
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 4858–4865
November 4-9, 2025 ©2025 Association for Computational Linguistics

TrInk: Ink Generation with Transformer Network

Zezhong Jin1*, Shubhang Desai2, Xu Chen2, Biyi Fang2, Zhuoyi Huang2, Zhe Li1,
Chong-Xin Gan1, Xiao Tu2, Man-Wai Mak1†, Yan Lu2, Shujie Liu2†

1The Hong Kong Polytechnic University
2Microsoft Corporation

Abstract

In this paper, we propose TrInk, a Transformer-
based model for ink generation, which effec-
tively captures global dependencies. To bet-
ter facilitate the alignment between the input
text and generated stroke points, we introduce
scaled positional embeddings and a Gaussian
memory mask in the cross-attention module.
Additionally, we design both subjective and
objective evaluation pipelines to comprehen-
sively assess the legibility and style consis-
tency of the generated handwriting. Experi-
ments demonstrate that our Transformer-based
model achieves a 35.56% reduction in charac-
ter error rate (CER) and an 29.66% reduction
in word error rate (WER) on the IAM-OnDB
dataset compared to previous methods. We pro-
vide an demo page with handwriting samples
from TrInk and baseline models at: https://
akahello-a11y.github.io/trink-demo/

1 Introduction

Handwriting synthesis is the task of automatically
generating realistic handwritten text from digital
inputs. Automatic handwritten text generation can
support a wide range of applications, including dig-
ital note-taking, educational tools, and generating
training data to improve optical character recogni-
tion (OCR) systems (Li et al., 2023; Fujitake, 2024;
Yeleussinov et al., 2023). However, due to the com-
plex temporal dynamics and variability inherent in
human handwriting, generating high-quality hand-
written samples still faces challenges.

Deep learning-based handwritten text genera-
tion approaches can be roughly divided into image-
based offline and stroke-based online methods, the
latter also referred to as ink generation. Offline
handwriting synthesis focuses on producing a static
image of handwritten text (Chang et al., 2018;
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Alonso et al., 2019; Kang et al., 2020; Haines et al.,
2016; Bhunia et al., 2021). In contrast, online hand-
writing synthesis (also called ink generation) aims
to generate a time-ordered sequence of pen-tip coor-
dinates along with pen-state indicators (e.g., pen-up
and pen-down), thereby reconstructing the full dy-
namic trajectory of the writing process. Compared
with offline approaches, online handwriting syn-
thesis (ink generation) outputs lightweight stroke
vectors that can be rendered at any resolution, mak-
ing them easy to transmit and display consistently
across diverse devices. In this work, we focus on
ink generation to generate handwriting samples that
are stylistically consistent and highly legible.

Recent research on ink generation has predomi-
nantly relied on sequential models (Graves, 2013;
Aksan et al., 2018; Chang et al., 2022). Graves
(2013) leverages an LSTM-based network to pre-
dict future stroke points from the current pen po-
sition based on the given text. Aksan et al. (2018)
introduces a conditional variational RNN that im-
proves the model’s capacity to capture handwrit-
ten digits. Building on Graves (2013), Chang
et al. (2022) introduces style equalization method,
equipped with a style encoder to explicitly model
the style information.

While these approaches have demonstrated
promising results, they remain fundamentally con-
strained by the sequential nature of recurrent ar-
chitectures, which limits their ability to model
long-range dependencies and hinders parallel train-
ing. Furthermore, alignment between the input
text and generated strokes often requires careful
design, such as attention windowing. Motivated by
the success of Transformer (Vaswani et al., 2017)
in various generative tasks (Li et al., 2019; Chen
et al., 2020; Ding et al., 2021; Chang et al., 2023;
Ma et al., 2024), we propose TrInk (Transformer
for Ink Generation), a fully attention-based model
tailored for ink generation. The encoder ingests
the target text sequence, through multi-head self-
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attention, yields a contextual content representa-
tion for every character. The decoder receives the
character representations together with the previ-
ous generated stroke points, and applies multi-head
self- and cross-attention to compute decoder hid-
den states. These decoder hidden states are fed
into a mixture-density network, which outputs a
Gaussian mixture distribution from which the next
pen offset and pen state are sampled. To improve
alignment between the text and the stroke sequence,
we apply a Gaussian memory mask to the cross-
attention matrix, constraining the decoder’s focus
to progress strictly left-to-right along the encoded
text as strokes are generated. We apply a learnable
scale to sinusoidal positional embeddings to handle
differences between text and ink points. Our main
contributions are summarized as follows:

1. To the best of our knowledge, TrInk is the first
to employ a Transformer encoder–decoder ar-
chitecture for ink generation.

2. TrInk introduces a Gaussian memory mask
to ensure the generated ink points follows the
natural writing order, and a scale factor for the
position embeddings to model the differing
charateristics of the text and the ink points.

3. Our experimental results show that our pro-
posed TrInk yields substantially higher legibil-
ity, particularly on long text, than the previous.

2 Method

The Framework of TrInk comprises two main com-
ponents: an encoder E and a decoder D. En-
coder E aims to map the input text into a sequence
of context-aware distributed representations, with
each vector encoding a token in relation to its sur-
rounding context. Decoder D aims to take the en-
coder’s content vectors along with the previous
stroke points and, at each time step, predict Gaus-
sian distributions for the next pen coordinate and
the stroke-end probability.

2.1 Encoder
From Fig. 1, we transform each character of the
input "his operation was" (including the blank
spaces) into a one-hot vector, yielding H =
[h1,h2, . . . ,hT ], and hi ∈ R|V |, where |V | de-
notes the vocabulary size and T denotes the num-
ber of tokens in the text. After the linear projection
and positional encoding, we obtain the Transformer
encoder input X = [x1,x2, . . . ,xT ], xi ∈ Rd,

where d is the hidden-state dimension of the Trans-
former encoder. The high-dimensional text repre-
sentation C generated by the encoder is then fed
into the Transformer decoder to serve as the mem-
ory for cross-attention.

2.2 Scaled Positional Encoding

To account for the sequential order of both text
tokens and stroke points in ink generation, we in-
ject absolute position information using sinusoidal
positional embeddings, as defined below:

PE(pos, 2i) = sin
( pos

10000
2i
d

)
,

PE(pos, 2i+ 1) = cos
( pos

10000
2i
d

)
,

(1)

where pos denotes the position index and d is the
model’s hidden dimension. Because the encoder’s
domain is text and the decoder’s domain is stroke
points, using fixed positional embeddings alone
cannot properly capture the differing scales and
characteristics of these two inputs. We therefore
employ these sinusoidal positional embeddings
with trainable weights so that the embeddings can
adaptively fit the output scales of both the encoder’s
and the decoder’s linear layers, following (Li et al.,
2019), as shown in Eq. 2

xi = fE(hi) + αPE(i) (2)

where α is the trainable weight. A similar formula-
tion with a separate scaling parameter is applied in
the decoder.

2.3 Decoder with Monotonic Cross-Attention

Each stroke point is represented as a 3-dimensional
vector [∆x,∆y, s], where ∆x and ∆y are the off-
sets along the x- and y-axes, and s ∈ {0, 1} de-
notes the pen state (0 = pen-down, 1 = pen-up).
After the linear projection and positional encoding,
we obtain Z = [ z1, z2 . . . , zL ], where zi ∈ Rd

and L is the number of stroke points.
Given the stroke embedding sequence Z, the

Transformer decoder first applies masked self-
attention to enforce autoregressive dependencies
among stroke points. It then performs cross-
attention with the text representations C to align
each generated stroke with the corresponding text
content. To ensure that each decoding step attends
to the most relevant region of the input text, we
introduce a Gaussian-shaped cross-attention mask.
For each decoder time step t ∈ [1, L], we define
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Figure 1: The proposed TrInk framework (left) and Gaussian memory mask (right).

its corresponding attention center µt on the text
sequence C as:

µt = min

(
t

r
, T − 1

)
. (3)

r denotes the average number of stroke points per
character, estimated from the training data. Gaus-
sian function centered at µt is used for each decoder
step t, ensuring higher attention weights for text po-
sitions near the center and lower weights for distant
ones. For each decoder step t and encoder position
j ∈ [1, T ], the attention weight is defined as:

At,j = exp

(
− (j − µt)

2

2σ2

)
, (4)

where σ is a controllable parameter that determines
the sharpness of the Gaussian distribution. We
apply the logarithm to the At,j to obtain the cross-
attention mask M t,j = log(At,j), allowing it to
be added directly to the attention logits before the
softmax, similar to standard attention masking in
Transformers. This log-space formulation helps
maintain numerical stability by avoiding extremely
small values in the Gaussian tails. Gaussian cross-
attention mask ensures that attention shifts mono-
tonically from left to right across the input text. At
each decoding step, encoder positions j near the
center µt receive higher attention scores, while po-
sitions farther from µt are gradually suppressed, as
illustrated in the right side of Fig. 1.

After the Transformer decoder, we adopt a mix-
ture density network (MDN) (Bishop, 1994) to
model the output distribution, following the strat-
egy of (Graves, 2013). Instead of directly produc-
ing continuous stroke points, the decoder outputs
a (6K + 2)-dimensional vector at each time step,
where K is the number of Gaussian mixture com-
ponents. This vector encodes the parameters of K
bivariate Gaussian distributions—mixture weights,
means, standard deviations, and correlation coef-
ficients—together with two additional scalars: an

end-of-stroke probability and a sequence-level stop
probability. During inference, the actual pen-point
coordinates are sampled from the predicted mixture
of Gaussians, rather than being deterministically
generated.

We adopt the same training objective as Graves
(2013), minimizing the negative log-likelihood of
the ground-truth trajectory. The loss function com-
prises three components: a mixture density loss
for predicting stroke offsets, a Bernoulli loss for
the end-of-stroke indicator, and a Bernoulli loss for
determining sequence termination.

3 Experiments

3.1 Datasets

The original training dataset was collected from
over 5,000 writers and was initially used for on-
line handwriting recognition tasks. However, we
observed that some ink samples were overly cur-
sive that benefit the training of robust recognition
systems but are not suitable for generating realistic
handwriting. To tackle this issue, we leveraged an
OCR engine to filter the dataset, selecting a curated
subset of 600,000 high-quality ink samples, opti-
mally prepared for handwriting generation. For
evaluation, we use the IAM-OnDB (Liwicki and
Bunke, 2005) test set, which is the most popular
dataset for handwritten text recognition. We divide
the test set into three subsets: full, short, and long.
The long subset comprises samples exceeding 40
characters, while the short subset includes those
with fewer than 10 characters.

3.2 Evaluation Pipeline

Inspired by text-to-speech evaluation protocols, we
divide our evaluation into subjective and objective
assessments. For the subjective evaluation, human
raters fluent in English scored the generated hand-
writing samples based on legibility and stylistic
consistency, each on a 1–5 scale, with higher scores
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Method
IAM-OnDB

Full Long Texts Short Texts
CER, % ↓ WER, % ↓ CER, % ↓ WER, % ↓ CER, % ↓

AlexRNN (Graves, 2013) 9.0 53.6 15.6 48.6 27.8
AlexRNN (Top-k) 8.8 42.6 10.0 40.1 18.3
Style Equalization (Chang et al., 2022) 8.7 47.4 11.6 46.0 24.4
Style Equalization (Top-k) 6.5 40.0 8.7 39.7 18.2
TrInk 8.5 43.2 9.3 43.3 21.9
TrInk (Top-k) 5.8 37.7 6.8 36.3 17.6

Table 1: Comparison of different methods on three test sets (k = 5).

indicating better quality. For the objective evalua-
tion, we utilize a state-of-the-art OCR model (Li
et al., 2023) to recognize the generated samples,
comparing the outputs to the ground-truth text to
compute the Character Error Rate (CER) and Word
Error Rate (WER) as quantitative measures of leg-
ibility. Since our focus is on online handwriting
synthesis (ink generation), which generates stroke-
point sequences character by character while cap-
turing the dynamics of writing, the evaluation proto-
col is naturally different from that of offline, image-
based handwriting generation. The two tasks differ
in their data representation (stroke trajectories ver-
sus images), model objectives (temporal and spatial
consistency versus visual realism), and evaluation
protocols (sequence-oriented metrics such as CER
and WER versus image-oriented metrics such as
FID and SSIM). Because of these fundamental dif-
ferences, direct comparisons with offline methods
are not meaningful. Accordingly, we deliberately
compare against AlexRNN and Style Equalization,
which are both online methods, to ensure fairness
and relevance.

3.3 Main Results

Table 1 presents the objective evaluation results on
the IAM-OnDB test set. All models were trained
on the same dataset, as described in Section 3.1.
Our pipeline employs a Top-k sampling strategy
where k candidate handwriting samples are first
generated, then ranked by TrOCR according to
their CER scores against the ground-truth text, with
the optimal sample (minimum CER) selected as
final output. As shown in Table 1, TrInk consis-
tently outperforms all baselines, including both
the standard AlexRNN and its variant with style
equalization, across all evaluation settings. TrInk
with the Top-k strategy achieves the best perfor-
mance, with a 35.56% reduction in CER and a
29.66% reduction in WER on the full test set com-
pared to AlexRNN. For long-text generation, TrInk
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Figure 2: Subjective Evaluation of Handwriting Quality
Across Methods.
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Figure 3: Trainable Positional Encoding Weights (En-
coder and Decoder) Over Training.

Table 2: Effectiveness of Gaussian Memory Mask in Cross-
Attention Alignment.

Method Gaussian memory mask CER, % ↓

TrInk % 70.1
! 8.5

shows even greater improvements, with a 56.41%
reduction in CER and a 25.31% reduction in WER
compared to AlexRNN. These reductions further
highlight the effectiveness of TrInk.

Figure. 2 presents the results of our subjective
experiments. The final scores for each method were
the average ratings for two metrics: style consis-
tency and legibility. From Figure. 2, we can ob-
serve that TrInk outperforms AlexRNN in both met-
rics, further validating the effectiveness of TrInk.
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Table 3: Effect of different memory mask functions on TrInk
performance (IAM-OnDB Test Set).

Method Mask Function CER, % ↓

TrInk
Uniform 14.9

Exponential 14.1
Gaussian 8.5

Table 4: Effectiveness of σ on Model performance.

Method σ Value CER, % ↓

TrInk
2.0 8.7
1.0 8.5
0.5 8.5

3.4 Ablation Study

Figure. 3 illustrates the changes of the two train-
able weights in the positional encoding for the en-
coder and decoder during training. Notably, these
weights converge to different values, indicating
a significant discrepancy, showing that adopting
fixed positional embeddings may fail to capture the
differing scales and characteristics of the two input
modalities.

To examine the role of the Gaussian function
in our memory mask design, we conducted abla-
tion experiments by replacing the Gaussian kernel
with alternative formulations. Specifically, the uni-
form mask assigns equal weights to all memory
positions within a fixed local window, while the
exponential mask applies a sharper decay around
the center position with weights defined by an ex-
ponential function. As shown in Table 3, the Gaus-
sian mask achieves the lowest Character Error Rate
(CER) of 8.5% on the IAM-OnDB test set, whereas
the uniform and exponential variants yield signifi-
cantly higher CERs of 14.9% and 14.1%, respec-
tively. These results demonstrate that the Gaussian
formulation provides smoother and more robust
alignment between stroke points and text tokens,
while the uniform and exponential alternatives ei-
ther oversimplify the weighting scheme or intro-
duce overly sharp decays, both of which lead to
degraded performance.

We also investigated the effect of the Gaussian
memory mask on the IAM-OnDB full test set, as
shown in Table 2. Removing the Gaussian memory
mask leads to a significant drop in the legibility
of the generated samples. This is mainly because
the model fails to learn proper alignment between
the text and stroke points without the guidance of
the mask. We also investigate the impact of the

hyperparameter σ in the Gaussian memory mask.
As shown in Table 4, our model is relatively insen-
sitive to variations in σ, with the best performance
observed when σ = 1.0 and σ = 0.5.

4 Conclusion

This paper presents TrInk, the first ink-generation
model built on a Transformer encoder–decoder ar-
chitecture. To achieve precise alignment between
input text and generated stroke sequences, we in-
troduce a scaled positional encoding with learnable
weights and a Gaussian memory mask. We also
devise both subjective and objective evaluation pro-
tocols for ink generation. Experimental results
demonstrate that TrInk markedly outperforms tra-
ditional LSTM-based approaches, producing hand-
writing samples with superior style consistency and
legibility.

5 Limitations

Despite the promising results, TrInk has two lim-
itations. First, training our Transformer-based ar-
chitecture requires considerable computational re-
sources. The increased model capacity and parallel
attention mechanisms lead to higher memory con-
sumption and longer convergence time compared
to lightweight RNN-based alternatives.

Second, our current experiments are conducted
solely on English handwriting datasets. As hand-
writing conventions vary significantly across scripts
and languages (e.g., cursive structures in Arabic,
character-based layouts in Chinese), it remains un-
clear how well our model generalizes to multilin-
gual settings. Developing a unified ink generation
framework capable of generating stylistically con-
sistent samples across multiple languages would
be an important direction for future work.
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A Appendix

A.1 Training Configuration

Our model is trained on 8 NVIDIA V100 GPUs
with a per-GPU batch size of 64. We adopt the
Adam optimizer with a learning rate of 0.0001.
Both the encoder and decoder are implemented as
3-layer Transformers, each with 4 attention heads
and a hidden dimension of 512. In the Gaussian
memory mask, we set the scaling factor r = 17 in
Eq. 3. The mixture density network (MDN) outputs
a 20-component Gaussian mixture (K = 20) to
parameterize the pen trajectory distribution at each
decoding step.

A.2 Evaluation Pipelines

Subjective Evaluation: We conducted a subjec-
tive evaluation with 20 human evaluators to score
samples generated by four methods: AlexRNN and
TrInk (both with and without the Top-k strategy).
For the experiment, 96 text inputs were used to gen-
erate samples, and each output was rated on two
criteria—style consistency and legibility using a
5-point Likert scale (1: lowest, 5: highest). Higher
scores indicate better performance.
Objective Evaluation: We first convert the gener-
ated handwriting samples into standardized textline
images to simulate realistic OCR application sce-
narios. These images are then fed into the state-of-
the-art TrOCR model (Li et al., 2023) for text recog-
nition. The outputs from TrOCR are systematically
compared with the ground-truth text to compute
Character Error Rate (CER) and Word Error Rate
(WER), which quantify character-level inaccura-
cies and word-level mismatches, respectively. No-
tably, WER is excluded for short-text evaluations
due to its instability when applied to limited word
counts, as minor errors disproportionately skew
the metric. Lower CER values indicate higher leg-
ibility, providing an automated and reproducible
measure of text quality. During the evaluation of
style equalization, we dynamically sample style
inputs from the training set for the style encoder,
ensuring that each synthesized handwriting sample
corresponds to a unique, randomly selected style
reference from the training dataset.

A.3 Visualization of Generated Samples

We present a collection of generated handwrit-
ing samples based on 13 text prompts of varying
lengths. Each row illustrates outputs from four
models: AlexRNN, AlexRNN (Top-k), TrInk, and

Handwriting Synthesis 
Model

OCR Model

Text

Predicted text

Calculate 
WER/CER

Score

Objective Evaluation

Subjective Evaluation

Figure 4: Subjective and Objective Evaluation Pipelines.

TrInk (Top-k), displayed from left to right. As ob-
served, TrInk consistently produces handwriting
that is more legible and stylistically consistent than
that of the RNN-based.
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Figure 5: Samples for AlexRNN and TrInk.
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