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Abstract

Graph Neural Networks (GNNs) have shown
immense potential in improving the perfor-
mance of large-scale models by effectively in-
corporating structured relational information.
However, current approaches face two key chal-
lenges: (1) achieving robust semantic align-
ment between graph representations and large
models, and (2) ensuring interpretability in the
generated outputs. To address these challenges,
we propose ExGLM (Explainable Graph
Language Model), a novel training framework
designed to seamlessly integrate graph and lan-
guage modalities while enhancing transparency.
Our framework introduces two core compo-
nents: (1) a graph-language synergistic align-
ment module, which aligns graph structures
with language model to ensure semantic con-
sistency across modalities; and (2) a Judge-
and-Improve paradigm, which allows the lan-
guage model to iteratively evaluate, refine, and
prioritize responses with higher interpretability,
thereby improving both performance and trans-
parency. Extensive experiments conducted on
three benchmark datasets—ogbn-arxiv, Cora,
and PubMed—demonstrate that ExGLM not
only surpasses existing methods in efficiency
but also generates outputs that are significantly
more interpretable, effectively addressing the
primary limitations of current approaches.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable success across various natu-
ral language processing tasks, including dialogue
generation (Aboussalah and Ed-dib, 2025), ma-
chine translation (Zhu et al., 2024), question an-
swering (Zhang et al., 2024), and text summariza-
tion (Zhang et al., 2025). These models exhibit an
impressive capacity for understanding and gener-
ating human-like text. However, LLMs face inher-
ent limitations in effectively modeling structured
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Figure 1: Overview of two mainstream methods (a) tex-
tualizing graph and inference via LLM and (b) aligning
the semantic representation of LLMs and GNNs.

knowledge, such as graphs, which are essential
for capturing complex relationships and dependen-
cies in diverse real-world domains like social net-
works, biological systems, and knowledge graphs.
To address these limitations, recent research has ex-
plored the integration of GNNs (Kipf and Welling,
2017; Hamilton et al., 2018; Velickovi¢ et al., 2018)
with LLMs (OpenAl et al., 2024; Yang et al.,
2024; DeepSeek-Al et al., 2025), leveraging GNNs’
strengths in modeling structured information along-
side LLMs’ powerful language capabilities, cre-
ating opportunities for enhanced performance in
graph-related tasks.

Current approaches (Yang et al., 2021; Zhao
et al., 2023; Xue et al., 2024) to combining GNNs
and LLMs can be broadly classified into two
categories. The first category involves textual-
izing graph structures and feeding them into
LLMs (Figure 1(a)). For example, some meth-
ods (Zhao et al., 2023; Wang et al., 2024; Chen
et al., 2024; Wu et al., 2025) describe nodes and
their relationships using natural language templates
to generate textual representations of subgraphs.
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Other approaches (Ye et al., 2024; Tang et al.,
2024) employ special tokens to represent nodes
and edges, effectively converting graph structures
into sequences compatible with LLM processing.
However, these methods have notable pitfalls: the
textualization process can result in the loss of struc-
tural information, and the sequential representa-
tions may fail to fully capture the intricate relation-
ships within the graph. Additionally, these methods
face scalability challenges due to the token length
constraints of LL.Ms, making them unsuitable for
handling large graphs with extensive neighborhood
information.

The second category of approaches (Chai et al.,
2023; Tang et al., 2024; Liu et al., 2024) focuses
on aligning the representation spaces of GNNs
and LLMs in the semantic domain (Figure 1(b)).
For instance, certain methods (Xia et al., 2024,
Huang et al., 2023, 2024; Guo et al., 2025) project
GNN-generated node embeddings into the embed-
ding space of LLMs to achieve semantic consis-
tency. Other techniques, such as those employing
attention mechanisms (Ying et al., 2021; Kuang
et al., 2022), integrate graph structure information
directly into the language model’s representations.
While these approaches improve the integration of
graph and language modalities, challenges remain.
The alignment process may not be optimal, lead-
ing to performance bottlenecks in tasks requiring a
precise understanding of graph structures and lan-
guage semantics. Moreover, such methods often
suffer from a lack of interpretability, making it dif-
ficult to elucidate how the model leverages graph
information to make decisions or derive outputs.

To address the limitations of existing approaches,
we propose ExGLM (Explainable Graph Lan-
guage Model), a novel framework designed to ef-
fectively and interpretably integrate graph struc-
tures with LLMs. Our framework introduces a
graph-language synergistic alignment module to
achieve semantic consistency between graph struc-
tures and LLM outputs, while also maintaining
interpretability. Specifically, we assign a textual at-
tribute to each node in the graph, describing its adja-
cent relationships, with different nodes represented
by special tokens. We then perform reasoning us-
ing the LLM and enhance its representation by
incorporating the graph representation into the hid-
den state. To further improve interpretability, we
propose a Judge-and-Improve paradigm where
the LLM evaluates and selects responses with bet-
ter interpretability. These optimized responses are

subsequently used to refine the GNN-LLM model.
Our main contribution can be summarized as
follows:

* We propose a novel graph-language synergis-
tic alignment module that effectively bridges
the gap between graph-structured data and
LLM outputs, ensuring robust semantic con-
sistency across modalities.

* We propose a Judge-and-Improve paradigm,
enabling the model to iteratively evaluate and
refine its responses for enhanced interpretabil-
ity and generation quality, thereby improving
both performance and transparency.

* We conduct comprehensive experiments on
multiple datasets, demonstrating the supe-
rior performance and effectiveness of our ap-
proach compared to existing methods.

2 Related Work

2.1 Graph-Large Language Models

LLMs (OpenAl et al., 2024; Yang et al., 2024;
DeepSeek-Al et al., 2025) achieve state-of-the-
art performance on various natural language tasks,
however, it lacks explicit mechanisms to effectively
model structured information, such as graphs. To
address this limitation, recent studies (Shu et al.,
2024; Tang et al., 2024) have explored ways to inte-
grate the benefits of GNNs into LLM-based frame-
works. For instance, Zhang et al. (2020) adapts the
self-attention mechanism of BERT (Devlin et al.,
2019) to capture the relational structure of nodes
and edges within a graph. However, its perfor-
mance is highly dependent on the presence and
quality of node features, which may limit its ap-
plicability when such features are sparse or noisy.
InstructGLM (Ye et al., 2024) leverages the nat-
ural language modeling capabilities of LLMs to
describe multi-scale geometric structures within
graphs, thereby improving representation and anal-
ysis of graph data. Nonetheless, it suffers from
token-length limitations, making it challenging
to process large graphs with extensive neighbor
information. Jin et al. (2024) propose a frame-
work named Graph-COT that enhances LLMs by
encouraging them to perform iterative reasoning
over graph structures. However, fine-tuning LLMs
within this framework remains challenging, and
potential misalignment between the graph structure
and the text attribution can lead to inaccuracies. An-
other recent work, PromptGFM (Zhu et al., 2025),
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explicitly prompts LLLMs to mimic the workflow
of GNNs within the text space, achieving natu-
rally alignment between graph representations and
textual modeling. While this approach improves
graph-text integration, it struggles to differentiate
between graphs with similar semantic structures.
In this work, we propose a novel graph-language
synergistic alignment module that aligns GNNs
and LLMs at both the text attribution and semantic
representation levels. This alignment enables seam-
less and effective incorporation of the strengths of
GNNs and LLMs.

2.2 Self-Judge-and-Improve Paradigm

The self-Judge-and-Improve paradigm highlights
the capacity of LLMs to autonomously evaluate
and enhance their own performance and capabili-
ties, thereby reducing dependence on external su-
pervision. This approach enables models to inter-
nally refine their understanding and outputs. For
instance, Self-Insturct (Wang et al., 2022) embod-
ies this paradigm through a two-step process to
improve instruction-following abilities. First, the
model generates sample outputs and evaluates them
using its internal mechanisms, filtering out sub-
optimal results. These filtered samples are then
leveraged to fine-tune the model. Similarly, Self-
Refine (Madaan et al., 2023) demonstrates how
LLMs can provide feedback on their own genera-
tions and use this feedback to optimize their out-
puts iteratively. Expanding on this concept, Yuan
et al. (2025) introduced self-rewarding language
models, wherein LLMs assign self-generated re-
wards to their outputs. Preference pairs selected
based on these rewards are then utilized to opti-
mize the models using DPO (Rafailov et al., 2023).
While these approaches effectively minimize ex-
ternal intervention, the quality of self-judgment is
inherently constrained by the performance of the
LLM. To address this limitation, we propose the
Judge-and-Improve paradigm, which incorporates
a superior language model to evaluate the gener-
ated outputs. By introducing an external judgment
mechanism, our approach enhances the reliability
and accuracy of evaluations, enabling more effec-
tive refinement of the model’s outputs.

3 Method

The training framework of our method, illustrated
in Figure 2, is composed of two key modules:
(1) Graph-language synergistic alignment mod-

ule and (2) Judge-and-Improve paradigm. The
graph-language synergistic alignment module en-
sures effective integration between the GNNs and
the LLMs by aligning textual attributes and se-
mantic representations, thereby maintaining consis-
tency across modalities. The Judge-and-Improve
paradigm operates in two stages: first, it generates
and selects accurate and explainable results through
prompting, creating a supervised fine-tuning (SFT)
and preference dataset; second, it uses these two
datasets to optimize the model, progressively en-
hancing both performance and interpretability.

3.1 Problem Setup

Graph structure. Generally, a graph can be for-
mally defined as G = (V,E, X), where V =
{v1,v2,...,v,} represents the set of nodes, F C
V' x V represents the set of edges, encoding pair-
wise relationships between nodes, and X € Rn>d
is the node feature matrix. Each z; € R% corre-
sponds to the feature vector of node v;, where d
represents the dimensionality of the node features.
Node classification with LLM. Consider a node
classification problem over a graph G = (V, E, X)),
where the goal is to assign one of k discrete class
labels to each node. Let Y = {1,2,...,k} denote
the set of class labels. The training data consists
of labeled examples (;,%;), where z; € R? rep-
resents the graph feature vector of node v; € V,
and y; € Y is the corresponding class label. The

objective is to learn a classifier f : X <, Y, such
that f(x;) accurately predicts the class label y; for
each node. In this work, we first derive textual attri-
butions 7}, of each node v, capturing its structural
and feature information in a textual format. We
then leverage both the graph structure and an LLM
to perform reasoning. Consequently, the classifi-

cation objective is refined to learning a classifier

—LLM
f:r GoLLM, 'y where T represents the textual

descriptions derived from the graph’s structural
and feature information. This approach integrates
the representational strengths of both GNNs and
LLMs, enabling a more semantically rich and pow-
erful node classification framework.

Classification with interpretability. In real-world
applications where interpretability is paramount,
it is essential for classification models to not only
make accurate decisions but also provide clear ex-
planations for those decisions. Therefore, our ulti-
mate goal is to train a classifier that not only per-
forms classification tasks but also generates an-
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Figure 3: Example of text attribution.

alytical content to elucidate its decision-making
process. This can be represented as a function

f:X G, Y, Analysis. where Analysis provides
the explanatory content.

3.2 Graph-Language Synergistic Alignment
Module

To effectively leverage both structural information
from graphs and textual attributes from LLMs, we
integrate GNNs and LLMs to obtain node repre-
sentations. To bridge the gap between these two
modalities, we propose a graph-language syner-
gistic alignment module. This module consists of
two core components:(1) Textual attribution of ad-
jacency relationships, which captures the textual
representation of graph structures. (2) Incorporat-
ing graph semantic information into textual attri-
bution, which enriches textual descriptions with
graph-based semantics. We detail these compo-
nents below.

Textual attribution of adjacency relationships.
We derive the textual attribution of each node
through a two-step process: (1) Subgraph sampling
for node information. In the context of large graphs,
subgraph sampling is crucial to mitigate computa-
tional complexity and enable scalable processing.
In this work, we adopt a k-hop sampling strategy
extract localized subgraphs centered around each
node. Specifically, for a central node v, we sam-
ple its neighbors within & hops, and represent it as
N v and N are then further utilized to derive
the textual attribution of adjacency relationships.

(2) Node description via text. For each cen-
tral node v, we construct multiple text descrip-
tions. Each description is represented as a tu-
ple T,: (task introduction, <node info>,
instruction). Here, task introduction pro-
vides a brief overview of the task, <node info>
contains textual descriptions of the central node’s
neighbors sampled from ¢-hop neighborhoods
(where 0 < ¢ < k, selected randomly), and
instruction specifies a task-related question tai-
lored to the node and its neighborhood information.
Specifically, in the <node info> part, each indi-
vidual graph node is represented by a special token
node; with its brief text descriptions description;.
Detailed examples are provided in Figure 3. This
approach enables the attribution of each graph node
to be naturally expressed in textual form, bridging
the structural information of graphs with the repre-
sentational capabilities of LLMs.

Incorporating graph semantic information into
textual attribution. Since the aforementioned
special tokens for each node cannot be effectively
represented by LLMs alone, we integrate them
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with representations derived from GNNs. To ob-
tain the representations of the GNNs, we adopt
GraphSAGE, which primarily consists of three
steps: neighbor sampling, message aggregation,
and node updating. For each node v, we sample its
m-hop neighbors and denote them as V'™ (v). In
this paper, we set m = 2 in all scenarios. For the
aggregation representation is calculated via mean-
pooling of neighborhood features:

O —
N MI()+1
)]
D W T I
ueN (™) (v)

in which hq()l_l) denotes the representation of
node v at layer (I — 1) Then each node is updated
via Nonlinear projection with learnable parameters
which is denoted as:

h) =g (W(l) - hglg)g) , 2)

WU is the layer-specific weight matrix, sigmal-)
denotes the ReLLU activation function, d¥) is the
dimensionality at layer [.

After obtaining th), we directly add it to the
LLM’s hidden states corresponding to the special
token v which is shown in Figure 2 left.

To achieve better alignment between the LLM
and GNN in the semantic space, we perform
joint training. First, we construct a dataset First
Datign = {(1v,Yy)},v € V, where YV, =
[c1,¢2, ..., cy] denotes the label sequence associ-
ated with node v. The alignment is achieved using
the Negative Log-Likelihood (NLL) loss function:

n
Lalign = — ZlogP (ct | e<t, Tv; O, Oann)

t=1

(3)

where 611\ denotes the parameters of the LLM,

and fgnN denotes the parameters of the GNN en-
coder.

3.3 Judge and Improve

Building upon the dual-projection constrained
mechanism, we achieve a deep collaboration be-
tween Graph Neural Networks (GNNs) and Large
Language Models (LLMs). Beyond mere decision-
making, providing reasonable and trustworthy anal-
yses significantly enhances the interpretability of

these decisions, which is crucial for various real-
world applications. To ensure the interpretability
of model decisions, we require the LLMs to not
only generate accurate answers but also provide
comprehensive explanations for their decisions.

However, we have observed that the explana-
tions generated by the LLMs are often suboptimal,
indicating a need for further training. Considering
the challenge of obtaining training data with anno-
tated explanations, we adopt a Judge-and-Improve
paradigm (Yuan et al., 2025) to enhance the inter-
pretability of the LLMs. Specifically, our approach
involves the following steps:

(1) Generating multiple responses: For a given
input, the LLM generates multiple responses, each
accompanied by an explanation.

(2) Judging quality: Superior LLM acts as a
judge to evaluate these responses, selecting the
one that is not only accurate but also provides a
reasonable explanation.

(3) Optimizing through annotated data: The gen-
erated responses and explanations are then used to
optimized the LLM, thereby improving the quality
of its explanations.

Responses generation. As illustrated in Figure 3,
we construct the text attributes of node v using a
tuple 7, (task introduction, <node info>,
instruction). To assemble a high-quality and
diverse dataset, we first replace the instruction with
several predefined instruction templates that convey
the same intent, denoted as 7. Subsequently, we
generate a response Y, or each 77 a set {(77,Y,)},
forallv e V.

Judging quality. We require the superior LLM
such as GPT-4 to evaluate the generated responses
based on three criteria: correctness of the response,
adherence to instructions, and reasonableness of
the explanation. If none of the samples meet all
three criteria, we repeat the response generation
procedure. Ultimately, for each 7T}, we obtain a
set of candidates (Y, _,Y, ,...,Y, ), wheren

Upest? ~ V17 °
denotes the number of generated responses.

Optimizing through annotated data. Build-
ing upon the generated responses, we construct
a supervised fine-tuning (SFT) dataset: D,y =
{(T},Y, },v €V, which aims to teach the LLM

Ubest
to learn the pattern of the best response. The loss
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is computed as follows:
n
Ly =— Y log P (c} | ¢y, T Lim, ann)

t=1
“)
where Y, = [l -+ » Chest, ] and best; denotes
the i-th token of the best response.
This procedure is trained alongside the align-

ment process, and the overall loss becomes:
Etotal =A1- ‘Calign + A2 Esft (5)

where \; and A2 denotes the hyperparameters.

Moreover, to enable the LLM to distinguish be-
tween good and bad responses, we construct a pref-
erence dataset: Dpre = {(T}, Yy, Yy )}, v €V
where Yv’poS denotes the best response (positive ex-
ample), and YU/neg denotes any other response (neg-
ative example) corresponding to the same input 7).
This dataset pairs each best response with its cor-
responding non-optimal responses for every node
velV.

We then utilize the preference dataset to optimize
the LLM using DPO loss:

,CDPO = 7E(Té’yvlpgs7y’l;neg)NDpre llog O'(

T le T{) T YU/ Té
1o PlT) (T \]
Tret (Y |Té) et (Y7, |T1ﬁ)

Upos Uneg

(6)

where 7.r denotes the reference model, which we
adopt as the model before DPO training, and 5 is a
hyperparameter.

4 Experiments

4.1 Experimental Setup

Datasets. We employ three graph datasets of
varying scales: Cora (Yang et al., 2016), PubMed
(Namata et al., 2012), and ogbn-arxiv (Hu et al.,
2020). For consistency, we adopt the dataset par-
titioning strategy introduced by (Ye et al., 2024).
The key statistics of these datasets are summarized
in Table 1.

Metrics. Following (Namata et al., 2012), we
use accuracy as the primary metric to evaluate
node classification performance. To assess the in-
terpretability of the generated outputs, we utilize
GPT-4 (Brown et al., 2020) as an automated eval-
uator. Additionally, to ensure a more robust and

Table 1: Statistics of the graph datasets used in our
experiment.

Dataset #Nodes #Edges
Cora 2,708 5,429
Pubmed 19,717 44,338
ogbn-arxiv 169,343 1,166,243

reliable assessment of interpretability, we comple-
ment this with a questionnaire-based survey, which
provides valuable human-centered insights (Sperrle
et al., 2021).

Baselines. We compare the proposed method
against three categories of existing approaches:
(1) GNN-based models, including GCN (Kipf
and Welling, 2017),GraphSAGE(Hamilton et al.,
2018),GAT(Velickovi¢ et al., 2018),TransGAT,
(Louis et al., 2020) etc.; (2) Transformer-
based models, such as Graphormer(Ying et al.,
2021),GT(Dwivedi and Bresson, 2021) and Coar-
Former (Kuang et al., 2022); and (3) LLM-based
models, such as InstructGLM (Ye et al., 2024).

Implementations. In our implementation, we
adopt LLaMA-7B (Touvron et al., 2023) and
LLaMA3.1-8B-Instruct (Touvron et al., 2023) as
the LLM backbones, and employ a two-layer
GraphSAGE network to learn graph representa-
tions. The output dimension of the final Graph-
SAGE layer is aligned with the hidden size of
the LLM backbones to enable seamless integra-
tion. When LLaMA3.1-8B-Instruct is used as the
backbone for InstructGLM, only minimal input
adjustments are made to meet its format require-
ments—for example, embedding dialogue tem-
plates and mapping node IDs to token IDs. During
the data generation and annotation stage, we em-
ploy Qwen2.5-7B-Instruct (Bai et al., 2023) to pro-
duce decision-analysis content for node classifica-
tion tasks. To control output randomness, we vary
the temperature parameter across multiple values,
thereby generating outputs of different qualities.
For each node, we generate five outputs to ensure
diversity. Additionally, we fix the node’s output
label and prompt Qwen2.5-7B-Instruct to produce
responses conditioned on the correct label, from
which we also sample five outputs. To improve an-
notation quality, we further utilize the more capable
Qwen2.5-72B-Instruct model (Bai et al., 2023) as
a “super annotator”, automatically refining and val-
idating the generated analyses. Model training is

5309



conducted on 8 A100 GPUs, with all experiments
run for 1-3 epochs.

4.2 Performance Comparison

Tables 2 compares the performance of various mod-
els on the Cora and PubMed datasets, showcasing
the effectiveness of different approaches.

Accuracy on Cora dataset. Among the GNN-
based methods, ACM-GCN+ achieves the best ac-
curacy on the Cora dataset (89.75%). Transformers-
based methods, on the other hand, generally exhibit
relatively lower performance. Notably, the hybrid
InstructGLM approach, which combines GNN and
LLM techniques, is the most comparable to our
method, achieving competitive performance with
an accuracy of 87.08% on Cora. In contrast, our
proposed method achieves 88.8% accuracy, sur-
passing all existing Transformers-based and GNN-
LLM-based approaches.

Accuracy on PubMed dataset. On the PubMed
dataset, InstructGLM sets a strong baseline with
the best performance among prior methods. Our
method outperforms all baselines, achieving a new
state-of-the-art accuracy of 94.6%. These results
highlight the superiority of our training framework.

Table 2: Accuracy on Cora and PubMed datasets.

Method Type Cora (%) PubMed (%)
MixHop GNN 75.65 90.04
GAT GNN 76.70 83.28
Geom-GCN GNN 85.27 90.05
SGC-v2 GNN 85.48 85.36
GraphSAGE GNN 86.58 86.85
GCN GNN 87.78 88.90
BernNet GNN 88.52 88.48
FAGCN GNN 88.85 89.98
GCNII GNN 88.93 89.80
RevGAT GNN 89.11 88.50
Snowball-V3 GNN 89.59 91.44
ACM-GCN+ GNN 89.75 90.96
Graphormer Transformers 80.41 88.24
GT Transformers 86.42 88.75
CoarFormer Transformers 88.69 89.75
InstructGLM GNN-LLM  87.08 93.84
ExGLM GNN-LLM 88.8 94.6

Accuracy on Ogbn-Arxiv dataset. Table 3 sum-
marizes the performance of various models on
the Ogbn-Arxiv dataset. Among traditional GNN-
based approaches, DRGAT achieves the highest
accuracy at 76.11%, outperforming simpler archi-
tectures such as GraphSAGE (74.35%) and GAT

(74.15%), which exhibit moderate performance.
Notably, methods that integrate large language
models (LLMs) with GNN frameworks surpass all
conventional GNN models, demonstrating the po-
tential of combining structured graph data with the
rich semantic understanding of LLMs. For instance,
InstructGLM achieves an accuracy of 76.42%, fur-
ther highlighting the effectiveness of this hybrid
approach. Our proposed method achieves the high-
est overall accuracy at 77.4%, setting a new state-
of-the-art performance on this task. This result
underscores the advantages of our framework in
effectively leveraging both graph structures and
textual information to improve predictive perfor-
mance.

Table 3: Accuracy on Ogbn-Arxiv dataset.

Method Type Accuracy (%)
GAT GNN 74.15
GraphSAGE GNN 74.35
GCN GNN 73.29
AGDN GNN 76.02
RvGAT GNN 75.90
DRGAT GNN 76.11
InstructGLM  GNN-LLM 76.42
ExGLM GNN-LLM 77.4

Table 4: Performance comparison with different LLMs.

Method Cora (%) PubMed (%)
InstructGLM (LLaMA) 87.08 93.84
Ours (LLaMA) 88.8 94.6
InstructGLM (LLaMA3) 88.01 94.17
ExGLM (LLaMA3) 89.30 94.42

Accuracy with Other LLMs. Table 4 compares
the performance of our proposed method against
InstructGLM on the Cora and PubMed datasets,
utilizing two different LLM backbones: LLaMA
and LLaMA3. Two key observations can be drawn
from the results: (1) Our method consistently out-
performs the baseline InstructGLM across both
datasets, regardless of the underlying LLM back-
bone. This demonstrates the robustness and ef-
fectiveness of our approach. (2) The use of a
more advanced backbone does not always guaran-
tee a significant performance improvement. While
both methods perform slightly better with LLaMA3
compared to LLaMA, the relative gain is marginal.
Notably, when applying LLaMA3, the performance
on the PubMed dataset drops slightly from 94.6%
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to 94.42%. This indicates that the integration mech-
anism and model design play a more critical role
than simply using a stronger LLM.

GPT-4 evaluation. To evaluate the different meth-
ods more comprehensively, we use GPT-4 as a
proxy for human judgment. Specifically, we task
GPT-4 with performing pairwise evaluations to se-
lect the better response based on three key criteria:
correctness of the response, adherence to instruc-
tions, and reasonableness of the explanation. The
evaluation results, presented in Table 5, demon-
strate that our method outperforms InstructGLM
on both datasets. The low performance of Instruct-
GLM may be attributed to its overfitting on the
dataset, which can lead to less fluent or less adapt-
able language generation. Additionally, the integra-
tion of DPO enhances overall performance on both
datasets.

Table 5: GPT-4 evaluation results with LLaMA?3 as base
model.

ExGLM vs. Dataset Win (%) Lose (%)
Cora 81.61 0

InstructGLM PubMed 9245 0
Cora 8.46 6.80

EXGLM (WoDPO) p, = 1 <1 4un

Link Prediction. To evaluate the generality of our
approach, we further extended it to the link predic-
tion task. For this purpose, we modified the Cora
and CiteSeer datasets by removing the nodes orig-
inally included in the node classification test set,
thereby constructing new graphs for model training.
The edges connected to these removed nodes were
then used as prediction targets. In all experiments,
the ratio of positive to negative samples was fixed
at 1:1, and training was conducted for three epochs.
As shown in Table 6, our model achieved link pre-
diction accuracies of 95.40% on Cora and 76.14%
on CiteSeer, indicating the strong generalization
capability of our method.

Table 6: Accuracy for Link Prediction Tasks.

Method TYPE Cora CiteSeer
InstructGLM GNN-LLM 92.49 66.88
OURS GNN-LLM 9543 76.14

4.3 Interpretability

DPO influence for accuracy. In the Judge-and-
Improve paradigm, DPO is utilized to priori-

tize generations that exhibit better interpretability.
However, it remains essential to evaluate how this
prioritization affects reasoning accuracy. The re-
sults presented in Table 7 demonstrate that enhanc-
ing interpretability does not compromise accuracy
and may even lead to improvements in reasoning
performance.

Table 7: Ablation study of DPO with LLaMA as base
model.

Method Cora (%) PubMed (%)
ExGLM w/o dpo 88.92 94.85
ExGLM 90.03 94.75

A showcase. We present a showcase in Figure 4
to illustrate the interpretability of our method in
comparison with GNN-based approaches. While
GNN-based methods provide explanations for their
reasoning through attention weights, these weights
may not accurately capture the underlying infer-
ence process and can be challenging for humans to
interpret. In contrast, our method generates natural
language explanations directly, thereby enhancing
comprehensibility and interpretability. More cases
can be found in the appendix.

Human evaluation. We aim to evaluate whether
the use of DPO in the Judge-and-Improve paradigm
enhances interpretability. However, assessing in-
terpretability is challenging due to the lack of a
standardized metric. To address this, we conducted
a human evaluation. Specifically, we designed
a questionnaire involving 20 human participants,
each answering 20 questions. Participants were
asked to select the response they deemed more in-
terpretable based on three key criteria: coherency,
logical consistency, and factuality. The results of
this evaluation, presented in Table 8, demonstrate
the effectiveness of our approach. The baseline In-
structGLM suffers from overfitting on the training
dataset, which harms its language generation capa-
bilities and limits its ability to provide meaningful
explanations.

Table 8: Human evaluation results with LLaMA3 as
base model.

ExGLM vs. Dataset Win (%) Lose (%)
Cora  100.00 0

InstructGLM p pvied 10000 0
Cora 23.25 13.75

EXGLM (W/o DPO) p i 1eq 975 9.50

Discussion on Plausibility versus Faithfulness
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Attention Weight

([Task] node classification [Node] A Parallel Genetic Algorithm for the Set Partitioning Problem
[Label Set] theory, reinforcement learning, genetic algorithms, neural networks, probabilistic methods, case based, rule learning

ExGLM Analysis

genetic algorithms

The article “<node_id> A Parallel Genetic Algorithm for the Set
Partitioning Problem” is connected to ” <node_id> A Survey of Parallel
Genetic Algorithms” and ” < node_id > Genetic Algorithms for

Combinatorial Optimization: The Assembly Line Balancing Problem” Lid

through a citation. The article ” < node_id > A Parallel Genetic Algorithm
for the Set Partitioning Problem” is a follow-up to the survey article, which
discusses the application of genetic algorithms to the set partitioning
problem. The article ” < node_id > A Survey of Parallel Genetic Algorithms”
provides a comprehensive overview of the topic, and the article ” < node_id >
Genetic Algorithms for Combinatorial Optimization: The Assembly Line
Balancing Problem” is a specific example of the application of genetic
algorithms to a real-world problem. The article ” < node_id > A Parallel
Genetic Algorithm for the Set Partitioning Problem” is a theoretical
contribution to the field, which builds upon the foundations established by
the survey article and the other articles in the genetic algorithms category.

an encoding
/crossover pair

\_ makes ...

Genetic

Therefore, the article should be classified as "genetic algorithms”.

Figure 4: A show case of explanation provided by (left) GNN-based method and (right) ExGLM.

within Interpretability. In terms of interpretabil-
ity, this paper focuses on the trade-off between
plausibility and faithfulness. The study is situ-
ated in a recommendation scenario involving node
classification, where both prediction results and ex-
planations are presented directly to end-users. As
illustrated by the examples in the Appendix, pro-
viding intuitive, coherent, and logically consistent
explanations helps improve user acceptance and
engagement with the recommendations. Therefore,
the current experiment emphasizes plausibility to
enhance comprehensibility and persuasiveness at
the application level. Regarding faithfulness, al-
though complex scenarios such as medical diagnos-
tics require strict tracing of the model’s decision
path, the decision logic in our citation network node
classification task is relatively straightforward: the
model relies on the node’s own features and the
structure of its neighbors for inference. This pro-
cess aligns with the explanatory basis we focus on
in terms of factuality. Thus, the requirement for
faithfulness is relatively limited in the current task.
We intend to conduct further research on faithful-
ness mechanisms in more complex scenarios in
subsequent work.

5 Conclusion

This work investigates how to better leverage LLMs
for reasoning with structured data. Concretely,
we aim to address two main limitations identi-
fied in recent studies: cross-modality alignment
and interpretability. We propose a novel train-
ing framework named ExGLM, within which a
graph-language synergistic alignment module is

introduced to ensure semantic consistency across
modalities. Additionally, we introduce a Judge-and-
Improve paradigm that adopts a superior language
model to evaluate and select generated responses
with better interpretability. The selected data is sub-
sequently utilized to optimize the reasoning model.
Experiments across various scenarios demonstrate
the effectiveness of our approach, showcasing its
potential to advance reasoning with structured data.

6 Limitations

While our work achieves promising results, there
are several limitations that warrant attention. First,
the effectiveness of the Judge-and-Improve module
depends heavily on the performance of the supe-
rior language model used for evaluation. If the
evaluating model introduces biases or provides in-
accurate assessments, the refinement process may
be suboptimal, potentially constraining the overall
improvement of the target model’s outputs. Sec-
ond, the current framework does not implement the
judgment-and-improvement process iteratively. It-
erative refinement, which involves multiple rounds
of evaluation and optimization, could further en-
hance the quality and robustness of the model’s
outputs. However, this remains an unexplored av-
enue and is left for future work.
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A Implementation Details and Hyperparameters
A.1 Neighbor Node Sampling

We employed node sampling in two components of the graph—language synergistic alignment module: (1)
textual attribution, and (2) GNN representation learning. For textual attribution, node-level attributions
were derived by randomly sampling neighboring nodes within 1-3 hops. For GNN training, subgraph
information was collected by sampling nodes within a fixed 2-hop neighborhood to enable efficient
representation learning.

A.2 SFT and DPO

During the SFT phase, we perform a grid search over learning rates {1 x 107°,3 x 107°,8 x 107°} and
batch sizes {8, 16,32, 64}, training for 1-3 epochs. In the DPO (Rafailov et al., 2023) phase, we use a
smaller learning rate in the range of 1 x 1076 to 5 x 1076 and fix the batch size to 8. For LLM training in
both the SFT and DPO stages, we adopt LoRA-based fine-tuning.

Table 9: Full hyperparameter settings.

Stage Hyperparameter Value
Number of GraphSAGE layers 2
Model Backbone b, | GraphSAGE hidden size (dim) 4096
. Textual attribution hop sampling 1-3
Graph Sampling GNN node representation hop sampling 2
Temperature 0.1,0.3,0.5,0.7, 1.0
. Outputs per node (unconditioned) 5
Generation Outputs per node (conditioned) 5
Max length 1024
SFT Phase Learning rate 1x107°,3x107°,8x 10°°
Batch size 8, 16,32, 64
Epochs 1-3
A1 0.99
A2 0.01
Max length 1024
DPO Phase Learning rate 1x1076-5x1076
Batch size 8
weight_decay 0.05
beta 0.1
lora_alpha 16
dropout 0.05
Lora lora_r 16

B Analysis of Multi-turn Judge-and-Improve Paradigm

We conducted an additional round of judge-and-improve on the outputs from the first iteration of the
model. However, the results exhibited minimal improvement, and in some cases, certain anomalies became
more pronounced. For example, with complex subgraphs, the model tended to produce excessively long
interpretations, often overemphasizing the description of connections between nodes, as illustrated in
Table 10. We posit that, unlike aligning LL.Ms with broader human preference patterns, the explanation
style for node classification tasks is inherently more uniform—primarily focusing on node attributes and
local subgraph structures. Consequently, a simpler feedback loop proves to be more intuitive and effective
in this context.
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Table 10: Examples of overemphasizing the description of connections between nodes

"Expected Mistake Bound Model for On-Line Reinforcement Learning" is connected to "On the Applicability
of Neural Network and Machine Learning Methodologies to Natural Language Processing" through a citation.
The paper "On the Applicability of Neural Network and Machine Learning Methodologies to Natural Language
Processing" is connected to "Visualizing High-Dimensional Structure with the Incremental Grid Growing Neural
Network" through a citation. The paper "Visualizing High-Dimensional Structure with the Incremental Grid
Growing Neural Network" is connected to "Exploration in Machine Learning" through a citation. The paper
"Exploration in Machine Learning" is connected to "Issues in Using Function Approximation for Reinforcement
Learning" through a citation...

\.

C Details of Human Evaluation

For each dataset, we sampled 400 instances as test cases and distributed them among 20 human participants.
As there are no strict quantitative criteria for coherence or logical consistency, evaluators were primarily
asked to assess: (1) whether the explanation was reasonable, (2) whether any semantic inconsistencies
were present, and (3) whether the given instructions were strictly followed. For factuality, we focused
on two aspects: first, whether the inferred conclusions were consistent with the ground-truth labels; and
second, whether the descriptions of node information and subgraph structures accurately reflected the
underlying data.

D Case Study

We provide illustrative examples of both high-quality and low-quality cases.
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Table 11: Some accurately predicted showcases.

Questionl :

Classity the article according to its topic into one of the following categories:[theory, reinforcement learning,
genetic algorithms, neural networks, probabilistic methods, case based, rule learning]. Node represents academic
paper with a specific topic, link represents a citation between the two papers. Pay attention to the multi-hop link
relationship between the nodes.

Input

(<Node_index>,An Experimental and Theoretical Comparison of Model Selection Methods on simple model
selection problems, the) is connected with (<Node_index>,Algorithmic Stability and Sanity-Check Bounds for
Leave-One-Out Cross-Validation ), (<Node_index>,Toward Efficient Agnostic Learning ), (<Node_index>,A
Fast, Bottom-Up Decision Tree Pruning Algorithm with Near-Optimal Generalization ), (<Node_index>,Towards
Robust Model Selection using Estimation and Approximation Error Bounds ), (<Node_index>,Rigorous Learning
Curve Bounds from Statistical Mechanics ), (<Node_index>,Characterizing the generalization performance
of model selection strategies ), (<Node_index>,Model Selection based on Minimum Description Length ),
(<Node_index>,A Bound on the Error of Cross Validation Using the Approximation and Estimation Rates,
with), (<Node_index>,Preventing "Overfitting" of Cross-Validation Data ), (<Node_index>,A New Metric-Based
Approach to Model Selection ) within one hop. Which category should (<Node_index>,An Experimental and
Theoretical Comparison of Model Selection Methods on simple model selection problems, the) be classified as?
Please answer classification result in the first line.

Then provide accurate and critical explanation.

Ground truth label:

theory

Response from ExGLM:

theory

The article "An Experimental and Theoretical Comparison of Model Selection Methods on simple model selection
problems" is classified as "theory" because it compares and analyzes different model selection methods, which is
a theoretical approach. The article discusses the experimental and theoretical aspects of model selection, which is
a key aspect of theoretical research in machine learning and data science.

Question :

Classify the article according to its topic into one of the following categories:[theory, reinforcement learning,
genetic algorithms, neural networks, probabilistic methods, case based, rule learning]. Node represents academic
paper with a specific topic, link represents a citation between the two papers. Pay attention to the multi-hop link
relationship between the nodes.

Input

(<Node_index>,Explanations of Empirically Derived Reactive Plans ) is connected with (<Node_index>,Using
a Genetic Algorithm to Learn Strategies for Collision Avoidance and Local Navigation ), (<Node_index>,AN
ENHANCER FOR REACTIVE PLANS ), (<Node_index>,LEARNING CONCEPTS BY ASKING QUESTIONS
), (<Node_index>,Improving Tactical Plans with Genetic Algorithms ), (<Node_index>,Learning Sequential
Decision Rules Using Simulation Models and Competition ), (<Node_index>,Simulation-Assisted Learning by
Competition: Effects of Noise Differences Between Training Model and Target Environment ) within one hop.
Which category should (<Node_index>,Explanations of Empirically Derived Reactive Plans ) be classified as?
Please answer classification result in the first line.

Then provide accurate and critical explanation.

Ground truth label:

genetic algorithms

Response from ExGLM:

theory

The article "Explanations of Empirically Derived Reactive Plans" is connected to "Using a Genetic Algorithm to
Learn Strategies for Collision Avoidance and Local Navigation" within one hop. This suggests that the article
is related to genetic algorithms, which are a type of optimization technique that uses a population of solutions
to find the best solution to a problem. The article likely discusses the application of genetic algorithms to the
problem of planning reactive behaviors in robots.
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Table 12: Some accurately predicted showcases.

Questionl :

Classify the article according to its topic into one of the following categories:[theory, reinforcement learning,
genetic algorithms, neural networks, probabilistic methods, case based, rule learning]. Node represents academic
paper with a specific topic, link represents a citation between the two papers. Pay attention to the multi-hop link
relationship between the nodes.

Input

(<Node_index>,Discretization of continuous attributes using ReliefF ) is connected with
(<Node_index>,Estimating Attributes: Analysis and Extensions of RELIEF ), (<Node_index>,Estimating
Attributes: Analysis and Extensions of RELIEF ), (<Node_index>,Naive Bayesian classifier within ILP-R ),
(<Node_index>,Induction of decision trees using RELIEFF ), (<Node_index>,SFOIL: Stochastic Approach to
Inductive Logic Programming ), (<Node_index>,Machine learning in prognosis of the femoral neck fracture
recovery examples, estimating attributes, explanation ability,), (<Node_index>,0Overcoming the myopia of
inductive learning algorithms with RELIEFF ), (<Node_index>,Induction of decision trees and Bayesian
classification applied to diagnosis of sport injuries ), (<Node_index>,Context-sensitive attribute estimation in
regression ),......, (<Node_index>,A counter example to the stronger version of the binary tree hypothesis ),
(<Node_index>,Irrelevant Features and the Subset Selection Problem ), (<Node_index>,Naive Bayesian classifier
within ILP-R ), (<Node_index>,Discretization of continuous attributes using ReliefF ), (<Node_index>,Stochastic
search in inductive concept learning ), (<Node_index>,Prognosing the Survival Time of the Patients with
the Anaplastic Thyroid Carcinoma with Machine Learning ) within two hops. Which category should
(<Node_index>,Discretization of continuous attributes using ReliefF ) be classified as?

Please answer classification result in the first line.

Then provide accurate and critical explanation.

Ground truth label:

rule learning

Response from ExGLM:

rule learning

The article "Discretization of continuous attributes using ReliefF" is connected to "Estimating Attributes: Analysis
and Extensions of RELIEF" and "Induction of decision trees using RELIEF" through a citation. The article
discusses the use of ReliefF, a rule learning algorithm, to discretize continuous attributes in a dataset. The article
is connected to other papers that discuss the application of rule learning algorithms in machine learning, such as
"Induction of decision trees and Bayesian classification applied to diagnosis of sport injuries" and "Overcoming
the myopia of inductive learning algorithms with RELIEF". The article is also connected to papers that discuss
the use of rule learning algorithms in other domains, such as "Stochastic search in inductive concept learning" and
"Prognosing the Survival Time of the Patients with the Anaplastic Thyroid Carcinoma with Machine Learning".
The article is connected to other papers through citations, indicating that it is a key contribution to the field of rule
learning.

Table 13: Bad case: The inferred conclusion is inconsistent with the label

Question1 :

Classity the article according to its topic into one of the following categories:[theory, reinforcement learning,
genetic algorithms, neural networks, probabilistic methods, case based, rule learning]. Node represents academic
paper with a specific topic, link represents a citation between the two papers. Pay attention to the multi-hop link
relationship between the nodes.

Input

(<Node_index>,Learning in Boltzmann Trees ) is connected with (<Node_index>,Decimatable Boltzmann
Machines vs. Gibbs Sampling ), (<Node_index>,Boltzmann Machine learning using mean field the-
ory and linear response correction ), (<Node_index>,Boltzmann Chains and Hidden Markov Models
), (<Node_index>,Unsupervised learning of distributions on binary vectors using two layer networks ),
(<Node_index>,Exploiting Tractable Substructures in Intractable Networks ) within one hop. Which cate-
gory should (<Node_index>,Learning in Boltzmann Trees ) be classified as?

Please answer classification result in the first line.

Then provide accurate and critical explanation.

Ground truth label:

neural networks

Response from ExGLM:

neural networks

The article "Learning in Boltzmann Trees" is connected to "Decimatable Boltzmann Machines vs. Gibbs
Sampling" within one hop. This suggests that the article is related to probabilistic methods, specifically Boltzmann
machines and Gibbs sampling. The article is likely to discuss the application of Boltzmann machines and Gibbs
sampling in learning, which is a key aspect of probabilistic methods.
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Table 14: Bad case: It is coherent but has unclear logic. It describes too much structural information and cannot
draw a conclusion quickly

Questionl :

Classity the article according to its topic into one of the following categories:[theory, reinforcement learning,
genetic algorithms, neural networks, probabilistic methods, case based, rule learning]. Node represents academic
paper with a specific topic, link represents a citation between the two papers. Pay attention to the multi-hop link
relationship between the nodes.

Input

(<Node_index>,Data Analyses Using Simulated Breeding and Inductive Learning Methods ) is connected with
(<Node_index>,Genetic Algorithm Programming Environments ), (<Node_index>,Geometric Comparison of
Classifications and Rule Sets* ), ... (<Node_index>,Automatic Parameter Selection by Minimizing Estimated
Error ), (<Node_index>,Induction of One-Level Decision Trees ), (<Node_index>,Using Real-Valued Genetic
Algorithms to Evolve Rule Sets for Classification ), (<Node_index>,Putting the Genetics back into Genetic Algo-
rithms ), (<Node_index>,Surgery ), (<Node_index>,An Evolutionary Approach to Combinatorial Optimization
Problems ), (<Node_index>,A Stochastic Search Approach to Grammar Induction ) within two hops. Which
category should (<Node_index>,Data Analyses Using Simulated Breeding and Inductive Learning Methods ) be
classified as?

Please answer classification result in the first line.

Then provide accurate and critical explanation.

Ground truth label:

genetic algorithms

Response from ExGLM:

genetic algorithms

The paper "Data Analyses Using Simulated Breeding and Inductive Learning Methods" is connected to "Genetic
Algorithm Programming Environments" and "Geometric Comparison of Classifications and Rule Sets" through a
citation relationship. The paper discusses the use of genetic algorithms to analyze data and make predictions,
which is a key aspect of genetic algorithm programming. The paper is also connected to "Actively Searching for
an Effective Neural-Network Ensemble" through a citation relationship, which suggests that the paper may be
related to the use of neural networks in genetic algorithm programming. The paper is also connected to "Using
Decision Trees to Improve Case-Based Learning" through a citation relationship, which suggests that the paper
may be related to the use of decision trees in genetic algorithm programming. The paper is also connected to
"Discovering Complex Othello Strategies Through Evolutionary Neural Networks" through a citation relationship,
which suggests that the paper may be related to the use of neural networks in genetic algorithm programming.
The paper is also connected to "Every Niching Method has its Niche: Fitness Sharing and Implicit Sharing
Compared" through a citation relationship, which suggests that the paper may be related to the use of niching
methods in genetic algorithm programming. The paper is also connected to "Solving Combinatorial Problems
Using Evolutionary Algorithms" through a citation relationship, which suggests that the paper may be related to
the use of evolutionary algorithms in genetic algorithm programming. The paper is also connected to "Multivariate
Decision Trees" through a citation relationship, which suggests that the paper may be related to the use of decision
trees in genetic algorithm programming. The paper is also connected to "Analysis of Neurocontrollers Designed
by Simulated Evolution" through a citation relationship, which suggests that the paper may be related to the use
of genetic algorithms in the design of neural controllers. The paper is also connected to "Evolution in Time and
Space: The Parallel Genetic Algorithm" through a citation relationship, which suggests that the paper may be
related to the use of parallel genetic algorithms in genetic algorithm programming.
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Table 15: Bad case: The node information is described incorrectly. During training, the model attempted to
memorize the node behind the special token but introduced deviations. In this particular example, the target
classification node corresponds to *Bayesian Probability Theory: A General Method for Machine Learning’ rather
than ’Theory of Mind.’

7~

Questionl :

Classity the article according to its topic into one of the following categories:[theory, reinforcement learning,
genetic algorithms, neural networks, probabilistic methods, case based, rule learning]. Node represents academic
paper with a specific topic, link represents a citation between the two papers. Pay attention to the multi-hop link
relationship between the nodes.

Input

Node represents academic paper with a specific topic, link represents a citation between the two papers. Pay
attention to the multi-hop link relationship between the nodes. <Node_index> is connected with <Node_index>
within one hop. Which category should <Node_index> be classified as?

Please answer classification result in the first line.

Then provide accurate and critical explanation.

Ground truth label:

probabilistic methods

Response from ExGLM:

theory

The article "Theory of Mind" is connected to "Reinforcement Learning" within one hop. This suggests that the
article is related to the field of reinforcement learning, which is a subfield of machine learning that deals with
the design of algorithms that can learn from positive and negative reinforcement. The article’s title and content
suggest that it is discussing the theory of mind, which is a concept in cognitive psychology that deals with the
understanding of other people’s mental states and beliefs. The article’s connection to reinforcement learning
suggests that it is discussing the theory of mind from a machine learning perspective, which is a reasonable
classification.
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