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Abstract

Grouped-Query Attention (GQA) is a widely
adopted strategy for reducing the computa-
tional cost of attention layers in large language
models (LLMs). However, current GQA con-
figurations are often suboptimal because they
overlook how context length influences infer-
ence cost. Since inference cost grows with
context length, the most cost-efficient GQA
configuration should vary accordingly. In this
work, we analyze the relationship among con-
text length, model size, GQA configuration,
and model loss, and introduce two innovations:
(1) we decouple the total head size from the hid-
den size, enabling more flexible control over
attention FLOPs; and (2) we jointly optimize
the model size and the GQA configuration to ar-
rive at a better allocation of inference resources
between attention layers and other components.
Our analysis reveals that commonly used GQA
configurations are highly suboptimal for long-
context scenarios. Moreover, we propose a
recipe for deriving cost-optimal GQA configu-
rations. Our results show that for long-context
scenarios, one should use fewer attention heads
while scaling up the model size. Configura-
tions selected by our recipe can reduce both
memory usage and FLOPs by more than 50%
compared to Llama-3’s GQA, with no degrada-
tion in model capabilities. Our findings offer
valuable insights for designing efficient long-
context LLMs.1

1 Introduction

It is well established that increasing the size of
large language models (LLMs) can improve their
language modeling qualities (Hestness et al., 2017;
Kaplan et al., 2020). Thus, many prior studies
have focused on minimizing model size while

1The code and models are available at https://www.
github.com/THUNLP/cost-optimal-gqa.

∗ indicates equal contribution.
† indicates corresponding authors.

maintaining quality to ensure cost-effectiveness
(Hoffmann et al., 2022; Hu et al., 2024; Abdin
et al., 2024). However, the vast majority of
LLMs are Transformer-based (Vaswani et al., 2017;
Grattafiori et al., 2024), and the cost of running
such architectures does not solely depend on the
model size. Specifically, during inference, a cache
of keys/values (i.e., KV cache) is maintained to
avoid recomputation in attention layers, resulting in
memory costs that scale linearly with the context
length. Also, attention layers include the computa-
tion of pair-wise attention scores and the weighted
summation of value vectors, incurring per-token
computational costs that scale linearly with the
context length. Many studies have aimed to re-
duce these costs, including KV cache compression
(Li et al., 2024a), prompt compression (Pan et al.,
2024; Li et al., 2024b), sparse attention (Lou et al.,
2024; Ge et al., 2024; Jiang et al., 2024), etc.

One of the most widely used techniques for re-
ducing memory costs is Grouped-Query Attention
(GQA) (Ainslie et al., 2023), in which attention
heads are split into groups and the heads in each
group share the same KV vectors. Current imple-
mentations of GQA have two critical limitations:
(1) Most existing models unnecessarily restrict the
total number of head dimensions to be equal to the
hidden size, resulting in redundant FLOPs (floating-
point operations). (2) When deciding on the num-
ber of attention heads and groups, current models
do not take into account the influence of context
length on the computational and memory costs, re-
sulting in suboptimal long-context configurations.

In this paper, we aim to optimize the cost-
effectiveness of GQA Transformers from the per-
spective of resource allocation. Concretely, we
categorize inference costs into time-invariant costs,
which are constant with respect to context length
(e.g., fixed model parameters), and time-variant
costs, which grow with context length (e.g., at-
tention computation and KV cache). To freely
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Figure 1: Our approach makes two changes to unlock the flexible adjustment of memory and compute allocation be-
tween time-invariant components (model weights) and time-variant components (KV cache/attention computation).
Optimizing resource allocation results in cost-optimal GQA configuration (“Ours”), which has markedly lower
memory and FLOPs usage compared to Llama-3, without compromising model capabilities.

control the resource allocated to time-variant and
time-invariant parts, we make two changes to the
existing GQA design procedures: (1) By decou-
pling the total number of head dimensions and the
model hidden size, we unlock a free hyperparam-
eter to control the compute allocated to attention
operations. (2) We jointly optimize GQA config-
urations and model size to modulate the resource
allocation between time-variant and time-invariant
components. After these changes, we can answer
our main research question:

Given an expected inference context
length and target loss, how can GQA be
configured to minimize inference costs
while achieving that loss?

To avoid sweeping all combinations of model
sizes and GQA configurations, we present a three-
step search procedure (detailed in Section 4).
Our approach is empirically validated on models
up to 1.2B parameters. Empirical results show
that the widely used Llama-3 GQA configuration
(Grattafiori et al., 2024) is highly suboptimal at
128K (which is the context length supported by
Llama-3). Instead, our approach gives a configu-
ration that achieves the same loss while reducing
inference FLOPs and memory usage by more than
50% (Figure 1 (right)).

The contributions of this paper can be summa-
rized by the following points:

• By decoupling the model hidden size from
the attention head number and jointly optimiz-
ing the model size and GQA configuration,
we can flexibly allocate memory and com-

pute resources among time-variant and time-
invariant components.

• We present the first rigorous study to search
for the optimal GQA configuration in terms
of inference costs for reaching a target loss.
Our three-step approach can precisely iden-
tify cost-optimal GQA configurations without
exhaustively sweeping many configurations.

• Our framework reveals valuable insights for
designing more cost-effective Transformer
LLMs, especially in long-context scenarios.

2 Related Work

This paper explores how to build efficient long-
context LLMs based on GQA Transformer. Please
refer to the LLM-related surveys (Zhao et al., 2023;
Lu et al., 2024) for more details on LLMs.

Grouped-Query Attention The original Trans-
former model employs multi-head attention (MHA)
(Vaswani et al., 2017), in which each layer consists
of multiple heads that are computed in parallel,
and the layer’s output is the sum of the heads’ out-
puts. To improve decoding efficiency, especially
improving memory efficiency, multi-query atten-
tion (MQA) (Shazeer, 2019) shares the weights
of all key and value projections among all heads,
significantly reducing KV cache size and memory
bandwidth requirements during autoregressive de-
coding. Grouped-query attention (GQA) (Ainslie
et al., 2023) extends this by partitioning heads into
groups where each group shares a common KV
projection. Formally, MHA is a variant of GQA
with independent KV projections per query head,
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Adjustable?
Notation Meaning Vanilla GQA This paper Constrained by

T Context length ✗ ✗ None

N Model size ✗ ✓ None
nh Attention head number ✗ ✓ None
nkv KV head number ✓ ✓ None

L Number of layers ✗ ✗ N and pre-defined aspect ratio (d/L)
d Model hidden size ✗ ✗ N and pre-defined aspect ratio (d/L)
dff FFN intermediate size ✗ ✗ dff ≈ 8d/3
dh Head size ✗ ✗ dh = 64
V Vocabulary size ✗ ✗ Pre-defined vocabulary

Table 1: Notations in the paper. We optimize more free hyperparameters, resulting in better cost-efficiency.

while MQA corresponds to the extreme where all
queries share one common KV projection. Recent
attention methods based on low-rank factorization,
such as MLA (DeepSeek-AI et al., 2024), can also
be viewed as variants of GQA. Hence, it can be
said that most of the current popular LLMs (Groen-
eveld et al., 2024; Biderman et al., 2023; Hu et al.,
2024; Grattafiori et al., 2024; Yang et al., 2025b)
are built based on GQA.

Efficient Long-Context Attention Attention
mechanisms pose a major bottleneck in long-
context settings due to high computational and
memory costs, especially from the KV cache. To
mitigate this, techniques like sparse attention (Lou
et al., 2024; Ge et al., 2024; Jiang et al., 2024),
prompt compression (Pan et al., 2024; Xiao et al.,
2024), and KV cache compression (Liu et al.,
2024; Hooper et al., 2024; Zhang et al., 2024;
Yao et al., 2024; Cai et al., 2024) have been pro-
posed. While these methods build on and optimize
GQA, they often compromise performance rela-
tive to vanilla GQA. Our work focuses on identi-
fying cost-optimal GQA configurations for long-
context scenarios through precise characterization
of model size, context length, and attention head
configurations in terms of their impacts on model
performance, computational cost, and memory cost.
The efficient long-context attention methods de-
scribed above remain orthogonal to our GQA archi-
tecture search and can be subsequently applied as
complementary optimizations to the cost-optimal
GQA structures. For more details on efficient long-
context attention methods, please refer to the sur-
veys (Yuan et al., 2024; Shi et al., 2024).

Scaling Laws for LLMs Recent studies on scal-
ing laws for LLMs (Hestness et al., 2017; Kaplan
et al., 2020; Hoffmann et al., 2022) have estab-
lished that model loss follows a log-linear rela-

tionship concerning model size and training data
size. They utilize this relationship to minimize
the model loss given a fixed training FLOPs bud-
get. However, there are two critical limitations: (1)
These works do not consider the influence of con-
text length on the computational and memory costs.
(2) These laws prioritize the optimal allocation of
compute during training, ignoring inference costs.
Although Sardana et al. (2023) supplement scal-
ing laws by accounting for total inference FLOPs,
their inference cost estimation ignores the influ-
ence of context length and memory usage during
inference. Our work extends these studies by ac-
counting for both the computational and memory
costs during inference and addressing the impact
of context lengths.

3 Preliminaries: Computational and
Memory Costs of GQA Transformers

In this section, we first briefly introduce GQA
Transformers (Ainslie et al., 2023) and describe
key model configurations and their impact on com-
putational and memory costs. Then, we provide a
more accurate formula for the computational and
memory costs of Transformer-based LLMs that
explicitly considers context length and can guide
the design of cost-optimal long-context LLMs. Ta-
ble 1 lists the main notations in this paper, and
Appendix A provides a more complete list.

3.1 GQA Transformers

A Transformer model consists of L layers, each
of which consists of an attention block and a feed-
forward network (FFN) block. For each layer, let
xi,yi ∈ Rd denote the i-th input and output em-
bedding, where d is the model hidden dimension.

Attention Blocks For each head in an attention
block, xi is first projected into query qi = xiWq ∈

5363



Component Parameters Per-token FLOPs

Input emb. dV 0
ATT proj. 2Lddh(nh + nkv) 4Lddh(nh + nkv)
ATT comp. 0 4LTnhdh
FFN 2Lddff 4Lddff
Output emb. 0 2dV

Table 2: Parameters and per-token FLOPs (forward
pass) of the main components in Transformers. “Input
emb.” and “Output emb.” represent the input and out-
put embedding layers, respectively, sharing the same
embedding weights. “ATT proj.” and “ATT comp.” rep-
resent the projection and computation processes of all
attention blocks, respectively.

Rdh , key ki = xiWk ∈ Rdh , value vi = xiWv ∈
Rdh , where dh is the head dimension, then the
attention head output is computed as

h̃i = softmax
(
qiK

⊤
i√

dh

)
ViW

⊤
o ∈ Rd, (1)

where Wq,Wk,Wv,Wo ∈ Rd×dh are learnable
projection matrices. K⊤

i =
[
k⊤
1 ⊕ · · · ⊕ k⊤

i

]
and

V⊤
i =

[
v⊤
1 ⊕ · · · ⊕ v⊤

i

]
are the KV cache for the

current attention head, where ⊕ denotes the con-
catenation along the sequence dimension. In MHA
Transformers, each attention block consists of nh

heads computed in parallel, and the final attention
output hi ∈ Rd is the sum of all head outputs. In
GQA, every nh/nkv query heads share the same
KV projection matrices, where nkv is the number
of KV heads.

FFN Blocks An FFN block is defined as

yi = σ
(
hiW

⊤
up

)
Wdown ∈ Rd, (2)

where Wup ∈ Rd×dff ,Wdown ∈ Rdff×d are learn-
able projection matrices and σ(·) is an element-
wise activation function.

Hyperparameter Constraints Let V denote
the vocabulary size and N denote the model
size. We assume that dh and V are fixed2, and
dff ≈ 8d/3, following common LLM design
choices (Grattafiori et al., 2024; Groeneveld et al.,
2024; Biderman et al., 2023). For each model size
N , we assume that the optimal aspect ratio d/L is
determined in advance (taken from Biderman et al.
(2023)), so each N corresponds to a unique pair
(d, L). Table 1 (right) lists these constraints.

2Keeping dh and V constant for varying model sizes is
a common practice. Examples include Llama-3 (Grattafiori
et al., 2024) and Qwen3 (Yang et al., 2025a).

Type Time-invariant Time-variant

FLOPs (Cinfer) 2N 4TLdhnh

Mem. (Minfer) N 2TLdhnkv

Table 3: The time-invariant and time-variant costs of
GQA Transformers during inference.

3.2 Inference Costs of GQA Transformers

Table 2 summarizes the number of parameters for
each component in the Transformer model and the
FLOPs associated with it. Table 3 summarizes the
memory and computational costs during inference.

Inference Computational Costs Cinfer(T ) is the
number of FLOPs used to process one token within
the context with T tokens. This is roughly given as

Cinfer(T ) = Cconst + Catt(T )

= 2N︸︷︷︸
Time-invariant

+4TLdhnh︸ ︷︷ ︸
Time-variant

, (3)

where Cconst denotes the “time-invariant FLOPs”,
the number of FLOPs invariant to the current time
step. Catt(T ) denotes the “time-variant FLOPs”,
which is the number of FLOPs used to compute the
attention softmax process.

Inference Memory Costs M(T ) is defined as
the memory required to process one token within
the context with T tokens. Ignoring the necessary
system overhead, we need to store the model pa-
rameters and the KV cache, which is roughly:

Minfer(T ) = N +Nkv(T )

= N︸︷︷︸
Time-invariant

+2TLdhnkv︸ ︷︷ ︸
Time-variant

, (4)

where N denotes the number of model parameters
and Nkv(T ) denotes the number of values in the
KV cache for the context with T tokens.

Takeaways As listed in Table 3, inference costs
can be split into four types: time-invariant FLOPs
and memory, and time-variant FLOPs and memory.
The time-invariant costs are directly proportional to
the model size (N ), while time-variant FLOPs can
be controlled by nh, and time-variant memory can
be controlled by nkv. Thus, adjusting N , nh, and
nkv permits fine-grained control over these four
kinds of costs. This analysis also implies that a
large model may have lower inference costs if its
time-variant costs are low enough.
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Training Costs Since this work mainly focuses
on minimizing inference costs, the calculation for
the training costs is left to Appendix C.

4 Method

Our objective is to find the GQA configuration that
minimizes inference costs while attaining a given
loss. We approach this by framing the problem as
balancing the time-variant and time-invariant costs.
In order to unlock the ability to flexibly allocate
different amounts of compute and memory to the
time-variant and time-invariant components, we
make two changes to existing GQA design proce-
dures: (1) We decouple the number of attention
heads from the model hidden dimension, and (2)
we jointly optimize the model size and the GQA
configuration. Figure 1 (left) shows the effect of
these two changes, and Table 1 shows the adjusta-
bility of different hyperparameters in this work
compared to vanilla GQA.

Change 1: Decoupling the Head Number from
the Hidden Dimension Most existing GQA
Transformers adopt nh × dh = d, which is ar-
bitrarily chosen in the original Transformer paper
(Vaswani et al., 2017). This is an unnecessary re-
striction, rendering GQA unable to adjust the time-
variant FLOPs. We decouple nh from d, unlocking
a free hyperparameter nh that controls the number
of FLOPs of attention blocks.

Change 2: Joint Optimization of Model Size
and GQA Configuration In addition to the time-
variant costs, we also want to control the time-
invariant costs (FFNs, attention QKV/output pro-
jections, etc.). Specifically, by reducing N , but
increasing nh, we can allocate more compute to
time-variant components. Similarly, we can allo-
cate more compute to time-invariant components
by increasing N and decreasing nh. This paper
aims to identify the optimal allocation of memory
and compute between the time-variant and time-
invariant components, by jointly tweaking the GQA
configuration (nh, nkv) and the model size N .

4.1 Cost-Optimal GQA Search

Objective Formulation With the ability to freely
adjust the time-variant and time-invariant costs, we

formulate the optimization objective as follows,

argmin
nh,nkv ,N

Z(T,N, nh, nkv)

s.t. L(T,N, nh, nkv) ≤ L∗

where Z = λMα
infer + (1− λ)Cβ

infer,

(5)

where L∗ is the target LM loss, L is the model loss,
λ ∈ [0, 1], α, β ∈ R control the trade-off between
compute and memory based on deployment con-
straints3. Setting λ = 1 minimizes only Minfer,
while λ = 0 minimizes only Cinfer. We refer to
Z as the hardware-aware cost. By default, we set
λ = 0.9, α = 1/2, β = 1/3 based on hardware
utilization tests in our environment. In other words,
the inputs to the optimization objective are (L∗, T )
and the outputs are (N,nh, nkv).

Influence of Context Length We empirically ob-
serve that the effect of context length T on loss L
is largely invariant to N , nh, and nkv (verified
in Section 5.7). This means we can train with
moderate context lengths (e.g., T = 8K) and ex-
trapolate the loss to longer contexts, saving pre-
cious computation resources. However, the influ-
ence of model size N and GQA head configuration
H = (nh, nkv) on loss is coupled and must be
jointly modeled. To this end, we adopt a three-step
procedure:

Step 1: Candidate Selection Define a candidate
set of attention configurations:

Hcand = {nh = 1, 2, 4, . . . ,max(d)/dh}
× {nkv = 1, 2, 4, . . . ,max(d)/dh}

s.t. nkv ≤ nh,

(6)

where max(d) is the hidden size of the largest
model used to fit scaling curves in step 2. We round
max(d)/dh to the nearest power of 2 if necessary.

Step 2: Scaling Curves Fitting For each H ∈
Hcand, we train a series of small-scale models with
varying N using a sufficiently long context length
(we use T = 8K), and fit the model loss using a
power-law scaling function4 as

L(N ;H) =
( a

N

)b
+ E, (7)

where a, b are configuration-dependent coefficients
and E is the “natural entropy of language”.

3Although Minfer and Cinfer have different measurement
units, (λ, α, β) allow us to control the importance of compute
and memory resources under a unified metric.

4We use the number of non-embedding parameters because
it produces more predictable scaling laws in our experiments.
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Step 3: Cost Minimization For each GQA con-
figuration H , we solve for the smallest model size
N∗(H) that satisfies the loss constraint as

N∗(H) =
a

(L∗ − E)1/b
. (8)

Then, we calculate the inference cost for each con-
figuration and select the one with the lowest cost

(N∗(H), H∗) = argmin
H

Z(T,N, nkv, nh). (9)

5 Experiments

We first explain the experimental settings (Sec-
tion 5.1). Then, we present the main results and
takeaways (Section 5.2), followed by the actual
cost-optimal GQA configurations derived using our
approach (Section 5.3) and an analysis of the influ-
ence of nh and nkv on LM loss (Section 5.4). After
that, we present the results for the setting where
total training FLOPs is aligned (Section 5.6). Fi-
nally, we verify that the effect of T on L is largely
independent of N and H (Section 5.7).

5.1 Experimental Settings

More details of the experimental settings are in
Appendix D, Appendix E, and Appendix F.

Model Configurations We adopt the popular
Llama-3 (Grattafiori et al., 2024) architecture. For
each GQA configuration, we train models from 3M
to 1.2B in size. We keep the model configurations
as close as possible to Biderman et al. (2023). We
have max(d)/dh = 32, this results in 21 candidate
configurations (i.e., |Hcand| = 21).

Data Configurations We use SlimPa-
jama (Soboleva et al., 2023) in our experiments.
It is a deduplicated version of the RedPajama
corpus (Weber et al., 2024) with 627B tokens.
In most of our experiments, we use a 20:1 ratio
between training data and model parameters, as
suggested by Hoffmann et al. (2022). Additionally,
we always ensure that each batch has 512K tokens.

Training Configurations We follow common
practices in most of our experiments. We use the
AdamW optimizer with the WSD learning rate
scheduler (Hu et al., 2024). We choose the max-
imum learning rate by sweeping different values
with the MHA model for each model size.

Expected inference context length (T )

L∗ 8K 16K 32K 64K 128K

3.0 32, 1 16, 1 8, 1 4, 1 4, 1
2.9 32, 1 16, 1 16, 1 8, 1 4, 1
2.8 32, 2 16, 1 16, 1 8, 1 8, 1
2.7 32, 4 16, 2 16, 1 16, 1 8, 1
2.6 32, 8 16, 4 16, 2 16, 2 8, 1
2.5 32, 16 16, 8 16, 4 16, 2 16, 2
2.4 32, 32 32, 32 32, 8 32, 8 32, 4

2.35 32, 32 32, 32 32, 32 32, 16 32, 8

Table 4: The cost-optimal GQA configuration (nh, nkv)
for different target loss L∗ and context lengths (T ),
while minimizing the hardware-aware cost (Z, see Sec-
tion 4.1). For reference, the loss of 1B, 3B, and 8B of
Llama-3 GQA is 2.615, 2.448, and 2.362, respectively.

5.2 Loss vs. Inference Costs
Here, we compare the loss-cost tradeoffs of dif-
ferent GQA configurations. Figure 2 reports the
results for a subset of Hcand, showing LM loss as
functions of various inference costs (Minfer, Cinfer,
and Z), with a context length of 128K tokens. To
save space, we report the result of other context
lengths in Appendix H.1.

Takeaway 1 We find that loss does not have a
simple relationship (e.g., power-plus-constant func-
tion) with either memory or computational costs.
However, it is possible to predict the loss by fitting
the loss as a function of N , then transforming the
fitted curves along the x-axis to account for the
time-variant costs. Fitting loss as a power-plus-
constant function of N is highly accurate, with R2

values over 0.999.

Takeaway 2 The commonly used Llama-3 GQA
configuration (i.e., H = d/dh, 8)5 is highly sub-
optimal at 128K context length. For instance,
Llama-3.2-1B uses this head configuration and sup-
ports 128K context length. At that length, using
H = (8, 1) and increasing the model size to 1.8B
would achieve the same loss (2.615) while reduc-
ing 50.8% and 57.8% inference memory and
FLOPs usage, respectively (shown in Figure 1
(right)). Alternatively, using H = 8, 1 can achieve
a loss that is 0.117 lower than Llama-3.2-1B with
the same per-token inference budget in terms of Z.

5.3 Cost-Optimal GQA Configuration
Table 4 reports the cost-optimal GQA for different
expected inference context lengths T and target

5We use “Llama-3 GQA” to refer to the GQA configuration
on Llama-3 and not the actual publicly released checkpoint,
which is trained on huge amounts of proprietary data.
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Figure 2: Loss as a function of inference costs with a context length of 128K, assuming we use BF16 for both
parameters and the KV cache. H = (nh, nkv) denotes the attention head configuration. nh and nkv have different
effects on the memory cost, computational cost, and loss. x-axis is in log scale.

losses L∗. When the target loss is high, the model
is small, making the time-invariant costs low. Thus,
the optimal configuration allocates more resources
to the time-invariant part by increasing N and re-
ducing nh and nkv. Similarly, when T is great,
the time-variant costs are high, making it more at-
tractive to reduce nh and nkv more aggressively.
The results also indicate that there is nothing espe-
cially attractive about the commonly used Llama-3
GQA configuration (d/dh, 8). For certain combi-
nations of L∗ and T , the GQA configuration is
cost-optimal. However, for a greater number of
combinations, it is sub-optimal. The result implies
that the configuration of GQA Transformers should
consider the expected inference context length. Di-
rectly applying the popular GQA configuration re-
sults in wasting hardware resources.

5.4 Influence of Query and KV Heads

Figure 3 shows the relationship between loss and
the number of query heads and KV heads (i.e.,
different GQA configurations), with a model size of
1.2B. Similar results are observed with other model
sizes as well. We emphasize two main takeaways.

Takeaway 1 The loss reduction by increasing
either nh or nkv exhibits diminishing returns. This
means that when nh or nkv is great, increasing
these hyperparameters to reduce loss may not be
worth the cost increase. We also found that they
exhibit a power-plus-constant relationship (details
in Appendix I).

Takeaway 2 Increasing nh reduces the loss more
than increasing nkv by the same amount, although
both of them cause the same parameter increase.
This means the nh is more important for model
expressivity. Having more query heads allows the

0 5 10 15 20 25 30
Number of query heads (nh)

2.60

2.65

2.70

2.75

Lo
ss

nkv = 1
nkv = 2
nkv = 4

nkv = 8
nkv = 16
nkv = 32

Figure 3: The loss for different number of query heads
(nh) and KV heads (nkv), with 1.2B model parameters.

Evaluation Metric H = 32, 8 H = 8, 1
(Llama-3 GQA) (Ours)

Train. throughput (tok/s) 18,655 31,260
Infer. throughput (tok/s) 12,921 20,643

Common-sense 45.7% 45.5%
NIAH (1-8K) 90.9% 96.9%
NIAH (16K) 30.4% 46.0%
NIAH (32K) 15.1% 18.7%
NIAH (64K) 6.1% 7.9%
NIAH (128K) 5.2% 6.7%

Table 5: The throughput of two GQA configurations at
128K context length, and their accuracy on common-
sense reasoning (average of 8 tasks) and retrieval tasks
(NIAH, varying context length). Although H = 8, 1
has more parameters (1.8B vs. 1.2B), it is much faster
for both training and inference.

model to capture a greater number of dependency
patterns. Meanwhile, having more KV heads pro-
vides more capacity to store information for each
token. The empirical results may indicate that the
former is more important for performance.

5.5 Downstream Performance

Now, we compare the cost-optimal configura-
tion against Llama-3 GQA in terms of train-
ing/inference throughput and downstream perfor-
mance. At T = 128K and L∗ = 2.615 (the loss
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Figure 4: Loss as a function of memory and computa-
tional costs, aligned by total training FLOPs at 128K
tokens. Each curve is trained with the same amount of
training compute.

of Llama-3 GQA at 1.2B model size), the cost-
optimal GQA configuration is H = 8, 1. Specif-
ically, we train two models, one with H = 32, 8
(Llama-3 GQA) and one with H = 8, 1. Train-
ing starts with a 4K context length on 20B tokens.
It is then trained with 128K context length for
1B tokens. More training details is given in Ap-
pendix J.1.

Training throughput is computed based on the
training time while inference throughput is mea-
sured with a batch size of 1 on one NVIDIA
A800 GPU (with T = 128K). For downstream
performance, we evaluate the models on zero-
shot common-sense reasoning (Gao et al., 2024)
and needle-in-a-haystack (NIAH) (Hsieh et al.,
2024), which are two widely used LLM bench-
marks (more details in Appendix J.2). The result
is shown in Table 5. One can see that the differ-
ences in common-sense reasoning and long-context
retrieval are rather small. Meanwhile, the cost-
optimal model (H = 8, 1) is much more efficient.

5.6 Aligning Training Costs

In the previous sections, the training data is always
20 tokens per parameter (i.e., the Chinchilla law).
This favors configurations that spend more FLOPs
per token. Instead, we can allow more compute-
efficient configurations to use more training data to
align the training costs of different configurations.

Figure 4 reports the result when we always train
with T = 128K6. We find that using fewer heads
is even more advantageous due to the additional
training data, resulting in a model with the same
loss but with 88% and 83% lower memory and
FLOPs usage.

6LMs are usually trained with short contexts most of the
time, so this result may not apply.

512 1K 2K 4K 8K 16K
Context Length (T )

−0.04

−0.02

0.00

R
el

at
iv

e
Lo

ss
D

iff
.

(∆
L) H = 1, 1

H = 2, 1

H = 4, 1

H = 8, 1

H = 16, 1

H = 2, 2

H = 4, 4

H = 8, 8

H = 16, 16

Figure 5: Relative loss difference between various GQA
configurations and the H = 1, 1 model, as a function of
context length T . Model size is 470M.
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model size and the 150M model, as a function of context
length T . These are MHA models.

5.7 Influence of Context Length
In this section, we empirically show that the re-
lationship between context length T and loss L is
largely invariant to N and nh when T is sufficiently
large. To this end, we measure the relative loss dif-
ference between various models and a “baseline”:

∆L(T ) = L(T )− Lbaseline(T )

Lbaseline(T )

Figure 5 shows the relative loss difference between
various GQA configurations with H = 1, 1 as the
baseline. Figure 6 shows this relationship when
varying N , with N=150M as the baseline. The
results show that the relative loss difference is rel-
atively flat when T > 8K (all fluctuations are less
than 1%). The main takeaway is that when apply-
ing our cost optimization procedure to longer con-
texts, we do not have to repeat step 2 (an expensive
process) with longer contexts since the loss change
of each model will remain roughly the same.

6 Conclusion

To optimize the allocation of FLOPs and memory
between time-invariant and time-variant compo-
nents of GQA Transformers, we first decouple the
number of attention heads from the model hidden
dimensions, enabling a more flexible distribution
of FLOPs and memory. Next, we refine the estima-
tion of computational and memory costs in existing
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approaches by incorporating context length. Our
findings reveal that typical configurations of GQA
are significantly suboptimal for specific context
lengths. Through detailed analysis, we provide
valuable insights for improving resource allocation
by jointly adjusting the model size and the num-
ber of attention heads. As the demand for greater
inference context lengths continues to grow, our
work marks a critical advancement toward efficient
long-context LLMs.

Limitations

Like most phenomena in neural language models,
we cannot be certain that the conclusions will hold
when the models are further scaled up. The power-
plus-constant scaling law is also not guaranteed,
although it has been empirically validated up to
hundreds of billions of parameters. Similarly, there
is no guarantee that these laws and our conclusions
will hold for an arbitrarily large amount of training
data. In general, we have kept our experiments
close to research conventions, and the scale of the
largest models in our experiments (i.e., 1.2B for
Llama-3 GQA and 1.8B for our cost-optimal GQA)
is comparable to some real-world LLMs.

We have not thoroughly ablated the influence
of all possible hyperparameters due to limited re-
sources. Some important hyperparameters that may
affect our conclusions include the head dimension,
vocabulary size, and model aspect ratio. More
extensive ablation studies are a promising future
research direction.

More recent LLMs have adopted even more
advanced techniques that complicate the calcula-
tions of inference costs. Some notable techniques
include speculative decoding, sparse mixture-of-
experts, and hybrid recurrence-attention models.
Applying our approach to such models remains a
promising area for future research.
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Notation Meaning

Model hyperparameters

V Vocabulary size, always set to 50,304.

L Number of layers

d Model hidden dimension

dh Head size, always set to 64.

dff FFN intermediate size, we always set dff =
8d/3.

σ The activation function in FFN

nh Number of attention heads

nkv Number of KV heads (or groups in GQA)

Inference and Training Costs

Cinfer The computational cost (in FLOPs) per for-
ward pass with a context length of T tokens.

Minfer The memory usage (in floating-point values)
of serving the model with a context length of
T tokens.

Ctrain The computational cost (in FLOPs) used to
train the model with a context length of T
tokens.

Mtrain The memory usage (in floating-point values)
of training the model with a context length of
T tokens.

Z Hardware-aware costs combining both Minfer
and Cinfer. Defined in Section 4.1.

Other parameters

T Context length

N Number of model parameters.

Dtrain Number of training tokens.

λ, α, β Hyperparameters controlling the importance
of memory and compute resources.

Table 6: List of notations used in the paper.

A Notations

For completeness, we provide a list of notations we
used in the paper, reported in Table 6.

B Discussions

What About Other Efficient Attention? This
paper primarily adjusts the allocation of compute
and memory usage by tweaking the model size
(controlled with L and d) and head configuration
(nh, nkv) in GQA, which is a rather simple method.
As mentioned, there are many techniques for im-
proving the efficiency of the attention layer, al-
though those have enjoyed less adoption. When us-
ing these techniques, the computational and mem-
ory costs may be considerably different, and some
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of our conclusions may not apply. Despite so, our
work is still a valuable improvement over existing
implementations of GQA.

Recently, Multi-head Latent Attention (MLA)
(DeepSeek-AI et al., 2024) was proposed as a
strong alternative to GQA for reducing the KV
cache size. During inference, MLA reformulates
the attention computation such that all heads share
a unified representation for keys and values. In this
case, our analysis still applies, since MLA can be
seen as a kind of GQA with a different head dimen-
sion (dh) and number of attention heads (nh, nkv),
and it uses a more complex function to generate
the QKV vectors.

What If Context Length Varies? The formulas
for computational costs (see Table 8) are affine
functions of T , so the expected costs are:

E(Cinfer(T )) = Cinfer(E(T ))
E(Minfer(T )) = Minfer(E(T ))

E(Ctrain(Ttrain)) = Ctrain(E(Ttrain))

E(Mtrain(Ttrain)) = Mtrain(E(Ttrain))

where Ttrain is the context length during training.
Hence, it suffices to compare the costs with the
expected context length.

Will the Findings Break Down When Scaling Up
the Model/Data Size? This is a never-ending ar-
gument against most neural architectural changes,
because no matter the scale of our experiments,
we can never be sure that the behavior holds for
larger scales. However, our experiments have al-
ready covered model sizes up to 1.2B, which is
already the size of some widely-used models at
the moment (Grattafiori et al., 2024; Yang et al.,
2025b). Empirically, it has been widely validated
that the scaling law is highly predictable to a good
extent beyond the largest model (e.g., Llama-3 ac-
curately predicted the loss of a 405B model with
experiments on model sizes up to 16B). Thus, we
are confident that our conclusions hold at least for
models up to 10B parameters.

B.1 How to Calculate the Costs of Models of
Arbitrary Sizes?

In step 3 of our procedure (proposed in Section 4.1),
we arrive at a critical model size N∗(H). It is a
real value, so it does not correspond to an actual
model configuration. To calculate the inference
costs (Minfer, Cinfer, Z) of a model of this size, we
need H and the aspect ratio of the model a = d/L.

N L d

1.2B 36 1536
1.8B 36 2048
4B 48 2560
6B 54 3072
13B 64 4096
33B 72 6144
64B 80 8192

Table 7: The pre-defined configurations used to calcu-
late the aspect ratio of arbitrarily sized models. For
models smaller than 1.2B, we use the configurations in
Table 9.

Cost Type Time-invar. Time-var.

Infer. FLOPs (Cinfer) 2N 4TLdhnh

Infer. Mem. (Minfer) N 2TLdhnkv

Train. FLOPs (Ctrain) 6DtrainN 12DtrainTLdhnh

Train. Mem. (Mtrain) 4N TdL

Table 8: The time-invariant and time-variant costs of
GQA Transformers during inference and training.

H is already given, which may be a function of
d. For the aspect ratio, we perform linear interpo-
lation between the nearest two pre-defined model
configurations. The pre-defined model aspect ratios
are given in Table 7. Then, we use binary search
to find the L that corresponds to N∗(H). We can
calculate d from L and a. Then, we calculate nh

and nkv from d and the specified configuration.
With all these values (non-integers) known, we can
calculate the model size as well as the inference
costs.

To produce an actual model in practice,
we suggest simply choosing the configuration
(N,nh, nkv) closest to the derived answer in step
3. The slight variations in the performance of the
resulting configuration are negligible compared to
the huge cost savings gained by selecting the cost-
optimal configuration using our approach.

C Training Costs of GQA Transformers

Training Computational Costs In addition to
inference costs, different head configurations also
result in different training costs, because the num-
ber of training FLOPs, Ctrain, is a function of Cinfer.
Following Kaplan et al. (2020), we estimate the
FLOPs of the backward pass as double the FLOPs
of the forward pass. Let Dtrain denote the number
of training tokens, Ti denotes the number of tokens
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preceding the i-th training token in the training
corpora, then the training FLOPs are:

Ctrain ≈ 3DtrainCinfer
(
T
)

(10)

= 6Dtrain(N + 2LTdhnh︸ ︷︷ ︸
Attention

), (11)

where T is the average value of {Ti|i =
1, · · · , Dtrain}. When all examples in the training
corpora are set to the constant length Ttrain, dur-
ing training, we have T = Ttrain/2. However, in
practice, when training long-context LLMs, it is
more common to use short contexts for most of
the time, and only use long contexts consisting of
a small number of tokens to adapt the model to
the target context length. Hence, the time-variant
FLOPs may only make up a small portion of the
training FLOPs, making the cost largely indepen-
dent of the GQA configuration. Consequently, our
paper considers training costs, but focuses more on
optimizing inference costs.

Training Memory Costs We only need to store
model parameters, activations, gradients, and opti-
mizer states during training. Assuming the widely-
used Adam (Kingma and Ba, 2015) optimizer with-
out offloading any storage to the CPU, the memory
cost is roughly:

Mtrain(T ) ≈ 4N + TdL︸︷︷︸
Activations

. (12)

While it is important to lower the cost of caching
activations when T is large, we do not have a free
hyperparameter to adjust this cost (like nh for com-
putational costs and nkv for memory costs). To
reduce the size of activations, we have to mod-
ify d and/or L, which either drastically changes
the model size or its aspect ratio. Either of such
changes leads to major consequences that are be-
yond the scope of this paper. Regarding the 4N part
of training memory cost, it is only dependent on
the total model size, so it suffices to minimize the
model size, which is already addressed in many ex-
isting works (Kaplan et al., 2020; Grattafiori et al.,
2024; Sardana et al., 2023).

D Model Configurations

Table 9 shows the configurations of the models
in our experiments for fitting the scaling law. In
general, we ensure that dh = 64, dff ≈ 8d/3
(rounded to the closest multiple of 32) when scal-
ing the model size, which is adopted from common

hyperparameters found in existing LLMs such as
GPT (Radford and Narasimhan, 2018) and Llama
(Grattafiori et al., 2024). We also ensure that the
aspect ratio d/L is similar to those used by exist-
ing modeling scaling works (Biderman et al., 2023;
Hoffmann et al., 2022; Yang et al., 2025b). We
use the GPT-2 tokenizer, which has a vocabulary
size of 50,304, and we tie the input and output
embeddings.

Learning Rate The maximum learning rate (LR)
is chosen by a grid search on {1×10i, 2×10i, 5×
10i | i = −3,−4,−5} with the vanilla MHA, and
choosing the one with best LM loss. Then, we just
keep the LR the same across different GQA config-
urations. While different configurations may have
different optimal LR, exhaustively sweeping all LR
for each configuration is prohibitively expensive.

Differences From Vanilla GPT Compared to
the vanilla GPT model (Radford and Narasimhan,
2018), we make the following changes to better
align with more recent LLMs:

• We use RoPE (Su et al., 2024) with a θ value
of 500,000, which is widely used in current
LMs (Grattafiori et al., 2024).

• We use SwiGLU FFN instead of the ReLU
FFN in GPT.

• We use pre-norm (Xiong et al., 2020) and use
RMSNorm (Zhang and Sennrich, 2019) in-
stead of LayerNorm (Ba et al., 2016), which
is more common in current LLMs. The ep-
silon in RMSNorm is 10−6.

• Our model has no bias terms or dropout,
which is also common practice and can
slightly increase the training efficiency.

E Data Processing

In most of our experiments, we used SlimPajama
(Soboleva et al., 2023). We append an EOS token
to each document in the corpus before chunking
the documents into the specified training length. If
the last chunk is shorter than the specified training
length, it will be discarded.

F Training Configurations

Here, we provide the default training configurations
we used during the experiments.
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Figure 7: The proportion of FLOPs allocated to different components in a Transformer LM, with multi-head
attention and RoPE. As the context length increases, most FLOPs are spent on the time-variant computation of the
attention operator σ(QK⊤)V, where σ is the row-wise softmax function.
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Figure 8: The proportion of memory allocated to different components in a Transformer LM, with multi-head
attention and RoPE. As the context lengths increase, most of the memory usage is spent on storing the KV cache.

Model size L d dh LR

3M 4 256 64 1e-3
19M 6 512 64 1e-3
85M 12 768 64 1e-3
150M 12 1024 64 1e-3
200M 16 1024 64 5e-4
470M 24 1280 64 5e-4
680M 24 1536 64 2e-4
1.2B 36 1536 64 2e-4

Table 9: The configurations of the vanilla models with
MHA in our experiments, we try to keep it as close
to the configurations from Biderman et al. (2023) as
possible.

• Optimizer: We use the widely-used AdamW
optimizer (Kingma and Ba, 2015), with β1 =
0.9, β2 = 0.95, and a weight decay of 0.1.
We only apply weight decay to linear layers,
which excludes the re-scaling factor in RM-
SNorm. We also use a gradient clipping value
of 1.0.

• Learning rate scheduler: We use the
warmup-stable-decay (WSD) LR scheduler

(Hu et al., 2024), with a maximum LR of
5 ·10−4, 10% warmup steps steps and 20% de-
cay steps. Warmup starts from 0 and increases
linearly to the maximum LR. The decay stage
uses a cosine annealing scheme, where the
minimum LR is 10% of the maximum LR.

• Batch size: 512K tokens.

• Floating-point precision: We use BF16 dur-
ing training and FP16 during evaluation.

Hardware All training experiments were run on
A800 GPUs, mostly with 8 GPUs.

G Memory and Compute Allocations by
Model Size

Figure 7 and 8 show the FLOPs and memory break-
down of different components as a function of
model size. One can see that changes in the model
size and/or context length can influence the allo-
cation of FLOPs and memory between different
components in the model. For instance, when
the context has 128K tokens, the vast majority of
FLOPs is spent computing the attention scores and
value summation (i.e., softmax

(
qiK

⊤/
√
dh

)
V),
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and the vast majority of memory is spent caching
KVs. With 1B model parameters, roughly 90% of
memory will be spent storing the KV cache, and
only 10% will be used to store the model param-
eters (assuming the KVs and model parameters
use the same precision). In other words, the time-
variant costs dominate the overall inference costs.
Thus, at this context length, we can minimize the
overall costs by allocating more resources to the
time-invariant components by increasing N and
decreasing nh and nkv.

H More Results: Loss vs. Inference Costs

Here, we provide the results for the relationship
between loss and inference costs for other context
lengths. The results are shown in Figure 9, 10, and
11. We can see that for shorter context lengths, the
gain of reducing nh or nkv is relatively small, but
the commonly used GQA (nkv = 8) configuration
is still suboptimal at 32K context length. At 1.2B
parameters, GQA uses more FLOPs and memory
than H = 8, 1. For longer context lengths such as
512K, we can achieve the same loss with less than
10% of the original memory usage by using fewer
KV heads, but a larger model (increasing N ).

H.1 Influence of Query and KV Heads for
Different Context Lengths

Here, we provide the supplementary results for
Section 5.4 for other context lengths (8K, 32K, and
512K). Similar to the previous section, a greater
context length means that the advantage of using
fewer heads is greater. In the following section, we
explicitly fit the relationship between loss and nh

and nkv with power-plus-constant functions.

I The Scaling Laws of Attention Heads

In this section, we show that one can predict the
loss for a certain head configuration using experi-
ments with a smaller number of heads. Specifically,
we find that—for the first time—the relationship
between loss and the number of attention heads
closely resembles a power-plus-constant function:

L(nh) = anb
h + c

where L is the LM loss, and a, b, c ∈ R are coef-
ficients. Figure 12 shows that this relationship is
observed with different model sizes. The concrete

functions for the curves are:

L = 0.579n−0.124
h + 2.473 (470M)

L = 0.398n−0.177
h + 2.583 (680M)

L = 0.301n−0.227
h + 2.622 (1.2B)

Since the larger model has a greater constant term,
this means that these curves will intersect at a cer-
tain point (at around nh = 8K). This is likely incor-
rect, since the 1.2B model has strictly more param-
eters than the other models (although at such large
values of nh, the relative difference in model size is
very small). This means that the fitted curves will
break down before nh = 8K. Fortunately, virtually
all LLMs with open weights have fewer than 128
heads, and the fitted curves are very accurate up
to 128 heads with R2 values over 0.999. Thus, we
conclude that the law is empirically accurate for
the vast majority of openly available LLMs.

Similarly, Figure 13 shows that this trend is con-
sistent across different context lengths. The fitted
curves are

L = 1.513n−0.039
h + 1.53 (T = 1K)

L = 1.436n−0.041
h + 1.53 (T = 2K)

L = 1.356n−0.044
h + 1.53 (T = 8K)

When nh approaches infinity, the model parameters
will be dominated by the attention projection matri-
ces (i.e., QKVO projections). Hence, they converge
to the same constant term, which is known as the
“natural entropy of language”. During curve fitting,
this constant term is chosen to minimize to fitting
error, and we arrive at 1.53. The R2 values of these
fits are over 0.999.

From these results, we conclude that this power-
plus-constant scaling law between loss and the
number of heads is exhibited independently of
model size and context length. One important im-
plication of this result is that increasing the number
of heads to improve model quality gives diminish-
ing returns. This means that beyond a certain point,
the loss reduction brought by further increasing the
number of heads is not worth the cost increase.

I.1 Constant Number of KV Heads
Some LMs (e.g., Llama-3 (Grattafiori et al., 2024))
keep the number of KV heads constant when scal-
ing up the model. Therefore, we also investigate
the relationship between LM loss and nh when nkv

is constant. Figure 14 shows this relationship with
different values of nkv and two model sizes. We
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Figure 9: Loss as a function of memory, computational, and hardware-aware (Z in Section 4.1) costs during
inference with a context length of 8K tokens.
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Figure 10: Loss as a function of memory, computational, and hardware-aware (Z in Section 4.1) costs during
inference with a context length of 32K tokens.
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Figure 11: Loss as a function of memory, computational, and hardware-aware (Z in Section 4.1) costs during
inference with a context length of 512K tokens.

discover that the relationship is still a power-plus-
constant law, but the fitted curves are notably less
accurate, with R2 values over 0.97. It is worth not-
ing that the increase in fitting error compared to
Section I) may be attributed to the use of a smaller
model (150M vs. 470M).

J Experimental Details: Downstream
Performance

This section provides details for Section 5.5.

J.1 Training

The training run for both the Llama-3 GQA and
H = 8, 1 (cost-optimal GQA) models are exactly

the same. It consists of two phases. The first phase
uses the same settings as the scaling experiments in
Section 5.1. After 20B tokens, we continue training
with 128K context length for 1B tokens, using new
optimer states. This phase uses a lower maximum
LR of 1e-5 for stability and to avoid catastrophic
forgetting.

J.2 Evaluation

Here, we provide more details regarding the down-
stream task performance evaluation in Section 5.5.
We use LM-Evaluation-harness (Gao et al., 2024)
for common-sense reasoning, and the needle-in-a-
haystack tasks from RULER (Hsieh et al., 2024).
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Figure 12: The relationship between LM loss and the
number of attention heads, fitted with a power-plus-
constant function. The training context length is 1K.
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Figure 13: The relationship between LM loss and the
number of attention heads, fitted with a power-plus-
constant function. The model size is 470M.

For both of these tasks, we evaluate the last four
checkpoints of the model, and report the average
score of it. This is for reducing the randomness in
the results.

Common-Sense Reasoning Tasks We use the
popular LM-Evaluation-Harness (Gao et al., 2024)
for evaluating common-sense reasoning capabil-
ities. We evaluate on the common-sense reason-
ing tasks specified by the official implementation,
which includes 9 tasks/datasets: ARC-Challenge,
ARC-Easy, BoolQ, HellaSwag, Lambada, PIQA,
SocialIQA, Wikitext, and Winograd. The scores
we report in Table 5 are the average accuracy score
(excluding Wikitext, which is evaluated with per-
plexity). When available, we use the normalized
accuracy scores instead of raw accuracy scores.

Retrieval Task We report the average accuracy
of the synthetic S-NIAH tasks from RULER (Hsieh
et al., 2024), which tests the model’s ability to re-
trieve a certain “needle” (i.e., some special infor-
mation) from a large body of irrelevant text.

J.3 Context Length Extension by
Post-Training

LLMs are typically trained on shorter sequences
in practice, followed by adaptation to longer con-
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Figure 14: The relationship between loss and nh when
nkv is constant. Model size is 150M.
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Figure 15: The loss curves of a model with 2K context
length adapted to 64K through post-training compared
to a model trained with 64K from scratch.

texts using a smaller amount of data tailored to
the target context length. To ensure the validity
of our conclusions in such training scenarios, we
adapted a checkpoint initially trained with a 2K
context length to a 64K context length through con-
tinual pretraining. This adapted model was then
compared to a model trained from scratch with a
64K context length. As illustrated in Figure 15, the
adapted model rapidly converges toward the per-
formance of the model trained from scratch with a
64K context length. This indicates that, with suffi-
cient post-training, the loss of the adapted model
approaches that of a model trained entirely from
scratch. Consequently, our findings regarding in-
ference costs and the relationship between loss,
context length, and head configuration remain ap-
plicable to post-training scenarios.

K AI Assistance in Research and Writing

We have used AI for code completion during im-
plementation and grammar-check during paper-
writing. We do not explicitly instruct AI to write
any part of this paper.
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