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Q: What is the colors 
of the door in the 
building?
A: The door in the 
image is red.

Visual Grounding
Q: Provide the bounding box 
coordinate of the police vehicle.
A: [0.26, 0.56, 0.44, 0.71]

Image Captioning

Q: Provide a one-sentence caption for 
the image.
A: A vintage-style street clock stands 
prominently at a city intersection, 
with a historic brick building in the 
background and several cars, 
including a police car, navigating the 
crosswalk.

OCR
Q: What number is the 
hour hand pointed at?
A: The number 2 is 
pointed at.

Large Language Model

Image Tokens Language Instruction

Action Head LLM  Head

Actions Understanding Reasoning&

MoE

25 Real Robot Tasks

ChatVLA Model Results on Control & Understanding Dataset

Cross-Skill Multi-Tasking 

...

Pick Move Hang Stack ...

Bread Block Toy Soap Towel Cup 

Long-Horizon Task with High-Level Planner

Get the plate 
and place it on 
the tablecloth.

Flip the cup
and place it on 
the tablecloth.

Move the bread
to the plate.

?

Multimodal Understanding
Octo

ChatVLA
OpenVLA

1. Open the drawer

Long-Horizon Task with Direct Prompting

“Put the spider-man into the drawer.”

2. Put the toy          into it

3. Close the drawer

?

?

Figure 1: ChatVLA is the first work to unify multimodal understanding and embodied control. We conduct
extensive evaluations on VQA and multimodal understanding benchmarks to demonstrate that robot foundation
models can also engage in chat. Furthermore, we evaluate our approach on diverse real-world robot tasks.

Abstract
Humans possess a unified cognitive ability to
perceive, comprehend, and interact with the
physical world. Why can’t large language
models replicate this holistic understanding?
Through a systematic analysis of existing train-
ing paradigms in vision-language-action mod-
els (VLA), we identify two key challenges:
spurious forgetting, where robot training over-
writes crucial visual-text alignments, and task
interference, where competing control and un-
derstanding tasks degrade performance when
trained jointly. To overcome these limita-
tions, we propose ChatVLA, a novel frame-
work featuring Phased Alignment Training,
which incrementally integrates multimodal data
after initial control mastery, and a Mixture-
of-Experts architecture to minimize task in-
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terference. ChatVLA demonstrates competi-
tive performance on visual question-answering
datasets and significantly surpasses state-of-the-
art vision-language-action (VLA) methods on
multimodal understanding benchmarks. No-
tably, it achieves a six times higher perfor-
mance on MMMU and scores 47.2% on MM-
Star with a more parameter-efficient design
than ECoT. Furthermore, ChatVLA demon-
strates superior performance on 25 real-world
robot manipulation tasks compared to existing
VLA methods like OpenVLA. Our findings
highlight the potential of our unified frame-
work for achieving both robust multimodal un-
derstanding and effective robot control.

1 Introduction

Recent advancements in Vision-Language-Action
(VLA) (Black et al., 2024; Kim et al., 2024; Wen
et al., 2024c, 2025) models have largely prioritized
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robotic action mastery. While models trained on
robotic control tasks excel at low-level manipula-
tion and physical interaction, they often struggle
to interpret and reason about multimodal data like
images and text. This is paradoxical, as modern
VLA architectures build upon pre-trained vision-
language models (VLMs). Conversely, VLMs
trained on visual-text pairs demonstrate impressive
multimodal scene understanding but lack the ability
to physically interact with the environment. This
duality highlights a critical challenge: unifying em-
bodied control and multimodal understanding by
aligning these disparate data sources (robotic ac-
tions and visual-text semantics) without sacrificing
performance in either domain.

This work investigates how to unify a single
end-to-end neural network capable of multimodal
scene understanding, conversational ability, and
physical interaction. We first explore existing train-
ing paradigms to assess their feasibility for uni-
fication. Specifically, we examine three data set-
tings for VLA training: 1) training solely on ex-
pert demonstration data containing robot action tra-
jectories (the most common approach, e.g., Open-
VLA (Kim et al., 2024), TinyVLA (Wen et al.,
2024c), π0 (Black et al., 2024)); 2) augmenting
robot data with reasoning phrases to guide action
(similar to ECoT (Zawalski et al., 2024) and Diffu-
sionVLA (Wen et al., 2024a)); and 3) co-training
with both visual-text pairs and robot data (as in
RT-2 (Brohan et al., 2023a)). We analyze how each
configuration impacts the model’s ability to bal-
ance control and understanding. Our experiments
reveal that training solely with robot data erodes
conversational ability entirely; adding reasoning
data partially preserves multimodal understanding;
and introducing visual-text pairs significantly weak-
ens control capabilities. This suggests two key
challenges: (1) VLA models suffer from spurious
forgetting (Zheng et al., 2025; Zhai et al., 2023;
Luo et al., 2023), where performance degradation
may not reflect complete knowledge loss from pre-
trained VLMs, but rather a shift in how the model
aligns its internal representations with different
tasks. The alignment between robot actions and
visual-text data appears fragile and susceptible to
being overwritten during fine-tuning. (2) Task in-
terference (Wang et al., 2021; Ahn et al., 2025)
arises, where the conflicting parameter spaces of
control and understanding tasks, sharing overlap-
ping representations, cause mutual performance
degradation when trained simultaneously.

To address these challenges, we present
ChatVLA, a simple yet effective framework—in
terms of both neural architecture and training strat-
egy—for enabling a single neural network to mas-
ter both understanding and manipulation. We pro-
pose Phased Alignment Training, a two-stage strat-
egy inspired by curriculum learning. The model
first masters embodied control before incremen-
tally integrating multimodal data to "reactivate"
frozen alignment links. Furthermore, we introduce
a Mixture-of-Experts (MoE) on the MLP layers.
This allows the two tasks to share attention lay-
ers (for cross-task knowledge transfer) while iso-
lating task-specific MLPs (to minimize interfer-
ence). This design is motivated by Dual Coding
Theory, which posits that human minds process in-
formation through two separate but interconnected
systems: one for physical skills and the other for
verbal and visual practice. The shared attention
layers in ChatVLA facilitate the exchange of mutu-
ally beneficial knowledge between understanding
and control tasks, while the separate MLP layers
process learned knowledge independently.

We evaluate ChatVLA across three dimen-
sions: conversational ability (visual question
answering), general multimodal understanding,
and general robot control. Specifically, we
assess its conversational ability on established
datasets like TextVQA (Singh et al., 2019a) and
DocVQA (Mathew et al., 2021), where it achieves
competitive performance compared to existing
VLMs. Furthermore, ChatVLA demonstrates
strong multimodal understanding capabilities on
general visual and textual benchmarks, including
MMMU (Yue et al., 2024), MME (Fu et al., 2023),
and MMStar (Chen et al., 2024a). Notably, com-
pared to state-of-the-art VLA methods like ECoT,
our method achieves a 6x performance improve-
ment on MMMU and boosts performance on MM-
Star from 0 to 47.2, using 3.5x fewer parameters in
the VLM backbone. Finally, we evaluate ChatVLA
on 25 real-world robot tasks encompassing diverse
skills like picking, placing, pushing, and hanging,
across multiple environments such as bathrooms,
kitchens, and tabletops. In this multi-task setting,
our method outperforms state-of-the-art VLA meth-
ods like OpenVLA. These results validate the effec-
tiveness of our approach, showcasing the potential
of a single unified method for both multimodal
understanding and robot control.

In summary, our contributions are the following:

5379



• We provide an in-depth analysis of exist-
ing VLA approaches under rigorous settings,
demonstrating their limitations in achieving
satisfactory performance across both multi-
modal understanding and robot control.

• We introduce ChatVLA, a simple yet effective
framework that unifies conversational ability,
multimodal understanding, and robot control
within a single neural network.

• We conduct extensive experiments to evaluate
ChatVLA’s performance on various question-
answering and general understanding bench-
marks.

• We perform extensive real-world robot exper-
iments, encompassing 25 diverse tasks in re-
alistic home environments (tabletop, kitchen,
and bathroom), demonstrating ChatVLA’s su-
perior performance in real-world robot control
scenarios.

2 Related Work

Multimodal understanding Multimodal Large
Language Models (MLLMs) (Lu et al., 2024;
Awadalla et al., 2023; Laurençon et al., 2023; Liu
et al., 2023b,a; Wang et al., 2024a; Chen et al.,
2024c; Zhu et al., 2024c; Ma et al., 2024; Zhou
et al., 2024; Zhu et al., 2024a; Luo et al., 2024;
Chen et al., 2024c; Li et al., 2023a; Dai et al., 2023;
Chen et al., 2024b; Karamcheti et al., 2024) have
significantly advanced the field of multimodal un-
derstanding by integrating visual and linguistic in-
formation to achieve holistic scene comprehension.
MLLMs have demonstrated excellent performance
on tasks requiring cross-modal alignment, such as
visual question answering (VQA), image caption-
ing, and spatial reasoning. This success stems from
their ability to map visual features to semantic rep-
resentations through sophisticated adapter designs.
However, current MLLMs lack a connection to the
physical world, preventing them from interacting
with environments and humans. This work aims to
bridge this gap, enabling vision-language models
to also act.

Vision-langauge-action models in robot learn-
ing. Vision-language-action models (VLAs) form a
growing body of research that leverages pre-trained
vision-language models (VLMs) as a backbone to
enable both language comprehension and observa-
tional understanding. These methods typically fine-
tune large pre-trained VLMs to predict robot ac-

tions (Brohan et al., 2023b; Li et al., 2023b; Huang
et al.; Wen et al., 2024c; Pertsch et al., 2025; Black
et al., 2024; Kim et al., 2024; Chi et al., 2023; Zhu
et al., 2024b; Wang et al., 2024b; Prasad et al.,
2024; Black et al., 2023a,b; Dasari et al., 2024; Lin
et al., 2024; Reuss et al., 2024; Zhao et al., 2024;
Uehara et al., 2024a,b; Ding et al., 2024). These
methods have shown strong performance in both
simulated and real-world tasks. However, existing
VLA models have not demonstrated the ability to
perform true multimodal understanding. Based on
our experiments, we find that these models lack
this capability. In contrast, our work proposes a
unified approach that enables a single network to
effectively handle both multimodal understanding
and robot control.

3 Methodology

This section provides a thorough discussion of our
framework. Section 3.1 presents formal definitions.
Section 3.2 details our motivation and empirical re-
sults demonstrating how existing vision-language-
action models (VLAs) suffer from catastrophic for-
getting and task interference, thus hindering the
unification of multimodal understanding and robot
control. Section 3.3 proposes a simple solution to
address this problem.

3.1 Formal Definition

Consider two distinct scenarios: robot control
and multimodal understanding. In the context
of robot control, we typically construct a dataset
of demonstrations Drobot = {τi}Ni=1, where
each demonstration τi comprises a sequence
of state-action pairs. The state s consists of
an observation (image) v and an instruction
(text) t, such that s = (v, t). We can repre-
sent the sequence of state-action pairs as τi =
{((v1, t1), a1), ((v2, t2), a2), . . . , ((vT , tT ), aT )},
where each tuple ((vj , tj), aj) represents the state
at timestep j and the corresponding action taken,
and T is the length of the demonstration. These
demonstrations are typically provided by a human
expert.

For multimodal understanding and visual con-
versation tasks, we have a dataset Dv−t = {ϕi}Mi=1,
where each data sample ϕi consists of a visual im-
age vi and a corresponding question (or caption) in
textual form ti, i.e., ϕi = {(vi, ti)}. Here, M rep-
resents the total number of such image-text pairs.
The notation v − t denote visual-text data.
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Figure 2: Analysis of how training data influences VLA performance on control and understanding tasks. (a)
We use three different sets of training data, corresponding to the three main training approaches for VLA models.
(b) The experimental results are presented for five real-world robot tasks across three settings. (c) The results on
VQA and multimodal understanding benchmarks.

The overarching goal of our work is to develop a
general model π capable of addressing both embod-
ied control and multimodal understanding. For em-
bodied control, this involves learning a policy that
models the joint distribution of robot actions given
the current visual observation and textual instruc-
tion: π(at|vt, tt). Simultaneously, for multimodal
understanding and visual question answering, the
model should capture the distribution of the text
(answer or caption) given the visual input: π(t|v).
Our objective is to create a unified model that can
effectively learn both distributions, enabling it to
perform well in both robot control tasks and multi-
modal understanding scenarios.

Current VLA research focuses on developing
more robust and generalizable models for learning
visuomotor policies (Kim et al., 2024; Black et al.,
2024; Wen et al., 2024c). Some approaches ex-
plore chain-of-thought-like reasoning to improve
policy generation (Zawalski et al., 2024; Wen et al.,
2024a; Li et al., 2024), while others investigate
co-training VLA models with visual-textual and
robot data (Pertsch et al., 2025). In particular, some
studies report benefits from co-training with visual-
textual data in laboratory settings (Brohan et al.,
2023a), while others find it less effective in real-
world scenarios (Zawalski et al., 2024). Although
a few works suggest that VLA can maintain con-
versational ability (Wen et al., 2024a; Brohan et al.,
2023a), none have thoroughly investigated how this
ability, along with general multimodal understand-

ing, is preserved after applying the VLA training
paradigm. In the following section, we analyze
different training data setups for VLA, focusing
specifically on the resulting model’s performance
in both multimodal understanding and real-world
robot control. Our goal is to provide practical guid-
ance for building unified models capable of both.

3.2 Analysis

To understand the capabilities of existing VLA
models in terms of multimodal understanding
and embodied control, we investigate three dis-
tinct training paradigms, each utilizing a different
dataset: 1) training solely with robot data, the most
prevalent approach in VLA (Black et al., 2024;
Awadalla et al., 2023; Kim et al., 2024; Wen et al.,
2024c), primarily focused on optimizing robot con-
trol performance; 2) augmenting robot data with
chain-of-thought-like reasoning, aiming to provide
auxiliary information that improves both model
generalization and robot task performance (Wen
et al., 2024a; Zawalski et al., 2024); and 3) co-
training with both visual-textual data and robot data.
This latter paradigm was pioneered by RT-2 (Bro-
han et al., 2023a); however, due to proprietary data
and model details, exact replication is challenging.
Following RT-2, we used a 3:1 ratio of robot data
to visual-text data in this experiment.

In this section, we analyze these three training
data setups for VLA models. Specifically, we uti-
lize DiffusionVLA (Wen et al., 2024a), a repre-
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sentative VLA model that supports both language
output via autoregression and action generation via
a diffusion model. We evaluate performance on six
representative benchmarks: four focused on visual
question answering and two providing a broader
evaluation of multimodal large language models,
encompassing tasks like math and OCR. Further-
more, we assess performance on five real-world
robot tasks covering diverse skills, including hang-
ing, pulling, picking, and placing. Following the
methodology of DiffusionVLA, we generate robot
reasoning data. For visual-textual data, we ran-
domly sample 54k image-text pairs from LLaVA.
Further details regarding experimental setup and
data processing are provided in the Appendix.

Results on multimodal understanding and
question-answering benchmark. The experimen-
tal results are presented in Figure 2. The bottom-
right portion of the figure displays performance on
six benchmarks, encompassing both visual ques-
tion answering (VQA) and general understanding
tasks. The top-right portion of Figure 2 shows the
average success rate across a total of 112 trials
conducted on five real-world robot tasks.

The bottom-right table includes results for the
base model, Qwen2-VL (Wang et al., 2024a).
Some results are intuitive. For example, training
the model solely on robot data yields a performance
of 0 across all benchmarks. This model completely
loses its conversational ability, exhibiting only mur-
muring when asked a question. As expected, the
smallest performance drop compared to the base
model occurs when training uses both visual-text
pairs and robot data. Interestingly, training with
robot data including reasoning also boosts perfor-
mance from 0 to a non-negligible level, despite the
highly structured, template-driven nature of the rea-
soning phrases within that data. Even though the
reasoning phrases are similar and structured, explic-
itly allowing the model to “speak out" significantly
improves performance on question answering and
even general understanding.

Conclusion 1. Our observations suggest that the
pre-trained VLM component suffers from what ap-
pears to be catastrophic forgetting. Training solely
with robot data causes the model to lose previously
acquired conversational and understanding abili-
ties. However, our experiments indicate that this
isn’t necessarily a complete loss of knowledge, but
rather a misalignment caused by the robot data.
Training with a fixed reasoning template seems to
“reactivate" the visual-text alignment, enabling the
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Figure 3: Training strategy. Our framework is ini-
tially trained on robot data with action trajectories, then
co-trained with visual-text and robot data to maintain
performance in both domains.

model to engage in conversation and demonstrate
understanding. In Section 6, we will delve into
the specific knowledge that is reactivated and dis-
cuss how future work can further bridge the gap
between the base VLM and the VLA model. We
term this phenomenon “spurious forgetting."

Results on real robot multi-task settings. We
further evaluated different approaches to our real
robot setup. All methods were trained on 25 real
robot tasks, and we selected five diverse tasks, cov-
ering skills like pushing, picking, and hanging, for
comparison. Details, including the number of trials
for each experiment, can be found in the Appendix.
Surprisingly, training with only robot data yielded
worse performance than incorporating reasoning.
This confirms previous findings that leveraging ei-
ther visual or textual chain-of-thought enhances
the generalization of robot models. Intriguingly,
co-training robot data with visual-text data resulted
in a significant performance drop in real-world task
success rates.

Conclusion 2. The initial observation that incor-
porating reasoning into robot data improves per-
formance aligns with Dual Coding Theory. This
theory posits that physical motor skills and visual-
linguistic understanding are not mutually exclusive
but rather interconnected, offering overlapping ben-
efits. However, the performance of robot control
dramatically decreased when visual-text pairs were
added to the training data. This suggests that the
distinct representations required for action gener-
ation and understanding may compete within the
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Figure 4: Illustration of the Mixture-of-Experts com-
ponent of ChatVLA. Two distinct expert types process
robot data and visual-text data separately, while shared
self-attention layers facilitate knowledge transfer be-
tween the two domains.

shared parameter space. This phenomenon, we
named as partial task interference, requires care-
ful resolution. A unified system should connect
the two data types while simultaneously enabling
separable representation learning for each task.

3.3 Method: ChatVLA
As discussed above, training on robot policy data
can interfere with learning of visual-text relation-
ships. Furthermore, training exclusively on robot
data can diminish visual-text alignment, leading to
a degradation of the model’s conversational abili-
ties. Therefore, addressing these two challenges is
crucial for successfully unifying both perspectives
within a single VLA model. We will first describe
the training strategy used to address spurious for-
getting, and then outline the general architecture of
our method to tackle the second challenge.

Phased alignment training. Previously, we
identified that spurious forgetting is a key factor
in causing VLA to lose its ability to chat and un-
derstand scenes. Since the pre-trained VLM is
well-trained and excels at visual-related tasks, it
is intuitive that the ability to chat and understand
scenes can be reactivated with a small amount of
visual-text pair data. In contrast, robot control tasks
are much more complex to train, so the priority
should be to develop an excellent model that excels
at embodied control tasks. Our training strategy

is straightforward yet effective. We first train the
VLA model on robot data. During this training, we
also include reasoning data to ensure continuous
alignment between the visual and text components.
Once the robot data is trained, we co-train both
visual-text and robot data to help the model retain
proficiency in both tasks.

Mixture of experts. The previous section
demonstrated the use of phased alignment train-
ing to address the spurious forgetting problem, en-
abling the model to retain knowledge from the pre-
viously trained VLM. However, this approach does
not fully resolve task interference issues, as the
model still requires co-training on both visual-text
and robot data. We introduce the mixture-of-expert
to resolve the problem, which is in Figure 4. Specif-
ically, given xl be the input of the l-th block. The
input can either belong to the Drobot or Dv−l. No-
tably, we design a dual router, the one to deal with
tasks regarding multimodal understanding and con-
versational (f(FFNv−l)), and the other learn rep-
resentation on robot control (f(FFNrobot)). The
input is first coming through a multi-head self-
attention xl

′
= MHA(xl−1)+xl−1, where MHA(·)

represents multi-head self attention. It is then fed
into the mixture-of-expert layer, which can be rep-
resented as:

MoE(xl
′
) =

{
f(FFNv−l)(x

l′), m = 0

f(FFNrobot)(x
l′), 1 ≤ m ≤ Mr

This is then added with input from skip connec-
tion xl = xl

′
+MoE(xl

′
). Notice that in stage 1

training, only the control expert is activated.
To differentiate task outputs, we employ distinct

system prompts, such as “Answer based on ques-
tion" for understanding and conversation tasks, and
“Predict robot action" for control tasks. Intuitively,
a static MoE architecture applied to the MLP lay-
ers can be viewed as a high-dimensional feature
extractor that partitions the shared parameter space.
This allows each task (e.g., understanding and con-
trol) to utilize a substantial portion of dedicated
neurons, enabling the model to excel at both. A
key advantage of this MoE-like architecture is that
during inference, only one path is activated, pre-
serving the model parameters of the base model.
Our results demonstrate that this straightforward
approach leads to simultaneous improvements in
understanding, conversation, and control perfor-
mance.

Why sharing self-attention layers? A prevail-
ing solution is a use mixture of attention to learn
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Table 1: Understanding task: Evaluation of MLLMs and VLAs on 6 Multimodal Understanding benchmarks and
7 VQA benchmarks. Boldface denotes top-ranked methods, underlined entries signify secondary performers.

Method Params
Multimodal Understanding Benchmarks VQA Benchmarks

MMMU MMStar MME OCRBench HallBench MMB TextVQA DocVQA InfoVQA AI2D ChartQA MTVQA RealWorldQA

Multimodal Large Language Models

Janus 1.3B 30.5 37.6 1338.0 482 30.3 69.4 — — — 52.8 — — —
DeepSeek-VL 1.3B 32.2 39.9 — 409 27.6 64.6 — — — 51.5 — — —

Qwen2-VL 2B 41.1 48.0 1872.0 809 41.7 74.9 79.7 88.57 61.37 74.7 73.5 18.1 62.9
SmolVLM 2.3B 38.8 41.7 — 656 39.5 — 72.7 81.6 — 64.2 — — —
LLaVA-Phi 2.7B — — 1335.1 — — 59.8 48.6 — — — — — —

MobileVLM-V2 3B — — 1440.5 — — 63.2 57.5 — — — — — —
MoE-LLaVA 3.6B — — 1431.3 — — 68 57 — — — — — —
Phi-3-Vision 4.2B 40.4 — — — — 80.5 70.9 — — 76.7 81.4 — —
LLaVA-1.5 7B 34.2 — 1510.7 — — 64.3 58.2 — — 63.1 55.0 — —

DeepSeekVL 7B 36.6 — — 456 — 73.2 — — — — — — —
LLaVA-Next 8B 36.4 — — — — 79.7 55.7 — — 66.9 65.8 — —

Vision-Language-Action Models

OpenVLA 7B 0 0 0 0 0 0 0 0 0 0 0 0 0
ECoT 7B 5.4 0 0 12 0.9 — 0 0 0 0 0 1.7 0

DiVLA 2B 17.2 21.1 186.5 294 9.0 — 7.5 15.2 14.7 43.1 17.2 6.2 25.2
ChatVLA(Ours) 2B 37.4 47.2 1435.2 729 39.9 69.0 71.2 83.3 53.3 67.6 59.9 11.5 57.0

Table 2: Long-horizon real robot tasks with direct prompting. The task is completed in a sequence. The Avg.
Len. denotes the average success length of the model. Task 1: Sort toys. Task 2: Stack building blocks. Task 3:
Place the toy in the drawer. Task 4: Clean building blocks to the box.

Method
Task 1 Task 2 Task 3 Task 4

1 2 3 4 Avg. Len. 1 2 Avg. Len. 1 2 3 Avg. Len. 1 2 Avg. Len.

Octo 0.23 0.08 0.00 0.00 0.08 0.29 0.14 0.21 0.11 0.11 0.11 0.11 0.50 0.17 0.33
OpenVLA 0.15 0.08 0.00 0.00 0.06 0.43 0.14 0.29 0.22 0.11 0.11 0.15 0.50 0.33 0.42

ChatVLA(Ours) 0.92 0.69 0.31 0.23 0.54 0.86 0.43 0.64 1.00 1.00 1.00 1.00 0.83 0.67 0.75

task-specific representation. However, based on
our experiments (detailed in Section 4), we believe
that understanding and robot control tasks share
representations that are beneficial to both. For ex-
ample, a typical robot control scenario requires the
model to understand the scene, recognize objects,
determine their locations, and then translate this
information into actions. These high-dimensional
representations share similar semantic concepts.
Therefore, the interconnected nature of these two
tasks is crucial for simultaneously improving per-
formance on both understanding and control.

4 Experiment

In this section, we conduct a series of experiments
to evaluate the performance of ChatVLA across a
range of embodied control and multimodal under-
standing tasks.

4.1 Results on Multimodal Understanding
and Visual-Question Answering

We evaluate the visual question answering
abilities of ChatVLA using Vlmevalkit (Duan
et al., 2024) on TextVQA (Singh et al.,
2019b), DocVQA (Mathew et al., 2021), In-
foVQA (Mathew et al., 2022), AI2D (Kem-
bhavi et al., 2016), ChartQA (Masry et al.,
2022), MTVQA (Tang et al., 2024), and Real-

worldQA (RealWorld Team, 2024). We also tested
against more challenging benchmarks designed for
MLLMs, i.e., MMMU (Yue et al., 2024), MM-
Star (Chen et al., 2024a), MME (Fu et al., 2023),
OCRBench (Liu et al., 2024), HallBench (Guan
et al., 2024) and MMBench (Liu et al., 2023c).
As delineated in Table 1, ChatVLA demonstrates
competitive performance relative to existing VLMs
across multiple benchmarks. Notably, in VQA
tasks, our framework achieves a notable perfor-
mance of 71.2 on TextVQA, surpassing current
SOTA VLAs by substantial margins. Specifically,
it outperforms ECoT and DiVLA by relative im-
provements of 9.2x and 9.5x over these baseline
models. The model exhibits particularly strong
capabilities in multimodal reasoning tasks requir-
ing complex cross-modal integration. On the MM-
Star benchmark, ChatVLA attains a score of 37.4,
demonstrating 2.2x and 6.9x performance enhance-
ments over DiVLA and ECoT respectively.

4.2 Results on Real Robot Tasks

The embodied control performance of ChatVLA is
evaluated on 25 realworld manipulation tasks. All
these evaluated tasks can be divided into three cate-
gories according to the granularity of the language
instructions. A more detailed description of these
tasks can be found in the Appendix (Section 6). We
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Table 3: Long-horizon real robot tasks with high-level policy model. The task is completed in a sequence. The
Avg. Len. denotes the average success length of the model. Task 5-8: Move the block to the basket then put the toy
into the drawer. Task 9-10: Move two blocks to the basket sequentially. Task 11-13: Prepare the breakfast for me.

Method
Task 5-8 Task 9-10 Task 11-13

1 2 3 4 Avg 1 2 Avg 1 2 3 Avg

Octo 0.42 0.25 0.17 0.08 0.23 0.33 0.22 0.28 0.15 0.08 0.00 0.08
OpenVLA 0.42 0.33 0.33 0.17 0.31 0.44 0.22 0.33 0.23 0.08 0.00 0.10

ChatVLA(Ours) 1.00 0.92 0.92 0.92 0.94 0.89 0.78 0.83 0.69 0.54 0.54 0.59

Table 4: Real robot multi-tasking. We evaluated our model in a multi-task setting across diverse scenes, including
bathrooms, kitchens, and tabletops. These tasks also encompassed a range of skills.

Method
Bathroom Kitchen Tabletop

Avg
Task 14 Task 15 Task 16 Task 17 Task 18 Task 19 Task 20 Task 21 Task 22 Task 23 Task 24 Task 25

Octo 3/11 0/6 1/9 0/7 0/11 3/11 1/7 2/9 1/7 2/13 2/9 3/7 18/107
OpenVLA 2/11 0/6 2/9 1/7 1/11 4/11 2/7 1/9 1/7 4/13 0/9 2/7 20/107

ChatVLA(Ours) 6/11 2/6 5/9 3/7 3/11 6/11 4/7 5/9 4/7 6/13 4/9 7/7 55/107

conducted 528 trials on a real robot to evaluate the
model’s ability.

Long-horizon tasks with direct prompting.
The model is asked to executing tasks directly from
language instruction(e.g., “Sort toys"). The four
tasks we evaluated were all completed within a toy
scenario constructed on a desktop setup. Challeng-
ing tasks of this category include Task 1, where
all toys are randomly positioned in varying poses,
and Task 3, which demands the integration of
three distinct skills: opening, picking, and closing.
Our method demonstrates substantial advantages
in executing tasks directly from high-level descrip-
tions across all evaluated scenarios. The approach
maintains consistent performance in multi-step se-
quences, achieving a 0.54 average success length in
Task 1 (6.75x higher than Octo) and perfect success
rates throughout Task 3’s three-step sequence.

Long-horizon tasks with high-level planner.
The model receives intermediate commands that
specify the current sub-task objectives (e.g., “pick
object and place to target location"). The primary
challenge in this evaluation stems from the substan-
tial variations between sub-tasks, which involve:
(1) diverse object types (e.g., plates, cups, bread),
(2) multiple required skills (e.g., pick-place,flip),
(3) varying location heights (e.g. top/bottom shelf
positions) as visually demonstrated in the bottom-
right panel of Fig.1. These variations collectively
create a testbed for evaluating the model’s com-
positional reasoning capability - specifically, its
capacity to integrate object manipulation, spatial
reasoning, and interference adaptation. This re-
quirement is clearly reflected in the experimental

Table 5: Global batch size and learning rate sched-
uler

Stage Global Batch Size Learning Rate Scheduler
Stage 1 128 2e-5 constant
Stage 2 128 2e-5 cosine

results shown in Table 3, where our method outper-
forms OpenVLA and Octo across all task configu-
rations.

Cross-skill multi-tasking. These tasks require
the integration of multiple manipulation skills (e.g.,
picking, placing, pushing, and hanging) across var-
ious real-world environments, specifically catego-
rized into three test domains: bathroom scenar-
ios (Tasks 14-17), kitchen environments (Tasks 18-
19), and tabletop configurations (Tasks 20-25). As
demonstrated in Table 4, ChatVLA achieves su-
perior performance compared to both Octo and
OpenVLA across all task categories. The model
exhibits particularly strong performance in chal-
lenging bathroom and kitchen tasks, where robotic
arm operations are constrained to a severely limited
spatial range. This experimental setup inherently
introduces substantial safety considerations during
model evaluation, consequently establishing rigor-
ous requirements for the operational precision and
system robustness of the assessed models.

4.3 Ablation Study
How important is mixture-of-experts in VLA?
This section investigates whether the MoE mecha-
nism in VLA is crucial for enabling VLA models
with both multi-modal understanding ability and
robotic controlling ability. Specifically, using the
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exact same training configuration, we compare the
baseline model with that removing the MoE mod-
ule. The experimental results are presented in Ta-
ble 7 and Table 8 in Appendix. As is shown in the
two tables, robot control performance decreased
to 14% of the original model’s capability, while
multi-modal understanding retained only 70% of
its original performance. This stark contrast high-
lights the critical role of MoE in mitigating task
interference, as proposed in Section 3.2.

Is a two-stage training paradigm necessary?
This section investigates whether a two-stage train-
ing paradigm is necessary for achieving both ef-
fective robot control and robust multimodal un-
derstanding. Specifically, under identical training
settings, we evaluate two ablated variants of our
method: (1) a model trained only in the first stage
using robot data, and (2) a model trained solely in
the second stage using both robot data and visual-
text data. The results are summarized in Table 9
and Table 10 in Appendix.

As shown, removing the second stage leads to
a slight decrease in robot control performance but
causes a dramatic collapse in multi-modal under-
standing, retaining only 25% of the full model’s
capability. Conversely, skipping the first stage and
training the model only in the second stage results
in a more pronounced degradation in robot control
(dropping to 57%), while multi-modal understand-
ing remains relatively preserved at 70%.

4.4 Implement Details
Robot setup. We utilize a 7-Degree-of-Freedom
Franka Emika robot equipped with a Robotiq grip-
per. The robot system includes two ZED 2 cameras
positioned on the left and right sides, along with a
ZED Mini wrist-mounted camera. Data collection
is performed using teleoperation equipment at a
frequency of 15 Hz.

Data details. For visual-text data, we use
LLaVA-1.5 (Liu et al., 2023a) dataset for co-
training. Following the data ratio mentioned in
ECoT, we use set the ratio of visual-text data to
robot data as 1:3. Using robot data, we evaluated
our method on 25 real-world robot tasks, including
long-horizon tasks with direct prompting. The data
was randomly sampled from the LLaVA fine-tuning
dataset. We hypothesize that carefully curated data
is crucial for mitigating spurious forgetting, a topic
we plan to explore in future work. We use the
image resolution of 320 × 240, with three camera
views for robotic data.

Training Details. We use Qwen2-VL-2B as our
VLM backbone and the set of action head follows
DiVLA (Wen et al., 2024b). We train our ChatVLA
using a phased alignment training, as is discussed
in Section 3.3. In the first stage, we train our model
on robot data of 25 tasks, only activating the control
expert and its corresponding action head. In the
second stage, we co-train both visual-text data and
robot data. The total training cost is 320 GPU hours.
Global batch size and learning rate scheduler is
shown in Table 5.

5 Conclusion

Integrating embodied control and multimodal un-
derstanding in Vision-Language-Action (VLA)
models is challenging, as current methods often
compromise one for the other. We identified key
limitations: robot-only training degrades conversa-
tional ability, while visual-text co-training dimin-
ishes control performance due to spurious forget-
ting and task interference. To address this, we
introduce ChatVLA, a unified framework combin-
ing Phased Alignment Training and a Mixture-of-
Experts architecture. ChatVLA achieves competi-
tive VQA and general understanding performance
while excelling at real-world robot control (25 tasks
across diverse scenes), outperforming OpenVLA
and ECoT with 3.5x fewer parameters. These re-
sults demonstrate that a single network can effec-
tively harmonize multimodal reasoning, conversa-
tion, and physical interaction.
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Limitations

Our work explores the unification of multimodal
understanding and robot control. This is the first
study on this topic, aiming to spark discussion and
advance the field. However, there are several lim-
itations. First, while we identified that spurious
forgetting can be mitigated with visual-text data,
it is crucial to select a representative dataset that
can reactivate all misaligned visual-text links in
the model. In our work, the data was randomly se-
lected, but we believe that curating a more targeted
dataset could significantly enhance model perfor-
mance. Additionally, our work does not include
tasks of extended duration, like those presented in
Pi0 (e.g., laundry folding). Increasing the complex-
ity of robotic tasks may complicate optimization,
requiring careful refinement of both the training
strategy and neural architectures.
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6 Appendix

6.1 Ablation Study
Could the same architecture scale to larger
LLM backbones seamlessly? We have conducted
experiments on the larger Qwen2-VL-7B model.
The experimental results are presented in Table
11 and Table 12. The results demonstrate that the
architecture can seamlessly scale to larger model
sizes, showing performance improvements in both
multi-modal understanding and robot control. How-
ever, due to the limited robotic data, the perfor-
mance improvement in robot control tasks is lim-
ited. We believe that with an increase in the data
scale, using a larger backbone will lead to more
significant performance gains.

Will this recipe suitable for different base
models? We trained a new version of ChatVLA
using PaliGemma-3B (Beyer et al., 2024) as our
VLM backbone. The results are shown in Table 13
The results indicate that while the performance of
our model is influenced to some extent by the ca-
pabilities of the backbone, it demonstrates compet-
itive performance compared with existing VLMs
across multiple benchmarks.

6.2 Discussion
Can robot data effectively enhances the model’s
ability in multimodal understanding? We evalu-
ate our method on a recent robotic multimodal un-
derstanding benchmark: Embodied Reasoning QA
Evaluation Dataset (ERQA), which is presented by
Gemini Robotics (Team et al., 2025).

We specifically chose this dataset because 28%
of the questions involve multiple images, requir-
ing the integration of concepts across them, which
makes these questions significantly challenging.

Table 6: Performance on Embodied Reasoning Task

Method Embodied Reasoning QA (ERQA)
Qwen2-VL-2B 27.5
ChatVLA(2B) 33.5

The results show that our model improves by
6% on ERQA compared to our VLM backbone
Qwen2-VL-2B, proving that the inclusion of robot
data effectively enhances the model’s ability in
multimodal understanding. Specifically, we fur-
ther analyze the results in 8 subcategories. The
results show that our model achieved 37.83% ac-
curacy in the multi-view reasoning category, far
surpassing Qwen2-VL-2B’s accuracy of 13.51%.

This demonstrates that robot data primarily con-
tributes to the model’s multimodal understanding
by improving cross-scene adaptability (e.g., vary-
ing lighting/object layouts) and multi-perspective
analysis. Therefore, the model approximates the
level of human-like visual understanding necessary
for navigation and interaction within physical envi-
ronments.

What vision-language data are preferred? In
stage 2, we employed the llava-1.5 (Liu et al.,
2023a) dataset for co-training, which allowed the
model to achieve compatible results on both VQA
and MLLM benchmarks compared to Qwen2-VL.
However, we argue that the remaining performance
gap is attributed to the limitations of the visual-
textual data used. To explore this further, we con-
ducted an in-depth analysis of the results between
ChatVLA and Qwen2-VL on the MMMU dataset,
as illustrated in Fig. 5.

The MMMU dataset is divided into six cate-
gories, and ChatVLA’s performance is slightly
lower than Qwen2-VL in three of them: art,
medicine, and social science. A closer inspec-
tion of the results for the corresponding subcat-
egories reveals that the performance discrepancies
primarily occur in five specific domains: art the-
ory, lab medicine, pharmacy, literature, and psy-
chology. These fields are relatively narrow in
scope and involve specialized knowledge that is
difficult to obtain. Upon reviewing the compo-
sition of the llava dataset, we were surprised to
find that its subdatasets, including COCO, GQA,
OCR-VQA, TextVQA, and VisualGenome, lack
the expert knowledge required for these domains,
which likely contributed to the observed perfor-
mance drop.

This finding also highlights the considerable po-
tential of our model: with more appropriate expert
data for training, we believe that we can achieve
significantly better performance in multimodal un-
derstanding.

What is the appropriate ratio of visual-text
data to robot data? While co-training with visual-
text data, we followed the settings discussed in
ECOT (Zawalski et al., 2024) and set the overall
visual-text data to robot data ratio at 1:3. However,
whether other data ratios are beneficial or detrimen-
tal to multimodal understanding and robot tasks
still requires attention. Therefore, under the same
number of steps, we modified the ratio of visual-
text data to robot data in co-training to 1:1 and 3:1,
respectively. The results are shown in Table 14.
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Table 7: Ablation Study of Mixture of Experts on Understanding tasks: Evaluation on 6 Multimodal Under-
standing benchmarks and 7 VQA benchmarks. We use bold to denote top-ranked methods.

Method
Multimodal Understanding Benchmarks VQA Benchmarks

MMMU MMStar MME OCRBench HallBench MMB TextVQA DocVQA InfoVQA AI2D ChartQA MTVQA RealWorldQA

Static MoE 37.4 47.2 1435.2 729 39.9 69.0 71.2 83.3 53.3 67.6 59.9 11.5 57.0
3B Dense Model 26.8 37.3 1165.6 407 27.7 37.4 44.9 57.2 35.6 49.5 46.1 1.7 55.4

Table 8: Ablation Study of Mixture of Experts on Real Robot tasks: The embodied control performance is
evaluated on 25 real-world manipulation tasks. Task 1-4 are long-horizon real robot tasks with direct prompting.
Task 5-13 are long-horizon real robot tasks with high-level planner. Task 14-25 are under multi-task setting in real
family scenes, including bathrooms, kitchens, and tabletops.

Method
Long-horizon Tasks Multi Tasks in Real Family Scenes

T1 T2 T3 T4 T5-8 T9-10 T11-13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25
Static MoE 28/52 9/14 15/15 9/12 45/48 15/18 23/39 6/11 2/6 5/9 3/7 3/11 6/11 4/7 5/9 4/7 6/13 4/9 7/7

3B Dense Model 4/52 2/14 2/15 3/12 11/48 4/18 10/39 1/11 0/6 1/9 0/7 0/11 2/11 1/7 0/9 0/7 2/13 0/9 3/7

Table 9: Ablation Study of training stages on Understanding task: Evaluation on 6 Multimodal Understanding
benchmarks and 7 VQA benchmarks. We use bold to denote top-ranked methods.

Stage 1 Stage 2
Multimodal Understanding Benchmarks VQA Benchmarks

MMMU MMStar MME OCRBench HallBench MMB TextVQA DocVQA InfoVQA AI2D ChartQA MTVQA RealWorldQA

✓ 10.0 11.7 426 187 19.6 11.3 21.4 18.9 15.3 24.8 13.0 0.3 32.2
✓ 27.2 32.2 1032.6 265 31.2 30.7 39.3 32.3 16.6 45.2 24.1 1.7 49.8

✓ ✓ 37.4 47.2 1435.2 729 39.9 69.0 71.2 83.3 53.3 67.6 59.9 11.5 57.0

Table 10: Ablation Study of training stages on Real Robot tasks: The embodied control performance is evaluated
on 25 real-world manipulation tasks. Task 1-4 are long-horizon real robot tasks with direct prompting. Task 5-13
are long-horizon real robot tasks with high-level planner. Task 14-25 are under multi-task setting in real family
scenes, including bathrooms, kitchens, and tabletops.

Stage 1 Stage 2
Long-horizon Tasks Multi Tasks in Real Family Scenes

T1 T2 T3 T4 T5-8 T9-10 T11-13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25
✓ 21/52 6/14 12/15 4/12 46/48 13/18 24/39 5/11 2/6 3/9 3/7 2/11 5/11 3/7 3/9 3/7 3/13 4/9 7/7

✓ 13/52 5/14 10/15 3/12 27/48 10/18 17/39 5/11 0/6 1/9 2/7 1/11 3/11 3/7 2/9 2/7 4/13 2/9 4/7

✓ ✓ 28/52 9/14 15/15 9/12 45/48 15/18 23/39 6/11 2/6 5/9 3/7 3/11 6/11 4/7 5/9 4/7 6/13 4/9 7/7

Table 11: Performance of Scaling up to 7B on Understanding Tasks: Evaluation on 6 Multimodal Understanding
benchmarks and 7 VQA benchmarks.

Method
Multimodal Understanding Benchmarks VQA Benchmarks

MMMU MMStar MME OCRBench HallBench MMB TextVQA DocVQA InfoVQA AI2D ChartQA MTVQA RealWorldQA

ChatVLA (2B) 37.4 47.2 1435.2 729 39.9 69.0 71.2 83.3 53.3 67.6 59.9 11.5 57.0
ChatVLA (7B) 50.7 60.5 1877.3 807 46.5 80.7 79.8 86.2 67.9 78.4 67.0 18.6 66.1

Table 12: Performance of Scaling up to 7B on Real Robot tasks: The embodied control performance is evaluated
on 25 real-world manipulation tasks. Task 1-4 are long-horizon real robot tasks with direct prompting. Task 5-13
are long-horizon real robot tasks with high-level planner. Task 14-25 are under multi-task setting in real family
scenes, including bathrooms, kitchens, and tabletops.

Method
Long-horizon Tasks Multi Tasks in Real Family Scenes

T1 T2 T3 T4 T5-8 T9-10 T11-13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25
ChatVLA (2B) 28/52 9/14 15/15 9/12 45/48 15/18 23/39 6/11 2/6 5/9 3/7 3/11 6/11 4/7 5/9 4/7 6/13 4/9 7/7
ChatVLA (7B) 33/52 10/14 15/15 11/12 48/48 17/18 28/39 8/11 4/6 7/9 4/7 4/11 8/11 5/7 7/9 5/7 7/13 6/9 7/7

Table 13: Performance of different VLM backbone on Understanding Tasks: Evaluation on 6 Multimodal
Understanding benchmarks and 7 VQA benchmarks.

Method
Multimodal Understanding Benchmarks VQA Benchmarks

MMMU MMStar MME OCRBench HallBench MMB TextVQA DocVQA InfoVQA AI2D ChartQA MTVQA RealWorldQA

PaliGemma-3B 34.9 48.3 1686.1 614 32.2 65.6 73.0 78.0 40.5 68.3 54.2 13.7 54.2
ChatVLA (PaliGemma-3B) 35.3 48.0 1679.4 653 33.4 64.8 72.4 76.6 41.9 68.1 56.5 12.8 55.3
ChatVLA (Qwen2-VL-2B) 37.4 47.2 1435.2 729 39.9 69.0 71.2 83.3 53.3 67.6 59.9 11.5 57.0
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Surprisingly, a smaller amount of visual-text
data resulted in better performance. This aligns
with the discussion in the previous subsection and
the broader discussion in the paper, which suggests
that even a limited amount of visual-text data is
sufficient to reactivate visual-text alignment and
bridge the gap between the base VLM and the VLA
model.

6.3 Evaluation Metrics
The calculation method for long-horizon tasks is
as follows: One point is awarded for each success-
fully completed step. After all steps of the task are
executed, the total score is calculated. Addition-
ally, "Avg. Len." represents the average success
length of the model. This means that for multiple
executions of the long-sequence tasks, the lengths
of the sequences in which the model achieved suc-
cess are recorded. Then, the average value of these
lengths is calculated to obtain the "Avg. Len.",
which serves as an important indicator to evaluate
the performance of the model in handling long-
sequence tasks in terms of the length of successful
operation sequences.

6.4 Robot task
The embodied control performance of ChatVLA
is evaluated on 25 real world manipulation tasks.
Long-horizon tasks with direct prompting. As
is shown in 6, all the tasks of this category are set
under a real world toy scene.

• Task 1: Sort toys. On the desktop, there are
two toy animals with random positions and
postures, as well as two building blocks. The
robotic arm needs to place all the animals on
the desktop in the box on the left and all the
building blocks in the basket on the right.

• Task 2: Stack cubes. The robotic arm first
needs to pick up the orange building block
from the right side and stack it on the yellow
building block in the middle. Then, it needs
to pick up the smallest pink square and stack
it on the orange building block that was just
stacked.

• Task 3: Place the toy in the drawer. The
drawer is closed. Therefore, the robotic arm
first needs to rotate and pull open the drawer.
Then, it should pick up the toy on the table
and place it into the drawer. Finally, close the
gripper to shut the drawer.

• Task 4: Clean building blocks to the box. The
robotic arm needs to put the building blocks
on the table into the box on the right side one
by one until there are no more building blocks
on the table.

Long-horizon tasks with high-level planner.
The settings are shown in 7.

• Task 5: Move the orange block to the basket.
The robotic arm needs to pick up the building
block next to the doll on the table and place it
into the box on the right side.

• Task 6: Open the drawer. The robotic arm
needs to rotate and grip the drawer handle,
and then move parallel to the right to open the
drawer.

• Task 7: Put the toy into it. The robotic arm
needs to pick up the toy in the middle and
place it into the open drawer.

• Task 8: Close the drawer. The robotic arm
needs to close the gripper and gently push
the open drawer to the left until the drawer is
closed.

• Task 9: Move semi-circle building-block to
basket. The robotic arm needs to pick up the
semi-circular building block and place it into
the basket on the right side.

• Task 10:Move rectangle building-block to bas-
ket. The robotic arm needs to pick up the
rectangle building block and place it into the
basket on the right side.

• Task 11: Get the plate and place it on the table-
cloth. The robotic arm needs to pick up the
pink plate from the upper part of the shelf on
the right side and then place it on the table-
cloth at the center of the table.

• Task 12: Flip the cup and place it on the table-
cloth. The robotic arm needs to go to the bot-
tom layer of the shelf on the right side, grip
the mug, then turn it over and place it on the
tablecloth in the middle of the table.

• Task 13: Move the bread to the plate. The
robotic arm needs to grip the bread from the
bread basket on the left side and place it on
the plate that was just taken down.
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Table 14: Understanding task: Evaluation on 6 Multimodal Understanding benchmarks and 7 VQA benchmarks.
We use bold to denote top-ranked methods.

Method
Multimodal Understanding Benchmarks VQA Benchmarks

MMMU MMStar MME OCRBench HallBench TextVQA DocVQA InfoVQA AI2D ChartQA MTVQA RealWorldQA

1:1 36.1 44.7 1426.9 691 36.2 72.6 82.9 54.0 65.382 62.6 10.0 57.9
3:1 35.3 45.3 1399.5 726 36.4 72.7 83.6 54.3 67.0 63.2 10.3 58.8
1:3 37.4 47.2 1435.2 729 39.9 71.2 83.3 53.3 67.6 59.9 11.5 57.0
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Figure 5: Comparison with Qwen2-VL on MMMUval.

Cross-skill multi-tasking. The settings are
shown in 8.

• Task 14:Put the soap to the soap box. This is a
bathroom task. The robotic arm needs to pick
up the soap from the left side of the washbasin
and place it into the soap dish on the right side
of the washbasin.

• Task 15:Pick up the cup and hang it on the
shelf. This is a bathroom task. The robotic
arm needs to pick up the cup from the sink
and hang it on the shelf in front of the mirror.

• Task 16:Pick up the tooth-paste and put it on
the table. This is a bathroom task. The robotic
arm needs to pick up the toothpaste from the
sink and place it on the table.

• Task 17:Remove the towel from the shelf.
This is a bathroom task. The robotic arm
needs to take down the towel hanging on the
shelf and place it on another towel.

• Task 18:Move the bread from the pot to the

plate. This is a kitchen task. The robotic arm
needs to pick up the bread from the pot and
place it on the plate.

• Task 19:Pick up the bread from the refriger-
ator. This is a kitchen task. The robotic arm
needs to find the bread in the refrigerator and
pick it up.

• Task 20:Move the banana onto the plate. The
robotic arm needs to pick up the banana at a
random position and place it on the plate in
the middle.

• Task 21: Move the bread to the empty plate.
The robotic arm needs to ignore the distrac-
tions, grip the bread, and then find the empty
one among the two plates in front of it, and
put the bread into that plate.

• Task 22:Hang on the cup. The robotic arm
needs to pick up the mug and hang it on the
shelf on the left side.

• Task 23:Move the tennis ball to the tennis can.
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Task 1 Sort toys

Task 2 Stack cubes

Task 3
Place the 
toy in the 
drawer

Task 4

Clean 
building 
blocks to 
the box.

Long-horizon tasks with direct prompting

Figure 6: Settings of Long-horizon tasks with direct
prompting

The robotic arm needs to pick up the tennis
ball and lift it up to place it into the tennis ball
can.

• Task 24:Stack the green cube onto the pink
cube. The robotic arm needs to pick up the
green cube on the right and stack it on top of
the square on the left side.

• Task 25:Take away the lid of the box and put it
on the table. The robotic arm needs to pick up
the lid that is covering the box on the left side
of the table and place the lid on the tabletop
in the middle.
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Task 5-8
Move the block to 
the basket then put 
the toy into the 
drawer.

Long-horizon tasks with high-level policy model

Task 5 Task 6

Move the orange 
block to the 
basket.

Open the drawer.

Task 7

Put the toy into it.

Task 8

Close the drawer.

Task 9-10
Move two blocks to 
the basket 
sequentially.

Task 9 Task 10

Task 11-13
Prepare the 
breakfast for me.

Task 11

Get the plate and 
place it on the 
tablecloth.

Task 13

Move the bread  
to the plate.

Task 12

Flip the cup 
and place it on 
the tablecloth.

Move semi-circle
building-block to 
basket.

Move rectangle 
building-block to 
basket.

Figure 7: Settings of Long-horizon tasks with high-level planner

Real robot multi-tasking

Task 14 Task 15

Put the soap to 
the soap box.

Pick up the cup 
and hang it on 
the shelf.

Task 16

Pick up the tooth-
paste and put it on 
the table

Task 17

Remove the 
towel from the 
shelf.

Task 18

Move the bread 
from the pot to 
the plate.

Task 19

Pick up the 
bread from the 
refrigerator.

Task 20

Move the banana 
onto the plate.

Task 22

Take away the lid of 
the box and put it 
on the table.

Task 21

Move the bread to 
the empty plate.

Task 24

Move the tennis ball 
to the tennis can.

Task 23

Hang on the cup.

Task 25

Stack the green 
cube onto the 
pink cube.

Figure 8: Settings of Cross-skill multi-tasking.
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