific
segments, as shown in Fig A2.
Additional details for instruction tuning set. Fol-
low VideoGPT+ (Maaz et al., 2024b), supervised
fine-tuning uses two distinct instruction-tuning
datasets tailored for different task formats. For
Multiple-choice VQA, the model is trained on
the Kinetics-710 (Kay et al., 2017), Something-
Something-v2 (Goyal et al., 2017), conversations
from VideoChat (Li et al., 2023b), CLEVRER (Yi
et al., 2019), VQA dataset from WebVid (Bain
et al., 2021) and NExT-QA (Xiao et al., 2021)
datasets, totaling approximately 330K single-turn
conversations. For Open-ended VQA, the model is
trained on VideoInstruct100K (Maaz et al., 2024a),
VCG+ 112K (Maaz et al., 2024b), VideoChat (Li
et al., 2023b) conversation and caption data, and
VQA from WebVid (Bain et al., 2021), amounting
to roughly 260K single-turn conversations.
Hyperparameter setting. We report the detailed
hyperparameter settings of LangDC in Tab. B4.
During the training phase, each video is sampled
into 16 frames and divided into 4 segments, with
CapPruner compressing each segment to a maxi-
mum of 128 tokens, due to the longest supervision
signal not exceeding 100 tokens.
LLM-Assisted evaluation. We utilize LLM-
Assisted Evaluation for open-ended videoQA, fol-
lowing (Maaz et al., 2024a). Each evaluation
presents the LLM assistant (GPT-3.5) with the
question, ground truth answer, and model predic-
tion, prompting it to return a True or False judge-
ment and a score (0-5). As depicted in Figure B4,
this prompt uses roughly 250 tokens per question.
Our baseline results for open-ended video question-
answering are drawn from (Maaz et al., 2024b).

Description Default Value

total frame number 16 frames
segment number 4 segments
max compressed token number 128 tokens ×4 segs
CapPruner hidden state layer 15

Table B4: Hyper-parameter settings of LangDC.

C Visualizations

Figures C5 and C6 demonstrate the performance
of LangDC and highlight how CapPruner adjusts
the allocated token count based on the video con-
tent. These visualizations illustrate the overall to-
ken count after compression by CapPruner, along
with video frames and question-answer pairs. This
effectively showcases the intelligence and adapt-
ability of our compression scheme, as well as its
resulting superior performance.
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# Compute the correctness score
openai.ChatCompletion.create(

model="gpt-3.5-turbo",
messages=[

{
"role": "system",
"content": (

“You are an intelligent chatbot designed for evaluating the correctness of  
            generative outputs for question-answer pairs. "

"Your task is to compare the predicted answer with the correct answer and determine 
            if they match meaningfully. Here's how you can accomplish the task:\n"

"------\n"
"##INSTRUCTIONS:\n"
"- Focus on the meaningful match between the predicted answer and the correct answer.\n"
"- Consider synonyms or paraphrases as valid matches.\n"
"- Evaluate the correctness of the prediction compared to the answer."

)
},
{

"role": "user",
"content": (

"Please evaluate the following video-based question-answer pair:\n\n"
f"Question: {question}\n"
f"Correct Answer: {answer}\n"
f"Predicted Answer: {pred}\n\n"
“Provide your evaluation only as a yes/no and score where the score is an integer value 

      between 0 and 5, with 5 indicating the highest meaningful match. "
"Please generate the response in the form of a Python dictionary string with keys 'pred ’

      and 'score', where value of 'pred' is a string of 'yes' or 'no' and value of 'score' is 
      in INTEGER, not STRING.\n"

"DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python           
      dictionary string.\n"

"For example, your response should look like this: {'pred': 'yes', 'score': 4}."
)

}
]

)

Figure B4: Prompt for ChatGPT in LLM-Assisted Evaluation for the open-ended video question-answering task.
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Token

Question

Answer / GT

What direction is the red sphere moving in within the video?

(A) The object is stationary.  (B) Down and to the right.

(C) Up and to the right.          (D) Up and to the left.

Answer: (A) The object is stationary.

GT:     (A) The object is stationary. 299

Are there any moving spheres when the video ends? 

(A) yes (B) not sure  (C) no

Answer: (A) yes

GT: (A) yes 173

Why is House so interested in learning why Arlene doesn‘t leave her husband when he’s 

questioning her about what she gets out of helping him?

(A) House wants to hurt her feelings   (B) House wants to hit on Arlene 

(C) House thinks her husband will die   (D) House isn't interested he's just fooling around with 

her   (E) House understands the rational, but struggles with the irrational

Answer: (E) House understands the rational, but         

         struggles with the irrational

GT:        (E) House understands the rational, but       

        struggles with the irrational

209

301

What was the price Joey was asking for the entertainment center after chandler said he 

was crazy?

(A) 1,000 dollars       (B) 200 dollars      (C) 5,000 dollers

(D) 1 million dollars   (E) 20 dollers

Answer:   (C) 5,000 dollers

GT:     (C) 5,000 dollers

Question

Answer / GT

Token

Question

Answer / GT

Token

Question

Answer / GT Token

Figure C5: More Cases.
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Token

Why does the presenter emphasize the affordability of the Coby 

Electronics tablet in comparison to the iPad?

Answer:  The presenter emphasizes the affordability of the Coby Electronics tablet to     

    highlight its cost-effectiveness and accessibility to a broader audience.

GT:     The presenter emphasizes the affordability to highlight that the Coby Electronics 

    tablet provides a cost-effective option, making it an attractive proposition for  

    consumers in comparison to the more expensive iPad.

314

Who is playing an acoustic guitar?

Answer:   The man with long hair is playing an acoustic guitar in the video.

GT:          Man.

144

What is a girl doing?

Answer:  The girl is playing with a soccer ball and a dog in the yard.

GT:         Play.

210

296What is demonstrated by the driver steering the Porsche GT3 

with one hand?

Answer:   The driver is shown steering the Porsche GT3 with one hand, showcasing his skill        

     and control over the vehicle.

GT: The driver navigating the Porsche GT3 with one hand demonstrates the car’s 

      precision and agility.

Question

Answer / GT

TokenQuestion

Answer / GT

Token

Question

Answer / GT

Token

Question

Answer / GT

Figure C6: More Cases.
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