CYCLE-INSTRUCT: Fully Seed-Free Instruction Tuning via Dual
Self-Training and Cycle Consistency

Zhanming Shen*®, Hao Chen*®®, Yulei Tang*, Shaolin Zhu"
Wentao Ye*, Xiaomeng Hu®, Haobo Wang®®, Gang Chen®, Junbo Zhao**
#Zhejiang University
©Hangzhou High-Tech Zone (Binjiang) Institute of Blockchain and Data Security
*University of Science and Technology of China
“Tianjin University

{z.shen,

Abstract

Instruction tuning is vital for aligning large
language models (LLMs) with human intent,
but current methods typically rely on costly
human-annotated seed data or powerful exter-
nal teacher models. While instruction back-
translation techniques reduce this dependency,
they remain fundamentally tethered to an ini-
tial seed set, which limits full automation, in-
troduces biases, and can lead to inefficient use
of unlabeled corpora. In this paper, we pro-
pose CYCLE-INSTRUCT, a novel framework
that achieves fully seed-free instruction tun-
ing. Inspired by cycle consistency, CYCLE-
INSTRUCT employs a dual self-training loop
where two models—an answer generator and
a question generator—are bootstrapped solely
from raw, unlabeled text. These models mu-
tually supervise each other by reconstructing
original text segments from their counterpart’s
generated pseudo-labels, effectively learning
from the intrinsic structure of the data without
any human-provided seeds. We demonstrate
CYCLE-INSTRUCT’s efficacy across four di-
verse data tracks, including general instruction-
following, domain-specific tasks, dialogue
logs, and plain text. Our extensive experiments
show that CYCLE-INSTRUCT not only outper-
forms seed-driven back-translation baselines
but also achieves performance comparable to
strongly supervised methods.

1 Introduction

Instruction tuning (Ouyang et al., 2022) has
emerged as a crucial technique for aligning large
language models (LLMs) with human intent,
enabling effective generalization across diverse
instruction-based tasks (Ouyang et al., 2022; Wei
et al., 2021; Touvron et al., 2023; Zhu et al., 2024a).
However, conventional instruction tuning typically
requires extensive human-annotated data (Kopf
et al.; Conover et al., 2023) or relies on powerful ex-
ternal teacher models (Taori et al., 2023; Yin et al.,

*Corresponding author

j.zhao}@zju.edu.cn

Instruction Backtranslation

Qs
fO\ :
model synthetlc data {x;, yl}I

wstly, unscalable g
2\

seed data

Q3 1% |Data curation Diased, mlsmatchea'

. N
synlheuc data (%, y} ‘ﬂ*?
- A

ddl

775 model
unlabeled data {y;} data distribution
Ours seed-firee, autodidactic
o (s -ER-. @
unlabeled data l --------- Deycle

Figure 1: Seed-dependency bottleneck: (1) Costly
seed curation; (2) Data wastage & mis-paired; (3) Bias
transfer & low diversity.

2023). These dependencies are not only costly and
limit scalability (Wang et al., 2022) but are also
often inapplicable in certain settings—for example,
privacy-preserving scenarios (Zhang et al., 2024).

Recent advances in instruction back-translation
(Lietal., 2023a; Koksal et al., 2023) have sought to
mitigate above issues by leveraging unlabeled text.
These methods typically train a model on a small
seed set of (instruction, answer) pairs to generate
candidate instructions for unlabeled documents,
which are then filtered to create additional training
examples (Chen et al., 2024, 2023). While reduc-
ing reliance on extensive human labeling, these
back-translation pipelines still critically hinge on
an initial, manually-curated seed set.

This seed-dependency causes a core challenge:
the reliance on seed data inherently limits the
full automation, diversity, and data efficiency

5124

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 5124-5138
November 4-9, 2025 ©2025 Association for Computational Linguistics

of instruction tuning. Specifically, as illustrated
in Figure 1, (i) assembling a diverse, high-quality
seed set remains labour-intensive and costly; (ii)
conditioning generation on a small seed corpus can
transfer its stylistic and topical biases to the syn-
thetic pairs, curbing diversity and generalisation;
and (iii) the common practice of treating all unla-
beled passages as answers can lead to data wastage,
as question-formatted segments in raw corpora are
often discarded or receive low-quality synthetic
instructions. This raises a critical question: How
can we unlock the full potential of abundant raw
text for instruction tuning, without the bottleneck of
seed data, while ensuring high-quality and diverse
instruction-following capabilities ?

To address this challenge, we propose CYCLE-
INSTRUCT, a novel and fully seed-free framework
for instruction tuning that requires no manually
written seeds or external teacher models. Inspired
by cycle consistency in unsupervised machine
translation (He et al., 2016; Lample et al., 2018),
CYCLE-INSTRUCT employs a dual self-training
loop. We begin by automatically partitioning a
large unlabeled corpus into potential question pas-
sages and potential answer passages, reformatted
into instruction-tuning compliant <instruction>
and <response> slots. An answer generator pro-
duces pseudo-responses for question passages,
while a question generator back-translates pseudo-
instructions for answer passages. These two mod-
els then act as mutual teachers: each learns to re-
construct the original passage by conditioning on
the pseudo-label from its counterpart, using the
reconstruction error as the training objective. Cru-
cially, because every sample is supervised by its
own ground-truth content, the learning signal
closely approximates fully supervised training, al-
lowing the models to internalise the true data dis-
tribution from the entire unlabeled corpus.

We thoroughly evaluate CYCLE-INSTRUCT
across four diverse tracks. Our results consistently
demonstrate that CYCLE-INSTRUCT generates co-
herent and relevant instruction-following data, es-
tablishing its potential as a scalable, especially
when human-labeled resources are scarce or un-
available. Our main contributions are as follows:

* We propose CYCLE-INSTRUCT, a fully seed-free
instruction-tuning framework that entirely elimi-
nates reliance on human-written seeds and exter-
nal teacher models, directly addressing the core
bottleneck of current back-translation methods.

¢ We introduce a dual self-training loop with cy-
cle consistency as the core mechanism, enabling
two models to mutually supervise each other
by reconstructing raw passages, yielding a high-
quality learning signal akin to fully supervised
training from unlabeled text alone.

* Through extensive experiments on four di-
verse data tracks, we demonstrate that CYCLE-
INSTRUCT achieves performance comparable to
strong supervised methods and significantly out-
performs seed-driven back-translation baselines,
all while requiring zero human annotations.

2 Background

2.1 Back-Translation for Instruction Tuning

Back-translation (BT) was introduced in NMT to
exploit monolingual target data by “translating it
back” into the source language (Sennrich et al.,
2016). Recent work (Li et al., 2023a; Koksal et al.,
2023) adapts this idea to instruction tuning.

Let S = {(q,a)} be a small seed set of ques-
tion—answer pairs and D 4 an unlabeled corpus of
free-form answers.

1. Seed training. Train an inverse model Fa
to predict a question from an answer:

- Z logpw(q‘a). (D)

(g,0)eS

»Cinv =

2. Pseudo-pair generation. For each a € Da,
create a pseudo-question § = F4,g(a) and
form a synthetic pair (¢, a).

3. BT fine-tuning. Fine-tune the forward model
G -4 on all synthetic pairs via

Lyt = E(g0)[—logpe(a | §)]. ()

The resulting model G4 benefits from a
much larger, automatically generated corpus, while
all notation remains consistent with the cycle-
consistency formulation that follows.

2.2 Cycle Consistency

Cycle consistency traces its roots to unsupervised
machine translation and dual learning, where two
models—one translating from language X to Y
and the other from Y to X—are trained jointly by
enforcing that translating “there and back” recovers

5125

question text D= {qi}'ii"’l

C_; i
x"\w
refarmat !

—

|

|
@ |\

Ve

|

|

Forward Model
Training

raw document LLM

My
reformat s

- Na
answer text Dy = {a;};%

a) Data Segmentation and Reformat

I

2] I
parallel LLMs \ !
Backward Model / I

b) Cycle Training Procedure

...... Cycle Training Dfinar =

\\ {(ql 1)}1 1 u {(q] aj)} j=1
—E -
fltel

cycle

Training /

¢) Cycle-Consistency Filtering

Figure 2: The Overall Framework of our Fully Seed-Free Instruction Tuning Method.

the original sentence (He et al., 2016). Concretely,
given mappings

G:X—-Y, F:Y-X, 3)

one adds the reconstruction loss

Ecycle = ExNDX[E(ma F(G(x)))] (4)
+ EwayV(ya G(F(y)))]a
where £(-,-) is typically the negative log-

likelihood of reconstructing the original sequence.
CycleGAN (Chu et al., 2017) applied a similar cy-
cle constraint in image translation by using ¢; pixel
losses, illustrating the concept across modalities.
In Cycle-Instruct, we reinterpret this mechanism
for instruction tuning by viewing questions and
answers as two analogous “languages.” Let

GQ—>A3Q—>-/47 FA—>Q:A—>Q 5)

be the question-to-answer and answer-to-question
models, respectively. We then minimize

£cycle = EqNQV(% FA_>Q(GQ—>A(Q>))]

+ EaNA[f(a, GQHA(FAAQ(CL)))} -

(6)
By enforcing Fso(Gg-alq)) ~ ¢ and
Go-a(Fasg(a)) = a on unlabeled text, the
two models effectively teach one another. This
self-supervised reconstruction signal enables the
generation of high-quality question—answer pairs
directly from raw corpora, without any seed exam-
ples or external teachers.

3 Methodology

3.1 Overview

We propose CYCLE-INSTRUCT, a seed-free in-
struction tuning framework that leverages cycle-

consistent dual-model training. Unlike previ-
ous instruction tuning methods requiring human-
written seeds or external teacher models, CYCLE-
INSTRUCT uses raw unlabeled text to iteratively
bootstrap two LLMs: a forward model M¢_, 4
and a backward model M 4_,. The forward
model generates pseudo-responses from extracted
question passages, and the backward model back-
translates pseudo-instructions from answer pas-
sages. Both models mutually reinforce each other’s
predictions, with training losses computed based
on reconstruction of original data segments. Figure
2 illustrates the overall framework of our method.

3.2 Data Segmentation

We adopt an ultra-light, seed-free rule: a passage is
a question iff it contains at least one question mark
“?”. otherwise it is treated as an answer.

Concretely, each raw document Dy, is split into
paragraphs by blank lines, and we obtain the raw
paragraph sets

raw __ ra ra _ ra
DQW_{ W}z 1’ " {JW}] 1’)
where ¢;* (resp. a;*") is a paragraph with (resp.
without) a “?”.

3.3 Data Reformat

To turn the split raw passages D¢y™ and Df™ into
INSTRUCTION—RESPONSE style data we apply two
fixed rewriting prompts:

* Prompter (questions). For each ¢;*V € DrQaW
we ask the model to rewrite the paragraph into
one self-contained, natural-sounding question ¢;
(See template in Appendix C.1).

5126

 Assistant (answers). For each agffl‘” € D™ we
ask the model to polish the text into a coherent
answer paragraph a; without introducing new
information (See template in Appendix C.2).

The rewritten segments constitute the standard-
ized datasets

Ny

N,
=1’ j=1’

Do = {4}, ° (8)
providing paired forms (g;, _) and (_, a;) that
feed the four-step cycle training loop described
latter.

Da={a;}

3.4 Cycle Training Procedure

We instantiate two transformer models from the
same base model (e.g., LLaMA3):

* Forward model: M¢_, 4(q; 0o 4) generates
responses given instructions.

* Backward model: M 4_,g(a;604-¢g) gener-
ates instructions given responses.

Here, 0 4 and 04_,¢ represent the parame-
ters used by each model during generation, which
are trained separately. However, under our self-
training assumption, both models share the same
base architecture.

Training proceeds iteratively in four cyclical
steps:

Step 1: Pseudo-Answer Generation (using

Mgpa) © Given Dy, we generate pseudo-
responses a; (See template in Appendix C.3.):
a; = Mg-a(qi;09g—4), Vg €Dg (9)
Ng

resulting in pseudo-labeled pairs {(g;, a;)};_5-

Step 2: Backward Model Training (updating
Maq): Using pairs (g;, a;), we minimize the
negative log-likelihood of reconstructing the origi-
nal instructions:

No
1 .
Lase = > 108 Plai | i:04mq) (10)
=1

Step 3: Pseudo-Instruction Generation (us-
ing M4_,0): Given Dy, we generate pseudo-
instructions ¢; (See template in Appendix C.4.):

4j = Masqlaj;0a-¢q), Vaj €Da (1D
producing pseudo-labeled pairs {(¢;, aj)}évz“l.
Step 4: Forward Model Training (updating

M- 4): Using pairs (;,a;), we minimize the

negative log-likelihood of reconstructing the origi-
nal responses:

Na

1 .
Losa= -7, > log P(a; | 4j;00-4) (12)
j=1

Iterative Refinement: We repeat Steps 1-4 it-
eratively, with each cycle progressively improving
pseudo-label quality and better approximating the
true underlying distribution of the unlabeled cor-
pus.

Final Dataset Construction: After completing
a fixed number of cycles T', we construct the final
synthetic instruction-following dataset:

Dfinal = {(Qi,&i)}i]\in U {(g,ay) ;V:Al (13)

This merged dataset combines pseudo-responses
generated by M_, 4 and pseudo-instructions gen-
erated by M 4_,q.

3.5 Cycle-Consistency Filtering (Optional)

Although Dgyy is already seed-free, we can further
audit and prune its pseudo labels by checking cycle

consistency under the final checkpoints Hg_)) 4 and
ey
A=Q*

(1) One-step reconstruction. For every pair in
Deinal We pass the pseudo side through the opposite
model to obtain a reconstructed label:

G = Masq(as 0, 5, 4 = Moa(d;04,,).

(14)
(2) Embedding distance. We encode the origi-
nal label and its reconstruction with the same sen-
tence encoder ¢(-) (we use the LLaMA3 inference
encoder without fine-tuning):

di = |6(ai) = (@i)ll2, dj = l#(a;) — ¢(aj) |-
(15)

(3) Semantic clustering. To avoid domain or
format bias in later pruning, we cluster the gold
sides—{q;} and {a; }—in the embedding space via
k-means (k=200 by default, tuned on a held-out
slice). Each cluster thus represents a local region
of the original data distribution.

(4) k-center greedy pruning. Within every clus-
ter C we apply the k-center greedy selection rule to
rank samples by distance score (d; or d;). We drop
the top 5% farthest points:

Creep = C \ TopPercent(C, dist, 5%). (16)

5127

| | Alpaca-GPT4 | Dolly-15k
Method ‘ Annot. (%) ‘ MMLU BBH CRASS DROP Avg ‘ MMLU BBH CRASS DROP Avg
Vanilla ‘ 0 ‘ 55.85 37.16 59.48 36.01 47.13 ‘ 55.85 37.16 5948 36.01 47.13
5 5792 3838 6898 38.06 50.84 | 5542 37.14 62.41 33.79 47.19
Random 10 5741 37.68 6642 36.72 49.56 | 5546 36.18 62.77 33.09 46.88
20 57.63 3723 67.88 37.39 50.03| 5591 36.51 63.50 33.06 47.25
5 5726 38.00 67.88 3695 50.02| 5531 3473 59.12 33.37 45.63
Cluster 10 57.57 37.68 68.61 36.75 50.15| 5548 3583 61.68 33.57 46.64
20 57.78 38.34 68.61 37.61 50.59| 56.87 3566 65.69 33.89 48.03
Cycle-Inst (Ours) 0 59.01 3928 74.82 39.86 5324 | 5896 37.44 70.07 37.79 51.07
Cycle-Filt (Ours) 0 59.39 3946 77.37 4046 54.17| 5826 37.51 7044 37.80 51.00

Table 1: Results on Alpaca—GPT4 and Dolly-15k for Llama-3.1-8B. Our methods surpass all back-translation
baselines and approach the fully supervised AIl-SFT scores.

Because k-center greedy iteratively adds points
that maximise the minimum pairwise distance, the
retained set still covers the semantic support of C
while discarding outliers that even the well-trained
opposite model fails to reconstruct faithfully.

Resulting corpus.
ters yields

Concatenating pruned clus-

Dcycle - Dﬁnala ‘,Dcycle’ ~ 0.95 ‘Dﬁnal‘-
(17)
We use Deycle for all downstream supervised fine-

tuning experiments.

4 Experimental Setup
4.1 Dataset Tracks and Baselines

We first test the proposed method on general in-
struction datasets. Next, we apply it to domain-
specific datasets with limited labeled data. Finally
and most importantly, following existing backtrans-
lation works (Li et al., 2023a; Koksal et al., 2023;
Chen et al., 2023), we conduct experiments on di-
alogue and plain text documents to showcase the
effectiveness of our approach in generating coher-
ent instruction-following data from raw text. For
data in documents track, we leverage GPT-40 Mini
to generate golden labels for the data, using the
prompts provided in the Appendix C.3& C.4.

Track 1 — General instructions. Curated cor-
pora such as Alpaca—GPT4 (Peng et al., 2023)
and Dolly-15k! provide human or GPT-4-authored
instruction datasets, yet one side of the pair is fre-
quently missing or unreliable.

"https://huggingface.co/datasets/databricks/
databricks-dolly-15k

Track 2 — Domain-specific instructions. In
specialist domains (e.g. medicine) aligned Q—-A
pairs are scarce. Using Medical-Alpaca®. we
randomly remove one side of the pair, retaining 20
k unpaired questions and answers—emulating the
common situation where only FAQ-style queries
and unlabeled clinical notes exist.

Track 3 — Dialogue logs. Conversational logs
preserve turn order but not explicit Q—A alignment.
From OASST-1° we identify questions via a “?”
heuristic (English + Chinese) and treat residual
turns as answer candidates, yielding 15,126 Q and
24,874 A fragments.

Track 4 — Plain text. Narrative corpora em-
bed latent questions within paragraphs. From 40 k
WikiHow" articles we extract 5,178 interrogatives
as potential instructions and label the remaining
34,822 sentences as answers, requiring both seg-
mentation and synthetic alignment.

Baselines. We benchmark six settings—Vanilla
(zero-shot), AlI-SFT (100 % gold pairs), 80%-
SFT, three seed-based back-translation vari-
ants(Rand-%k %, which samples k € {5, 10,20} %
of the gold pairs uniformly at random, and Clust-k
% , which chooses the same proportion from K-
means clusters), and our seed-free Cycle-Inst/Filt.
Full implementation details are provided in Ap-
pendix B.

2https://huggingface.co/datasets/medalpaca/
medical_meadow_medical_flashcards

3https://huggingface.co/datasets/
OpenAssistant/oasstl

*https://huggingface.co/datasets/
wangwilliamyang/wikihow

5128

https://huggingface.co/datasets/databricks/databricks-dolly-15k
https://huggingface.co/datasets/databricks/databricks-dolly-15k
https://huggingface.co/datasets/medalpaca/medical_meadow_medical_flashcards
https://huggingface.co/datasets/medalpaca/medical_meadow_medical_flashcards
https://huggingface.co/datasets/OpenAssistant/oasst1
https://huggingface.co/datasets/OpenAssistant/oasst1
https://huggingface.co/datasets/wangwilliamyang/wikihow
https://huggingface.co/datasets/wangwilliamyang/wikihow

Method | Annot.(%) | CK CB CC CM HB HC MG PM Avg
Vanilla | 0 | 0.630 0.701 0.390 0.555 0.706 0.448 0.670 0.614 0.589
5 0.657 0.715 0.410 0.595 0.719 0.453 0.720 0.665 0.617
Random 10 0.679 0.729 0.440 0.584 0.739 0.458 0.750 0.640 0.627
20 0.679 0.708 0.440 0.584 0.748 0.478 0.760 0.662 0.632
5 0.679 0.729 0.440 0.584 0.732 0.458 0.730 0.658 0.626
Cluster 10 0.657 0.736 0.430 0.566 0.745 0.468 0.750 0.629 0.623
20 0.660 0.701 0.440 0.584 0.752 0.488 0.730 0.654 0.626
Cycle-Inst (Ours) 0 0.668 0.715 0.460 0.578 0.742 0.473 0.760 0.643 0.630
Cycle-Filt (Ours) 0 0.687 0.757 0.460 0.566 0.748 0.483 0.730 0.658 0.636

Table 2: MedAlpaca results on the nine medical sub-domains of MMLU for Llama-3.1-8B. Our seed-free methods
outperform every back-translation baseline and even surpass the fully supervised AIlI-SFT.

Dataset Pairs Used Unlab.(Q Unlab. A
Alpaca-GPT4 20,000 10,000 10,000
Dolly-15k 15,000 7,500 7,500
Medical-Alpaca 20,000 10,000 10,000
OASST-1 (logs) 40,000 15,126 24,874
WikiHow-4w (text) 40,000 5,178 34,822

Table 3: Statistics after subsampling. “Unlab.” counts
denote fragments lacking the opposite side of the pair
and hence requiring synthesis.

4.2 Evaluation Protocol

Standard instruction metrics. For models
trained on general instruction datasets, we follow
InstructEval (Chia et al., 2023) and report ac-
curacy (%) on MMLU (Hendrycks et al., 2020),
BBH (Suzgun et al., 2022), CRASS (Frohberg
and Binder, 2021), DROP (Dua et al., 2019).
For the medical track we now follow the eight
specialised sub-domains of the MMLU bench-
mark—CK (Clinical Knowledge), CB (College
Biology), CC (College Chemistry), CM (College
Medicine), HB (High-School Biology), HC (High-
School Chemistry), MG (Medical Genetics), and
PM (Professional Medicine).

Open-ended quality. We further report
AlpacaEval (Li et al.,, 2023b) win-rate, the
fraction of pairwise comparisons a system wins
against the ALL-SFT baseline, providing a
human-preference proxy for factual quality.

4.3 Implementation Details

All experiments fine-tune the Llama-3.1-8B-Base
(Grattafiori et al., 2024) checkpoint with low-rank
adaptation (LoRA) (Hu et al., 2022). For LoRA,
we set the rank to 8, the scaling factor « to 16,

and apply a dropout rate of 0.05. The learning-rate
schedule is cosine decay from an initial value of
1 x 10~%. Training employs a micro-batch size of
4, an effective batch size of 32, a sequence cutoff
length of 1024 tokens, and runs for three epochs.
All generation and evaluation are performed with
vLLM (Kwon et al., 2023), using a maximum
model length of 2048 tokens, top-k sampling with
k =10, a temperature of 0.2, and a generation limit
of 500 tokens. Instruction-corpus experiments are
trained on 8 x NVIDIA RTX 3090 (24 GB each),
whereas raw-document experiments are trained on
8 x RTX 4090 (24 GB each).

S Results
5.1 Summary of Key Findings

1. Superior performance across all datasets.
Our primary focus is on raw-document-to-
instruction-tuning data synthesis, where our
method establishes a new SOTA. On the nine med-
ical MMLU sub-domains (Table 2), OASST-1 and
WikiHow-4w (Table 4), CYCLE-FILT achieves the
highest scores among all methods. In each case
it not only outperforms every seed-based back-
translation baseline but also surpasses the fully
supervised ALL-SFT model trained on 100% of
the data, demonstrating clear advantages when
labels are scarce or absent. On Dolly-15k, Al-
paca—GPT4 (Table 1), although our methods ini-
tially trail ALL-SFT (Table 1, Table 4), successive
rounds of cycle-consistent pseudo-labeling allow
CYCLE-FILT to match—or in some metrics even
marginally exceed—the performance of the model
trained on 100% of the data (for better models
trained on Dolly-15k , see section 5.3). In ev-
ery evaluation, our methods (CYCLE-INST and es-

5129

| | OASST-1 (Dialogue Logs) | WikiHow-4w (Plain Text)
Method ‘ Annot. (%) ‘ MMLU BBH CRASS DROP Avg ‘ MMLU BBH CRASS DROP Avg
Vanilla ‘ 0 ‘ 5585 37.16 5948 36.01 47.13 ‘ 5585 37.16 5948 36.01 47.13
5 5699 3748 65.69 3699 4929 | 57.64 36.59 68.61 34,72 49.39
Rand 10 57.10 37.85 63.87 38.14 4924 | 5790 37.25 6496 3534 48.86
20 5738 3632 7044 3887 50.75| 57.86 37.29 68.25 35.13 49.63
5 5724 3776 68.61 38.27 50.47 | 57.02 3629 63.05 35.67 48.01
Clust 10 5740 3839 66.79 37.44 5001 | 57.82 36.44 63.05 35.18 48.12
20 57.69 3840 67.15 38.09 50.33| 5749 36.72 65.69 3491 48.70
Cycle-Inst (Ours) 0 58.77 3875 7017 39.19 5172 | 58.49 37.54 67.88 38.57 50.62
Cycle-Filt (Ours) 0 59.07 3898 70.07 39.52 5198 | 58.70 38.50 67.52 39.54 51.07

Table 4: Results on OASST-1 and WikiHow for Llama-3.1-8B. Our methods beat all back-translation baselines

and even achieve scores that exceed those of AIl-SFT.

I Cycle-Inst wins
Tie
mmm All-SFT wins

(] 100 200 300 400

Count

(a) Cycle-Inst vs. ALL-SFT.

500

I Cycle-Filt wins
Tie
B All-SFT wins

(] 100

200 300 400

Count

(b) Cycle-Filt vs. ALL-SFT.

500

Figure 3: Results on Alpaca Eval

pecially CYCLE-FILT) outperform the supervised
model trained on 80% of the data. This holds true
even when partial supervision is strong, underscor-
ing the robustness of our synthetic-data approach.

2. Stability and benefits of clustered seed se-
lection. Across seed budgets from 5 % to 20 %,
CLUST-k variants deliver stable, monotonic gains
on both general and raw-text tasks, whereas RAND-
k variants show erratic performance—occasionally
plateauing or degrading. This emphasizes both
the importance and challenges of a diversity-based
seed data selection mechanism while also high-
lighting the limitations of back-translation ap-

proaches that generate data based on seed-data
training.

3. Effectiveness of cycle-consistency filter-
ing. Filtering via cycle consistency (CYCLE-FILT)
yields systematic improvements over the unfiltered
CYCLE-INST across every benchmark, validating
our hypothesis that noisy pseudo-pairs can be effec-
tively removed through reconstruction verification.

4. Addressing back-translation shortcomings
on multi-task instruction augmentation. All
back-translation methods, initially underperform
on the context-heavy Dolly-15k dataset (Table 1),
trailing the fully supervised ALL-SFT model. We
believe this stems from Dolly’s multi-task instruc-
tion design: unlike purely declarative texts, its
prompts specify explicit, diverse tasks that de-
mand task-specific phrasing. Traditional back-
translation focuses on matching answers to gen-
erated questions, yielding high QA alignment (see
Table 5), but produces generic, one-size-fits-all in-
structions that lack the original task nuances (see
Appendix D.1). In contrast, our iterative pseudo-
labeling framework gradually infuses task speci-
ficity: each cycle generates instructions increas-
ingly tailored to the correct task category, mitigat-
ing the generic drift inherent to back-translation
(see Appendix D.2). By the second iteration, our
synthetic instructions recover the complexity of
Dolly’s original prompts, significantly narrowing
the performance gap and demonstrating robust
adaptation even on complex, context-rich multi-
task datasets (see Figure 4).

Alpaca Evaluation. Figure 3 presents the
Alpaca-based evaluation results on four datasets,

5130

Random Cluster Cycle-Inst
Annot. (%) 5 10 20 5 10 20 0
Alpaca 9.21 899 9.09 9.17 9.14 9.31 9.46
Dolly 9.54 9.48 9.15 9.19 9.50 9.27 9.90

MedAlpaca 9.80 9.88 9.89 9.88 9.89 9.80 9.96
OASST-1 845 839 853 8.64 839 854 8.75
WikiHow 9.14 9.04 9.17 891 9.15 9.09 9.43

Table 5: GPT-40 mini evaluation of synthetic QA pair
alignment.

comparing our two methods (CYCLE-INST,
CYCLE-FILT) against the fully supervised ALL-
SFT baseline. In the open-ended evaluation, we
see the same pattern as before: our methods outper-
form the fully supervised ALL-SFT when con-
verting raw documents into instructions. How-
ever, when it comes to augmenting a general
instruction-tuning pool, we fall slightly behind
ALL-SFT. Moreover, CYCLE-FILT consistently
outperforms CYCLE-INST when pitted against
ALL-SFT, further highlighting the superiority of
our data-filtering strategy.

5.2 Synthetic Data Quality via GPT-40 MINI

GPT-40 Mini QA Pair Quality. To quantify
how well each generated question matches its an-
swer, we randomly sample 500 synthetic QA pairs
per method and ask GPT-40 MINI to assign a
single relevance score on a 0-10 scale (See Ap-
pendix C.5). Table 5 reports the average scores
across four datasets. The results show that our
methods yield substantially higher QA alignment
than other back-translation baselines.

Correlation with Performance. Table 6 shows
the Pearson correlation coefficients between GPT-
40 mini QA pair quality scores and downstream
performance for each method and dataset. We ob-
serve consistently high correlation values across all
methods and corpora, indicating a strong positive
relationship between QA alignment quality and
task performance. This result further validates our
core hypothesis: by leveraging unlabeled text to
learn a broader, more diverse data distribution, we
can synthesize tightly paired instruction—text exam-
ples that substantially improve the overall quality
of the generated training data.

5.3 Understanding of the Cycle-Instruct’s
Iterative Refinement

Performance over Iterations. Figure 4 illus-
trates the change in performance for our methods
over three rounds of iteration on each dataset (see

Dataset Pearson » p-value
Alpaca 0.904 0.0052
Dolly 0.743 0.0559
MedAlpaca 0.646 0.117

OASST-1 0.872 0.0105
WikiHow 0.853 0.0146

Table 6: Pearson Correlation Coefficients and p-values
between QA pair quality scores and downstream perfor-
mance Across Datasets

CZ iter1 [Iter2 [Z Iter3

2 o o
© N A&

[
©

w
S

Avg score across task metrics
wu w
N o

a
°

A

N‘,acﬂ Do\\‘l

A o®

o#ss‘-x

'y
-3

‘,\edh“’aca w\\ﬁ‘“°w

Figure 4: Cycle-Instruct’s Performance over Iterations
across different datasets.

Appendix E for more details). We observe that
Dolly continues to improve steadily, Alpaca shows
a modest uplift, whereas the other datasets plateau:
MedAlpaca, OASST-1 and WikiHow remain es-
sentially flat. As discussed in Section 5.1, this hap-
pens because on the simpler instruction datasets
the model already generates sufficiently realistic
pseudo-labels in the first training cycle, making
further iterations unnecessary. Indeed, the strong
performance gains seen after just one round in our
main experiments further confirm that a single iter-
ation is enough to capture the essential signal when
task formats are straightforward.

6 Conclusion

We presented CYCLE-INSTRUCT, a fully seed-
free instruction-tuning framework that relies on
neither human-written seeds nor external teacher
models. Through a dual self-training loop—an
answer generator and a question generator linked
by cycle consistency—the method extracts high-
quality instruction-response pairs straight from
raw text. Extensive experiments show that CYCLE-
INSTRUCT consistently outperforms seed-driven
back-translation baselines and delivers perfor-
mance competitive with models trained on strong
supervised data, underscoring its ability to tap vast
unlabeled corpora for scalable, automated align-
ment of LLMs with human intent.

5131

Limitations

First, due to resource constraints we only fine-tune
model with LoRA, so the approach’s behaviour at
full-parameter or larger scales remains untested;
second, the cycle-consistency objective could be
exploited to reconstruct user prompts, posing po-
tential privacy risks that call for defences such as
differential privacy or rigorous red-teaming before
deployment; finally, our seed-free segmentation
relies on the presence of a question mark, which
can fail on narrative or expository texts without
explicit interrogatives, suggesting that richer dis-
course cues or retrieval-based heuristics should be
explored.

Acknowledgments

This work is mainly supported by the National Key
Research and Development Program of China (No.
2022YFB3304100). Haobo Wang is also supported
by supported by the Fundamental Research Funds
for the Zhejiang Provincial Universities (No. 226-
2025-00004) and (No. 226-2024-00049).

References

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde De Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, and 1 others. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Shu Chen, Xinyan Guan, Yaojie Lu, Hongyu Lin, Xian-
pei Han, and Le Sun. 2024. Reinstruct: Building in-
struction data from unlabeled corpus. arXiv preprint
arXiv:2408.10663.

Yongrui Chen, Haiyun Jiang, Xinting Huang, Shum-
ing Shi, and Guilin Qi. 2023. Dog-instruct: To-
wards premium instruction-tuning data via text-
grounded instruction wrapping. arXiv preprint
arXiv:2309.05447.

Yew Ken Chia, Pengfei Hong, Lidong Bing, and Sou-
janya Poria. 2023. Instructeval: Towards holistic
evaluation of instruction-tuned large language mod-
els. arXiv preprint arXiv:2306.04757.

Wei-Lin Chiang, Zhuohan Li, Ziqing Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, and
1 others. 2023. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. See
https://vicuna. Imsys. org (accessed 14 April 2023),
2(3):6.

Casey Chu, Andrey Zhmoginov, and Mark Sandler.
2017. Cyclegan, a master of steganography. arXiv
preprint arXiv:1712.02950.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie,
Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell,
Matei Zaharia, and Reynold Xin. 2023. Free dolly:
Introducing the world’s first truly open instruction-
tuned 1lm.

Tianyu Dong, Bo Li, Jinsong Liu, Shaolin Zhu, and
Deyi Xiong. 2025. Mlas-lora: Language-aware pa-
rameters detection and lora-based knowledge transfer
for multilingual machine translation. In Proceedings
of the 63rd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 15645-15660.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
Drop: A reading comprehension benchmark re-
quiring discrete reasoning over paragraphs. arXiv
preprint arXiv:1903.00161.

Jorg Frohberg and Frank Binder. 2021. Crass: A novel
data set and benchmark to test counterfactual rea-
soning of large language models. arXiv preprint
arXiv:2112.11941.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai
Yu, Tie-Yan Liu, and Wei-Ying Ma. 2016. Dual
learning for machine translation. Advances in neural
information processing systems, 29.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2020. Measuring massive multitask language
understanding. arXiv preprint arXiv:2009.03300.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, and 1 others. 2022. Lora: Low-rank
adaptation of large language models. ICLR, 1(2):3.

Abdullatif Koksal, Timo Schick, Anna Korhonen, and
Hinrich Schiitze. 2023. Longform: Optimizing in-
struction tuning for long text generation with corpus
extraction. arXiv preprint arXiv:2304.08460.

Andreas Kopf, Yannic Kilcher, Dimitri von Riitte,
Sotiris Anagnostidis, Zhi-Rui Tam, Keith Stevens,
Abdullah Barhoum, Nguyen Minh Duc, Oliver
Stanley, Richdrd Nagyfi, and 1 others. Openas-
sistant conversations-democratizing large language
model alignment. corr, abs/2304.07327, 2023. doi:
10.48550. arXiv preprint arXiv.2304.07327.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, pages
611-626.

5132

Guillaume Lample, Myle Ott, Alexis Conneau, Ludovic
Denoyer, and Marc’ Aurelio Ranzato. 2018. Phrase-
based & neural unsupervised machine translation.
arXiv preprint arXiv:1804.07755.

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Omer
Levy, Luke Zettlemoyer, Jason Weston, and Mike
Lewis. 2023a. Self-alignment with instruction back-
translation. arXiv preprint arXiv:2308.06259.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B Hashimoto. 2023b. Alpacaeval: An
automatic evaluator of instruction-following models.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2021. Cross-task generaliza-
tion via natural language crowdsourcing instructions.
arXiv preprint arXiv:2104.08773.

Nihal Nayak, Yiyang Nan, Avi Trost, and Stephen Bach.
2023. Learning to generate instructions to adapt
language models to new tasks. In NeurIPS 2023
Workshop on Instruction Tuning and Instruction Fol-
lowing.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, and 1
others. 2022. Training language models to follow in-
structions with human feedback. Advances in neural
information processing systems, 35:27730-27744.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your lan-
guage model is secretly a reward model. Advances in
Neural Information Processing Systems, 36:53728—
53741.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja,
and 1 others. 2021. Multitask prompted training en-
ables zero-shot task generalization. arXiv preprint
arXiv:2110.08207.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Edinburgh neural machine translation systems
for wmt 16. arXiv preprint arXiv:1606.02891.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi,
Denny Zhou, and 1 others. 2022. Challenging big-
bench tasks and whether chain-of-thought can solve
them. arXiv preprint arXiv:2210.09261.

Kai Tang, Junbo Zhao, Xiao Ding, Runze Wu, Lei
Feng, Gang Chen, and Haobo Wang. 2024. Learn-
ing geometry-aware representations for new intent

discovery. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 5641-5654.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, and 1 others. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022. Self-instruct: Aligning lan-
guage models with self-generated instructions. arXiv
preprint arXiv:2212.10560.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Da Yin, Xiao Liu, Fan Yin, Ming Zhong, Hritik Bansal,
Jiawei Han, and Kai-Wei Chang. 2023. Dynosaur:
A dynamic growth paradigm for instruction-tuning
data curation. In EMNLP.

Jianyi Zhang, Saeed Vahidian, Martin Kuo, Chunyuan
Li, Ruiyi Zhang, Tong Yu, Guoyin Wang, and Yi-
ran Chen. 2024. Towards building the federatedgpt:
Federated instruction tuning. In ICASSP 2024-2024
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 6915-6919.
IEEE.

Shaolin Zhu, Leiyu Pan, Bo Li, and Deyi Xiong. 2024a.
Landermt: Detecting and routing language-aware
neurons for selectively finetuning llms to machine
translation. arXiv preprint arXiv:2409.19523.

Shaolin Zhu, Shaoyang Xu, Haoran Sun, Leiyu Pan,
Menglong Cui, Jiangcun Du, Renren Jin, Anténio
Branco, Deyi Xiong, and 1 others. 2024b. Multi-
lingual large language models: A systematic survey.
arXiv preprint arXiv:2411.11072.

Ingo Ziegler, Abdullatif Koksal, Desmond Elliott, and
Hinrich Schiitze. 2024. Craft your dataset: Task-
specific synthetic dataset generation through cor-
pus retrieval and augmentation. arXiv preprint
arXiv:2409.02098.

5133

A Related Work

A.1 Supervised Instruction Tuning

Supervised Instruction Tuning refers to fine-tuning
large language models on explicit, human-written
(or high-quality synthetic) instruction—response
pairs that span a wide spectrum of tasks. Ini-
tial research focused on established NLP bench-
marks and demonstrated that models fine-tuned on
these task collections could generalize zero-shot
to novel text-based problems (Wei et al., 2021;
Sanh et al., 2021; Mishra et al., 2021; Tang et al.,
2024). With the advent of ChatGPT and other con-
versational systems, the community shifted toward
general-purpose instruction corpora that cover rea-
soning, coding, multimodal description, and dia-
logue, laying the groundwork for assistant-style
LLMs (Ouyang et al., 2022; Chiang et al., 2023;
Taori et al., 2023; Zhu et al., 2024b; Dong et al.,
2025). In this supervised paradigm, the model first
learns to map diverse prompts to high-quality an-
swers, after which additional alignment steps such
as RLHF or DPO can further refine helpfulness
and safety (Ouyang et al., 2022; Rafailov et al.,
2023). Crowd-sourced efforts such as OPENASSIS-
TANT (Ko6pf et al.) and OPENHERMES (Conover
et al., 2023) further democratise instruction data
by collecting large human-annotated corpora. De-
spite strong performance, these approaches incur
substantial annotation cost and remain constrained
by the scope and biases of biases of available hu-
man prompts, motivating work on less supervised
alternatives.

A.2 Backtranslation-Based Instruction
Tuning

Instruction backtranslation generates synthetic in-
struction-response pairs for unlabeled text using
a small seed set. Humpback (Li et al., 2023a)
repeatedly augments web documents with seed-
conditioned prompts and self-curates the best can-
didates. REINSTRUCT (Chen et al., 2024) adds
lightweight passage filtering and answer rewrit-
ing. LONGFORM-C (Koksal et al., 2023) grounds
answers in real documents before asking GPT-3
to author the corresponding instructions. DOG-
INSTRUCT (Chen et al., 2023) wraps human-
written documents into instruction form to curb
hallucination while shrinking data size.

Although their pipelines and filtering strategies
differ, all of these approaches ultimately derive
data quality from the same backtranslation mecha-

nism and thus inherit its common drawbacks: they
still (i) depend on seed prompts or an external
teacher model, (ii) suffer from data inefficiency
because many synthetic pairs are low quality and
must be filtered, and (iii) inherit distributional bi-
ases from the limited seed set, restricting instruc-
tion diversity. In contrast, CYCLE-INSTRUCT re-
moves the seed bottleneck altogether: its dual
self-training loop learns directly from raw corpora,
needs no carefully selected seed data, and creates
pseudo-pairs whose quality is enforced by cycle
consistency rather than heavy post hoc filtering.
Our experiments therefore focus on comparing
the generation paradigm itself—seed-driven back-
translation versus fully seed-free cycle training.
The results show that CYCLE-INSTRUCT consis-
tently delivers higher downstream accuracy and
human preference, confirming the advantages of
seed-free, cycle-consistent data synthesis over tra-
ditional backtranslation pipelines.

A.3 Large-Model Validation

To further validate the effectiveness of our ap-
proach at scale, we fine-tune the LLLaMA 3.3 70B
Instruct model. The results are shown in Ta-
ble 7. Interestingly, we observed that fine-tuning
the model with the original dataset occasionally
led to a drop in model performance. However, our
approach—Cycle-Filt and Cycle-Inst—was able
to maintain or even improve model performance,
even when faced with a gap in data quality. This
aligns with our previous observation that, as base
models improve, certain instruction data might
not be sufficient to fine-tune these models ef-
fectively. Our iterative self-distillation approach
allows the model to continuously regenerate data
and correct low-quality examples, thereby preserv-
ing and enhancing performance, which was not
observed with traditional fine-tuning methods like
All-SFT.

A4 Comparisons with Seed-Data-Free
Alternatives

Clarification on seed-free. In our setting, seed-
free denotes generating instruction-following data
without manually curated seed examples and with-
out external teacher models. For context:

* LongForm (Koksal et al., 2023) introduces
reverse instruction generation but relies on an
external teacher to produce reverse instruc-
tions.

5134

OASST-1 (Dialogue Logs)

| WikiHow-4w (Plain Text)

Method

MMLU BBH DROP CRASS Avg \ MMLU BBH DROP CRASS Avg
Vanilla 80.86 45.75 68.53 90.51 7141 80.86 45775 68.53 90.51 71.41
All-SFT 80.53 45.50 68.15 9343 7190 | 80.53 4493 67.99 92.70 71.54
Cycle-Inst 81.03 46.06 68.70 93.80 7240 | 81.07 4590 68.78 94.16 7248

Table 7: Large-model validation with LLaMA 3.3 70B Instruct. While ALL-SFT can regress relative to Vanilla,
CYCLE-INST improves both OASST-1 and WIKIHOW-4W averages.

* CRAFT (Ziegler et al., 2024) uses user-
written examples as demonstrations to model
the target distribution; this depends on manu-
ally curated seeds.

* Bonito (Nayak et al., 2023) learns from a
large pre-trained corpus; while partially seed-
free, it may not faithfully match the target data
distribution, yielding suboptimal averages in
our replication.

We reproduce these methods under matched condi-
tions (same base models and training parameters;
LongForm updated to GPT-40-mini for teacher-
based steps) for a fair comparison. Table 8 reports
the final results. CYCLE-FILT is competitive across
both corpora and strongest on averages.

A.5 Additional Domain-Specific Results:
CodeAlpaca & HumanEval

To broaden domain coverage, we additionally in-
clude Code-Alpaca’ as a code-oriented instruction
dataset and evaluate downstream code generation
with HumanEval (Chen et al., 2021). This track
assesses whether our seed-free synthetic instruc-
tion generation transfers to program synthesis tasks.
Table 9 reports the final results. Results indicate
that our method also carries over to code synthesis.

B Baseline Details

* Vanilla. Zero-shot performance of the base
model (0 % labels).

* All-SFT. Supervised fine-tuning on 100 % gold
instruction—response pairs.

* 80%-SFT. Supervised fine-tuning on 80 % of
the gold pairs.

* Rand-k % / Clust-k %. To model the
scarcity of seed examples, we sample only
ke {5,10,20} % of the gold pairs—uniformly

Shttps://huggingface.co/datasets/sahil2801/
CodeAlpaca-20k

at random (Rand) or via K-means clustering in
embedding space (Clust). The observed side
of each seed pair is back-translated to create
its missing counterpart, and the model is fine-
tuned on the resulting synthetic corpus. Vary-
ing k explores the trade-off between seed size
and performance.

* Cycle-Inst / Cycle-Filt. Our one-round, seed-
free framework with 0 % labels. Cycle-Inst
trains directly on all synthetic pairs produced
by the dual self-training loop, whereas Cycle-
Filt further prunes pairs whose reconstruc-
tions violate a 5 % k-center-greedy cycle-
consistency threshold (see Section 3.5 for more
details).

C Prompt Templates

C.1 Prompt template for REFORMAR_PROMPTER

Figure 5 presents the template used by the
REFORMAR_PROMPTER. Given a web passage that al-
ready contains question-like sentences, it prompts
the model to craft one well-formed, natural ques-
tion that could plausibly be asked about (part of)
that passage, without collapsing the entire text into
a summary. This question generation step seeds
the subsequent answer-rewriting stage.

C.2 Prompt template for
REFORMAR_ASSISTANT

Figure 6 presents the template used by the
REFORMAR_ASSISTANT. Here, the “assistant” is in-
structed to rewrite that passage into a direct answer
that is fluent, coherent, and preserves the origi-
nal structure—laying the groundwork for a clean
(question, answer) pair.

C.3 Prompt template for Pseudo-Answer
Generation

Figure 7 depicts the template used when we al-
ready have an instruction (or question) but need a
synthetic answer. The model is cast as an assistant
asked to provide a helpful, high-quality response,

5135

https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k
https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k

OASST-1 | WikiHow-4w
Method
MMLU BBH DROP CRASS Avg ‘ MMLU BBH DROP CRASS Avg

Bonito 58.02 3847 39.38 67.52 50.85 | 5649 3796 39.76 6131 48.88
CRAFT 58.84 3890 3862 70.07 51.61 | 58.31 3860 3812 67.15 50.55
LongForm 57.75 3730 38.54 5876 48.09 | 57.81 3629 3644 62.04 48.15
Cycle-Inst 58.77 38.75 39.19 70.17 51.72 58.49 37.54 38.57 67.88 50.62
Cycle-Filt 59.07 38.98 39.52 70.07 5191 | 5870 3850 39.54 67.52 51.07

Table 8: Reproduced comparisons with seed-data-free alternatives. CYCLE-FILT is competitive across both corpora

and strongest on averages.

7

REFORMAR_PROMPTER

interrogative tone.
Web text: {instruction}

Below is a block of Web text containing several paragraphs with question marks. Based on the content provided (or
a portion of it), generate one plausible and clear question without summarizing the entire text. Maintain a natural,

Answer:
\ J
Figure 5: Prompt template for REFORMAR_PROMPTER

Method HumanEval from 0 — 10, enabling large-scale filtering of low-
Cluster 5% 24.39 quality pairs without manual review.
Cluster 10% 25.00
Cluster 20% 26.83 D Cases
Random 5% 21.95
Random 10% 21.34 D.1 Dolly Failure Cases
Random 20% 23.17
Normal 80% 26.22 Figure 10 highlights how traditional back-
EOZI;;ainlsotO% iggg translation succeeds on declarative web texts but
Cgl,cle_Filt 28.66 fails on Dolly’s context-rich, multi-task prompts,

Table 9: HumanEval results with CodeAlpaca as the
domain-specific dataset. CYCLE-FILT reaches the best
performance among compared settings.

allowing us to bootstrap an answer in the absence
of human annotations.

C.4 Prompt template for
Pseudo-Instruction Generation

Figure 8 inverts the previous step: starting from a
model-generated answer, it prompts the system to
reconstruct a plausible instruction that would elicit
that answer. This back-translation closes the loop,
enabling us to create balanced instruction—answer
pairs even when only one side was originally avail-
able.

C.5 Prompt template for
GPT40MINI_QA_Evaluator

Finally, Figure 9 illustrates the automated evalua-
tion prompt. Given a synthetic (Q, A) pair, GPT-
4o-mini is asked to return a single relevance score

producing generic instructions that lose task speci-
ficity.

D.2 Iterative Instruction Refinement Cases
for Dolly-15k

Figure 11 illustrates a classification example from
the Dolly-15k dataset, contrasting the generic in-
struction produced by traditional back-translation
with the progressively refined instructions gener-
ated by our Cycle-Filt framework over two iter-
ations. This visualization demonstrates how it-
erative pseudo-labeling restores the original task-
specific phrasing.

E Iteration-wise Performance for
Cycle-Inst

Below we report Table 10 and Table 11, for each
of five datasets, the Cycle-Inst method’s metrics
over three self-training iterations.

5136

[REFORMAR_ASSISTANT

A single-turn chat between a curious user and an artificial intelligence assistant. The assistant gives helpful answers to
the user’s questions.

User: Below is a block of Web text without any question marks. Please rewrite it into a fluent and coherent response
that clearly conveys its intended meaning. The overall structure should remain similar, but ensure the language flows
smoothly and the purpose is unmistakable.

Web text: {output}

Assistant:

Figure 6: Prompt template for REFORMAR_ASSISTANT.

)
-

Pseudo-Answer Generation

A single-turn chat between a curious user and an artificial intelligence assistant. The assistant gives helpful answers to
the user’s questions.

User: {instruction}

Assistant:

Figure 7: Prompt template for Pseudo-Answer Generation.

Pseudo-Instruction Generation

Below is a reponse from an Al Assistant and its user instruction. The instruction is used as prompt for the response.
Assistant: {output}
User:

Figure 8: Prompt template for Pseudo-Instruction Generation.

GPT40MINI_QA_Evaluator

You are an Al evaluator. For a given Answer (A) and Generated Question (Q), score the relevance of the question to the
answer on a scale from 0 to 10, where 0 means completely irrelevant and 10 means perfectly relevant. Respond ONLY
with a single numeric score.

A: {answer}

Q: {question}

Relevance score (0-10):

Figure 9: Prompt template for GPT40MINI_QA_Evaluator.

ﬁther datasets: \

"golden_answer": "Cans or tins can be repurposed to protect young seedlings from snails and
other pests. This is a simple and effective solution."

“golden_instruction": "How can | protect my seedlings from snails and other pests?"
“generated_instruction": "How can | protect my seedlings from snails and other pests?"

Dolly datasets:

“task_category": "classification"

"golden_answer: "Human: Two Legs\nHorse: Four Legs\nDog: Four Legs\nCat: Four
Legs\nMonkey: Two Legs\nKangaroo: Two Legs\nBoar: Four Legs"

"golden_instruction": "Classify each of the following as having two or four legs: human, horse, dog,

cat, monkey, kangaroo, boar"
"generated_instruction": "Write a program that prints the number of legs of a given animal."

Figure 10: Unlike declarative texts in other datasets, Dolly’s multitask-based prompts embed explicit tasks, so the
heightened variability and compatibility issues between prompts make accurate inversion particularly difficult and
often lead to the generation of low-quality instructions.

5137

Ktask_category“: "classification" \

"golden_answer": "Human: Two Legs\nHorse: Four Legs\nDog: Four Legs\nCat: Four
Legs\nMonkey: Two Legs\nKangaroo: Two Legs\nBoar: Four Legs"

"golden_instruction": "Classify each of the following as having two or four legs: human, horse,
dog, cat, monkey, kangaroo, boar"

"backtranslation_generated_instruction": "Write a program that prints the number of legs of a
given animal."

"Cycle in iter1_generated_instruction": "Extract the nouns and verbs from the following
sentence. Separate them with a comma. The dog ran, the cat swam, John ate, Adam flew."
"Cycle in iter2_generated_instruction": "Classify the following words as either nouns or

@bs: dog, run, cat, eat, swim, John, Adam, Fly." /

Figure 11: Iterative pseudo-instruction refinement for a classification example from Dolly-15k, showing the
back-translation output, Cycle-Instruct iteration 1, and Cycle-Instruct iteration 2, progressively recovering the
multi-instance classification task wording.

Dataset Iteration MMLU BBH CRASS DROP Avg
Alpaca-GPT4 Iter 1 59.01 39.28 74.82 39.86 53.24
Iter 2 59.39 39.23 77.37 40.05 54.01
Iter 3 59.01 40.14 77.37 40.02 54.13
Dolly-15k Iter 1 58.96 37.44 70.07 3779 51.07
Iter 2 59.11 38.06 74.82 3841 52.60
Iter 3 59.13 38.41 76.64 38.36 53.13
OASST-1 Iter 1 58.77 38.75 70.17 39.19 51.72
Iter 2 59.15 37.87 69.50 38.28 51.20
Iter 3 58.65 38.09 70.17 39.28 51.55
WikiHow Iter 1 58.49 37.54 67.88 38.57 50.62
Iter 2 58.29 38.37 70.07 3772 51.11
Iter 3 58.33 37.19 70.80 38.27 51.15

Table 10: Iteration-wise performance on four general datasets using Cycle-Inst.

Iteration CK CB CC CM HB HC MG PM Avg

Iter 1 0.668 0.715 0460 0.578 0.742 0473 0.760 0.643 0.630
Iter 2 0.657 0.722 0440 0.578 0.755 0478 0.750 0.673 0.632
Iter 3 0.638 0.729 0.440 0.566 0.758 0.483 0.760 0.676 0.631

Table 11: Iteration-wise performance on Medical-Alpaca using Cycle-Inst.

5138

