
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 4890–4904
November 4-9, 2025 ©2025 Association for Computational Linguistics

RESF: Regularized-Entropy-Sensitive Fingerprinting for Black-Box
Tamper Detection of Large Language Models

Pingyi Hu1† Xiaofan Bai1† Xiaojing Ma1* Chaoxiang He2∗
Dongmei Zhang3 Bin Benjamin Zhu3

1Huazhong University of Science and Technology
2Shanghai Jiao Tong University 3Microsoft Corporation

{xiaofanbai, pingyihu, linda}@hust.edu.cn
hechaoxiang@sjtu.edu.cn, {dongmeiz, binzhu}@microsoft.com

Abstract

The proliferation of Machine Learning as a
Service (MLaaS) has enabled widespread de-
ployment of large language models (LLMs) via
cloud APIs, but also raises critical concerns
about model integrity and security. Existing
black-box tamper detection methods, such as
watermarking and fingerprinting, rely on the
stability of model outputs—a property that does
not hold for inherently stochastic LLMs.

We address this challenge by formulating black-
box tamper detection for LLMs as a hypothesis-
testing problem. To enable efficient and sensi-
tive fingerprinting, we derive a first-order surro-
gate for KL divergence—the entropy-gradient
norm—to identify prompts most responsive to
parameter perturbations. Building on this, we
propose Regularized Entropy-Sensitive Fin-
gerprinting (RESF), which enhances sensi-
tivity while regularizing entropy to improve
output stability and control false positives. To
further distinguish tampering from benign ran-
domness, such as temperature shifts, RESF em-
ploys a lightweight two-tier sequential test com-
bining support-based and distributional checks
with rigorous false-alarm control.

Comprehensive analysis and experiments
across multiple LLMs show that RESF
achieves up to 98.80% detection accuracy un-
der challenging conditions, such as minimal
LoRA fine-tuning with five optimized finger-
prints. RESF consistently demonstrates strong
sensitivity and robustness, providing an effec-
tive and scalable solution for black-box tamper
detection in cloud-deployed LLMs.

1 Introduction

The widespread adoption of Machine Learning as a
Service (MLaaS) has greatly simplified the deploy-
ment and use of Deep Neural Networks (DNNs). In

*Corresponding Authors. † Equal Contribution. All exper-
imental work was performed by Pingyi Hu and Xiaofan Bai
in Huazhong University of Science and Technology.

Model owner Cloud service provider

Model upload

Model tampering

Open access API

Model compression
…

…
Malicious injection

Potential tampering attack

Model users

Fingerprint Generation

Fingerprint Pool

Tamper detection

Query with fingerprint

Trusted third party

Model training

(x={<BOS>generated fingerprint<EOS>},
y={Yes(60%), Sure(30%), No(10%)……})

Original model

Fingerprint Samples

Fingerprint Store

Model replacement

Output 𝒚𝒚𝒑𝒑𝒑𝒑𝒑𝒑

Figure 1: Illustration of tampering attacks on cloud-
deployed LLMs and fingerprinting for tamper detection.

particular, cloud-hosted models—including Large-
scale Language Models (LLMs) such as GPT or
LLAMA—are increasingly accessed via APIs for
applications ranging from virtual assistants to code
generation. However, this deployment paradigm
introduces a critical security concern: both model
owners and end users must rely on trust that the
cloud-hosted model has not been tampered with or
substituted by an adversary (He et al., 2019).

In practice, model tampering can manifest
in various forms. For example, a dishonest
service provider might covertly replace a high-
performance model with a compressed or less ac-
curate variant to reduce operational costs. Alter-
natively, an adversary could inject backdoors by
fine-tuning the owner’s original model on poisoned
data, embedding malicious behaviors while main-
taining normal performance on standard inputs.
Consider a backdoored face recognition system: it
may classify benign samples correctly, yet consis-
tently misidentify any individual wearing a specific
trigger—such as a particular style of glasses—as
a predefined target. Such tampering often leaves
the model seemingly functional on standard bench-
marks while silently compromising its integrity
and safety guarantees. As a result, detecting tam-

4890

pering in cloud-deployed models under black-box
access remains a critical and highly challenging
open problem.

Substantial efforts have been devoted to address-
ing this concern in black-box settings, which align
well with the MLaaS paradigm. Existing black-box
model integrity verification methods primarily rely
on watermarking or fingerprinting techniques (il-
lustrated in Fig. 1). Among these, fingerprinting
has attracted increasing attention due to its non-
intrusive nature. Both approaches share a common
underlying assumption: the stability of the model’s
input-output behavior—specifically, that the param-
eterized mapping function f(·) produces consistent
outputs for identical inputs. This assumption gen-
erally holds for traditional deterministic classifiers,
where repeated queries with the same input yield
the same prediction. However, the inherent stochas-
ticity in the generation process of LLMs fundamen-
tally undermines this premise, rendering detection
methods designed for deterministic models ineffec-
tive for LLM tamper detection.

In this paper, we introduce a novel and efficient
fingerprinting method for black-box tamper detec-
tion in LLMs. We formulate tamper detection as a
hypothesis-testing problem and establish a connec-
tion between the sensitivity of fingerprint samples
and the KL divergence between output token dis-
tributions before and after potential tampering. To
address the intractability of KL divergence without
prior knowledge of tampering, we derive a first-
order surrogate—the entropy-gradient norm, de-
fined as S(x) = ∥∇θH(x; θ0)∥2, where H(x; θ0)
denotes the Shannon entropy (see Section 4.2).
By leveraging the Cauchy–Schwarz inequality, we
show that S(x) provides a tight lower bound on the
Fisher trace. This formulation eliminates computa-
tionally expensive second-order operations, signifi-
cantly reducing overall cost.

Building on this, we propose Regularized
Entropy-Sensitive Fingerprinting (RESF), a
method that enhances sensitivity to model tamper-
ing while promoting a sharp (low-entropy) origi-
nal output distribution to explicitly control type-I
(false-positive) errors. To distinguish temperature-
induced variations from actual tampering, we de-
sign a two-tier sequential testing framework:
Rule E flags early occurrences of out-of-support
tokens, and Rule P performs an online Pearson
goodness-of-fit test against a one-parameter tem-
perature family. An α-spending strategy is adopted
to keep the global false-positive rate below any

user-specified level α. Finally, we provide both a
theoretical analysis and a comprehensive experi-
mental validation to demonstrate the effectiveness
and efficiency of the proposed method.

Our major contributions can be summarized as
follows:

1. We formalize black-box tamper detection for
LLMs as a hypothesis-testing problem, estab-
lishing a rigorous theoretical foundation for
verifying model integrity under the inherent
stochasticity of LLM outputs.

2. We introduce a novel fingerprinting objective
that employs a first-order surrogate for KL
divergence, maximizing tampering sensitiv-
ity while explicitly controlling type-I (false
positive) errors and addressing the challenge
of output variability in LLMs.

3. We design a detection framework that inte-
grates support-based checking (Rule E) with
distributional goodness-of-fit testing (Rule P),
enabling robust discrimination between ma-
licious tampering and benign temperature-
induced variations under rigorous α-spending
control of the global false-alarm rate.

4. We provide theoretical analysis with explicit
performance guarantees and validate RESF
through extensive experiments across multi-
ple LLMs and tampering scenarios. RESF
achieves up to 98.80% detection accuracy un-
der challenging conditions such as minimal
LoRA fine-tuning with only five optimized
fingerprints, and consistently demonstrates
strong sensitivity and robustness, making it
an effective and scalable solution for black-
box LLM tamper detection.

2 Related Work

Model tampering detection. The objective of tam-
per detection is to ensure that a deployed model re-
mains identical to the original version provided by
the model owner, i.e., it has not been altered either
maliciously or inadvertently. In practical deploy-
ments, models are often accessed through restricted
interfaces such as cloud-based APIs or on-device
services, where internal details—including archi-
tecture and parameters—are inaccessible. These
constraints motivate verification in a black-box set-
ting, where integrity must be assessed solely from

4891

the model’s outputs on a limited set of queries with-
out direct access to the model internals.

Black-box tamper detection techniques can be
broadly divided into two categories. The first is
watermarking, which embeds a fragile pattern into
the model’s parameters so that any modification
disrupts this pattern (Yin et al., 2023). While wa-
termarking can be effective, it is inherently inva-
sive and often degrades the model’s performance.
The second category, fingerprinting, avoids alter-
ing the model by instead constructing a set of sen-
sitive inputs whose outputs serve as the model’s
unique “fingerprint.” Since our goal is to develop
non-invasive detection mechanisms, we focus ex-
clusively on fingerprinting-based approaches.
Fingerprinting for Tamper Detection of Classifi-
cation Models. Fingerprinting for black-box tam-
per detection was pioneered by sensitive-sample
fingerprinting (SSF) (He et al., 2019), first intro-
duced for image classifiers. The central idea is to
craft a set of inputs whose predicted labels are
highly sensitive to small changes in model pa-
rameters. This sensitivity is typically achieved
by (i) maximizing gradient-based sensitivity met-
rics (He et al., 2019; Docena et al., 2021; Kut-
tichira et al., 2022), (ii) placing inputs near deci-
sion boundaries (Wang et al., 2023; Xiaofan et al.,
2024; Aramoon et al., 2021; Bai et al., 2025), or
(iii) leveraging prediction variance across a local
ensemble of models (He et al., 2024). During de-
tection, any label flip in these fingerprinted samples
is taken as evidence of model tampering.

Remark. Fingerprinting has also been exten-
sively studied for intellectual property (IP) pro-
tection (Yang et al., 2022; Pan et al., 2022; Li et al.,
2024, 2023; Zhang et al., 2024). Such methods
aim to verify whether a suspect model originates
from a protected one, typically to assert ownership.
Although both application domains share method-
ological similarities, IP protection focuses on lin-
eage verification, whereas tamper detection targets
unauthorized modifications to a specific deployed
model.
Challenges in applying existing fingerprinting
to LLMs. Existing fingerprinting methods rely on
a stable input–output mapping to verify model in-
tegrity. However, the inherent stochasticity of LLM
outputs breaks this assumption, significantly reduc-
ing the effectiveness of fingerprinting techniques
originally designed for deterministic models when
applied to LLMs.

In summary, existing approaches either assume

deterministic behavior or target intellectual prop-
erty (IP) protection rather than tamper detection.
To address the unique challenges posed by LLMs,
we introduce RESF, a fingerprinting scheme tai-
lored for black-box tamper detection of LLMs.

3 Threat Model

Aligning with existing works and as illustrated in
Fig. 1, we adopt a white-box assumption for fin-
gerprint generation and a black-box assumption
for tamper detection. Specifically, during finger-
print prompt generation, we assume that the model
parameters and corresponding gradients are fully
accessible. This is reasonable since fingerprint sam-
ples are generated by the model owner. In contrast,
tampering detection operates under a black-box set-
ting, where only API access to the suspect model
and its text outputs is available.

Following (Wang et al., 2023; Xiaofan et al.,
2024; He et al., 2024), we further assume a trusted
third party securely stores and distributes finger-
print samples for public tamper detection, while
the cloud service provider may be untrustworthy
and could tamper with the uploaded LLM. Addi-
tionally, adversaries may attempt to acquire or craft
fingerprint samples in an effort to evade detection.

4 Effective Fingerprinting for LLMs

Let θ0 ∈ Θ ⊂ Rd denote the parameters of the lan-
guage model to be protected. The model generates
output tokens from a finite vocabulary V , where
|V | ≥ 2. Given an input prompt x = (x1, . . . , xn),
the model defines a conditional probability distri-
bution pθ(· | x) over the next output token. We de-
fine a fingerprint sample as a carefully constructed
sequence of input tokens designed to be highly sen-
sitive to changes in the model parameters. For a
given fingerprint sample x, the probability of ob-
serving output y is pθ(y | x).

For clarity and without loss of generality, we
focus on the first generated token as the tamper-
detection token throughout this section. The anal-
ysis naturally generalizes to cases where multiple
tokens or positions are used for detection.

4.1 Problem Formulation

Tamper detection can be cast as a hypothesis-
testing problem, where tampering corresponds to a
perturbation of the original parameters θ0:

H0 : θ = θ0 vs. H1 : θ = θ0 +∆, (1)

4892

where ∆ ̸= 0 denotes the parameter shift intro-
duced by model tampering. In this setting, a single
query to the model with a fingerprint sample yields
an output token y ∼ pθ(· | x).

Based on the Neyman–Pearson Lemma (Neyman
and Pearson, 1933), for a fixed ∆, among all in-
put samples, the one that maximizes the expected
log-likelihood ratio log

pθ0 (·|x)
pθ0+∆(·|x) underH0 (hence

minimizes the optimal β-error) maximizes the Kull-
back–Leibler divergence DKL

(
pθ0∥pθ0+∆

)
. More

details can be found in Appendix A.

4.2 First-Order Approximation of KL
Divergence

As we do not have any prior on ∆, by expanding
the KL divergence in a Taylor series at θ0, we have

DKL

(
pθ0∥pθ0+∆

)
= 1

2∆
⊤Fθ0(x)∆ +O(∥∆∥3),

(2)
where Fθ0(x) ∈ Rd×d is the Fisher information
matrix with entries Fij =

∑
y∈V ∂θi log pθ0(y |

x) ∂θj log pθ0(y | x) pθ0(y | x). See Appendix B
for details.

By Eq. 2, to maximize the outputs’ difference be-
fore and after model tampering, we can maximize
the KL divergence by maximizing the ||Fθ0(x)||2
(equivalent to tr(Fθ0)). However, directly comput-
ing tr(Fθ0) requires evaluating and summing all
second derivatives—or equivalently all pairwise
products of first derivatives—for every token y.

Lemma 4.1 (Cauchy–Schwarz lower bound). For
a finite vocabulary and differentiable token distri-
bution pθ, maximizing the entropy gradient norm
∥∇θH(x; θ0)∥2 maximizes a Cauchy–Schwarz
lower bound on Tr(Fθ0), i.e.,

Tr
[
Fθ0(x)

]
≥ ∥∇θH(x; θ0)∥22

(log |V |)2 . (3)

Proof. Recall ∇θH = −∑
y

(
1 + log pθ(y |

x)
)
∇θpθ(y | x). Let ay = 1 + log pθ(y | x) and

by = ∥∇θpθ(y | x)∥2. Observing |ay| ≤ log |V |
(because p ≤ 1) and applying Cauchy–Schwarz,
we have

∥∇θH∥22 ≤
(∑

y

a2
ypθ(y | x)

) (∑

y

∥∇θpθ(y | x)∥22
pθ(y | x)

)
.

(4)

The second factor equals tr(Fθ0) by defini-
tion, while the first factor is bounded above by
(log |V |)2, establishing Lemma 4.1. More details
are in Appendix C.

Lemma 4.1 shows that tr(Fθ0)—and hence the
right first term in Eq. 2—can be lower-bounded
via the easily computable entropy gradient norm
∥∇θH(x; θ0)∥2. Based on this conclusion, for
a fingerprint sample x, we can provably in-
crease the lower bound of the output’s divergence
DKL

(
pθ0∥pθ0+∆

)
by maximizing ∥∇θH(x; θ0)∥2

when the model tampering ∆ is applied to the pro-
tected model θ0.

Definition 4.2 (Fingerprint Sensitivity). By
Lemma 4.1, the sensitivity of a fingerprint can be
defined as:

S(x) = ∥∇θ0H(x; θ0)∥2, (5)

where H(x; θ0) = −
∑

y pθ0(y | x) log pθ0(y | x)
is the Shannon entropy.

4.3 Regularized-Entropy-Sensitive
Fingerprinting

A fingerprint sample with large S(x) alone is in-
sufficient: If its entropy at state θ = θ0 is high,
the generated token may fluctuate even underH0,
causing false alarms. To tackle this issue, since
H(x; θ0) ∈ [0, ln|V |] is bounded, we therefore in-
troduce a regularized entropy term to ensure that
H(x; θ0) is as low as possible. The objective func-
tion for fingerprint sample x optimization of our
Regularized-Entropy-Sensitive Fingerprinting
(RESF) can be formalized as

argmax
x

J(x) = S(x)− λ ·H(x; θ0), (6)

where λ > 0 is a regularization coefficient.

5 Theoretical Analysis of RESF

In the previous section, we demonstrated how the
RESF objective promotes fingerprint samples with
a large gradient norm S(x) while constraining the
entropy H(x; θ0). We now establish the practical
detection guarantees afforded by these properties.
Specifically, the following results translate the two
design goals of Eq. 6:

(i) Sharp original entropy (small H), and

(ii) Large slope (large S),

into explicit bounds on type-I (false-positive) and
type-II (false-negative) error probabilities. These
bounds provide an information-theoretic justifica-
tion for using J(x) in Eq. 6 as the optimization
criterion.

4893

Let x⋆ be an optimizer of Eq. (6). Define
y⋆ = argmaxy∈V pθ0(y | x⋆), p⋆ = pθ0(y

⋆ | x⋆),
ε = H(x⋆; θ0), and G = ∇θ0pθ0(y

⋆ | x⋆). All
logarithms are natural unless stated otherwise.

Proposition 5.1 (False-positive probability). Un-
derH0, the probability that the observed token Y
differs from y⋆ satisfies

Pr
H0

[Y ̸= y⋆] ≤ ε

log |V | . (7)

Proof. Let qi = pθ0(yi | x⋆), with q1 = p⋆ and∑|V |
i=1 qi = 1. The worst case (maximizing 1− p⋆

for fixed entropy ε) occurs when the remaining
mass is distributed uniformly: q2 = · · · = q|V | =
(1 − p⋆)/(|V | − 1). Substituting into the entropy
constraint,

ε = −p⋆ log p⋆ − (1− p⋆) log

(
1− p⋆

|V | − 1

)
, (8)

and using log
(

1−p⋆

|V |−1

)
≥ − log |V |, we obtain ε ≥

(1− p⋆) log |V |, i.e., 1− p⋆ ≤ ε/ log |V |.

Interpretation. The bound scales linearly
with original entropy ε, so minimizing ε (as
in the RESF objective) directly reduces the
false-alarm rate without loss of sensitivity.

Proposition 5.2 (First-order drop under tampering).
Assuming each coordinate gradient of pθ(y | x)
∇θpθ(y | x) is L-Lipschitz:
∥∥∇θpθ′(y | x)−∇θpθ′′(y | x)

∥∥
2
≤ L ∥θ′−θ′′∥2,

(9)
where L is the Lipschitz constant and θ′, θ′′ ∈ Θ.
Then for model tampering ∆ with ∥∆∥2 = η,

pθ0+∆(y
⋆ | x⋆) ≤ p⋆ − η ∥G∥2 +

1

2
Lη2.

(10)

In particular, if 0 < η ≤ ∥G∥2
L

, the right-hand

side is at most p⋆ − 1
2η ∥G∥2. Using Lemma 4.1,

∥G∥2 ≥
S(x⋆)

log |V | , so the probability reduction is at

least δ =
η S(x⋆)

2 log |V | .

Proof. By the mean-value theorem, there exists
θ̃ on the line segment θ0+ t∆ (t ∈ [0, 1]) such
that pθ0+∆(y

⋆)−p⋆ =
〈
∇θpθ(y

⋆)
∣∣
θ̃
,∆

〉
. Add and

subtract G to obtain

⟨G,∆⟩+
〈
∇θpθ

∣∣
θ̃
−G,∆

〉
. (11)

The first term is at least −η∥G∥2 (adversary
chooses the worst inner-product sign), while the
second is bounded by 1

2Lη
2 due to L-Lipschitzness

of the gradient and the fact that ∥θ̃ − θ0∥ ≤ η. Re-
arranging yields the claimed inequality. In this
paper, we focus on reporting the empirical perfor-
mance of RESF, rather than estimating L or em-
pirically validating the bound, since precisely esti-
mating L is computationally intensive and requires
substantial computing resources.

Practical Meaning. The bound implies
that any sufficiently large perturbation will
reduce the likelihood of the observed token
below p⋆ − δ, creating a detectable statis-
tical gap. Importantly, this gap increases
linearly with both the tamper magnitude η
and the sensitivity S(x⋆), formalizing the
intuition that prompts with “steep cliffs” in
the probability landscape are most effective
for detection.

We conclude that high-sensitivity, low-entropy
prompts are not merely heuristically desirable; they
provably improve the ROC curve of any black-box
tamper detector.

6 Detailed Description of RESF

6.1 Fingerprint Generation

We solve Eq. 6 using iterative gradient ascent:

xi+1 = xi + η · ∇xiJ(xi) (12)

where xi denotes the fingerprint sample’s state at i-
th iteration and η is the learning rate. This process
generates a pool of sensitive fingerprint samples,
from which we select those with the high sensitivity
and lowest entropy to form the final fingerprint set.

Specifically, we employ a two-stage optimiza-
tion procedure. In the first stage, we optimize a
continuous soft prompt matrix in the embedding
space by maximizing Eq. 6 via gradient ascent. The
soft prompt is iteratively updated to maximize the
entropy gradient norm while minimizing output en-
tropy, with regularization and clipping for stability.

In the second stage, we discretize the optimized
soft prompt into a valid token sequence using
the Greedy Coordinate Gradient (GCG) algorithm,
which replaces embedding vectors with the closest
vocabulary tokens to best preserve the fingerprint

4894

samples’ sensitivity generated with RESF. This en-
sures that the final fingerprint samples remain both
effective and composed of valid tokens.

6.2 Tamper Detection

Given the fingerprint samples generated as de-
scribed in Section 6.1, black-box tamper detection
for LLMs remains challenging due to the inherent
randomness in their outputs. As a result, changes in
the output distribution may be caused either by ac-
tual model tampering or by the stochastic nature of
the LLM itself. Distinguishing between these two
sources of variation is central to effective tamper
detection using generated fingerprints.
Output Randomness. Traditional fingerprint-
ing methods for deterministic classification mod-
els simply record the top-1 label as the fin-
gerprint, since the input-output mapping is sta-
ble. However, this approach is inadequate
for LLMs, whose outputs are inherently prob-
abilistic. To address this, we compare the
next-token output distribution of a fingerprint
sample x from the original protected model,
po = Top

K
(p(y|x; θ0)) = {p1o, p2o, . . . , pKo },

with the observed output distribution from the
model under test, pt = {(TokTt ; θ;Tmax ≥
K} = {Tok1t , T ok2t , . . . , T okit, . . . , T okTmax

t }
where Tmax is the query budget and Tokit denotes
the i-th-round returned tokens of the sequential
test queries, to determine whether tampering has
occurred (i.e., whether θ = θ0). Here, Top

K
(·) de-

notes the top-K most probable tokens in the output
distribution. po is obtained from the original model
at a high temperature within the practical range, to
capture the maximum expected output variability
during deployment.
Model Tampering vs. Temperature Rescaling.
Given a fingerprint sample x and its next-token
distribution collected from the original protected
model po = (p1o, . . . , p

K
o), we analyze the tokens

generated by the model under test to determine,
within a given query budget, whether

(i) the test model is simply using a different soft-
max temperature, or

(ii) the model’s weights have been tampered with.

Key Intuition. Temperature rescaling of po defines

a one-parameter family:

q(β) = (qi(β))
K
i=1, qi(β) =

(pio)
β

∑K
j=1(p

j
o)β

,

(13)
where β ≥ 1 is the scaling parameter. Any ob-
served token distribution from the test model that
deviates from this family indicates tampering with
the underlying model parameters, rather than a
mere change in temperature.
Two–Tier Sequential Test. We propose a two–tier
sequential test for each fingerprint sample x to dis-
tinguish model tampering from temperature rescal-
ing. It integrates two complementary detectors:

Rule E (support check) Triggers as soon as a to-
ken outside the recorded top–K support ap-
pears “too early.” Rationale: Model tamper-
ing can introduce new high-probability tokens,
whereas temperature changes cannot assign
probability mass to previously unseen tokens.

Rule P (shape check) Performs a sequential χ2

goodness–of–fit test against the null fam-
ily (13), estimating the nuisance parameter β
on-the-fly. Rationale: Even if the support
remains unchanged, tampering can alter the
relative ordering of probabilities, which the
Pearson statistic can reliably detect, even for
subtle shifts.

The two rules are combined using an α–spending
schedule to ensure that the overall false-alarm prob-
ability remains below user-specified thresholds αE

and αP for Rule E and Rule P, respectively.
Detection Details. We detect tampering by mon-
itoring the test model’s outputs on a fingerprint
sample and applying two sequential checks: one
for unexpected tokens and one for changes in the
top-K probability distribution. The procedure is
below:

1. Reference Recording. For the original model,
record the token probabilities p = (pi)

K
i=1 at

the high practical temperature, the indices C
of the top-K tokens under p, and the total
probability mass outside the top-K, pout =
1−∑

i∈C pi.

2. Online Querying and Count Definitions. For
a fingerprint sample, query the test model up
to Tmax times. For each query t = 1, 2, . . . ,
receive token yt. Maintain counts ni(t) =∑t

s=1 1[ys = i] for i ∈ C, and nout(t) =

4895

∑t
s=1 1[ys /∈ C], representing the number of

times each top-K token and any out-of-support
token has appeared, respectively.

3. Rule E (Support Check). If the first out-of-
support token occurs at step t ≤ NE , where

NE =
⌈

log(1−α)
log(1−pout)

⌉
,

immediately declare tampered.

4. Rule P (Shape Check).
Starting at t = Nmin, at each step:

(i) Fit the sharpening exponent β̂ by solving
the score equation for the log-likelihood
of counts {ni(t)} (see Appendix D.1) un-
der qi(β) ∝ pβi .

(ii) Compute expected counts ei(t) = t ·
qi(β̂) and Pearson’s statistic χ2(t) =∑

i∈C∪{out}(ni(t)− ei(t))
2/ei(t).

(iii) Compare to the critical value

ct = χ2
ν

(
1− α

M

)
,

ν = K − 1, M = Tmax −Nmin + 1.
(14)

where Nmin is the minimum number of
queries before starting Rule P. If χ2(t) >
ct, stop and declare tampered. (see Ap-
pendix D.2)

5. No Alarm.
If neither Rule E nor Rule P fires by t = Tmax,
conclude no evidence of tampering.

We summarize the tamper detection scheme in
Algorithm 1 (Appendix D). Further details on esti-
mating β̂ via log-likelihood and the decision pro-
cess in step (iii) of Rule P are provided in Ap-
pendix D.1 and Appendix D.2, respectively.

7 Experiments

7.1 Experimental Settings

Models and tempering types. In our experiments,
we evaluate the effectiveness of the proposed fin-
gerprint method using several widely-used open-
source large language models (LLMs), specifically
Qwen2.5-0.5B (Team, 2024), Qwen2.5-7B (Team,
2024), LLaMA3.2-1B (Touvron et al., 2023),
LLaMA3-8B (AI@Meta, 2024), and Mistral-v3-
7B (Jiang et al., 2023). These models represent

various scales and architectures, ensuring compre-
hensive validation of our fingerprint’s robustness
and generalization capabilities.

Our experiments involve detection against four
types of model tampering scenarios: model fine-
tuning, model poisoning, model compression, and
model replacement. For the fine-tuning scenario,
each model is fine-tuned on 5K samples from Al-
paca dataset (Taori et al., 2023) for one epoch.
The poisoning scenario involves fine-tuning mod-
els on a dataset containing 10% (500 samples) poi-
soned samples, method from (Xu et al., 2024), for
one epoch. Both fine-tuning and poisoning scenar-
ios utilize the LLaMA-Factory framework (Zheng
et al., 2024). In these fine-tuning processes, we ex-
plore three distinct configurations: full parameter
fine-tuning (noted as SFT), freeze-layer fine-tuning
(freezing all layers except the last three, noted as
Freeze), and Low-Rank Adaptation (LoRA). For
model compression, we employ int 4 and int 8 quan-
tization by bitsandbytes (Dettmers et al., 2022).
Fingerprint generation and detection configura-
tions. The fingerprint generation consists of two
stages: Stage 1 optimizes each fingerprint for 500
steps using the Adam optimizer (learning rate 0.01),
followed by 200 additional steps in Stage 2. Finger-
prints are randomly initialized from the tokenizer
and details are shown in Fig. 4 in Appendix E. For
each model, we generate 100 unique fingerprints.
During detection, we set Tmax = 100, Nmin = 30,
α = 0.05, and αE = 0.01, and randomly select
1 or 5 fingerprints for evaluation. We record the
element of output next-token distribution with con-
fidence larger than 0.01 from the original model
while temperature is set to 0.7, top-k is set to 50,
and nucleus-p is set to 0.99. Each fingerprint is
evaluated for 10 times.

All experiments are implemented in PyTorch
with Hugging Face Transformers, using 2 NVIDIA
H20 GPUs.

7.2 Detection Effectiveness
Overall experiment results. Table 1 reports the
tamper detection performance of RESF across a
range of model architectures and different tam-
pering types. With a single fingerprint, RESF
achieves a detection rate up to 89.40%, and this
improves to nearly 100% when using five finger-
prints, demonstrating strong sensitivity to a vari-
ety of tampering methods. These results highlight
RESF’s generalizability and robustness under dif-
ferent model tampering. Across fine-tuning, poi-

4896

Table 1: Average temper detection rate (%) with 1 or 5 fingerprints.

Models Qwen2.5-0.5B Qwen2.5-7B LLaMA3.2-1B LLaMA3-8B Mistral-v3-7B
Tempering Types/ fingerprint numbers 1 5 1 5 1 5 1 5 1 5

Finetuning
SFT 78.79 100.00 80.30 100.00 87.72 100.00 81.82 99.99 75.27 99.99

Freeze 59.09 99.99 72.73 99.99 73.41 99.99 50.35 99.99 70.35 99.99
LoRA 37.88 98.78 37.05 98.07 64.12 99.99 39.47 99.04 32.01 97.78

Model Poison
SFT 89.40 100.00 84.15 100.00 88.42 100.00 75.76 99.99 76.55 99.99

Freeze 62.12 99.99 72.73 99.99 73.76 99.99 58.58 99.99 70.36 99.99
LoRA 42.25 99.99 35.76 96.87 54.97 99.99 34.85 96.39 42.06 98.93

Model compression
8bit 45.45 99.02 72.72 99.99 82.25 99.99 37.88 97.03 61.67 99.98
4bit 86.36 100.00 80.30 100.00 83.75 100.00 62.12 99.99 66.57 99.99

Model replacement

Qwen2.5-0.5B ∼ ∼ 72.85 99.99 83.12 99.99 85.25 100.00 80.23 100
Qwen2.5-7B 64.27 99.99 ∼ ∼ 89.23 100.00 80.16 100.00 84.12 100

LLaMA3.2-1B 92.31 100.00 91.23 100.00 ∼ ∼ 80.28 100.00 88.17 100
LLaMA3-8B 93.32 100.00 89.12 100.00 77.12 99.99 ∼ ∼ 85.24 100
Mistral-v3-7B 88.65 100.00 85.24 100.00 85.23 100.00 82.13 100.00 ∼ ∼

False Positive Rate 1.52 0.54 0.63 0.33 0.68 0.46 0.77 0.44 0.24 0.01

Table 2: Tamper detection rates (%) under varying num-
bers of detection tokens for different poisoning methods
on Qwen2.5-0.5B using a single fingerprint sample.

Detection tokens 1 2 3
SFT 89.40 93.24 95.57

Freeze 62.12 78.61 86.23
LoRA 42.25 56.23 68.87

Table 3: Tamper detection rates (%) of different baseline
methods under various poisoning attacks on Qwen2.5-
0.5B using a single fingerprint sample.

NSS SFF PublicCheck RESF
SFT 23.74 15.38 11.13 89.40

Freeze 15.32 13.13 14.23 62.12
LoRA 14.24 12.10 12.14 42.25

soning, and quantization-based compression, RESF
consistently detects even minor modifications, in-
cluding LoRA or Freeze-based tuning.
Tamper detection on different training steps.
Fig. 2 illustrates the tamper detection performance
of a single fingerprint sample across different
stages of model fine-tuning. Notably, after just
10 steps of fine-tuning with a poisoned dataset, our
method achieves a detection success rate of 37.65%
using a single fingerprint. When combining five fin-
gerprints, the detection rate rises sharply to 98.80%,
which is already a practically reliable level. These
results demonstrate that our approach is highly sen-
sitive to subtle model tampering.
Temper detection with existing baselines. We
compare RESF to three baselines: SSF (He, 2021)
and PublicCheck (Wang et al., 2023)—both de-
signed for deterministic classifiers—and a non-
sensitive sample (NSS) variant that uses our de-
tector without sensitivity optimization. To apply

0 250 500 750 1000 1250 1500
training steps

30

40

50

60

70

80

90

100

de
te

ct
io

n
ra

te
(%

) Model Poison SFT with 1 fingerprint
Model Poison Freeze with 1 fingerprint
Model Poison LoRA with 1 fingerprint
Model Poison SFT with 5 fingerprint
Model Poison Freeze with 5 fingerprint
Model Poison LoRA with 5 fingerprint

Figure 2: Tamper detection rates (%) across differ-
ent training steps under various poisoning attacks on
Qwen2.5-0.5B.

SSF/PublicCheck to LLMs, we adapt them by con-
verting the token distribution into a pseudo-class
label via the highest-probability token at a fixed
evaluation position. As shown in Table 3, RESF
attains high detection rates, while SSF and Pub-
licCheck exhibit elevated false positives because
token-level stochasticity in LLMs frequently flips
the top-1 token, causing intact models to be incor-
rectly flagged. Also, RESF surpasses NSS, demon-
strating the gains from optimized sensitive finger-
print samples.

Tamper detection with different numbers of de-
tection tokens. Since RESF explicitly minimizes
output entropy, the model’s output distribution of-
ten assigns extremely high probability to its top-1
prediction. Leveraging this property, we treat the
predicted top-1 token as the output token, extend
the context with this token, and then optimize the
following token’s distribution using the same ob-
jective. Repeating this procedure autoregressively
yields multiple detection tokens, each conditioned
on the previously selected tokens and optimized to
remain highly sensitive to model parameter pertur-

4897

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
temperature

0

20

40

60

80

100

de
te

ct
io

n
ra

te
(%

)

Model Poison SFT with 1 fingerprint
Model Poison Freeze with 1 fingerprint
Model Poison LoRA with 1 fingerprint
Model Poison SFT with 5 fingerprint
Model Poison Freeze with 5 fingerprint
Model Poison LoRA with 5 fingerprint

Figure 3: Tamper detection rates (%) under different
generation temperatures for various poisoning attacks
on Qwen2.5-0.5B.

Table 4: Tamper detection rates (%) with varying
nucleus-p under different poisoning attacks on Qwen2.5-
0.5B using a single fingerprint sample.

nucleus-p 0.7 0.8 0.9 0.99
SFT 89.45 90.45 91.75 89.40

Freeze 55.62 61.17 58.14 62.12
LoRA 39.99 41.15 39.92 42.25

bations.
Table 2 reports detection rates for different num-

bers of optimized detection tokens. As expected,
increasing the number of detection tokens sub-
stantially boosts tamper detection success rates.
However, this auto-regressive optimization pro-
cess introduces proportional computational cost,
since each additional token requires a full optimiza-
tion cycle based on the previously fixed tokens.
This highlights a trade-off between detection per-
formance and efficiency.
Tamper detection under different randomness
settings. Fig. 3 and Tables 4 and 5 show the effect
of mismatched decoding configurations between
fingerprint recording and tamper detection, includ-
ing variations in temperature, nucleus-p, and top-k.
By default, fingerprints are generated with temper-
ature 0.7, nucleus-p = 0.99, and top-k = 50.

The results show that our detection performance
remains robust and consistent under both nucleus
sampling and top-k sampling variations, confirm-
ing the method’s effectiveness even when decoding
strategies differ. However, the results also indicate
that deliberately lowering the temperature during
generation (e.g., to 0.3 or 0.1) can reduce detection
success rates, as the output distribution becomes
more peaked and less variable. Even so, at a low
temperature of 0.1, our method still achieves above
84.73% detection rate with 5 fingerprints.

Finally, our sequential hypothesis testing proce-
dure incorporates a temperature-fitting mechanism

Table 5: Tamper detection rates (%) with varying top-k
values under different poisoning attacks on Qwen2.5-
0.5B using a single fingerprint sample.

nucleus-p 20 50 70 100
SFT 90.78 89.40 88.88 88.84

Freeze 63.56 62.12 61.17 60.71
LoRA 45.12 42.25 41.74 37.88

Table 6: Tamper detection rate (%) with different objec-
tive function for different model poisoning on Qwen2.5-
0.5B with 1 fingerprint.

Sensitivity–S(x) Entropy–H(x; θ0) RESF
SFT 64.28 42.85 89.40

Freeze 50.13 35.16 62.12
LoRA 28.57 16.13 42.25

(Section 6.2), which effectively adapts to moderate
shifts in temperature. This enables the detector to
differentiate tampering from benign temperature
misconfigurations.

7.3 Ablation Study

Our objective function consists of two key compo-
nents: the entropy gradient norm S(x) for sensi-
tivity, and the entropy term H(x; θ0) for stability.
To understand their contributions, we conduct an
ablation study by removing each term separately
during fingerprint optimization. The results, sum-
marized in Table 6, show that optimizing only for
S(x) leads to high sensitivity but also high out-
put randomness, optimizing solely for low entropy
yields stable but less sensitive fingerprints, reduc-
ing detection effectiveness.

8 Conclusion

In this paper, we propose RESF, a principled and
efficient fingerprinting framework for black-box
tamper detection of large language models. By
leveraging a first-order surrogate for KL divergence
and a two-tier sequential testing strategy, RESF
robustly differentiates model tampering from be-
nign temperature shifts while strictly controlling
false positives. Extensive experiments across mul-
tiple LLMs and attack scenarios show that RESF
achieves up to 98.80% detection accuracy under
challenging conditions such as minimal LoRA fine-
tuning with only five optimized fingerprints, consis-
tently demonstrating strong sensitivity and robust-
ness. These results highlight RESF as an effective
and scalable solution for ensuring the integrity of
LLMs in real-world MLaaS deployments.

4898

9 Limitations

False positive rate under temperature mismatch.
A limitation of RESF is its increased false positive
rate when the original (non-tampered) model oper-
ates at a higher temperature than that used during
fingerprint recording. As shown in Table 7, as the
temperature rises, the output distribution flattens,
allowing low-confidence tokens to gain probability
mass. This increases the likelihood that tokens fall
outside the originally recorded top-K support, trig-
gering false alarms under Rule E in our Two-Tier
Sequential Test.

In practice, however, this issue is mitigated by
recording fingerprint distributions at a reasonably
high temperature (e.g., 0.7 in our experimental set-
tings), which provides tolerance against typical
benign temperature shifts. As evidenced by the
experimental results, the false positive rate remains
at a low level with increasing temperature, such as
2.12% when the temperature is set to 1.0.

Efficiency On average, generating 100 finger-
prints per model (7B) takes approximately 8 hours
using 2 NVIDIA H20 GPUs. The long runtime for
generating fingerprints arises from the need to use a
batch size of 1 during fingerprint generation. This
is because our loss function requires computing
second-order derivatives for each individual sam-
ple during optimization. In current deep learning
frameworks (e.g., PyTorch, TensorFlow), the first-
order gradient is computed as an average across
the batch, and per-sample first-order gradients are
not directly accessible for subsequent second-order
derivative calculations. As a result, we must gen-
erate one fingerprint at a time (i.e., batch size = 1),
rather than generating multiple fingerprints simulta-
neously with a larger batch size, which leads to the
observed overhead. We recognize the importance
of improving this process and plan to address it in
future work.

Anomaly detection. Fingerprint prompts gener-
ated by our method tend to exhibit low naturalness,
as indicated by their extremely high perplexity. For
example, a typical 20-token fingerprint shows an
average perplexity of 5,728.89 on Qwen2.5-0.5B,
whereas natural texts of the same length from Al-
paca average a much lower perplexity of 21.67.
This stark discrepancy makes fingerprint queries
susceptible to simple anomaly detection and filter-
ing by adversaries.

To mitigate this risk, we adopt a strategy called

Table 7: False positive rate (FPR) of RESF fingerprints,
generated at temperature 0.7, evaluated on the original
model under varying softmax temperature settings.

Temperature 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
FPR (%) 0.03 0.17 0.52 0.47 0.51 1.37 1.53 1.76 1.61 2.12

contextual wrapping. In this approach, each finger-
print is divided into four segments of five tokens
each and embedded at equal intervals within 100 to-
kens of natural instruction-following text sampled
from the Alpaca dataset. The resulting 120-token
sequence serves as the fingerprint, with the four
segments jointly optimized to maximize sensitivity.
This wrapping process significantly lowers the av-
erage perplexity to 32.19, allowing fingerprints to
blend more naturally into typical input distributions
while maintaining their robustness.

Acknowledgments

This work was partially supported by the Na-
tional Natural Science Foundation of China (Grant
No. 62272175), the Major Research Plan of
Hubei Province (Grant/Award No. 2023BAA027),
the Key Research & Development Plan of Hubei
Province of China (Grant No. 2024BAB049), and
the project of Science, Technology and Innovation
Commission of Shenzhen Municipality of China
(Grant No. GJHZ20240218114659027).

References
AI@Meta. 2024. Llama 3 model card.

Omid Aramoon, Pin-Yu Chen, and Gang Qu. 2021. Aid:
Attesting the integrity of deep neural networks. In
Proceedings of 2021 58th ACM/IEEE Design Au-
tomation Conference (DAC), pages 19–24.

Xiaofan Bai, Shixin Li, Xiaojing Ma, Bin Benjamin Zhu,
Dongmei Zhang, and Linchen Yu. 2025. Sdbf: Steep-
decision-boundary fingerprinting for hard-label tam-
pering detection of dnn models. In 2025 IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 29278–29287.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. Gpt3. int8 (): 8-bit matrix mul-
tiplication for transformers at scale. Advances in
Neural Information Processing Systems, 35:30318–
30332.

Amel Nestor Docena, Thomas Wahl, Trevor Pearce,
and Yunsi Fei. 2021. Sensitive samples revisited:
Detecting neural network attacks using constraint
solvers. arXiv preprint arXiv:2109.03966.

Chaoxiang He, Xiaofan Bai, Xiaojing Ma, Bin B. Zhu,
Pingyi Hu, Jiayun Fu, Hai Jin, and Dongmei Zhang.

4899

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://doi.org/10.1109/DAC18074.2021.9586290
https://doi.org/10.1109/DAC18074.2021.9586290
https://doi.org/10.1109/CVPR52734.2025.02726
https://doi.org/10.1109/CVPR52734.2025.02726
https://doi.org/10.1109/CVPR52734.2025.02726

2024. Towards stricter black-box integrity verifica-
tion of deep neural network models. In Proceedings
of the 32nd ACM International Conference on Mul-
timedia, MM ’24, page 9875–9884, New York, NY,
USA. Association for Computing Machinery.

Zecheng He. 2021. Sensitive sample fingerprinting.
https://github.com/zechenghe/Sensitive_
Sample_Fingerprinting. Last accessed Jan. 25,
2022.

Zecheng He, Tianwei Zhang, and Ruby Lee. 2019.
Sensitive-sample fingerprinting of deep neural net-
works. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
4729–4737.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Deepthi Praveenlal Kuttichira, Sunil Gupta, Dang
Nguyen, Santu Rana, and Svetha Venkatesh. 2022.
Verification of integrity of deployed deep learning
models using bayesian optimization. Knowledge-
Based Systems, 241:108238.

Shen Li, Liuyi Yao, Jinyang Gao, Lan Zhang, and
Yaliang Li. 2024. Double-i watermark: Protecting
model copyright for llm fine-tuning. arXiv preprint
arXiv:2402.14883.

Zongjie Li, Chaozheng Wang, Shuai Wang, and Cuiyun
Gao. 2023. Protecting intellectual property of large
language model-based code generation apis via wa-
termarks. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Secu-
rity, pages 2336–2350.

Jerzy Neyman and Egon Sharpe Pearson. 1933. Ix.
on the problem of the most efficient tests of statis-
tical hypotheses. Philosophical Transactions of the
Royal Society of London. Series A, Containing Papers
of a Mathematical or Physical Character, 231(694-
706):289–337.

Xudong Pan, Yifan Yan, Mi Zhang, and Min Yang. 2022.
Metav: A meta-verifier approach to task-agnostic
model fingerprinting. In Proceedings of 28th ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining, Washington, DC, USA, August 14 - 18,
2022, pages 1327–1336. ACM.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Shuo Wang, Sharif Abuadbba, Sidharth Agarwal, Kris-
ten Moore, Ruoxi Sun, Minhui Xue, Surya Nepal,
Seyit Camtepe, and Salil Kanhere. 2023. Public-
check: Public integrity verification for services of
run-time deep models. In Proceedings of 2023 IEEE
Symposium on Security and Privacy (SP), pages
1348–1365. IEEE.

Bai Xiaofan, Chaoxiang He, Xiaojing Ma, Bin Ben-
jamin Zhu, and Hai Jin. 2024. Intersecting-boundary-
sensitive fingerprinting for tampering detection of
DNN models. In Proceedings of the 41st Interna-
tional Conference on Machine Learning, volume 235
of Proceedings of Machine Learning Research, pages
54402–54413. PMLR.

Jiashu Xu, Mingyu Ma, Fei Wang, Chaowei Xiao, and
Muhao Chen. 2024. Instructions as backdoors: Back-
door vulnerabilities of instruction tuning for large
language models. In Proceedings of the 2024 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies (Volume 1: Long Papers), pages
3111–3126, Mexico City, Mexico. Association for
Computational Linguistics.

Kang Yang, Run Wang, and Lina Wang. 2022. Metafin-
ger: Fingerprinting the deep neural networks with
meta-training. In Proceedings of the Thirty-First
International Joint Conference on Artificial Intelli-
gence, IJCAI 2022, Vienna, Austria, 23-29 July 2022,
pages 776–782. ijcai.org.

Zhaoxia Yin, Heng Yin, Hang Su, Xinpeng Zhang, and
Zhenzhe Gao. 2023. Decision-based iterative fragile
watermarking for model integrity verification. arXiv
preprint arXiv:2305.09684.

Ruisi Zhang, Shehzeen Samarah Hussain, Paarth
Neekhara, and Farinaz Koushanfar. 2024.
{REMARK-LLM}: A robust and efficient
watermarking framework for generative large lan-
guage models. In 33rd USENIX Security Symposium
(USENIX Security 24), pages 1813–1830.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma.
2024. Llamafactory: Unified efficient fine-tuning
of 100+ language models. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 3: System Demonstra-
tions), Bangkok, Thailand. Association for Computa-
tional Linguistics.

4900

https://doi.org/10.1145/3664647.3681691
https://doi.org/10.1145/3664647.3681691
https://github.com/zechenghe/Sensitive_Sample_Fingerprinting
https://github.com/zechenghe/Sensitive_Sample_Fingerprinting
https://doi.org/10.1145/3534678.3539257
https://doi.org/10.1145/3534678.3539257
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://proceedings.mlr.press/v235/xiaofan24a.html
https://proceedings.mlr.press/v235/xiaofan24a.html
https://proceedings.mlr.press/v235/xiaofan24a.html
https://doi.org/10.18653/v1/2024.naacl-long.171
https://doi.org/10.18653/v1/2024.naacl-long.171
https://doi.org/10.18653/v1/2024.naacl-long.171
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372

A Connection Between Log-Likelihood
Ratio and KL Divergence

Here, we give a concise derivation of the claims
made in Section 4.1. Throughout, the sample x is
fixed; we omit “| x” from the notation.

A.1 Most-Powerful Test for a Fixed
Perturbation

Fix a prompt x and abbreviate p0(·) = pθ0(· |x)
and p1(·) = pθ0+∆(· |x). Given a single observa-
tion y ∈ V we test

H0 : y ∼ p0 vs. H1 : y ∼ p1. (15)

Likelihood-ratio statistic. We can define the
likelihood-ratio statistic as:

Λ(y) = log
p1(y)

p0(y)
. (16)

From Neyman–Pearson Lemma (Neyman and
Pearson, 1933) any prescribed type-I error (the
false-alarm probability under H0 or significance
level) α ∈ (0, 1), there exists a threshold τ = τ(α)
such that the test ϕ(y) = 1{Λ(y)>τ } fulfills

P0

[
ϕ(y) = 1

]
︸ ︷︷ ︸

type-I error

= α (17)

and, among all tests whose type-I error does not
exceed α, attains the smallest type-II error (the
miss probability underH1)

β := P1

[
ϕ(y) = 0

]
,

or, equivalently, the largest power 1− β.
Thus the Neyman–Pearson test keeps the type-I

error at the chosen level α while minimizing the
type-II error β.

A.2 Prompt Selection via Expected
Log–Likelihood Ratio

The power of the UMP (Uniformly Most Power-
ful) test equals 1 − β = P1[Λ(y) > τ]. Because
τ depends on the full distribution p0, direct maxi-
mization of the power over prompts is inconvenient.
Instead, we note the following equivalence.

Lemma A.1. For any two discrete distributions
p0, p1 on V , the expectation Ey∼p0

[
Λ(y)

]
=

DKL(p0 ∥ p1), is monotone increasing in the test
power 1− β for every fixed α.

Proof. The identity Ep0 [Λ] =∑
y p0(y) log

p0(y)
p1(y)

= DKL(p0∥p1) is im-
mediate. Monotonicity follows because the
Neyman–Pearson rejection region {Λ > τ} is an
upper level set of Λ; enlarging Ep0 [Λ] shifts the
distribution of Λ rightwards under both p0 and p1,
raising P1[Λ > τ] while keeping P0[Λ > τ] fixed
at α.

Hence, for a fixed perturbation ∆, choosing the
sample

x⋆ = argmax
x

DKL

(
pθ0(·|x) ∥ pθ0+∆(·|x)

)

maximizes both the expected log–likelihood ratio
and the power of the UMP test at level α.

B Expansion of the KL Divergence

We start from the definition

DKL

(
pθ0 ∥ pθ0+∆

)
=

∑

y∈V

pθ0(y | x) log pθ0(y | x)
pθ0+∆(y | x) .

(18)

For notational convenience, set

p0(y) ≡ pθ0(y | x), p∆(y) ≡ pθ0+∆(y | x).
(19)

Then (18) becomes

DKL =
∑

y

p0(y)
[
log p0(y)− log p∆(y)

]
. (20)

Separate constant and ∆-dependent parts:

DKL = −
∑

y

p0(y) log p∆(y) +
∑

y

p0(y) log p0(y).

(21)
Next, perform a Taylor expansion of the log-

density about θ0:

log pθ0+∆(y) = log pθ0(y)

+ ∆⊤∇θ log pθ0(y)

+ 1
2
∆⊤∇2

θ log pθ0(y)∆ +O(∥∆∥3).
(22)

Substitute (22) into (21):

DKL = −
∑

y

p0(y)
[
log pθ0(y)

+ ∆⊤∇θ log pθ0(y)

+ 1
2 ∆

⊤∇2
θ log pθ0(y)∆ +O(∥∆∥3)

]

+
∑

y

p0(y) log p0(y).

(23)

4901

Collect terms by order:

Zeroth order: −
∑

y

p0(y) log pθ0(y)

+
∑

y

p0(y) log p0(y) = 0.
(24)

First order: −
∑

y

p0(y)∆
⊤∇θ log pθ0(y)

= −∆⊤ ∑

y

p0(y)∇θ log pθ0(y) = 0,
(25)

where the last equality follows from the
score-function identity

∑
y p0(y)∇θ log pθ0(y) =

∇θ
∑

y p0(y) = 0.
The second-order term is

DKL = − 1
2

∑

y

p0(y)∆
⊤∇2

θ log pθ0(y)∆ +O(∥∆∥3)

= 1
2
∆⊤

[
−
∑

y

p0(y)∇2
θ log pθ0(y)

]
∆+O(∥∆∥3).

(26)

Identify the bracket as the Fisher information
matrix,

Fθ0(x) = −
∑

y∈V
pθ0(y | x)∇2

θ log pθ0(y | x).

(27)
Equivalently, in score form:

Fij =
∑

y∈V

∂θi log pθ0(y | x) ∂θj log pθ0(y | x) pθ0(y | x).

(28)

Hence, we recover

DKL

(
pθ0∥pθ0+∆

)
= 1

2 ∆
⊤Fθ0(x)∆ +O(∥∆∥3),

(29)
by definition.

C Detailed Proof of Lemma 4.1
Proof. Define for brevity

ay = 1 + log pθ0(y | x), gy = ∇θpθ0(y | x). (30)

Then the entropy gradient at θ0 is

∇θH(x; θ0) = −
∑

y∈V
ay gy. (31)

Form the inner product representation

∥∇θH∥22 =
〈∑

y

ay gy,
∑

y′
ay′ gy′

〉

=
∑

y,y′
ay ay′ ⟨gy, gy′⟩.

(32)

To apply Cauchy–Schwarz, rewrite Eq. 32 as:

∥∇θH∥22 =
∥∥∥
∑

y∈V

ay gy

∥∥∥
2

2
=

(∑

y∈V

⟨√py ay,
gy√
py

⟩
)2

,

(33)
where py = pθ0(y | x). Now by the

Cauchy–Schwarz inequality, we have
(∑

y

⟨√py ay,
gy√
py

⟩
)2

≤
(∑

y

∥√py ay∥22
)

·
(∑

y

∥∥∥ gy√
py

∥∥∥
2

2

)
.

(34)

Observe that
∑

y

∥√py ay∥22 =
∑

y

py a
2
y ≤ (max

y
|ay|)2

∑

y

py

= (log |V |)2,
(35)

since |ay| = | 1 + log py| ≤ log |V |. And by the
definition of the Fisher information matrix,

∑

y

∥∥∥ gy√
py

∥∥∥
2

2
=

∑

y

∥∇θpθ0(y | x)∥22
pθ0(y | x) = tr

[
Fθ0(x)

]
. (36)

Combining (34)–(36), we have

∥∇θH(x; θ0)∥22 ≤ (log |V |)2 tr
[
Fθ0(x)

]
, (37)

which rearranges to the stated lower bound
tr[Fθ0(x)] ≥ ∥∇θH∥22/(log |V |)2.

D Additional Details of Tamper Detection

D.1 Estimate β with β̂ by
Maximum–Likelihood Fit of β

For probe query t ∈ T , the log–likelihood is

ℓN (β) = β
∑

i∈C∪{out}
ni(t) log pi − t logZ(β),

(38)
where Z(β) =

∑K
j=1 p

β
j and its derivative (the

score)

SN (β) = ℓ′N (β) =
∑

i∈C∪{out}
ni(t) log pi

− t

K∑

j=1

pβj log pj

Z(β)

(39)

is strictly decreasing, because ℓ′′N (β) < 0 for all β:

ℓ′′t (β) = −t

∑

j

pβj
(
log pj

)2

Z(β)
+ t

(
∑

j

pβj log pj

Z(β)

)2
< 0.

(40)

Hence the equation SN (β) = 0 possesses a
unique root β̂(t).

4902

Algorithm 1 Sequential goodness–of–fit test for a
single prompt

1: Input: fingerprint sample x, total type-I error
budget α, budget for Rule E α, max query
budget Tmax, minimal number of queries to
start the Rule P Nmin

2: Init: ni ← 0 (i ∈ C ∪ {out})
3: for t = 1 to Tmax do
4: obtain token yt
5: nyt ← nyt + 1
6: if yt /∈ C and t ≤ NE (Rule E) then
7: return tampered
8: end if
9: if t ≥ Nmin then

10: solve St(β) = 0 by bisection→ β̂
11: compute χ2(t) via (42)
12: if χ2(t) > ct (Rule P) then
13: return tampered
14: end if
15: end if
16: end for
17: return no evidence of tampering

Numerical solver. Because SN (1) ≥ 0 and
SN (β) → −∞ as β → ∞, bisection on the in-
terval [1, βmax] (with βmax doubled until the score
becomes negative) converges globally. Each eval-
uation of (39) costs O(K ′) thanks to the cached
log pi.

D.2 Pearson Statistic and Decision Rule
With β̂(N) in hand, set the expected counts

ei(N) = N qi
(
β̂(N)

)
, i ∈ C ∪ {out}, (41)

and compute the Pearson chi–square

χ2(N) =
∑

i∈C∪{out}

(
ni(N)− ei(N)

)2

ei(N)
. (42)

The critical value uses Bonferroni α–spending:
cN = χ2

ν

(
1 − αP /M

)
, ν = K ′ + 1 − 2, M =

Tmax −Nmin + 1.
Decision rule:

χ2(N) >cN =⇒ tampered (stop).

If χ2(N) ≤ cN for all N ≤ Tmax, report no evi-
dence of tampering.

Let C denote the index set of the recorded token
elements in p = Top

K
(p(y|x; θ0)). Algorithm 1

(pseudocode) consolidates the above steps into a
self–contained routine callable from any inference
loop.

E Examples of Fingerprint samples

In our implementation, each fingerprint is initial-
ized by randomly sampling 20 tokens from the
model’s tokenizer vocabulary (e.g., from Qwen2.5-
0.5B tokenizer). These random sequences serve as
the starting point for our optimization. Figure 4
shows examples of initial and optimized fingerprint
prompts for Qwen2.5-0.5B

4903

Figure 4: An example pair of initial and corresponding optimized fingerprint sample for Qwen2.5-0.5B

4904

