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Abstract

Instruction tuning (IT) improves large lan-
guage models (LLMs) by aligning their out-
puts with human instructions, but its suc-
cess depends critically on training data qual-
ity, and datasets such as Alpaca often con-
tain noisy or suboptimal examples that under-
mine fine-tuning. Prior selection strategies
score samples using general-purpose LLMs
(e.g., GPT), leveraging their strong language
understanding yet introducing inherent biases
that misalign with the target model’s behavior
and yield unstable downstream performance.
Influence-based methods address this by es-
timating each example’s marginal contribu-
tion to overall performance, but they typi-
cally assume additive contributions and there-
fore overlook higher-order interactions among
samples. To overcome these limitations, we
propose JI2S, a novel framework that jointly
models both marginal and combinatorial influ-
ences within sample groups. Applying JI2S
to select the top 1,000 most influential exam-
ples from Alpaca, we fine-tune LLaMA2-7B,
Mistral-7B, and LLaMA2-13B and evaluate
them on Open LLM Benchmarks, MT-Bench,
and GPT-4–judged pairwise comparisons. Our
experiments show that JI2S consistently outper-
forms full-dataset training and strong baselines,
highlighting the value of capturing joint influ-
ence for high-quality instruction fine-tuning.
We provide our code in this GitHub repository.

1 Introduction

Instruction tuning (IT) (Brown et al., 2020; Long-
pre et al., 2023; Zhang et al., 2023) has emerged as
an effective technique for enhancing the instruction-
following capabilities and controllability of large
language models (LLMs). However, a major chal-
lenge of IT is the acquisition of high-quality in-
struction data (Zhang et al., 2023). Alpaca, a pio-
neering open-source instruction dataset (Taori et al.,
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2023), adopts the self-instruct strategy (Wang et al.,
2023) to automatically generate 52k instruction-
output pairs using a powerful language model (text-
davinci-003 (Brown et al., 2020)). While Alpaca
provides large-scale data, the fact that all instruc-
tions are automatically generated by the model
inevitably results in some inaccuracies and low-
quality examples (Zhang et al., 2023; Chen et al.; Li
et al., 2024). In contrast, LIMA manually curates
1k high-quality instruction examples (Zhou et al.,
2024), resulting in better model performance than
Alpaca. This finding underscores that the quality of
instruction data is more important than its quantity
(Gunasekar et al., 2023; Javaheripi et al., 2023).
However, manually constructing such high-quality
datasets is time-consuming and labor-intensive. As
an alternative, a promising approach involves se-
lecting a small, high-quality subset from larger in-
struction datasets.

To select high-quality data, Alpagasus (Chen
et al.) employs GPT-3.5 as a teacher model to
score each instruction in the Alpaca dataset, filter-
ing out 9,000 top-ranked samples. DEITA (Liu
et al.) leverages GPT-3.5’s capabilities (Achiam
et al., 2023) to distill two independent scoring mod-
els that assess the complexity and quality of in-
struction data, while also implementing a diversity
strategy to ensure the selection of both high-quality
and diverse instruction samples. However, research
has shown that GPT-based scoring exhibits sys-
tematic biases, including positional bias, verbosity
bias, and self-enhancement bias (Zheng et al., 2023;
Wang et al.). These methods rely heavily on GPT’s
internal knowledge, with limited attention to the
actual impact of the data on model performance.
Although effective in specific experimental settings,
they suffer from limited interpretability and poor
generalization ability (Diddee and Ippolito, 2024).

As an alternative, influence-based methods have
leveraged gradient information to estimate the in-
fluence of individual samples on a model (Ham-
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Figure 1: The impact of different sample samples (A, B,
A ∪ B) in the training data on model performance, with
detailed experimental details provided in B.1.

moudeh and Lowd, 2024; Koh and Liang, 2017;
Pruthi et al., 2020), enabling a more comprehen-
sive evaluation of data quality. Xia et al. (2024)
further adapt the conventional influence calculation
formula to ensure compatibility with the Adam
optimizer, thereby selecting the most appropriate
instruction data for downstream tasks based on in-
fluence metrics. However, conventional influence-
based methods primarily focus on marginal influ-
ences, approximating the overall effect of a dataset
by simply summing the contributions of individual
samples. This approach fails to account for data
redundancy and complex, non-additive interactions
among samples (Koh et al., 2019; Guu et al., 2023;
Chai et al., 2024). As illustrated in Figure 1, our toy
experiment on samples A, B and their union (A∪B)
shows that the joint influence is non-negligible and
cannot be fully explained by the marginal contri-
butions alone, highlighting the need for a more
holistic influence estimation framework.

In this work, we introduce JI2S (Joint Influ-
ence–Aware Instruction Data Selection), an instruc-
tion data selection framework that explicitly ac-
counts for joint influences among data points to
identify a subset of high-quality instruction sam-
ples. Inspired by discrete derivative (Tsai et al.,
2023; Fumagalli et al., 2023), we extend tradi-
tional influence calculation formula to incorpo-
rate both marginal and joint influence. In practice,
we estimate instruction data influence using the
LIMA dataset as a proxy test set, which is manu-
ally curated to represent human-aligned evaluation
criteria. To reduce computational overhead, we
fine-tune models with LoRA and estimate influ-
ence based on the gradients of the low-rank adap-

tation matrices (Hu et al., 2021; Aghajanyan et al.,
2021). To further verify the effectiveness of our
method, we apply our algorithm to the Alpaca in-
struction dataset and evaluate its performance on
LLaMA2-7B (Touvron et al., 2023), Mistral-7B
(Jiang et al., 2023), and LLaMA2-13B (Touvron
et al., 2023), using pairwise comparisons (Li et al.,
2024), MT-Bench evaluations (Zheng et al., 2023),
and Open LLM benchmarks. Our contributions are
summarized as follows:

• We propose an influence analysis algorithm
grounded in discrete derivative, designed to cap-
ture non-additive joint influence among groups
of data samples.

• We demonstrate the shortcomings of marginal in-
fluence and propose JI2S, a joint influence–aware
instruction selection framework that leverages
the LIMA dataset as a proxy for human pref-
erence to improve the quality and reliability of
selected data.

• We validate the efficacy of JI2S by fine-tuning
LLaMA2-7B, Mistral-7B, and LLaMA2-13B on
the selected subsets, and evaluate them via pair-
wise comparisons, MT-Bench, and Open LLM
benchmarks.

2 Related Work

2.1 Data Selection for LLM
High-quality instruction datasets form the founda-
tion of effective instruction fine-tuning (Longpre
et al., 2023; Ma et al., 2025), prompting exten-
sive efforts within the community to develop and
optimize such resources. Taori et al. (2023) con-
struct a large-scale instruction dataset (Alpaca) by
leveraging the text-davinci-003 model and the Self-
instruct strategy (Wang et al., 2023). However, this
dataset is prone to errors and low-quality samples.
To improve this, AlpaGasus (Chen et al.) employs
a powerful teacher model (GPT-3.5) to evaluate and
score each instruction in Alpaca. Similarly, DEITA
(Liu et al.) leverages GPT-3.5 to distill scoring
models for instruction complexity and quality, and
selects samples with a diversity-aware strategy to
improve model training and generalization. Zhao
et al. (2024) achieve remarkable results by selecting
data solely based on instruction length. While these
approaches aim to improve data quality through
model-based evaluation or heuristic selection, they
largely overlook the impact of data on the model it-
self, resulting in limited generalization (Diddee and
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Ippolito, 2024). To address this limitation, LESS
(Xia et al., 2024) quantifies the impact of data on
downstream tasks using gradient information, pri-
oritizing instruction data that maximally enhances
model performance. However, this approach fails
to account for higher-order joint influence among
data points.

2.2 Estimating the Influence of Instructions
for LLM

Influence computation measures the effect of re-
moving an individual training sample on a model’s
prediction for a given test example (Hammoudeh
and Lowd, 2024; Koh and Liang, 2017; Pruthi
et al., 2020). Exact leave-one-out (Cook et al.,
1982; Feldman and Zhang, 2020) retraining is
too costly, so gradient-based approximations like
TracIn (Pruthi et al., 2020) are commonly used.
TracIn leverages first-order information from the
model’s training trajectory to approximate each
point’s contribution to the test loss.

Concretely, consider a model with parameters θt

at iteration t, trained by stochastic gradient descent
(batch size 1, learning rate ηt). A first-order Taylor
expansion of the test loss L(z′, θ) around θt yields

L(z′, θt+1) ≈ L(z′, θt) + (θt+1 − θt)⊤∇θL(z′, θt).
Since θt+1 = θt−ηt∇θL(z, θt) for the training

sample z, the incremental change in test loss is

∆Lt = L(z′, θt+1)− L(z′, θt)
≈ −ηt∇θL(z, θt)⊤∇θL(z′, θt).

The cumulative influence of the training sam-
ple z throughout the training process is computed
as the sum of its contributions to the loss at each
checkpoint:

InfSGD(z, z
′)≈ −

T∑

t=1

ηt∇θL(z, θt)⊤∇θL(z′,θt).

Since language models typically employ the
Adam optimizer (Zhao et al.), parameter updates
incorporate momentum, adaptive variance scaling,
and bias correction. Following Xia et al. (2024),
we replace the simple gradient term with the actual
per-sample parameter update Γ(z, θt) induced by
Adam. The resulting influence estimate becomes

InfAdam(z, z
′) ≈ −

T∑

t=1

ηt Γ(z, θ
t)⊤∇θL(z′, θt),

which naturally captures both the unique direction-
ality and magnitude adjustments of Adam’s update
rule.

3 Estimating the Joint Influence of
Instructions

In this section, we introduce a method to quantify
the joint influence among training samples based
on the concept of discrete derivative. After formu-
lating the general discrete derivative, we introduce
an efficient approximation to overcome its expo-
nential computational cost.

The discrete derivative quantifies higher-order
interactions among training samples by compar-
ing the test sample loss when multiple points are
jointly included in training to the sum of their
individual marginal contributions. Formally, let
K ⊆ Dtrain denote a subset of samples of interest
and S ⊆ Dtrain \K denote a background sample
set. Let L(z′, θtS∪K) denote the test loss when the
model is trained on S ∪ K. Then, for each sub-
set W ⊆ K, we compute the loss using models
trained on S ∪W , and aggregate the results via the
inclusion–exclusion principle:

∆L(K, z′) =
∑

W⊆K

(−1) |K|−|W | L
(
z′, θtS∪W

)
.

This formulation provides a principled way to
quantify the joint effect of multiple training points
on test performance. However, its practicality is
limited by exponential complexity: computing a
k-th order discrete derivative requires evaluating
2k subsets. For applications such as selecting the
1,000 most representative training samples, eval-
uating the full 1,000th-order derivative becomes
infeasible.

To make the computation tractable, we focus on
second-order joint influence—interactions between
pairs of samples. For K = {zi, zj}, the discrete
derivative reduces to:

∆L(K, z′) = L
(
z′; θtS

)
− L

(
z′; θtS∪zi

)

− L
(
z′; θtS∪zj

)
+ L

(
z′; θtS∪{zi,zj}

)
.

Assuming small parameter update steps (as typ-
ical in training), we apply a second-order Taylor
expansion to estimate the change in test loss at
iteration t:

∆L(K, z′) ≈ η2t Γ(zi, θ
t)⊤Hz′Γ(zj , θ

t),

where Hz′ denotes the Hessian matrix of the loss
function evaluated at the test point z′, and Γ(zi, θ

t)
and Γ(zj , θ

t) represent the adam parameter updates
induced by training samples zi and zj at iteration
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Figure 2: Illustration of our approach. We compute marginal and joint influence scores from gradient-based features
with respect to the LoRA parameters of the LLM, and use these scores to identify representative training samples.

step t, respectively. Detailed derivation steps are
provided in A.

To capture the dynamics of the entire training
process, we compute the second-order influence
at each iteration and aggregate over the entire pro-
cess. The resulting second-order joint influence is
expressed as:

Inf2Adam(K, z′)≈−
T∑

t=1

η2t Γ(zi, θ
t)⊤Hz′Γ(zj ,θ

t).

4 Methodology

In this section, we present a detailed overview of
the JI2S architecture. Figure 2 illustrates the main
components and workflow of JI2S.

4.1 Overview of JI2S

The core idea of JI2S is to quantify the marginal
and joint influence of individual training samples
to model performance using influence-based met-
rics. Instruction datasets typically lack dedicated
test splits, which prevents training samples from
being directly evaluated through influence compu-
tation. To address this, JI2S employs influence-
based metrics on a proxy evaluation set, using the
high-quality LIMA dataset as Dtest. Based on com-
puted influence scores, training samples in Dtrain
are ranked, and the most impactful examples are
selected for inclusion.

4.2 Detailed Procedure

The JI2S pipeline consists of four sequential stages:

1. LoRA Warm-Up on 5% Sample We begin
by uniformly sampling 5% of the original train-
ing set Dtrain and fine-tuning the base model us-
ing Low-Rank Adaptation (LoRA). This warm-
up phase yields intermediate model parameters θt,
which approximate the gradient directions observed
during full-data training. This approach signifi-
cantly reduces the computational cost associated
with gradient-based influence estimation, while pre-
serving representational fidelity.

2. Gradient Extraction At each training iter-
ation t, we extract the gradient features of both
training samples (zi ∈ Dtrain) and high-quality
reference samples (z′ ∈ Dtest) in the LoRA pa-
rameter space to facilitate the estimation of in-
fluence functions. As LoRA still involves a con-
siderable number of trainable parameters, to miti-
gate the high dimensionality of LoRA’s parameter
space, we project each feature vector into an 8,192-
dimensional subspace via random sampling.

3. Influence Computation We quantify each
training sample’s impact using a unified metric
that captures both marginal (first-order) and joint
(second-order) influence effects. Specifically, the
influence of a sample zi is

Inf(zi) =
T∑

t=1

ηt

(
−
∑

z′∈Dtest

Γ(zi, θ
t)⊤∇L(z′, θt)

+ λ
∑

zj∈Dtrain

zj ̸=zi

Γ(zi, θ
t)⊤HDtestΓ(zj , θ

t)

)
,

where ηt is the learning rate at iteration t, λ is a
hyperparameter used to control second-order joint
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Table 1: Performance comparison of all models on the Open LLM benchmarks (left) and MT-Bench evaluation
(right). Bolded data indicates optimal performance and underlined data indicates suboptimal performance.

Model Average ARC HellaSwag MMLU Winogrande MT-Bench
Base model: LLaMA2-7B
Alpaca-52k 63.34 54.35 79.44 47.35 72.22 3.39
LIMA-1k 64.40 56.57 81.97 44.86 74.19 3.61
AlpaGasus-1k 63.21 55.46 80.52 44.95 71.90 3.58
DEITA-1k 62.33 53.24 79.68 45.60 70.80 3.34
JI2S-1k 64.62 56.31 81.18 47.58 73.40 3.66
Base model: Mistral-7B-v0.1
Alpaca-52k 67.70 58.87 82.91 54.74 74.26 4.63
LIMA-1k 72.36 63.74 85.26 61.82 78.61 5.27
AlpaGasus-1k 72.20 64.25 84.36 61.43 78.77 5.03
DEITA-1k 72.10 64.85 84.45 60.97 78.14 5.14
JI2S-1k 72.52 64.16 84.86 61.44 79.63 5.40
Base model: LLaMA2-13B
Alpaca-52k 67.11 59.47 83.12 54.12 71.74 –
LIMA-1k 70.09 63.39 85.14 55.63 76.24 –
AlpaGasus-1k 68.34 61.77 83.19 54.91 73.48 –
DEITA-1k 67.84 59.21 83.44 55.02 73.69 –
JI2S-1k 69.65 63.99 83.61 54.92 76.09 –

influence, and HDtest is an approximate Hessian
on the proxy evaluation set.

This formulation captures two aspects of sample
influence. The first term quantifies the marginal
influence of zi, measuring its aggregated contribu-
tion to the test loss across all examples in Dtest.
The second term models joint influence, reflecting
pairwise interactions between zi and each other
training sample zj ∈ Dtrain, reflecting how their
combination influences test performance.

4. Sample Ranking and Final Selection After
computing the Inf(zi) scores, we rank all training
samples in ascending order, whereby lower scores
correspond to greater influence on the model’s per-
formance. Subsequently, subject to computational
constraints, we select the top-K samples according
to this ranking for further utilization.

By incorporating both marginal and joint influ-
ence signals, JI2S distills large instruction datasets
into compact, high-quality subsets. This enables
more effective and interpretable data selection tai-
lored to model performance.

5 Experiment

5.1 Experiment Setup

We employ the Alpaca dataset as our primary train-
ing corpus, which contains approximately 52,000

instruction-response pairs generated by a pretrained
language model. This dataset is widely used for
instruction-tuning tasks. To investigate the impact
of data quality on model performance, we introduce
the LIMA dataset as a test set. LIMA comprises
1,000 high-quality instruction-response samples
carefully curated by human annotators. Our ex-
periments evaluate three mainstream open-source
models, LLaMA2-7B, LLaMA2-13B, and Mistral-
7B, to comprehensively assess performance varia-
tions across different model architectures.

During the warm-up phase, we perform LoRA
fine-tuning on 5% of the training data for four
epochs. We then use the LoRA parameters from
each epoch to evaluate sample influence. For each
instance, we compute gradient features with re-
spect to the LoRA parameters and project these
vectors into an 8,192-dimensional feature space us-
ing random projections. Based on these gradient
features, we calculate both marginal and joint influ-
ence scores, which are aggregated via a weighted
sum. Finally, we select the top 1,000 most influen-
tial samples according to the aggregated scores to
create a compact training set for final model train-
ing. Additional experimental details are provided
in Section B.2.

To assess the effectiveness of the selected data,
we adopt a multifaceted evaluation strategy target-
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(a) Alpaca-52k JI2S-1k (b) LIMA-1k vs. JI2S-1k

(c) AlpaGasus-1k vs. JI2S-1k (d) DEITA-1k vs. JI2S-1k

Figure 3: GPT-4–judged win rates of JI²S-1k versus four baselines (Alpaca-52k, LIMA-1k, AlpaGasus-1k, DEITA-
1k) across five evaluation datasets.

ing the instruction-following capabilities of fine-
tuned models. First, we measure performance on
several widely used benchmarks, including MT-
Bench and the Open LLM benchmarks, to provide
a standardized and comprehensive comparison. In
addition, we perform GPT-4-based pairwise eval-
uations, comparing model outputs across five test
sets introduced by Li et al. (2024), enabling a more
nuanced analysis of qualitative differences between
models fine-tuned with different training subsets.

5.2 Baseline

We compare our method against several established
baselines. First, we fine-tune the model on the full
Alpaca dataset. Second, we evaluate LIMA (Zhou
et al., 2024), which consists of 1,000 manually cu-
rated high-quality instruction-response pairs. Third,
we consider Alpagasus (Chen et al.), which filters
high-quality samples by scoring instructions with
GPT-3.5. Finally, we include DEITA (Liu et al.),
which selects training samples based on a combi-
nation of sample difficulty, response quality, and
embedding diversity.

5.3 Main Results

Table 1 summarizes performance across all models
and datasets. Our method, JI2S-1k, consistently
outperforms other data selection strategies on most
benchmarks.

For LLaMA2-7B, JI2S-1k achieves an average
score of 64.62, outperforming all other data se-
lection strategies. This improvement arises from
our method’s focus on each sample’s actual con-
tribution to model performance, rather than rely-
ing on external evaluators such as GPT. In con-
trast, DEITA-1k achieves an average score of 62.33,
likely because its scoring model, which is distilled
from GPT-3.5 using diverse datasets, encounters a
distribution mismatch when evaluated on Alpaca-
style data.

Notably, fine-tuning on the full Alpaca-52K
dataset yields an average score of 63.34, under-
performing both LIMA-1k (64.39) and JI2S-1k
(64.61). This result highlights the greater impor-
tance of data quality over quantity. The trend is
even more pronounced for Mistral-7B: full-data
training results in an average of 67.70, whereas all
1,000-sample methods exceed 72. JI2S-1k leads
with an average score of 72.52, and achieves the
highest MT-Bench score of 5.40, indicating supe-
rior dialogue quality and generalization.

For LLaMA2-13B, JI2S-1k attains an average
of 69.65, second only to LIMA-1k (70.09). These
results further support the effectiveness and adapt-
ability of our influence-based data selection strat-
egy.

Additionally, we conduct pairwise comparisons
between JI2S-1k and four representative base-
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Table 2: Performance comparison of LLaMA2-7B on
the Open LLM benchmarks under different λ values.

λ Aver ARC Hell MMLU Wino
Base model: LLaMA2-7B

0 64.23 56.27 81.16 47.28 72.22
0.05 64.22 56.46 81.05 46.45 72.93
0.1 64.62 56.31 81.18 47.58 73.40
0.15 64.22 56.06 81.41 46.49 72.93
0.2 64.53 56.23 81.15 46.85 73.87
• Hell = HellaSwag, Wino = Winogrande

lines (Alpaca-52k, LIMA-1k, AlpaGasus-1k, and
DEITA-1k) on LLaMA-2-7B using GPT-4 as the
evaluator. As illustrated in Figure 3, the results
demonstrate that JI2S-1k consistently outperforms
all baselines across five evaluation datasets.

In summary, the results demonstrate that JI2S-
1k offers a robust and generalizable data selection
strategy that consistently enhances model perfor-
mance across architectures and benchmarks.

5.4 Ablation Study on Joint Influence
Based on the experimental results presented in Ta-
ble 2, we analyze the impact of the joint influence
weight λ on the performance of LLaMA2-7B, aim-
ing to evaluate the effectiveness of incorporating
joint influence during data selection. When λ = 0,
the joint influence is entirely excluded, serving as
a baseline for comparison.

As λ increases, we observe notable fluctuations
in performance across the five benchmarks (ARC,
HellaSwag, MMLU, Winogrande, and the overall
average). The model achieves its highest average
score of 64.62 at λ = 0.1, along with the best
result on MMLU (47.58), suggesting that a mod-
erate degree of joint influence improves overall
performance, particularly on knowledge-intensive
tasks. Additionally, the highest score on Wino-
grande (73.87) is obtained at λ = 0.2, indicating
that certain tasks may benefit from a stronger in-
fluence weight. These results suggest that careful
tuning of λ can lead to performance gains across
diverse tasks, with λ = 0.1 providing the most
robust overall performance.

As shown in Figure 4, we perform a pairwise
comparison of GPT-4–judged win rates for λ = 0
(without joint influence) versus λ = 0.1 across
five evaluation datasets and observe a significant
difference in win rates.

Notably, even without joint influence, influence-
based methods demonstrate strong performance,

Figure 4: GPT-4–judged win rates of JI²S-1k versus
JI²S-1k(without joint influence) across five evaluation
datasets.

as reflected in the baseline results shown in Table
1. These findings support the inclusion of joint
influence in data selection, while also underscor-
ing the importance of proper calibration to prevent
overfitting or performance degradation.

More experimental results can be found in D.

6 Analysis

6.1 The Distributional Characteristics of
JI2S-1k

In this section, we analyze the distributional charac-
teristics of the JI2S-1k dataset. We extract seman-
tic embeddings for each instruction in the Alpaca
dataset and use UMAP to reduce these embeddings
to two dimensions. Figure 5 visualizes the resulting
spatial distribution.

The figure reveals that the selected data points
span both high-density (core) and low-density (pe-
ripheral) regions of the original data distribution.
This indicates that our method avoids overempha-
sizing prototypical or redundant data. Instead, it
captures a representative and diverse subset.

Notably, the selected points do not exhibit tight
spatial clustering or mode collapse, suggesting that
diversity is well preserved during the selection pro-
cess. We attribute this to our influence estimation
strategy, which leverages LIMA—a dataset of high-
quality, human-preferred instructions—as a surro-
gate evaluation set. This approach introduces more
informative and varied supervision signals. Further-
more, the incorporation of joint influence promotes
diversity-aware selection, further mitigating redun-
dancy.

6.2 Approximation of Second-order Joint
Influence

To analyze the approximation of second-order joint
influence, we assume that stochastic gradient de-
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Figure 5: Visualization using UMAP on instruction em-
beddings from the Alpaca dataset. Blue points represent
samples of JI2S-1k and gray points represent samples
of Alpaca-52k.

scent (SGD) is used as the optimizer and that the
test-set Hessian matrix is omitted, primarily to sim-
plify the estimation process. Under this simplifi-
cation, the second-order joint influence degener-
ates into a first-order gradient similarity between
individual samples, thereby exposing redundant
information within the data. Our influence formu-
lation mitigates such redundancy by incorporating
second-order joint influence, effectively subtract-
ing the overlapping information captured by first-
order gradient similarity. This reveals the limita-
tions of conventional influence-based methods and
highlights the importance of incorporating joint in-
fluence. Capturing more complex dependencies
among samples helps prevent the selection of re-
dundant or overlapping examples, thereby reducing
training set redundancy and enhancing model ca-
pacity.

6.3 Experimental Validation under Data
Scale-Up

We assess the effect of the influence-based sub-
set size on the performance of LLaMA2-7B. For
each subset size (1k, 2k, and 3k), all Alpaca in-
struction–response pairs are ranked according to a
combined metric of first-order marginal and second-
order joint influence scores, with a joint influence
weight set to λ = 0.1. Subsequently, LLaMA2-7B
is fine-tuned on the top-ranked samples, and its
performance is assessed on the Open LLM bench-
marks. Table 3 summarizes the results obtained
across the varying training data sizes.

The results indicate that increasing the fine-

tuning subset from 1k to 3k examples does not
yield statistically significant improvements in per-
formance. Samples characterized by high influence
scores are essential for enhancing model effective-
ness. Nevertheless, as the subset size expands, the
additional samples generally exhibit lower influ-
ence scores, contributing limited incremental bene-
fit and potentially introducing noise. Consequently,
the overall performance remains essentially stable.

Table 3: Performance comparison of LLaMA2-7B on
the Open LLM benchmarks across different training
data sizes.

Size Aver ARC Hell MMLU Wino
Base model: LLaMA2-7B
1k 64.62 56.31 81.18 47.58 73.40
2k 64.10 55.52 81.74 46.62 72.53
3k 64.39 57.09 81.01 46.47 72.98
• Hell = HellaSwag, Wino = Winogrande

7 Conclusion

In this work, we present JI2S, a novel influence-
based framework for instruction data selection that
introduces two key innovations: (1) an influence
analysis algorithm that captures both marginal and
joint influence among instruction samples, and (2)
a joint influence–aware instruction selection strat-
egy that leverages high-quality human preference
datasets such as LIMA as proxy evaluation sets,
thereby enabling more comprehensive and reliable
sample selection. Experimental results demon-
strate that fine-tuning LLaMA2-7B, Mistral-7B,
and LLaMA2-13B on just the 1 k samples selected
by JI2S consistently outperforms full Alpaca-52 k
training and several strong baselines (LIMA, Al-
paGasus, DEITA) in most cases across the Open
LLM Benchmarks, MT-Bench, and GPT-4–judged
pairwise evaluations.

Further analysis reveals that incorporating a mod-
erate joint influence, instead of relying solely on
marginal influence, yields optimal performance
gains. UMAP visualizations also indicate that JI2S
preserves semantic diversity, effectively covering
both central and peripheral regions of the instruc-
tion embedding space. These results highlight the
value of modeling higher-order interactions in in-
struction data. We believe that influence-based
sample selection, as demonstrated by JI2S, pro-
vides a scalable and effective method for training
instruction-tuned language models.
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8 Limitations

JI2S currently models only second-order joint in-
fluence, focusing on pairwise interactions between
instruction samples. While modeling higher-order
interactions could, in principle, capture richer re-
lational structures, the computational cost makes
such extensions impractical in real-world training
scenarios. Our approach thus represents a trade-off
between expressiveness and efficiency, and results
demonstrate that even second-order influence mod-
eling yields significant improvements in data selec-
tion quality. Additionally, JI2S leverages LIMA as
a proxy evaluation set to guide sample selection.
Although LIMA provides high-quality and consis-
tent human preference annotations, its stylistic and
topical coverage may introduce certain biases in the
selection process. Future work could explore incor-
porating multiple preference datasets to improve
generalization and robustness.

9 Potential Risk & Ethical Consideration

We reveal the following potential risks of our re-
search based on ethical considerations:

• Bias Amplification via Proxy Preferences.
JI2S relies on human preference data (e.g.,
LIMA) as a proxy for sample quality, which
may inadvertently encode cultural, gender, or
ideological biases of the annotators. If such
biases are over-represented, the selected in-
struction samples can reinforce or amplify
undesired stereotypes in downstream model
behavior. To mitigate this risk, future deploy-
ments should audit preference datasets for de-
mographic and topical balance and consider
weighting or diversifying proxy sources.

• Privacy and Proprietary Data Leakage.
Influence-score computation requires access
to model gradients and intermediate repre-
sentations, which risks exposing proprietary
or sensitive data features during selection.
In privacy-sensitive settings, practitioners
should therefore confine gradient computa-
tions to secure, certified environments or ap-
ply differential-privacy mechanisms, thus en-
suring compliance with data-protection regu-
lations.
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A Second-order Joint Influence

In this part, we derive the approximation from the
discrete derivative definition to the second-order
Adam joint influence used in the main text.

We denote the full training set as Dtrain =
{z1, z2, . . . , zn}, and use S ⊆ Dtrain to repre-
sent a background set of training examples that
does not include the current samples of interest.

Let K = {zi, zj} denote a pair of training exam-
ples whose joint influence we wish to quantify, and
z′ ∈ Dtest be a held-out test example. θtS denotes
model parameters after t steps of training on dataset
S, and L(z′; θ) denotes loss on test example z′ un-
der parameters θ.

To measure the joint influence of the two training
points zi and zj on the loss at z′, we define the
second-order discrete derivative as follows:

∆L(K, z′) = L
(
z′; θtS

)
− L

(
z′; θtS∪zi

)

− L
(
z′; θtS∪zj

)
+ L

(
z′; θtS∪{zi,zj}

)
.

To approximate the second-order joint influence
∆L(K, z′), we perform a second-order Taylor ex-
pansion around the base model parameters θtS .
Specifically, we treat θtS as the expansion point
and express the loss difference induced by adding
samples zi, zj , and their combination using local
approximations of the test loss L(z′; θ). The result-
ing expansion is as follows:

∆L(K, z′) ≈ −∇θL(z′; θtS)⊤∆θi − 1
2∆θ⊤i Hz′∆θi

−∇θL(z′; θtS)⊤∆θj − 1
2∆θ⊤jHz′∆θj

+∇θL(z′; θtS)⊤(∆θi+∆θj)

+ 1
2(∆θi+∆θj)

⊤Hz′(∆θi+∆θj)

≈ ∆θ⊤i Hz′∆θj . (A.1)

Since large models typically employ the Adam
optimizer, the parameter update at each iteration is
given by:

θt+1 − θt = −ηtΓ(z, θ
t)

Γ(z, θt) =
mt+1√
vt+1 + ϵ

mt+1 = β1mt + (1− β1)∇L(z; θt)
vt+1 = β2vt + (1− β2)

(
∇L(z; θt)

)2
,

where mt+1 and vt+1 represent the first and second
moment estimates of the gradients, β1, β2 are the
decay rates for these moment estimates, and ϵ is
typically set to a very small value.

Consequently, the second-order joint influence
as presented in Equation A.1 is approximated as
follows:

∆L(K, z′) ≈ η2t Γ(zi, θ
t)⊤Hz′Γ(zj , θ

t).

B Training Details

B.1 Toy Example: Joint Influence of Training
Samples

In this study, we investigate sample-level joint in-
fluence in BERT (Devlin et al., 2019) fine-tuning
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using a balanced binary classification corpus of
1,000 text instances. The dataset is stratified into
an 80%/20% training–test split, yielding 800 train-
ing and 200 testing examples. From the training set,
two disjoint subsets of 50 samples each (denoted
as A and B) are randomly selected to maximize
the observable impact of their removal on model
performance. We fine-tune the model for 10 epochs
with a learning rate of 1× 10−6, a batch size of 8,
and a weight decay of 0.01.

For each configuration, we record the test accu-
racy under the full training set (M0), as well as after
removing subset A (MA), subset B (MB), and both
subsets A and B (MA∪B). The marginal effects are
computed as ∆A = MA −M0,∆B = MB −M0,
and ∆A ∪B = MA∪B −M0, and the joint influ-
ence is defined as I = ∆A ∪B− (∆A+∆B). To
ensure robustness, this procedure is repeated across
10 random seeds.

B.2 Main Experiment
1. Related Datasets Both Alpaca and LIMA are
available under the Creative Commons NonCom-
mercial license(CC BY-NC).

• Alpaca (Taori et al., 2023): This dataset con-
tains 52,002 instruction–response pairs, which
are constructed by Stanford by using the Self-
Instruct strategy (Wang et al., 2023). All sam-
ples are generated automatically by OpenAI’s
text-davinci-003 model and encompass a vari-
ety of task types, including question answer-
ing, text summarization, and format transfor-
mation, among others. However, due to the
fully automated generation process, it may
contain entries of suboptimal quality or fac-
tual inaccuracies.

• LIMA (Zhou et al., 2024): It comprises 1,000
high-quality instruction–response pairs man-
ually selected and validated by Zhou et al.
(2024). Through meticulous human anno-
tation and multiple rounds of review, the
dataset was carefully curated to remove noisy
data and samples misaligned with human
preference criteria. It demonstrates superior
instruction-following capabilities and seman-
tic fidelity.

2. Training Setup

We implement relevant algorithms using the
PyTorch library and conduct all experiments on
NVIDIA A100 GPUs.

In the warm-up phase, we adopt the following
LoRA configuration: the model is trained for 4
epochs on a 5% subset of the Alpaca dataset, ran-
domly sampled at the instance level. A linear learn-
ing rate scheduler with cosine decay is employed,
starting from an initial learning rate of 2 × 10−5,
with a batch size of 128. LoRA adapters are config-
ured with a rank of 128, a scaling factor of α = 512,
and a dropout rate of 0.1. These adapters are in-
serted into all attention layers of the model.

The configurations of the training parameters
for the full fine-tuning phase are detailed in Table
4. Additionally, all experimental results are aver-
aged over three runs with different random seeds
to enhance stability and reproducibility.

C Evaluation Details

Open LLM Benchmarks In this study, to com-
prehensively assess model capabilities in scien-
tific reasoning, commonsense understanding, cross-
domain knowledge, and coreference resolution, we
select four representative tasks from the Open LLM
Benchmarks (six tasks in total).

• ARC (Clark et al., 2018): Evaluates a model’s
mastery of K–12 science knowledge and logi-
cal reasoning. A 25-shot prompt is used, with
each test question preceded by 25 QA exam-
ples.

• HellaSwag (Zellers et al., 2019): Tests a
model’s commonsense understanding and con-
textual inference in an adversarial cloze task.
Each example is presented with a 10-shot
prompt comprising 10 context–ending pairs.

• MMLU (Hendrycks et al., 2020): Assesses a
model’s ability to apply knowledge and reason
across 57 academic subjects in both zero- and
few-shot settings. A 5-shot prompt is used,
with five in-domain examples per question.

• WinoGrande (Sakaguchi et al., 2021):
Probes implicit commonsense reasoning and
pronoun resolution through a large-scale, de-
biased Winograd-style task. Each item is pre-
ceded by five referent resolution examples
(5-shot prompt).

MT-Bench (Zheng et al., 2023) Focuses on evalu-
ating the quality of multi-turn dialogue. The bench-
mark comprises 80 carefully curated multi-turn
dialogue prompts, with model responses com-
pared through 3,300 expert-labeled preference
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Table 4: Hyper-parameter settings during training.

Dataset Batch Size Epochs LR LR Scheduler WD Warmup Rate
Base model: LLaMA2-7B
Alpaca-52k 128 3 2e-5 Cosine 0.0 0.3
LIMA-1k 128 5 2e-5 linear 0.1 0.0
AlpaGasus-1k 128 5 2e-5 linear 0.1 0.0
DEITA-1k 128 5 2e-5 linear 0.1 0.0
JI2S-1k (λ = 0.1) 128 5 2e-5 linear 0.1 0.0
Base model: Mistral-7B-v0.1
Alpaca-52k 128 3 4e-6 Cosine 0.0 0.3
LIMA-1k 128 5 2e-6 linear 0.1 0.0
AlpaGasus-1k 128 5 2e-6 linear 0.1 0.0
DEITA-1k 128 5 2e-6 linear 0.1 0.0
JI2S-1k (λ = 0.05) 128 5 2e-6 linear 0.1 0.0
Base model: LLaMA2-13B
Alpaca-52k 128 5 1e-5 Cosine 0.0 0.3
LIMA-1k 128 10 1e-5 linear 0.1 0.0
AlpaGasus-1k 128 10 1e-5 linear 0.1 0.0
DEITA-1k 128 10 1e-5 linear 0.1 0.0
JI2S-1k (λ = 0.2) 128 10 1e-5 linear 0.1 0.0

pairs. Evaluation is based on expert preference
win rate (or Elo score), reflecting coherence, infor-
mativeness, and adherence to instructions.
GPT-4–judged pairwise tests We perform pair-
wise comparisons by prompting GPT-4 to judge
which of two fine-tuned model outputs is superior,
based on correctness, coherence, informativeness,
and style (Li et al., 2024). We evaluate model out-
puts across five instruction-following datasets:

• LIMA (Zhou et al., 2024): As shown in B.2.

• Vicuna (Chiang et al., 2023): It comprises 80
real user–assistant prompts sourced from the
Vicuna leaderboard. Reflects open-domain
conversational queries and tests models’ abil-
ity to handle diverse, user-driven dialogue top-
ics.

• Koala (Geng et al., 2023): Consists of two
180-sample subsets: (a) Alpaca-style test
prompts drawn from the Self-Instruct pool,
and (b) authentic user queries filtered for nov-
elty.

• WizardLM (Xu et al., 2023): Features
80 “Vicuna-Instructions-803” prompts au-
tomatically generated and refined via a
GPT-4 self-improvement loop, emphasizing
chain-of-thought reasoning.

• Self-Instruct (Wang et al., 2023): A large-
scale dataset consisting of 52K instructions
and 82K ideal responses was generated via
prompting GPT-3.5. It includes a reserved
expert-curated subset for pairwise compar-
isons using GPT-4.

Table 5: Performance comparison of Mistral-7B and
LLaMA2-13B on the Open LLM benchmarks under
different λ values.

λ Aver ARC Hell MMLU Wino
Base model: Mistral-7B

0 72.08 63.99 84.78 60.87 78.69
0.05 72.52 64.16 84.86 61.44 79.63
0.1 72.38 64.13 84.67 61.43 79.31
0.15 71.10 64.15 84.72 60.67 78.84
0.2 70.56 63.05 84.77 59.87 78.53
Base model: LLaMA2-13B

0 69.61 64.33 82.92 55.12 76.08
0.05 69.64 64.16 83.89 54.75 75.76
0.1 69.57 63.40 83.71 54.93 76.24
0.15 69.18 62.97 83.78 54.6 75.37
0.2 69.65 63.99 83.61 54.92 76.09
• Hell = HellaSwag, Wino = Winogrande

D Extensive Experiments

We further study the impact of the joint influ-
ence weight λ on two other foundation models:
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Mistral-7B and LLaMA2-13B. As shown in Ta-
ble 5, Mistral-7B achieves the best performance
at λ = 0.05, and shows a clear decline as λ in-
creases. This indicates that excessive emphasis on
joint influence can suppress meaningful marginal
signals, leading to poorer data selection and de-
graded performance. In contrast, LLaMA2-13B
demonstrates relatively stable performance across
different λ values, suggesting that it is less sensi-
tive to this balance. This may be due to its larger
capacity, which makes it more robust to variations
in the sample selection strategy.

These findings highlight that the optimal bal-
ance between marginal and joint influence may
vary across model architectures.
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