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Abstract

Despite recent progress, Graphic User Inter-
face (GUI) agents powered by Large Lan-
guage Models (LLMs) struggle with com-
plex mobile tasks due to limited app-specific
knowledge. While UI Transition Graphs
(UTGs) offer structured navigation representa-
tions, they are underutilized due to poor ex-
traction and inefficient integration. We in-
troduce KG-RAG, a Knowledge Graph-driven
Retrieval-Augmented Generation framework
that transforms fragmented UTGs into struc-
tured vector databases for efficient real-time
retrieval. By leveraging an intent-guided LLM
search method, KG-RAG generates actionable
navigation paths, enhancing agent decision-
making. Experiments across diverse mobile
apps show that KG-RAG outperforms exist-
ing methods, achieving a 75.8% success rate
(8.9% improvement over AutoDroid), 84.6%
decision accuracy (8.1% improvement), and
reducing average task steps from 4.5 to 4.1.
Additionally, we present KG-Android-Bench
and KG-Harmony-Bench, two benchmarks tai-
lored to the Chinese mobile ecosystem for fu-
ture research. Finally, KG-RAG transfers to
web/desktop (+40% SR on Weibo-web; +20%
on QQ Music-desktop), and a UTG cost abla-
tion shows accuracy saturates at ∼4h per com-
plex app, enabling practical deployment trade-
offs.

1 Introduction

In recent years, LLM-based GUI agents (Zhang
et al., 2023; Lee et al., 2023; Yoon et al., 2023;
Hong et al., 2024; You et al., 2024; Wen et al.,
2024; Wang et al., 2025; Qin et al., 2025) have
advanced in interacting with and navigating mo-
bile applications. However, efficiently completing
complex tasks remains challenging due to their

*These authors contributed equally.
†Internship with Huawei Hong Kong Research Center.
‡Corresponding Author and Project Lead.

limited app-specific knowledge, particularly when
faced with unfamiliar user interfaces (UIs) and un-
conventional navigation logic. For example, as
shown in Figure 1, the “Privacy Policy” page is
deeply embedded within the “About Pomodoro”
page, making it difficult to locate without a clear
user menu, even for human users encountering the
app for the first time. App UI Transition Graphs
(UTGs), structured representations of app naviga-
tional flows, have emerged as promising solutions
to enhance agents’ navigational capabilities. De-
spite their potential, UTGs face significant barriers,
including low-quality graph extraction from apps
and inefficient integration into real-time decision-
making processes.

To address the limitations of existing GUI agents,
we propose KG-RAG, a Knowledge Graph-driven
Retrieval-Augmented Generation framework de-
signed to transform incomplete UTGs into struc-
tured vector databases, enabling rapid and pre-
cise information retrieval during online execu-
tion. Our approach employs an LLM-powered of-
fline graph-search algorithm to systematically pre-
process low-quality UTGs, converting incomplete
or fragmented graphs into structured, vector-based
knowledge repositories optimized for retrieval-
augmented generation. During online execu-
tion, the agent dynamically queries this vector-
based repository using embedding-based simi-
larity search, rapidly retrieving relevant naviga-
tional paths and app-specific information tailored
precisely to the user’s intent. This retrieval-
augmented approach significantly enhances the
agent’s decision-making, reducing reliance on ex-
tensive real-time exploration and enabling swift,
adaptive responses to complex, dynamic app sce-
narios. Extensive experiments across diverse mo-
bile apps demonstrate that agents equipped with
KG-RAG achieve notably higher task completion
rates and require fewer steps per task, highlighting
KG-RAG’s effectiveness in supplementing online
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(a) Without KG-RAG (b) With KG-RAG
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Click (“Sharing List”) Finish instructionClick (“Me”) Click (“Setting”)

Navigational 
InsightsRetrieve

Structured
RAG Vector
Database
(offline constructed) Click (“Me”)

Click (“about Pomodoro
Reading App”)

Click 
(“Privacy Policy”)Click (“Setting”)

Finish
instruction

Figure 1: Improved Task Execution for “View Privacy Policy” in Tomato Novel App Using Graph-based RAG. (a) Without KG-
RAG: Fails to identify the correct navigation path to access the “View Privacy Policy” page. (b) With KG-RAG: Successfully
generates the correct path by leveraging knowledge graph-based information.

agents with critical, domain-specific knowledge.
The key contributions of our work are:

• Proposing KG-RAG, a novel pipeline that
transforms incomplete or fragmented UI Tran-
sition Graphs (UTGs) into a structured, vector-
based knowledge database, optimized for
rapid and precise real-time retrieval during
online execution.

• Introducing KG-Android-Bench and KG-
Harmony-Bench, two comprehensive, cross-
platform benchmarks tailored for evaluating
GUI agents in the diverse Chinese mobile
ecosystem.

• Demonstrating through rigorous evaluation
across diverse mobile apps that KG-RAG
serves as a plug-and-play module, achieving
a 75.8% task success rate (8.9% improvement
over prior methods) and reducing average task
steps from 4.5 to 4.1, significantly enhanc-
ing the efficiency and effectiveness of existing
GUI agents.

2 Related Work

Recent LLM-driven agents have made significant
progress in automating mobile UI tasks. Auto-
Droid (Wen et al., 2024), the most relevant to our
work, constructs an app’s UTG offline and uses
an LLM online to plan actions, significantly out-
performing a GPT-4 baseline in task success rate.
However, AutoDroid does not fully leverage the
UTG during execution for rapid retrieval of knowl-
edge. Other advanced methods, such as Mobile-
Agent-v2 (Wang et al., 2025) and UI-TARS (Qin
et al., 2025), focus on collaborative agents and
end-to-end learning, respectively, achieving strong
results on GUI benchmarks. Yet, none of these

approaches explicitly leverage a structured knowl-
edge graph of the app’s UI for decision-making.
Our proposed KG-RAG fills this gap by providing
agents with a UTG-derived knowledge graph, en-
abling efficient retrieval of navigational knowledge.
When integrated with agents like MobileAgent-v2
or UI-TARS, KG-RAG significantly boosts their
task success rates, as shown in Section 5.3.

Our proposed approach KG-RAG differs from
previous GUI agents by integrating structured
knowledge graphs derived from UTGs with LLM-
based reasoning. While earlier agents either un-
derutilized app-specific graphs or lacked any struc-
tured memory, KG-RAG employs a hierarchical
knowledge graph, pre-processed for rapid retrieval,
to enhance decision-making. This structured mem-
ory provides navigation insights that are challeng-
ing for LLMs alone to infer. Furthermore, KG-
RAG’s plug-and-play design allows it to be seam-
lessly integrated into various agent architectures, as
demonstrated with MobileAgent-v2 and UI-TARS.
This flexibility and the combination of offline
UTG processing with online retrieval-augmented
decision-making mark a significant advancement,
leading to higher success rates and greater effi-
ciency in GUI agent tasks.

3 Method

This section presents KG-RAG, a framework that
enhances online agent decision-making by fully
leveraging the rich information embedded within
UTGs. An overview of KG-RAG is provided in
Figure 2.

3.1 UTG Extraction
To effectively extract UTGs from mobile applica-
tions, we build upon the methodology proposed by
DroidBot (Li et al., 2017), adapting it significantly
to meet our framework’s requirements. Specifically,
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we introduce a dedicated extraction tool dubbed
as xTester (App Test Executor Use Case Execu-
tion Framework) as shown in Figure 2(a). It is
designed to systematically navigate mobile app in-
terfaces, identify interactive UI components, and
document their interactions. The outcome is a struc-
tured knowledge graph that encompasses the app’s
UI layouts, control structures, and potential user
interactions.

This knowledge graph is represented in a hierar-
chical JSON format, capturing essential informa-
tion including app metadata (e.g., product ID, app
name, and package name), UI components descrip-
tion, screen description, and actionable interactions
associated with specific widgets. Actions, such as
swipe gestures, text inputs, and button clicks, are
annotated and linked to corresponding UI elements,
providing a comprehensive representation of each
screen’s functionality.

For simpler English-language apps sourced from
DroidTask (Wen et al., 2024), we utilize a 1-hour
automated exploration per app using xTester. This
procedure efficiently captures nearly all relevant
app content due to the straightforward UI struc-
tures involved. In contrast, for the 30 more com-
plex Chinese-language applications we specifically
constructed, we perform an extensive, in-depth ex-
ploration for 8 hours. This extended analysis en-
sures comprehensive coverage of intricate UI states
and interactions, significantly surpassing typical
extraction methods in both depth and breadth.

Overall, our rigorous UTG extraction approach
serves as a crucial foundation for accurately captur-
ing UI widget descriptions and detailed app layout
information, directly contributing to the effective
construction of the KG-RAG vector database. By
providing high-quality and structured vector em-
beddings of navigational paths, our method enables
rapid retrieval and significantly enhanced decision-
making capabilities in automated mobile app inter-
actions.

3.2 Offline Pathfinding via Intent-Guided
LLM Search

The offline pathfinding component is central to
KG-RAG and consists of two key parts: (1) the in-
tent generation module and (2) the LLM search
module. Together, they enable effective navigation
through imperfect UTGs, even with incomplete
or missing paths. This component significantly
enhances the efficiency and robustness of offline
trajectory discovery.

The intent generation module, illustrated in Fig-
ure 2(b), begins by analyzing screenshots (nodes)
extracted from UTGs to identify plausible user in-
tents for each app screen. In practice, we utilize
a vision-language model (VLM) to automatically
infer these user intents from visual context. Next, a
powerful instruction-tuned LLM decomposes each
high-level intent into a structured sequence of in-
termediate milestones. These milestones represent
incremental, clearly defined subgoals guiding the
agent through complex UI interactions. By break-
ing down user intents into manageable intermediate
steps, our approach reduces ambiguity and prevents
premature task termination.

The generated intents and milestones are then
utilized by the LLM trajectory scoring module, as
depicted in Figure 2(c). Given a set of candidate
trajectories extracted from the UTG, this module
assigns each trajectory both a coarse and a fine-
grained score. Specifically, the LLM is used to pre-
dict the likelihood of each trajectory successfully
achieving the given milestones. The scoring is per-
formed by tokenizing the LLM output, extracting
logits corresponding to milestone completion pre-
dictions, and computing probability distributions
via a softmax operation over the relevant logits in-
dices. For a given user intent (with m milestones),
we prompt the LLM to predict the likelihood of
completing 0 through m milestones along a can-
didate trajectory. We then apply a softmax over
the relevant output logits (Algorithm 1) to obtain a
probability distribution over milestone completion
counts. The highest probability in this distribution
(corresponding to reaching a certain milestone) is
taken as the trajectory’s progress score. Next, we
compute a proximity score for the trajectory (Al-
gorithm 2) by measuring how closely the LLM’s
probability distribution aligns with an ideal mono-
tonically decreasing sequence (favoring trajectories
that complete milestones in order). Each trajectory
is primarily ranked by its progress score, with the
proximity score used to break ties among similar
candidates.

Guided by these scoring metrics, we perform a
breadth-first search (BFS) to explore the UTG for
high-quality trajectories (Algorithm 3). The BFS
expands possible paths in increments of the given
step size and scores new candidates in batches us-
ing the LLM. Any trajectory that fails to achieve a
minimum progress (milestone completion) thresh-
old is pruned early, which focuses computation
on promising paths. This batched BFS strategy
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Figure 2: Overview of KG-RAG architecture: (a) UTG extraction capturing app UI navigation structures; (b) Intent generation
suggesting plausible user intents and decomposing them into intermediate milestones; (c) Intent-guided LLM search efficiently
identifying candidate trajectories aligned with user intents; and (d) KG-RAG knowledge database supporting effective online
mobile app interactions.

Algorithm 1: Softmax Computation
Input: x: Logits array
start_ind: Start index for slicing the logits
end_ind: End index for slicing the logits
temperature: Softmax temperature (default = 1)
Output: softmax_probs: Probability distribution

over indices [start_ind, end_ind]

1 Procedure:
2 xslice ← x[ start_ind : end_ind ]

3 z ← exp
(

xslice
temperature

)

4 softmax_probs← z∑
z

5 return softmax_probs

balances thorough exploration with efficiency: it
allows parallel LLM evaluations of multiple paths
and limits search depth to max_depth. The out-
come is a set of top-ranked valid trajectories for
each intent. Finally, these trajectories are passed
through a summarization module that condenses
each sequence of UI actions into a concise descrip-
tion, ready to be stored in the knowledge base for
online use.

3.3 Knowledge Graph-Augmented Online
Execution

During online execution, the KG-RAG agent lever-
ages a vector database of offline-generated in-
tent–trajectory pairs to rapidly retrieve relevant
navigation knowledge. Each entry in our struc-
tured vector database is a key–value pair: the key

Algorithm 2: Proximity Score Calculation
Input: pdf : Probability distribution function as a list

of probabilities
Output: proximity_score: Scalar value indicating

alignment with ideal descending order

1 Procedure:
2 ranked_indices← indices of pdf sorted in

descending order
3 ideal_order ← list from n− 1 down to 0, where n

is length of pdf
4 proximity_score←
−∑n−1

i=0 (ideal_order[i]− ranked_indices[i])2

5 return proximity_score

is a high-dimensional embedding of an intent dis-
covered offline, and the value is the corresponding
trajectory (sequence of UI actions to fulfill that in-
tent). These intent–trajectory pairs are obtained
from the offline phase: the VLM infers plausible
user intents from app screens (Figure 2(b)), and the
LLM-based search finds successful trajectories for
those intents (Figure 2(c)). We encode each intent
(along with its trajectory) into a vector using a text
embedding model, creating a repository of navi-
gational knowledge optimized for fast similarity
search.

During online execution, the agent leverages this
repository to retrieve relevant guidance in real time.
The user’s current task instruction is encoded into
a query vector (using the same text embedding
model) and compared against the stored intent vec-
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Algorithm 3: LLM BFS Search
Input: User intent, UTG graph, start_node, LLM

model, threshold, step_size, max_depth,
top-K

Output: valid_trajectories achieving the intent
1 Initialize: Q← [(start_node, [start_node])],

valid_trajectories← ∅
2 while Q 6= ∅ and depth < max_depth do
3 depth← depth+ step_size
4 Expand Q to generate candidates; remove

duplicates and loops
5 foreach batch in candidates do
6 Compute LLM scores for batch
7 foreach trajectory do
8 if score ≥ threshold then
9 Add to valid_trajectories

10 end
11 end
12 end
13 Keep top-K candidates (by score, prefer shorter

paths) and update Q
14 end
15 return valid_trajectories

Table 1: Comparison of KG-Android-Bench and KG-
Harmony-Bench with existing GUI agent benchmarks

Benchmark No. of Tasks No. of Apps
AndroidLab 138 9
DroidTask 162 12
KG-Android-Bench (Ours) 300 30
KG-Harmony-Bench (Ours) 150 15

tors via cosine similarity. The agent then retrieves
the top-K most similar intent–trajectory entries
(Figure 2(d)). Each retrieved trajectory serves as
contextual knowledge, suggesting a proven navi-
gation path for the agent to follow. For example,
as illustrated in Figure 2(d), if the user needs to
“display US stock fund” information, the agent will
retrieve the stored trajectory that accomplishes this
task, providing the sequence of UI actions required
to reach the stock fund content. By following such
retrieved trajectories, the KG-RAG-enhanced agent
can quickly navigate to the target state instead of re-
lying on trial-and-error exploration. This retrieval-
augmented execution allows the agent to respond
adaptively to new tasks using the collective knowl-
edge encoded in the UTG-derived graph memory.

4 Benchmark Construction

We present KG-Android-Bench and KG-
Harmony-Bench, two comprehensive cross-
platform benchmarks for evaluating GUI agents in
Chinese mobile ecosystems. As shown in Table 1,
KG-Android-Bench significantly outperforms
existing benchmarks with 300 tasks across 30
mainstream Chinese applications, compared to

Table 2: Applications in KG-Android-Bench covering 10 func-
tional categories.

Category Applications

Music & Audio QQ Music, NetEase Cloud Music, Himalaya FM
Video & Entertainment Douyin(Chinese Tiktok), Youku, Douyu, WeSing
Social & Communication Weibo, Zhihu, Baihe
Navigation & Travel Amap, Ctrip, Zhixing Train Tickets
E-commerce & Retail Taobao, Vipshop, Dianping
Food Services Meituan Takeaway, Pupu Supermarket
Health & Lifestyle Keep, Moji Weather, Daily Alarm Clock
News & Reading Tomato Novel, Jinri Toutiao, Hupu, Dongchedi
Productivity Baidu Browser, NetEase Mail, Youdao Dictionary
Photo & Video Editing Xingtu, CapCut

DroidTask’s 162 tasks and AndroidLab’s 138 tasks.
This expanded scale, coupled with support for 10
functional categories (as shown in Table 2), offers
a more diverse and thorough evaluation of agent
capabilities across varied mobile environments.

A key innovation of KG-Android-Bench is its
use of structured knowledge graphs and intent-
action mappings, which provide a detailed map
of app interfaces. These elements enable more re-
alistic assessments of agents’ performance on high-
frequency mobile interactions, such as those found
in social media, e-commerce, navigation, and fit-
ness tracking. Unlike existing benchmarks that rely
solely on basic UI traces, KG-Android-Bench en-
codes the full navigation flow and task execution
sequences within each app.

For instance, to complete the task “View App
Privacy Policy” in the Tomato Novel app shown in
Figure 1, KG-Android-Bench defines a sequence
of the following actions: Step 1: Open Profile by
tapping the “My Profile” button (the user’s pro-
file/account section). Step 2: Open Settings by
tapping the “Settings” gear icon. Step 3: About
Section by tapping “About Tomato” (the about
page of the app). Step 4: Privacy Policy by tap-
ping “Privacy Policy” to view the content of the
policy.

These steps are generated by KG-RAG, as
demonstrated in Figure 1, where the agent success-
fully identifies the correct navigation path. Such se-
quences capture multi-step relationships and guides
the agent’s decision-making process in real-time.
By leveraging this structured data, agents can effi-
ciently navigate deeply nested app structures and
complete multi-step tasks without the need of ex-
tensive random exploration.

A knowledge graph enhances a GUI agent’s abil-
ity to navigate deep UI structures by capturing
multi-step relationships. In KG-Android-Bench,
each app’s actions are linked in a logical sequence,
allowing the agent to retrieve the correct next step
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Table 3: Per-application comparison of AutoDroid vs. KG-RAG using GPT-4 model. SR and DA are in %. AS is the average
number of steps taken to complete a task.

App AutoDroid SR↑ KG-RAG SR↑ AutoDroid DA↑ KG-RAG DA↑ AutoDroid AS↓ KG-RAG AS↓
Gallery 40.00 60.00 40.00 60.00 3.75 3.25
Music Player 80.00 80.00 80.00 90.00 3.50 3.25
Voice Recorder 80.00 90.00 80.00 100.00 4.13 3.88
Dialer 80.00 86.67 93.33 100.00 5.50 4.92
Contacts 73.33 93.33 80.00 93.33 4.64 4.45
Calendar 50.00 56.25 75.00 81.25 4.25 4.00
Notes 60.00 73.33 73.33 80.00 5.44 5.11
SMS Messenger 80.00 80.00 86.67 86.67 4.45 4.18
File Manager 60.00 66.67 80.00 73.33 3.44 3.22
Clock 73.33 80.00 80.00 93.33 4.18 3.36
App Launcher 80.00 90.00 90.00 90.00 7.00 6.25
Camera 46.67 53.33 60.00 66.67 3.57 3.29

Average 66.94 75.80 76.53 84.55 4.49 4.10

Table 4: Performance comparison of AutoDroid vs. KG-RAG using Qwen2-VL-72B model.

App AutoDroid SR↑ KG-RAG SR↑ AutoDroid DA↑ KG-RAG DA↑ AutoDroid AS↓ KG-RAG AS↓
Average 62.8 70.5 71.6 80.2 8.7 7.9

for a given intent. This knowledge-driven approach
enables effective multi-step reasoning for complex
interactions that simpler benchmarks might fail to
capture.

By leveraging the knowledge graph as context, a
GUI agent can navigate deep or hidden UI elements
through graph-based retrieval. The combination
of detailed intent-action mapping and structured
knowledge allows the agent to anticipate how to
achieve high-level goals, such as locating a privacy
policy or completing a purchase, by following a
sequence of UI actions. This significantly improves
the agent’s ability to handle multi-step tasks and
adapt to app-specific workflows.

Furthermore, KG-Android-Bench and KG-
Harmony-Bench are designed to support both An-
droid and HarmonyOS, respectively, ensuring con-
sistent evaluation across different mobile operating
systems. This cross-platform capability is espe-
cially important given the rising adoption of Har-
monyOS in China, now accounting for approxi-
mately 17% of the domestic mobile OS market. By
evaluating agents on the same tasks in both envi-
ronments, KG-RAG ensures robust generalization
across platform-specific UI differences.

In summary, we set new benchmarks called KG-
Android-Bench and KG-Harmony-Bench for eval-
uating autonomous mobile agents by integrating
structured knowledge graphs and detailed intent-
action mappings. Its cross-platform support makes
it an essential tool for assessing agents in di-
verse, real-world app environments, driving fur-
ther advancements in the field. Compared with

prior Android datasets that mainly provide UI
traces, our KG-Android-Bench and KG-Harmony-
Bench couple intent–action mappings with UTG-
derived graph memory, enabling evaluation of
multi-step, deeply nested goals common in Chinese
mobile apps (e.g., finance, e-commerce, travel).
The paired Android/HarmonyOS suites also stress
cross-platform robustness under heterogeneous UI
paradigms—a setting underrepresented in exist-
ing resources—and therefore serve as a testbed
for graph-augmented agents rather than a near-
duplicate of earlier benchmarks.

5 Experiments

5.1 Experimental Setup
Evaluation Benchmarks. We conduct compre-
hensive evaluations on the following three bench-
marks: (1) DroidTask (EN) (Wen et al., 2024):
162 tasks across 12 English Android apps (e.g.,
Gallery, Camera, and File Manager.) (2) KG-
Android-Bench (CN) (Ours): A new benchmark
of over 200 real-world tasks spanning 30 Chinese
apps. These tasks cover diverse domains such
as music, social media, navigation, e-commerce,
and more (in Chinese UI environments). (3) KG-
Harmony-Bench (CN) (Ours): A set of 150 cross-
platform tasks on HarmonyOS devices, covering
15 app categories (e.g., mapping apps like Amap,
travel apps like Ctrip). This benchmark evaluates
an agent’s ability to generalize across platforms.

To evaluate agent performance, we use three key
metrics: Success Rate (SR), which measures the
percentage of user instructions successfully com-
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Figure 3: Performance comparison across 10 representative Chinese mobile applications, showing improvements in Success
Rate (SR) and Decision Accuracy (DA) with KG-RAG, while reducing task average steps (AS) (indicated by striped bars). Red
numbers reflect accuracy gains, and green numbers indicate step reductions.

Table 5: Performance comparison of MobileAgent-v2 and UI-TARS with and without the integration of KG-RAG on the “QQ
Music” application.

Method Perception Model Decision Model SR (%)↑ DA (%)↑ AS↓
MobileAgent-v2 GroundingDINO Qwen2-VL 20.0 40.0 5.5
MobileAgent-v2+KG-RAG GroundingDINO Qwen2-VL 30.0 60.0 5.0

MobileAgent-v2 VUT Qwen2-VL 30.0 50.0 5.0
MobileAgent-v2+KG-RAG VUT Qwen2-VL 50.0 70.0 4.5

MobileAgent-v2 GroundingDINO GPT-4o 30.0 50.0 5.3
MobileAgent-v2+KG-RAG GroundingDINO GPT-4o 40.0 60.0 5.0

MobileAgent-v2 VUT GPT-4o 50.0 60.0 4.8
MobileAgent-v2+KG-RAG VUT GPT-4o 60.0 70.0 3.2

UI-TARS UI-TARS-7B-SFT UI-TARS-7B-SFT 90.0 90.0 5.9
UI-TARS+KG-RAG UI-TARS-7B-SFT UI-TARS-7B-SFT 90.0 100.0 5.2

pleted; Decision Accuracy (DA), reflecting the cor-
rectness of the agent’s action decisions; and Aver-
age Steps (AS), indicating task efficiency through
the average number of steps taken to finish a task.

5.2 Comparison with AutoDroid

We first compare our KG-RAG approach with sim-
ilar UTG-based AutoDroid (Wen et al., 2024) on
the DroidTask benchmark using two LLM back-
ends: Qwen2-VL (Wang et al., 2024c) and GPT-
4 (Achiam et al., 2023).

First, Table 3 provides a detailed per-application
performance breakdown for AutoDroid and KG-
RAG on the DroidTask benchmark (using a GPT-
4 backend). We report Success Rate (SR), Deci-
sion Accuracy (DA), and Average Steps (AS) for
each app. KG-RAG achieves consistent improve-
ments on almost all individual apps, underlining
the robustness of our approach. For example, on
the Gallery app, KG-RAG raises the success rate
from 40.0% to 60.0% and the decision accuracy
from 40.0% to 60.0%, while also reducing the av-

erage steps from 3.75 to 3.25. Similar gains are
observed in most cases (e.g., Voice Recorder SR
80%→90%, Dialer DA 93.3%→100%), indicating
that our method’s advantages hold at the per-app
level, not just in aggregate results.

Additionally, Tables 3 and 4 summarize the over-
all performance of AutoDroid vs. KG-RAG across
key metrics and across two different LLM backends
(GPT-4 and Qwen2-VL). KG-RAG consistently
outperforms AutoDroid on every metric under both
LLM settings. In particular, KG-RAG yields higher
average success rates and decision accuracy, while
requiring fewer steps on average. These results
demonstrate that our knowledge-augmented ap-
proach provides clear benefits over the prior UTG-
based method in both accuracy and efficiency.

5.3 Evaluating KG-RAG as a Plug-and-Play
Module in GUI Agents

To demonstrate the versatility of our approach,
we integrate KG-RAG as a plug-and-play mod-
ule into two state-of-the-art GUI agent frame-
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Table 6: Performance comparison of UI-TARS and
MobileAgent-v2 using GPT-4o on HarmonyOS.

Method SR (%)↑ DA (%)↑ AS↓
MobileAgent-v2 41.9 64.2 4.6
MobileAgent-v2 + KG-RAG 55.4 77.4 4.2

UI-TARS 61.4 71.0 4.4
UI-TARS + KG-RAG 70.9 85.5 4.0

works: MobileAgent-v2 (Wang et al., 2025) and
UI-TARS (Qin et al., 2025) and we choose dif-
ferent perception models (VUT (Li et al., 2021)
and GroundingDINO (Liu et al., 2024)) and de-
cision models (GPT4-o (Hurst et al., 2024) and
Qwen2-VL (Wang et al., 2024c)). This integra-
tion is seamless, requiring no architectural changes,
highlighting that KG-RAG can serve as a general
enhancement layer for different agents.

Table 5 summarizes the performance of
MobileAgent-v2 and UI-TARS with and without
KG-RAG. For MobileAgent-v2, KG-RAG boosts
the success rate (SR) and the decision accuracy
(DA), while also reducing the number of steps
needed for task completion. Similarly, UI-TARS
benefits from the KG-RAG integration, showing
notable improvements in both SR and DA.

Figure 3 illustrates these improvements, show-
ing that agents equipped with KG-RAG not only
achieve higher success and accuracy, but also re-
quire fewer interactions to complete tasks com-
pared to their base versions. The consistent per-
formance boost across both MobileAgent-v2 and
UI-TARS emphasizes KG-RAG’s effectiveness as
a drop-in module. By providing relevant contex-
tual knowledge on the fly, KG-RAG helps guide
the agent’s decisions, leading to more successful
outcomes and streamlined action sequences.

5.4 Evaluation on HarmonyOS

Table 6 reports similar success rates and decision
accuracy for KG-RAG on HarmonyOS as the re-
sults on Android in Table 5, showing consistent
performance across both platforms. This highlights
KG-RAG’s ability to generalize across different
UI paradigms without requiring platform-specific
modifications, making it a versatile solution for
mobile app interactions.

5.5 Ablation Study of RAG Construction

To evaluate the impact of different knowledge con-
struction components, we conduct an ablation study
varying the choice of VLM used in intent genera-

Table 7: Effect of VLM and LLM choices on KG-RAG
database construction performance on KG-Android-Bench.

VLM + LLM Combination SR (%)↑ DA (%)↑ AS↓
InternVL2-76B+Qwen2-72B 67.00 70.70 5.00
InternVL2-76B+Deepseek-14B 70.96 74.66 5.01
Qwen2-VL-72B+Qwen2-72B 72.59 78.07 5.16
Qwen2-VL-72B+Deepseek-14B 78.33 82.03 4.92

tion module in Figure 2(b) and LLM used in the
LLM search module in Figure 2(c) to construct the
KG-RAG Knowledge Database.

Table 7 compares four configurations of VLM
and LLM used to construct the KG-RAG knowl-
edge database on KG-Android-Bench (using UI-
TARS as the agent). For the VLM+LLM config-
urations, we experiment with InternVL2 (Chen
et al., 2024), Qwen2-VL (Wang et al., 2024b), and
DeepSeek-14B (DeepSeek-AI, 2025). The results
show that leveraging a stronger vision-language
model (VLM) and a specialized reasoning LLM
yields the best performance. In particular, Qwen2-
VL-72B + DeepSeek-14B achieves the highest suc-
cess rate (SR 78.33%) and decision accuracy (DA
82.03%), along with the lowest average steps (AS
4.92), outperforming all other combinations. Over-
all, the Qwen2-VL + DeepSeek-14B pairing pro-
duces the largest gains in both success and accuracy,
and also finds shorter navigation paths (lowest AS),
confirming that richer visual semantics combined
with focused reasoning yields the most effective
knowledge graph construction for KG-RAG.

We further investigate different text embedding
models for retrieval, using doubao-embedding-
text (Seed et al., 2025), gte-multilingual-
base (Zhang et al., 2024), and multilingual-e5-
large-instruct (Wang et al., 2024a). Table 8
examines the impact of different text embedding
models on retrieval performance. Here, doubao-
embedding-text (Seed et al., 2025) emerges as the
top performer, achieving the highest SR (73.90%)
and a joint-highest DA (80.00%), while also
requiring the fewest steps (AS 4.73). Based on
these results, we select doubao-embedding-text
for the final KG-RAG system due to its stronger
retrieval alignment and lower step count, which
together contribute to higher overall efficiency.

5.6 Generalization Across GUIs and UTG
Cost Trade-offs

We further report results that (1) transfer KG-RAG
to non-mobile GUIs without retraining, (2) test
cross-device/OS robustness, and (3) quantify the
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Table 8: Comparison of retrieval performance using different
text embedding models on KG-Android-Bench.

Embedding Model SR (%)↑ DA (%)↑ AS↓
multilingual-e5-large-instruct 70.60 76.60 5.08
gte-multilingual-base 70.60 80.00 5.19
doubao-embedding-text 73.90 80.00 4.73

Table 9: Non-mobile GUIs via training-free transfer of a
mobile-built KG-RAG database.

Domain Method SR(%)↑ DA(%)↑ AS↓
Weibo (web) UI-TARS-web 50.0 70.0 7.6

+ KG-RAG 90.0 100.0 5.2
QQ Music (desktop) UI-TARS-desktop 60.0 60.0 5.9

+ KG-RAG 80.0 90.0 4.3

UTG construction cost–quality trade-off. First, we
transfer KG-RAG to non-mobile GUIs without any
retraining; Table 9 shows large gains on Weibo
(web) and QQ Music (desktop). Second, we evalu-
ate cross-device/OS robustness on Weibo; Table 10
demonstrates consistent improvements from low-
end to flagship devices as well as on HarmonyOS.
Finally, we quantify the UTG construction cost–
quality trade-off; Table 11 indicates accuracy sat-
urates at about 4 hours per complex app, enabling
practical deployment with bounded offline cost.

As seen in Table 9, transferring a mobile-built
KG–RAG to web/desktop yields +40% SR on
Weibo-web and +20% SR on QQ Music-desktop,
without any platform-specific retraining. Table 10
further shows that the gains hold across heteroge-
neous chipsets and on HarmonyOS, while steps
(AS) are consistently reduced. Finally, Table 11
reveals that performance saturates at about 4 hours
of UTG extraction, indicating a practical operating
point for large-scale deployments.

6 Conclusion

The paper presents KG-RAG, a framework that en-
hances GUI agents by leveraging structured knowl-
edge from UTGs. KG-RAG addresses key limita-
tions of existing agents, such as their inability to
fully utilize app-specific knowledge from incom-
plete UTGs. Our intent-guided offline pathfinding
algorithm transforms UTGs into structured vector
embeddings, creating a robust knowledge database
that improves real-time decision-making with pre-
computed navigation paths for specific user intents.

We also introduce KG-Android-Bench, a com-
prehensive benchmark for GUI agents, supporting
cross-platform (Android, HarmonyOS) with de-
tailed intent-action mappings in knowledge graphs.

Table 10: Cross-device/OS performance on Weibo.

OS Device (Chip) SR(%)↑ DA(%)↑ AS↓
Baseline (no KG-RAG) HUAWEI P40 (Kirin 990) 40.0 60.0 6.25
Android HUAWEI Y9s (Kirin 710F) 60.0 70.0 5.75
Android OPPO K9s (Snapdragon 778G) 60.0 80.0 5.00
Android Vivo iQOO 8 (Snapdragon 888) 70.0 70.0 4.50
Android HUAWEI P40 (Kirin 990) 70.0 80.0 3.75
HarmonyOS HUAWEI Mate 60 (Kirin 9000S) 80.0 80.0 3.25

Table 11: UTG extraction time vs. performance on Weibo.
Accuracy saturates at ∼4h.

Extraction Time SR(%)↑ DA(%)↑ AS↓ ∆SR over Baseline

Baseline (w/o RAG) 40.0 60.0 6.25 –
1 h 50.0 60.0 5.75 +25%
2 h 60.0 70.0 5.25 +50%
4 h 70.0 80.0 4.50 +75%
8 h 70.0 80.0 3.75 +75%

Experimental results show that KG-RAG signif-
icantly improves agent efficiency, reducing task
completion steps and increasing success rates. Our
findings highlight the effectiveness of knowledge-
driven retrieval augmentation in overcoming practi-
cal challenges for mobile GUI agents, setting new
performance benchmarks.

Limitations

KG-RAG relies on app UI Transition Graphs
(UTG) extracted by an automatic app testing sys-
tem. Currently, it costs one or several hours to fully
construct the UTG due to the ambitious goal of ob-
taining a high page coverage inside the app. In the
future, it is worth exploring a more advanced auto-
matic app testing system to mitigate resource cost.
Moreover, it is interesting to adopt this KG-RAG
framework in the domain of web and PC.

Furthermore, KG-RAG designs a knowledge
database for each app. Future work could explore
the design of a vertical domain (e.g., shopping) .

Ethics Discussion

In constructing the knowledge graph and develop-
ing the KG-RAG system, we took careful steps to
protect user privacy and data confidentiality: (1)
Anonymous Data Collection: All UTGs are fully
anonymized and contain only abstract UI structures
and navigation paths, without any PII or user con-
tent; (2) Automatic Privacy Masking: Potentially
sensitive on-screen fields are automatically masked
during data capture; (3) No Authentication Re-
quired: We evaluate only logged-out scenarios and
never use accounts, passwords, or authenticated ac-
tions; (4) Data Security: Data are stored securely
for research purposes only, and no information that
can identify individuals is released.
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