Single LLM, Multiple Roles: A Unified Retrieval-Augmented Generation
Framework Using Role-Specific Token Optimization

Yutao Zhu', Jiajie Jin', Hongjin Qian?, Zheng Liu?, Zhicheng Dou'* and Ji-Rong Wen'
!Gaoling School of Artificial Intelligence, Renmin University of China
2Beijing Academy of Artificial Intelligence, China
yutaozhu94@gmail.com, dou@ruc.edu.cn

Abstract

Existing studies have optimized retrieval-
augmented generation (RAG) across various
sub-tasks, such as query understanding and re-
trieval refinement, but integrating these opti-
mizations into a unified framework remains
challenging. To tackle this problem, this
work proposes Ro1eRAG, a unified RAG frame-
work that achieves efficient multi-task process-
ing through role-specific token optimization.
RoleRAG comprises six modules, each handling
a specific sub-task within the RAG process. Ad-
ditionally, we introduce a query graph to rep-
resent the decomposition of the query, which
can be dynamically resolved according to the
decomposing state. All modules are driven
by the same underlying LLM, distinguished
by task-specific role tokens that are individu-
ally optimized. This design allows RoleRAG to
dynamically activate different modules within
a single LLM instance, thereby streamlining
deployment and reducing resource consump-
tion. Experimental results on five open-domain
question-answering datasets demonstrate the
effectiveness, generalizability, and flexibility
of our framework.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable performance across a wide range of
tasks (Brown et al., 2020; OpenAl, 2023; Dubey
et al., 2024; DeepSeek-Al et al., 2024). While
their super power is driven by extensive parame-
ters and large-scale training data, they still face
challenges related to accuracy, reliability, and time-
liness. Retrieval-augmented generation (RAG) pro-
vides an effective solution to these problems (Kim
et al., 2024b; Asai et al., 2024; Chan et al., 2024).
By integrating an external retriever, the LLMs can
access relevant knowledge based on user input
queries, thus producing more accurate and reliable

*Corresponding author.

{6LLM

Query = Query rewriter —— Retriever — -+ — Generator

(a) Optimizing individual modules (e.g, query rewriter)

reflect
Query— h " Query rewrite — Retriever

LLM I
reflect
—_

Answer generation

(b) Learning all modules jointly via self-reflection (e.g, Self-RAG)

Query Graph | Retrieval Answer
Builder Judge Reasoner

t t t

Role token 1 Role token 2 Role token n

t t t
LLM K

(c) RoleRAG, a unified RAG framework

Query —

Figure 1: Comparison between existing studies and our
framework.

responses. This approach is particularly benefi-
cial for knowledge-intensive tasks, such as open-
domain question answering (Petroni et al., 2021).

In general, existing studies on optimizing RAG
framework can be roughly categorized into two
groups. The first group focuses on improving
specific modules of the framework, as shown
in Figure 1 (a). These efforts include introduc-
ing a retrieval necessity judgment module to re-
duce retrieval costs (Tan et al., 2024; Zhang et al.,
2024b), improving query understanding to con-
struct more effective queries for retrieving relevant
knowledge (Trivedi et al., 2023; Chan et al., 2024),
and refining retrieved results to extract key infor-
mation that helps LLMs generate more accurate
responses (Kim et al., 2024b; Jin et al., 2024b).
These enhancements have demonstrated improve-
ments in the overall performance of RAG systems.
However, integrating these diverse optimizations
into a single unified framework is non-trivial. The
second group attempts to consolidate multiple
RAG components within a single LLM, utiliz-
ing self-reflection mechanisms to dynamically con-
trol the response generation process (Asai et al.,

4838

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 4838—4857
November 4-9, 2025 ©2025 Association for Computational Linguistics

2024; Chan et al., 2024) (Figure 1 (b)). While
this approach offers a straightforward framework,
it faces two main challenges: (1) introducing new
components, such as query rewriter, requires ad-
ditional data collection and extensive re-training
of the LLM, and (2) incorporating more func-
tions increases the complexity of the model’s self-
reflection mechanism, which may degrade both
performance and generalization capabilities.

To address these challenges, we propose
RoleRAG, a unified RAG framework using role-
specific token optimization (illustrated in Fig-
ure 1 (c)). RoleRAG comprises six specialized
modules: query graph builder, retrieval judge, sub-
answer generation, summarizer, new query gener-
ator, and answer reasoner. The workflow begins
with the query graph builder, which decomposes
the input query into multiple sub-queries and con-
structs a directed acyclic graph. For each sub-query,
the retrieval judge determines whether additional
knowledge retrieval is necessary or if it can be
answered directly. Based on this decision, the sub-
answer generator produces a response. For sub-
queries requiring external knowledge, the summa-
rizer extracts key information from the retrieved
content and updates an answer memory dictionary
that stores the sub-query, retrieved data, and gen-
erated answer. Once all sub-queries are processed,
the new query generator examines the answer mem-
ory and the original query to determine if further
sub-queries are needed. Finally, the answer rea-
soner synthesizes the final response.

RoleRAG employs a role-specific token opti-
mization strategy to implement these modules.
By introducing additional special tokens and opti-
mizing their embeddings using task-specific data,
the framework enables each module to perform
its designated function effectively. Importantly,
only the role tokens are tuned during training, mak-
ing the training computationally efficient. Dur-
ing inference, a single LLM instance is deployed,
with different role tokens acting as soft prompts to
dynamically activate the corresponding modules.
These modules collaborate in an iterative manner
to generate the final response. Experimental results
on five open-domain question-answering datasets
demonstrate that RoleRAG achieves performance
improvements of 16%-64% over state-of-the-art
RAG methods in terms of exact match score. Ad-
ditional experiments further confirm the generaliz-
ability and robustness of our framework.

Our contributions are three-fold:

(1) We introduce a unified RAG framework us-
ing a role-specific token optimization strategy. By
integrating a frozen backbone LLM with adaptive
role tokens, the model can specialize in different
modules of the RAG pipeline and collaborate effec-
tively to complete the full process.

(2) We propose a query graph construction ap-
proach to improve the handling of complex queries
in RAG. Our framework dynamically refines the
query graph by eliminating redundant sub-queries
and generating new ones when necessary, enhanc-
ing retrieval efficiency and relevance.

(3) We release a comprehensive dataset to train
different RAG modules. To our best knowledge,
this is the first dataset covering the entire pipeline
of a RAG system.

2 Related Work

Retrieval-Augmented Generation Retrieval-
augmented generation (RAG) integrates a retrieval
module that accesses external knowledge to en-
hance generation quality (Lewis et al., 2020; Shi
et al., 2024; Jiang et al., 2023b; Trivedi et al., 2023;
Shao et al., 2023). Efforts to improve RAG systems
have been made in different aspects. For example,
some studies have aimed to improve query under-
standing, thus improving retrieval accuracy and
overall generation quality (Chan et al., 2024; Verma
et al., 2024). Others have investigated the neces-
sity of retrieval to minimize unnecessary retrieval
calls, which in turn improves system efficiency and
reduces the impact of irrelevant knowledge (Tan
et al., 2024; Asai et al., 2024). Additionally, refin-
ing retrieval results has been explored to mitigate
the need for processing extensive input lengths and
to reduce retrieval-related noise (Jiang et al., 2023a;
Xu et al., 2024). In a different vein, some studies
have tried to advance the RAG pipeline, explor-
ing strategies such as enabling LLMs themselves
to determine when retrieval is beneficial during
generation (Jiang et al., 2023b), interleaving re-
trieval with chain-of-thought reasoning (Trivedi
et al., 2023), and synergizing retrieval and gener-
ation in an iterative manner (Shao et al., 2023).
Our study improves the RAG pipeline by dividing
sub-tasks within RAG into different modules and
employing role-specific token optimization to se-
lectively activate various LLM capabilities using
designated role tokens. As all modules are care-
fully fine-tuned, the overall performance of our
framework can be effectively improved.

4839

-~ Q1
Original Query

Are Scott Derrickson and Ed Wood of the same Scutt Derrickson?

What is the nationality of § (@ Retrieval Judge]

Original Query

Yes ‘ Are Scott Derrickson and Ed Wood of the same

nationality?

- Original Query
i Are Scott Derrickson and Ed Wood of the same

]
(@ Query Graph Builder) ® Sub-answer Generator

+
. . . Answer Memory
American (Q1.answer) / at: az

nationality?

Retrieved Results

Query: What is ...? Query: What is ...?

| | Answer Memory

I Answer: American Answer: American

¢ Q3 b . " y
| Are Ql.answer and Q2.answer the same nationality? | like Steven Spielberg's

Minority Report. He is...

i nationality?

: TITIEETNEII (@ Summarizer

- Q =2 N Q2 S Scott Robertson is an

i What is the nationality | What is the nationality | American concept artist

i of Scott Derrickson? | of Ed Wood? i known for his

) \/ transportation design work
and contributions to movies

y: Scott Summary: Ed Wood was
Ql:{ Robertsonisan ... an American filmmaker...
Query: What is ...? } }e
Answer: American 1

Summary: Scott
Robertson is an

American concept...
} None

(® New Query Generator | | (® Answer Reasoner

Yes (Final Answer)

(1) Query Graph Building

(2) Sub-query Execution (Q1 as an example)

(3) Final Answer Reasoning

Figure 2: The illustration of our RoleRAG framework, which contains three main steps: (1) query graph building, (2)

sub-query execution, and (3) final answer reasoning.

Query Understanding and Decomposition
Query understanding aims at inferring the intent
of a user query, which is a critical component in
a retrieval system (Arens et al., 1996; Azad and
Deepak, 2019; Ma et al., 2023). It involves a se-
ries of techniques such as query classification, ex-
pansion, rewriting, and suggestion. Recent studies
have indicated that query understanding is also very
important in RAG systems (Ma et al., 2023; Mao
et al., 2024), as it determines the integration of
external knowledge into the generation process.
Among these studies, query decomposition has
been particularly effective for handling complex
queries by dividing them into more manageable
sub-queries, thereby enhancing the accuracy of the
retrieval process (Chen et al., 2024; Chan et al.,
2024; Trivedi et al., 2023). However, these meth-
ods either rely on large-sized API-based models
for query decomposition or are unable to adjust the
query plan dynamically. In contrast, our Ro1eRAG
introduces a dynamic query graph, where each sub-
query can be adjusted dynamically according to the
system’s memory state. Besides, Ro1eRAG is built
entirely on open-source LLMs, which significantly
enhances its practical applicability and efficacy.

3 Methodology

In this work, we introduce a unified RAG frame-
work RoleRAG, which has two characteristics:
(1) We propose a role-specific token optimization
strategy, in which the LLM’s parameters are frozen
while only the embeddings of added role tokens
are tuned. By this means, all modules in our frame-
work can share the same base LLM and address spe-
cific tasks by integrating role tokens into the input.
(2) We design a query graph builder that decom-
poses a user query into multiple sub-queries and

organizes them as a directed acyclic graph (DAG).
By dynamically resolving each sub-query node, the
final answer can be more accurately generated.

3.1 Module Design

As shown in Figure 2, RoleRAG divides the RAG
process into three stage: (1) query graph building,
(2) sub-query execution, and (3) final answer rea-
soning. In the first stage, a Query Graph Builder
decomposes the user input query () into n sub-
queries {g; }} ,, forming a DAG G(Q). Then, in
the second stage, for each sub-query ¢; € G(Q), a
Retrieval Judge evaluates whether it can be directly
answered by the LLM; if not, it will call a retriever
to get relevant knowledge. An Answer Generator
then produces an answer a; for ¢;, utilizing the
retrieved knowledge if required. Simultaneously,
a Summarizer condenses the retrieved knowledge
relevant to the generated answer. Each resolved
sub-query, along with its answer and summary, is
stored in an answer memory M. Upon resolving
all sub-queries, the framework moves into the third
stage, where a New Query Generator examines
M and @) to determine if additional knowledge is
needed, potentially generating new queries handled
in the same manner as the previous sub-queries.
Finally, an Answer Reasoner synthesizes the fi-
nal answer A from the accumulated data in the
answer memory M. This systematic approach en-
sures comprehensive and accurate query resolution.
Below, we introduce each module briefly.

Query Graph Builder The query graph builder
constructs a representation of a user’s reasoning
plan as a DAG. As illustrated in the left side of Fig-
ure 2, the original query is decomposed into two
sub-queries (i.e., Q1 and Q2), and is ultimately
represented by a final node (i.e., Q3). The de-

4840

Table 1: The input and output of each module in our framework. The content in brackets depends on the result of

retrieval judgment.
Module Input Output # Training samples
Query Graph Builder ~ Original query Query graph 25,654
Retrieval Judge Sub-query, answer memory “Yes” / “No” 65,823
Sub-answer Generator ~ Sub-query, (retrieved result) Answer 65,823
Summarizer Sub-query, (retrieved result) Summary 53,002
New Query Generator ~ Original query, answer memory New query / “None” 25,654
Answer Reasoner Original query, answer memory Final answer 25,654

pendency among sub-queries is described using a
parent-child relationship, where a node becomes a
child if its resolution relies on the answers from pre-
ceding nodes. Within each node, placeholders are
utilized to denote the answers from parent nodes
(e.g., Ql.answer and Q2.answer in Q3), which are
substituted with actual values during the execu-
tion process. This DAG structure ensures that the
reasoning plan follows the Markov assumption, al-
lowing for the resolution of the final node once all
preceding nodes have been addressed.

Retrieval Judge Previous studies have indicated
that not all user queries require external retrieved
knowledge, and in some cases, irrelevant knowl-
edge may even hurt the LLM’s performance (Yoran
et al., 2024a; Tan et al., 2024). Therefore, we de-
sign a retrieval judge module to determine whether
a sub-query can be directly resolved by the LLM.
Only if the judgment result is “False”, the retriever
‘R will be called and provide relevant knowledge
K = R(g;). To improve the judgment accuracy,
the LLM is provided with access to an answer mem-
ory (described later), which contains information
from previous sub-queries. This setup enables the
retrieval judge to perform a removing operation on
the query graph, effectively minimizing unneces-
sary retriever activations and thereby enhancing the
efficiency of the overall system.

Sub-answer Generator The sub-answer gener-
ator is tasked with producing responses based on
the sub-queries and any associated retrieved knowl-
edge. Due to the more focused nature of the sub-
queries compared to the original query, the answers
generated are typically more accurate. Upon gener-
ating a sub-answer, it is stored in an answer mem-
ory M, which is structured as a Python dictionary.
Each sub-answer is keyed by its corresponding sub-
query identifier for easy retrieval and reference. For
instance, if the active sub-query is “Q1”, both the
sub-query content and its answer are stored in the
dictionary M under the key “Q1”. This method en-

sures organized and efficient management of gener-
ated answers throughout the processing sequence.
Summarizer When the retriever is activated, the
retrieved knowledge will facilitate the answer gen-
eration process. Since the sub-queries may be de-
pendent, it is valuable to also store the retrieved
knowledge for future sub-query resolution process.
However, directly storing all retrieved knowledge
is ineffective. Our observations indicate that the
answer to a sub-query often serves as a bridge be-
tween related sub-queries. Therefore, we introduce
a summarizer that condenses the retrieved knowl-
edge K while prioritizing the essential information
about the answer.

New Query Generator Once all sub-queries
have been answered, the final answer can be in-
ferred from the answer memory. However, not all
sub-queries can be ideally resolved. Therefore, we
introduce a new query generator module that sug-
gests additional sub-queries when necessary. This
module takes the original query () and the answer
memory M as input, and outputs either a new sub-
query g; or a termination signal (“None”). If a new
query is generated, it will be added into the graph
as a child of the final node and resolved by the sub-
query execution process. Functionally, this module
performs an addition operation on the query graph,
enriching it with supplementary sub-queries to in-
corporate additional knowledge, thereby improving
the completeness of the retrieval.

Answer Reasoner As the final step, the answer
reasoner leverages the original query () and the
updated answer memory M to drive the final an-
swer A. Since the answer memory retains all
sub-queries, their corresponding answers, and rel-
evant knowledge summary, the answer reasoner
can synthesize such information to generate a well-
grounded response to the original query.

3.2 Data Collection

Manually annotating data for training each com-
ponent in RoleRAG requires extensive human re-

4841

Role tokens

(retrieval judge) ! Q+ O .

b @+ 0
o+ (J 0
L@ o+0 0

Task input
(original query)

Large Language Models

% Fixed
% Tunable

Query Graph

Retrieval Judge

Large
Language
Models

Answer

Summary

Task output
(judge results)

{em+0 0

Final answer

(1) Training

(2) Inference

Figure 3: Illustration of the training and inference pro-
cesses in our framework.

sources, which is impractical for our research. Con-
sequently, we employ an expert LLM, specifically
Llama-3.1-7@0B-Instruct, to generate training
data automatically. Specifically, we conduct the
RAG process following our designed workflow,
construct the input of each component using differ-
ent prompts (provided in Appendix B), and record
the corresponding output as raw data. By this
means, we can automatically collect amounts of
data without human intervention.

However, the absence of golden annotations for
evaluating the quality of each component’s output
poses a challenge. To address this, we borrow the
idea of outcome reward models from reinforcement
learning (Uesato et al., 2022; Yu et al., 2024) and
use the final answer quality as a delegate for eval-
uation. Concretely, we compare the final answer
A generated by the expert model with the golden
answer A provided by the dataset and compute the
metric as s = g(A, A).! Data samples only where
the final answer score s exceeds a predetermined
threshold « are retained. Recent studies (Uesato
et al., 2022) have shown that the outcome reward
model can provide effective signals for model per-
formance verification, so we believe our strategy
can ensure the high-quality of the generated data.
Table 1 shows the statistics of our collected data.

3.3 Training Strategy

RoleRAG contains six interconnected modules,
making it challenging for LLMs to learn and bal-
ance their abilities across different tasks. An
ideal training strategy should meet three require-
ments: (1) It should be parameter-efficient as tun-
ing LLMs is often expensive; (2) It should maintain
the LLM’s general ability as it may serve for dif-
ferent purposes in practice (including non-RAG
scenarios); and (3) It should help the LLM under-
stand various tasks in different components while

!The metrics can be exact matching score or F1 score that
are commonly used in answer evaluation.

facilitating seamless extension to new tasks.

To tackle these challenges, we propose a role-
specific token optimization strategy, illustrated in
Figure 3. The core idea is to use specialized role
tokens to facilitate task-specific behavior in LLMs.
We implement this by expanding the LLM’s vo-
cabulary with new special tokens designated for
optimization, thereby preserving the integrity of
the LLM’s parameters. During training, only these
newly added tokens’ embeddings are tuned, en-
suring parameter efficiency while preserving the
original LLM weights. This naturally satisfies the
first two requirements. For the third requirement,
since the added tokens are role-specific, they can
be tailored for the task and not affect each other in
training. Besides, it is easy to extend our frame-
work with new modules by adding new role tokens.
Specifically, for a specific task 7" and a sample
input X7, we add several new tokens [t1, ..., ,]
and reformulate the input as [X;¢1;. .. ;t,], where
[;] is the concatenation operation. The next-token
prediction objective can be defined as:

m

p=]Trosi1X" 5t stuiyzs), (D
=1 trainable

where Y7 = [yf,...,yL] is the target output,
§ € R™*4 represents the trainable parameters of
the role tokens (i.e., their embeddings), and d is
the embedding size of the LLM. 6 denotes the pa-
rameters of the backbone LLLM, which are frozen
during training. Given that |§| < ||, this method
is highly efficient. For example, with the Llama-3-
8b model (where d = 4, 096), introducing n = 30
tokens results in only 0.1M parameters.

The inference stage is shown in the right side
of Figure 3. RoleRAG only deploys a single LLM,
where task-specific role tokens are appended to the
input to guide the LLM in performing different
tasks effectively.

4 Experiments

4.1 Datasets and Evaluation Metrics

We conduct our experiments on five question-
answering (QA) datasets: HotpotQA (Yang et al.,
2018), MuSiQue (Trivedi et al., 2022), 2Wiki-
multihopQA (Ho et al., 2020), Bamboogle (Press
et al., 2023), and PopQA (Mallen et al., 2023).
The details of these datasets are presented in Ap-
pendix C. We mix the training set of HotpotQA,
MuSiQue, and 2WikimultihopQA for constructing

4842

our training set, and the remaining two datasets are
used as head-out datasets. Among these datasets,
PopQA (Mallen et al., 2023) is the only dataset con-
sisting merely of single-hop queries, which allows
us to evaluate the generalizability of our approach
to simpler queries. For evaluation, we primarily
use the test sets provided by each dataset. If a test
set is unavailable, we substitute it with the devel-
opment set. Importantly, although some datasets
have provided golden reference passages for the
answer, we choose to use only the passages re-
trieved from the retrieval sets in both training and
inference stages, which aligns with practical ap-
plications. Exact match (EM) and F1 score are
employed as evaluation metrics.

4.2 Baselines

In addition to comparing with direct generation, we
consider two kinds of RAG methods as baselines:

(1) Sequential pipeline: These methods follow
a standard retrieve-then-read flow and focus on
improving specific RAG components (e.g., query
rewriting). Six representative methods are selected,
including Standard RAG, SKR (Wang et al., 2023),
SuRe (Kim et al., 2024b), Trace (Fang et al., 2024),
Adaptive-RAG (Jeong et al., 2024), and BlendFil-
ter (Wang et al., 2024).

(2) Iterative pipeline: This kind of method ad-
justs the sequential RAG pipeline by involving mul-
tiple cycles of retrieval and generation to refine out-
puts iteratively. We select five typical methods as
baselines, including Self-RAG (Asai et al., 2024),
IRCoT (Trivedi et al., 2023), Iter-Retgen (Shao
et al., 2023), RetRobust (Yoran et al., 2024b), and
RQ-RAG (Chan et al., 2024).

Notably, some recent API-based models (Verma
et al., 2024; Kim et al., 2024a) are not selected as
baselines, because they do not integrate seamlessly
with open-source LLMs. Our code is available
on GitHub,? and the implementation details are
provided in Appendix D.

4.3 Experimental Results

The experimental results are shown in Table 2. It is
evident to see that our Ro1eRAG significantly outper-
forms other baseline methods on all five datasets.
This clearly demonstrates the superiority of our
method. We have further observations as:

(1) RAG methods generally outperform direct
generation by a large margin, highlighting the

2https://github.com/DaoD/RoleRAG

advantage of integrating external knowledge for
knowledge-intensive tasks. Specifically, iterative
pipeline methods perform better than sequential
pipeline methods. This is particularly evident in
scenarios involving multi-hop queries, where the
complexity often hinders the retriever’s ability to
gather all relevant information, leading to subop-
timal generation performance. (2) Our RoleRAG
achieves the best performance in both in-domain
and out-of-domain evaluations. This indicates that
our proposed dynamic query graphs and multi-task
prompt tuning effectively enhance RAG perfor-
mance and exhibit strong generalizability. (3) On
the single-hop QA dataset (PopQA), some iterative
pipeline methods (e.g., RQ-RAG) underperform
compared to sequential pipelines. This can be po-
tentially attributed to the overly complex process-
ing applied to relatively simple queries, which intro-
duces unnecessary noise. In contrast, Ro1leRAG can
construct graphs with fewer nodes to represent sim-
pler queries, which is more accurate and efficient.
(4) We notice a poor performance of Self-RAG
on several datasets, which has also been reported
by recent studies (Zhang et al., 2024a). By care-
fully checking its output, we find that Self-RAG
tends to generate long reasoning paths that even-
tually mislead itself to generate incorrect answers.
This may stem from its training strategy, which
integrates all modules into a single generation pro-
cess. Conversely, RoleRAG employs independent
training for each module using role tokens, which
clarifies and simplifies the tasks each module must
learn, thereby improving overall performance.

4.4 Further Analysis

Ablation Study We conduct comprehensive ex-
periments to explore the contribution of each mod-
ule in our framework, with results shown in Ta-
ble 3. Our analysis first focuses on the query graph
builder by examining two variants: complete re-
moval (#2) and replacement with a prompt-based
query decomposition approach (#3). The results
indicate that query decomposition is crucial for
handling complex queries, and that LLMs strug-
gle to perform this task effectively through direct
prompting, highlighting the significance of our
graph-based approach. The retrieval judge com-
ponent demonstrates an interesting trade-off: while
it causes a marginal decrease in performance due to
reduced knowledge incorporation (#4), it substan-
tially reduces retrieval costs, thereby improving
system efficiency. To evaluate the summarizer’s

4843

https://github.com/DaoD/RoleRAG

Table 2: Experimental results of all methods using LLaMA-3.1-8b as the backbone model. The left three datasets
are used for training Ro1eRAG, representing in-domain evaluation, while the right two datasets are used for out-of-
domain evaluation. The best and second-best results are highlighted in bold and underlined, respectively.

HotpotQA MuSiQue 2WikiMultihopQA Bamboogle PopQA
Method EM F1 EM F1 EM F1 EM F1 EM F1
Direct Generation 1620 25.15 330 930 16.50 26.30 9.60 16.13 11.10 20.65
Sequential pipeline
Standard RAG 29.50 40.00 430 10.28 15.20 25.40 18.40 2455 2580 41.34
SKR 2420 3485 340 9.67 1570 26.50 12.80 19.43 1940 32.04
SuRe 23.80 3624 520 10.05 10.20 18.00 16.80 2596 27.60 44.94
Trace 26.00 3530 5.60 11.30 9.50 15.80 13.60 19.60 26.60 39.29
Adaptive-RAG 31.70 4345 950 1557 25.20 36.40 25.60 3539 26.10 36.14
BlendFilter 3490 45.56 7.70 1354 2430 33.19 2240 31.04 2540 41.01
Iterative pipeline
Self-RAG 9.00 1846 090 4.80 3.70 17.32 4.00 9.07 6.50 16.75
IRCoT 30.50 40.62 9.70 1542 27.60 36.20 3040 41.10 29.00 35.64
Iter-Retgen 32.00 4243 650 1234 16.80 27.14 20.00 26.84 26.50 40.87
RetRobust 27.20 30.10 12.10 1470 32.20 33.50 32.80 36.00 32.80 37.00
RQ-RAG 26.30 3394 1020 16.04 28.70 37.64 2480 32.18 15.60 31.37
RoleRAG (ours) 3740 49.17 1820 27.30 47.00 53.87 44.00 54.47 33.70 4542

Table 3: Performance (F1 score) of RoleRAG with spe-
cific components removed.

Table 4: Performance (F1 score) of RoleRAG on two
datasets using different LLMs.

HotpotQA MuSiQue # Query graph Other modules HotpotQA MuSiQue

Variant EM F1 EM Fl RoleRAG Default setting
1 Full 37.40 49.17 18.20 27.30 ! Llama88 Llama-8B 4917 2730
2 <= w/o Q. Graph 31.30 42.60 5.80 12.54 Using various LLMs as backbones
3 < w Decompose prompt 29.40 39.98 6.90 13.31 2 Llama-3B Llama-3B 41.50 20.94
4 — w/o Retrieval judge 38.40 50.31 18.50 27.58 3 Mistral-7B Mistral-7B 47.62 25.51

Save retrieval 22.56% 9.2% 4 Llama-70B Llama-70B 53.46 29.86
5 < w/o Summarizer 31.20 4247 5770 12.44 ;]]
6 < w/o New Q. gen 37.20 49.07 18.00 27.30 Using various LLMs for different modules

Need new query 599 14.10% 5 Llama-70B Llama-8B 50.65 27.53

6 Llama-8B Llama-70B 54.23 28.19

impact, we implement a variant that simply uses
the first retrieved passage for length control. The
observed performance degradation confirms the im-
portant role of the summarizer. Finally, the new
query generator improves performance by intro-
ducing additional useful knowledge, despite being
activated in fewer than 15% of queries, highlighting
its effectiveness.

Impact of Model Size The size of LLMs of-
ten determines their performance. Therefore,
we investigate the impact of model sizes from
two perspectives: (1) by using different back-
bone LLMs to drive the entire RoleRAG frame-
work, and (2) by replacing the core module (i.e.,
query graph builder) with various LLMs. We con-
duct experiments using L1ama-3.2-3B-instruct
(Llama-3B), Llama-3.1-8B-instruct (Llama-
8B), Llama-3.1-70B-instruct (Llama-70B),
and Mistral-7B-Instruct-v@.3 (Mistral-7B).

Notably, only the Llama-70B is applied using few-
shot examples, while the others are fine-tuned on
our training set. The results are shown in Ta-
ble 4. First, we can observe that RoleRAG con-
sistently achieves promising results across all set-
tings, demonstrating the method’s robust versatil-
ity. Second, using larger LLMs generally leads
to better performance (#1-4). This is reasonable
as larger models have strong abilities in language
understanding and generation. Intriguingly, the
Llama-70B model plays a better role in resolving
queries (#6) than in building the query graph (#5).
This suggests that while query decomposition is
a complex task, it can be effectively learned with
sufficient model training. Conversely, the ability to
resolve queries appears to be more closely tied to
the intrinsic performance of the model itself.

4844

-#-EM F1 -=-EM F1

o
o
©
&

o
S
©
=3

HotpotQA
&

IS
S

©
&
B

30 10
10 20 30 40 50 10 20 30 40 50

Task-specific Tokens # Task-specific Tokens

Figure 4: Performance with various numbers of tokens.

Ratio (%) Standard RAG BRQ-RAG RoleRAG

60

50.8

s o
o o
N

w
o
4

F1 score

22.16

N
S
|
+
>
o

11.84

o
o
o

2 3 4
Hops

Figure 5: Performance of various models on questions
of different complexity (MuSiQue). “Ratio” indicates
the proportion of a certain category to the entire data.

Impact of Task-specific Token Amounts In
RoleRAG, we use task-specific tokens in multi-task
prompt tuning to learn different tasks in RAG.
We explore the correlation between the number of
added tokens and the final performance, as shown
in Figure 4. We can observe: (1) It is surprising that
using only ten tokens per task can provide signif-
icant performance improvement, highlighting the
efficiency of our approach. (2) The performance
generally improves when more tokens are used,
with optimal results occurring when 30-40 tokens
are used per task (varies slightly across different
datasets). Taking adding 30 tokens as an example,
our method adds 0.86M parameters in total, which
is only about 0.01% of the full model, validating
again its parameter efficiency. (3) However, further
increasing the token amount does not improve per-
formance; a decline is noted when 50 tokens are
used per task, implying potential overfitting issues.

Impact of Query Complexity An advantage of
our framework lies in its ability to decompose com-
plex queries into sub-queries and leverage multiple
modules to resolve them. We employ the MuSiQue
dataset, which contains human-annotated decompo-
sition labels, to investigate the performance across

Table 5: Performance (F1 score) of RoleRAG with differ-
ent numbers of passages per query (# P. / Q.). RoleRAG-
x denotes using = passages per sub-query.

HotpotQA MuSiQue

Method #P./Q. F1 #P./Q. F1

1 Standard RAG 5.00 40.00 5.00 10.28
2 RQ-RAG 7.35 33.94 7.43 16.04
3 RoleRAG-1 2.27 43.58 2.35 20.73
4 RoleRAG-2 4.54 46.73 4.70 25.08
5 RoleRAG-3 6.81 47.80 7.05 26.24
6 RoleRAG-4 9.08 48.66 9.40 27.07
7 RoleRAG-5 11.35 51.03 11.75 27.30

query complexities. We analyze the performance
of different models, including Ro1eRAG, RQ-RAG,
and Standard RAG, on questions categorized by
the number of intermediate steps (hops) required.
The experimental results are shown in Figure 5. It
is evident to see that the standard RAG method
struggles with complex multi-hop queries, because
the retriever cannot effectively gather comprehen-
sive information that spans all facets of a query.
In contrast, both RQ-RAG and RoleRAG can it-
eratively resolve the sub-queries, which signifi-
cantly improves the performance. Unfortunately,
RQ-RAG learns both the query decomposing and
query resolving tasks by a single model, making
it challenging for the LLM to learn different abil-
ities required by these tasks. Notably, our frame-
work achieves over 60% alignment with human-
annotated decomposition results, while RQ-RAG
reaches only 18%. This highlights again the superi-
ority of our RoleRAG, which distinctively separates
these tasks to optimize performance.

Impact of Retrieval Since RoleRAG decomposes
original queries into multiple sub-queries, its su-
perior performance may be benefited from more
sufficient external knowledge. To examine this, we
conduct experiments by adjusting the number of
retrieved passages per sub-query, and the results
are illustrated in Table 5. We can observe that
RoleRAG can significantly outperform the standard
RAG method, with fewer than half the retrieved
passages (#3 vs. #1). This shows that query de-
composition can indeed improve retrieval accuracy,
which in turn enhances the overall performance
of the RAG model. Compared with another iter-
ative RAG pipeline RQ-RAG, RoleRAG still has
better performance, suggesting that it can construct
sub-queries more accurately.

To provide a more intuitive understanding of our

4845

framework, we include a case study in Appendix F.

5 Conclusion

In this paper, we introduced RoleRAG, a unified
RAG framework that comprises six modules that
collaborate to accomplish the full RAG process. To
efficiently optimize these modules, we proposed a
role-specific optimization strategy, which enhances
the LLM’s ability across diverse tasks by tuning
only a small set of role tokens, while keeping the
backbone model parameters frozen. Additionally,
we structured the RAG process as a query graph
resolution process, where dynamic sub-query res-
olution efficiently retrieves and supplements rele-
vant knowledge. Through extensive experiments
on multiple datasets, we demonstrated the effective-
ness, generalizability, and flexibility of our method.

Limitations

This study introduces a unified RAG framework
using role-specific token optimization. While our
approach is highly effective, it has some limita-
tions. First, the RAG process follows a predefined
workflow, where all modules are activated in a
fixed sequence. This restricts the framework’s flex-
ibility, as an ideal solution would allow the LLM
to autonomously determine the workflow. Recent
reinforcement learning methods could potentially
enable such adaptive decision-making; however,
collecting high-quality processing paths is chal-
lenging, and reinforcement learning itself is often
unstable. Investigating an automatic workflow opti-
mization remains an important direction for future
work. Second, our framework processes each query
by iteratively activating different modules, which
may introduce efficiency overhead compared to
directly feeding retrieved results and user queries
into an LLM. Fortunately, when deployed as an
online service, this efficiency issue can be miti-
gated. Since our framework leverages role tokens
to modulate the LLM’s functionality, it enables the
batching of multiple LLM requests, significantly
improving inference efficiency.

Acknowledgements

This work was supported by the National Natural
Science Foundation of China (Grant No. 62402497
and 62272467). The work was partially done at
the Beijing Key Laboratory of Research on Large
Models and Intelligent Governance.

References

Yigal Arens, Craig A. Knoblock, and Wei-Min Shen.
1996. Query reformulation for dynamic information
integration. J. Intell. Inf. Syst., 6(2/3):99-130.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and
Hannaneh Hajishirzi. 2024. Self-rag: Learning to
retrieve, generate, and critique through self-reflection.
In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net.

Hiteshwar Kumar Azad and Akshay Deepak. 2019.
Query expansion techniques for information retrieval:
A survey. Inf. Process. Manag., 56(5):1698-1735.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
NeurlPS.

Claudio Carpineto and Giovanni Romano. 2012. A
survey of automatic query expansion in information
retrieval. ACM Comput. Surv., 44(1):1:1-1:50.

Chi-Min Chan, Chunpu Xu, Ruibin Yuan, Hongyin Luo,
Wei Xue, Yike Guo, and Jie Fu. 2024. RQ-RAG:
learning to refine queries for retrieval augmented
generation. CoRR, abs/2404.00610.

Zehui Chen, Kuikun Liu, Qiuchen Wang, Jiangning
Liu, Wenwei Zhang, Kai Chen, and Feng Zhao. 2024.
Mindsearch: Mimicking human minds elicits deep
Al searcher. CoRR, abs/2407.20183.

DeepSeek-Al, Aixin Liu, Bei Feng, Bing Xue, Bingx-
uan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Daya Guo, Dejian Yang, Deli Chen,
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai,
Fuli Luo, Guangbo Hao, Guanting Chen, Guowei
Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng
Wang, Haowei Zhang, Honghui Ding, Huajian Xin,
Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang,
Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang,
Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie
Qiu, Junlong Li, Junxiao Song, Kai Dong, Kai Hu,
Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao,
Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang,
Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu
Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge,
Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin
Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li, Shanghao
Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu,

4846

https://doi.org/10.1007/BF00122124
https://doi.org/10.1007/BF00122124
https://openreview.net/forum?id=hSyW5go0v8
https://openreview.net/forum?id=hSyW5go0v8
https://doi.org/10.1016/J.IPM.2019.05.009
https://doi.org/10.1016/J.IPM.2019.05.009
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1145/2071389.2071390
https://doi.org/10.1145/2071389.2071390
https://doi.org/10.1145/2071389.2071390
https://doi.org/10.48550/ARXIV.2404.00610
https://doi.org/10.48550/ARXIV.2404.00610
https://doi.org/10.48550/ARXIV.2404.00610
https://doi.org/10.48550/ARXIV.2407.20183
https://doi.org/10.48550/ARXIV.2407.20183

Shengfeng Ye, Shengfeng Ye, Shirong Ma, Shiyu
Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou,
Shuting Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun,
W. L. Xiao, and Wangding Zeng. 2024. Deepseek-v3
technical report. CoRR, abs/2412.19437.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien
Rodriguez, Austen Gregerson, Ava Spataru, Bap-
tiste Roziere, Bethany Biron, Binh Tang, Bobbie
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe
Bi, Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic,
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-
gia Lewis Anderson, Graeme Nail, Grégoire Mialon,
Guan Pang, Guillem Cucurell, Hailey Nguyen, Han-
nah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,
Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,
Jeet Shah, Jelmer van der Linde, Jennifer Billock,
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and
et al. 2024. The llama 3 herd of models. CoRR,
abs/2407.21783.

Jinyuan Fang, Zaiqiao Meng, and Craig Macdon-
ald. 2024. TRACE the evidence: Constructing
knowledge-grounded reasoning chains for retrieval-
augmented generation. CoRR, abs/2406.11460.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara,
and Akiko Aizawa. 2020. Constructing A multi-hop
QA dataset for comprehensive evaluation of reason-
ing steps. In Proceedings of the 28th International
Conference on Computational Linguistics, COLING
2020, Barcelona, Spain (Online), December 8-13,
2020, pages 6609-6625. International Committee on
Computational Linguistics.

Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju
Hwang, and Jong Park. 2024. Adaptive-rag: Learn-
ing to adapt retrieval-augmented large language mod-
els through question complexity. In Proceedings of
the 2024 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long
Papers), NAACL 2024, Mexico City, Mexico, June
16-21, 2024, pages 7036-7050. Association for Com-
putational Linguistics.

Huigiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing
Yang, and Lili Qiu. 2023a. Llmlingua: Compressing
prompts for accelerated inference of large language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP 2023, Singapore, December 6-10, 2023,
pages 13358-13376. Association for Computational
Linguistics.

Zhengbao Jiang, Frank F. Xu, Luyu Gao, Zhiqing Sun,
Qian Liu, Jane Dwivedi-Yu, Yiming Yang, Jamie
Callan, and Graham Neubig. 2023b. Active retrieval
augmented generation. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2023, Singapore, Decem-
ber 6-10, 2023, pages 7969-7992. Association for
Computational Linguistics.

Jiajie Jin, Yutao Zhu, Xinyu Yang, Chenghao Zhang,
and Zhicheng Dou. 2024a. Flashrag: A modular
toolkit for efficient retrieval-augmented generation
research. CoRR, abs/2405.13576.

Jiajie Jin, Yutao Zhu, Yujia Zhou, and Zhicheng Dou.
2024b. BIDER: bridging knowledge inconsistency
for efficient retrieval-augmented llms via key support-
ing evidence. CoRR, abs/2402.12174.

Dongkyu Kim, Byoungwook Kim, Donggeon Han, and
Matous Eibich. 2024a. Autorag: Automated frame-
work for optimization of retrieval augmented genera-
tion pipeline. CoRR, abs/2410.20878.

Jaehyung Kim, Jachyun Nam, Sangwoo Mo, Jongjin
Park, Sang-Woo Lee, Minjoon Seo, Jung-Woo Ha,
and Jinwoo Shin. 2024b. Sure: Summarizing re-
trievals using answer candidates for open-domain
QA of llms. In The Tivelfth International Conference
on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Kiittler, Mike Lewis, Wen-tau Yih,
Tim Rocktischel, Sebastian Riedel, and Douwe
Kiela. 2020. Retrieval-augmented generation for
knowledge-intensive NLP tasks. In Advances in Neu-
ral Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual.

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao,
and Nan Duan. 2023. Query rewriting in retrieval-
augmented large language models. In Proceedings of
the 2023 Conference on Empirical Methods in Natu-
ral Language Processing, pages 5303-5315, Singa-
pore. Association for Computational Linguistics.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,
Daniel Khashabi, and Hannaneh Hajishirzi. 2023.
When not to trust language models: Investigating
effectiveness of parametric and non-parametric mem-
ories. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2023, Toronto, Canada,

4847

https://doi.org/10.48550/ARXIV.2412.19437
https://doi.org/10.48550/ARXIV.2412.19437
https://doi.org/10.48550/ARXIV.2407.21783
https://doi.org/10.48550/ARXIV.2406.11460
https://doi.org/10.48550/ARXIV.2406.11460
https://doi.org/10.48550/ARXIV.2406.11460
https://doi.org/10.18653/V1/2020.COLING-MAIN.580
https://doi.org/10.18653/V1/2020.COLING-MAIN.580
https://doi.org/10.18653/V1/2020.COLING-MAIN.580
https://doi.org/10.18653/V1/2024.NAACL-LONG.389
https://doi.org/10.18653/V1/2024.NAACL-LONG.389
https://doi.org/10.18653/V1/2024.NAACL-LONG.389
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.825
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.825
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.825
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.495
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.495
https://arxiv.org/abs/2405.13576
https://arxiv.org/abs/2405.13576
https://arxiv.org/abs/2405.13576
https://doi.org/10.48550/ARXIV.2402.12174
https://doi.org/10.48550/ARXIV.2402.12174
https://doi.org/10.48550/ARXIV.2402.12174
https://doi.org/10.48550/ARXIV.2410.20878
https://doi.org/10.48550/ARXIV.2410.20878
https://doi.org/10.48550/ARXIV.2410.20878
https://openreview.net/forum?id=w4DW6qkRmt
https://openreview.net/forum?id=w4DW6qkRmt
https://openreview.net/forum?id=w4DW6qkRmt
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://doi.org/10.18653/v1/2023.emnlp-main.322
https://doi.org/10.18653/v1/2023.emnlp-main.322
https://doi.org/10.18653/V1/2023.ACL-LONG.546
https://doi.org/10.18653/V1/2023.ACL-LONG.546
https://doi.org/10.18653/V1/2023.ACL-LONG.546

July 9-14, 2023, pages 9802-9822. Association for
Computational Linguistics.

Shengyu Mao, Yong Jiang, Boli Chen, Xiao Li, Peng
Wang, Xinyu Wang, Pengjun Xie, Fei Huang, Hua-
jun Chen, and Ningyu Zhang. 2024. Rafe: Ranking
feedback improves query rewriting for RAG. In Find-

when and what to retrieve for llms. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
ACL 2024, Bangkok, Thailand, August 11-16, 2024,
pages 4420-4436. Association for Computational
Linguistics.

ings of the Association for Computational Linguis- Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,

tics: EMNLP 2024, Miami, Florida, USA, November
12-16, 2024, pages 884-901. Association for Com-
putational Linguistics.

OpenAl. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward Z.
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning

and Ashish Sabharwal. 2022. Musique: Multi-
hop questions via single-hop question composition.
Trans. Assoc. Comput. Linguistics, 10:539-554.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,

and Ashish Sabharwal. 2023. Interleaving retrieval
with chain-of-thought reasoning for knowledge-
intensive multi-step questions. In Proceedings of
the 61st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
ACL 2023, Toronto, Canada, July 9-14, 2023, pages
10014-10037. Association for Computational Lin-
guistics.

library. In NeurIPS, pages 8024-8035. Jonathan Uesato, Nate Kushman, Ramana Kumar,

Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick
S. H. Lewis, Majid Yazdani, Nicola De Cao, James
Thorne, Yacine Jernite, Vladimir Karpukhin, Jean
Maillard, Vassilis Plachouras, Tim Rocktidschel, and

H. Francis Song, Noah Y. Siegel, Lisa Wang, An-
tonia Creswell, Geoffrey Irving, and Irina Higgins.
2022. Solving math word problems with process- and
outcome-based feedback. CoRR, abs/2211.14275.

Sebastian Riedel. 2021. KILT: a benchmark for Prakhar Verma, Sukruta Prakash Midigeshi, Gaurav

knowledge intensive language tasks. In NAACL-HLT,
pages 2523-2544. Association for Computational
Linguistics.

Sinha, Arno Solin, Nagarajan Natarajan, and Amit
Sharma. 2024. Planxrag: Planning-guided retrieval
augmented generation. CoRR, abs/2410.20753.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Haoyu Wang, Ruirui Li, Haoming Jiang, Jinjin Tian,

Noah A. Smith, and Mike Lewis. 2023. Measuring
and narrowing the compositionality gap in language
models. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2023, Singapore, De-
cember 6-10, 2023, pages 5687-5711. Association
for Computational Linguistics.

Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie
Huang, Nan Duan, and Weizhu Chen. 2023. En-
hancing retrieval-augmented large language models
with iterative retrieval-generation synergy. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023, Singapore, December 6-10, 2023,
pages 9248-9274. Association for Computational
Linguistics.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Min-

Zhengyang Wang, Chen Luo, Xianfeng Tang, Mon-
ica Xiao Cheng, Tuo Zhao, and Jing Gao. 2024.
Blendfilter: Advancing retrieval-augmented large
language models via query generation blending and
knowledge filtering. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2024, Miami, FL, USA, Novem-
ber 12-16, 2024, pages 1009-1025. Association for
Computational Linguistics.

Liang Wang, Nan Yang, Xiaolong Huang, Binx-

ing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma-
jumder, and Furu Wei. 2022. Text embeddings by
weakly-supervised contrastive pre-training. CoRR,
abs/2212.03533.

joon Seo, Richard James, Mike Lewis, Luke Zettle- Yile Wang, Peng Li, Maosong Sun, and Yang Liu.

moyer, and Wen-tau Yih. 2024. REPLUG: retrieval-
augmented black-box language models. In Proceed-
ings of the 2024 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (Volume 1:
Long Papers), NAACL 2024, Mexico City, Mexico,

2023. Self-knowledge guided retrieval augmenta-
tion for large language models. In Findings of the
Association for Computational Linguistics: EMNLP
2023, Singapore, December 6-10, 2023, pages 10303—
10315. Association for Computational Linguistics.

June 16-21, 2024, pages 8371-8384. Association for ~ Fangyuan Xu, Weijia Shi, and Eunsol Choi. 2024. RE-

Computational Linguistics.

Jiejun Tan, Zhicheng Dou, Yutao Zhu, Peidong Guo,
Kun Fang, and Ji-Rong Wen. 2024. Small models,
big insights: Leveraging slim proxy models to decide

4848

COMP: improving retrieval-augmented Ims with con-
text compression and selective augmentation. In The
Twelfth International Conference on Learning Rep-
resentations, ICLR 2024, Vienna, Austria, May 7-11,
2024. OpenReview.net.

https://aclanthology.org/2024.findings-emnlp.49
https://aclanthology.org/2024.findings-emnlp.49
https://doi.org/10.48550/arXiv.2303.08774
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.18653/V1/2021.NAACL-MAIN.200
https://doi.org/10.18653/V1/2021.NAACL-MAIN.200
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.378
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.378
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.378
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.620
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.620
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.620
https://doi.org/10.18653/V1/2024.NAACL-LONG.463
https://doi.org/10.18653/V1/2024.NAACL-LONG.463
https://doi.org/10.18653/V1/2024.ACL-LONG.242
https://doi.org/10.18653/V1/2024.ACL-LONG.242
https://doi.org/10.18653/V1/2024.ACL-LONG.242
https://doi.org/10.1162/TACL_A_00475
https://doi.org/10.1162/TACL_A_00475
https://doi.org/10.18653/V1/2023.ACL-LONG.557
https://doi.org/10.18653/V1/2023.ACL-LONG.557
https://doi.org/10.18653/V1/2023.ACL-LONG.557
https://doi.org/10.48550/ARXIV.2211.14275
https://doi.org/10.48550/ARXIV.2211.14275
https://doi.org/10.48550/ARXIV.2410.20753
https://doi.org/10.48550/ARXIV.2410.20753
https://aclanthology.org/2024.emnlp-main.58
https://aclanthology.org/2024.emnlp-main.58
https://aclanthology.org/2024.emnlp-main.58
https://doi.org/10.48550/ARXIV.2212.03533
https://doi.org/10.48550/ARXIV.2212.03533
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.691
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.691
https://openreview.net/forum?id=mlJLVigNHp
https://openreview.net/forum?id=mlJLVigNHp
https://openreview.net/forum?id=mlJLVigNHp

Jinxi Xu and W. Bruce Croft. 1996. Query expansion
using local and global document analysis. In Pro-
ceedings of the 19th Annual International ACM SI-
GIR Conference on Research and Development in In-
formation Retrieval, SIGIR’96, August 18-22, 1996,
Zurich, Switzerland (Special Issue of the SIGIR Fo-
rum), pages 4—-11. ACM.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W. Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
Brussels, Belgium, October 31 - November 4, 2018,
pages 2369-2380. Association for Computational
Linguistics.

Ori Yoran, Tomer Wolfson, Ori Ram, and Jonathan Be-
rant. 2024a. Making retrieval-augmented language
models robust to irrelevant context. In The Twelfth
International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net.

Ori Yoran, Tomer Wolfson, Ori Ram, and Jonathan Be-
rant. 2024b. Making retrieval-augmented language
models robust to irrelevant context. In The Twelfth
International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net.

Fei Yu, Anningzhe Gao, and Benyou Wang. 2024. Ovm,
outcome-supervised value models for planning in
mathematical reasoning. In Findings of the Associ-
ation for Computational Linguistics: NAACL 2024,
Mexico City, Mexico, June 16-21, 2024, pages 858—
875. Association for Computational Linguistics.

Xuanwang Zhang, Yunze Song, Yidong Wang, Shuyun
Tang, Xinfeng Li, Zhengran Zeng, Zhen Wu, Wei Ye,
Wenyuan Xu, Yue Zhang, Xinyu Dai, Shikun Zhang,
and Qingsong Wen. 2024a. RAGLAB: A modular
and research-oriented unified framework for retrieval-
augmented generation. CoRR, abs/2408.11381.

Zhen Zhang, Xinyu Wang, Yong Jiang, Zhuo Chen,
Feiteng Mu, Mengting Hu, Pengjun Xie, and Fei
Huang. 2024b. Exploring knowledge boundaries in
large language models for retrieval judgment. CoRR,
abs/2411.06207.

A Discussion about Query Graph Builder

In our framework, the query graph builder con-
structs a query graph before resolving each sub-
query. Indeed, pre-constructing the query graph
may constrain dynamic reasoning paths to some
extent. However, during our preliminary experi-
ments, we observe significant issues with purely
iterative methods such as IRCoT (Trivedi et al.,
2023) and Self-RAG (Asai et al., 2024), which

tend to become overly reliant on intermediate re-
trieved results, thus propagating generation errors
through subsequent reasoning steps. This may be
because current LLMs cannot accurately coordi-
nate internal and external knowledge. As a result,
we choose to build a query graph before resolving
the query, and our experiments demonstrate that
this strategy is effective for complex queries like
the multi-hop questions in QA tasks. Additionally,
our new query generator serves as a complemen-
tary iterative mechanism to dynamically enhance
query exploration when necessary. We believe fur-
ther exploring a hybrid approach that integrates
planning-based and iterative methods is a promis-
ing direction for future work.

B Prompt for Data Collection

As illustrated in Figure 6-11, we manually craft
different prompts and employ an expert LLM to
generate training data. Each prompt consists of
five key components: (1) Task description, provid-
ing context to help the LLM understand the task;
(2) Output requirements, specifying the expected
format and structure; (3) Guidelines, highlighting
rules for data generation; (4) Demonstration exam-
ples, serving as in-context learning references; and
(5) Task input, representing the specific instance to
be processed.

C Details of Datasets

We conduct our experiments on five QA datasets,
which are all provided by FlashRAG (Jin et al.,
2024a) under the license of CC-BY-SA-4.0.3

HotpotQA (Yang et al., 2018) is a large-scale
QA dataset comprising Wikipedia-based question-
answer pairs. Designed to facilitate complex rea-
soning, it features questions that require synthe-
sizing information from multiple supporting doc-
uments. The dataset is diverse, unconstrained by
pre-existing knowledge bases or schema. Addi-
tionally, HotpotQA introduces factoid comparison
questions to assess a system’s ability to extract and
compare relevant information.

MuSiQue (Trivedi et al., 2022) is a multi-hop
QA dataset designed to require genuine multi-hop
reasoning. Each question necessitates 2 to 4 rea-
soning steps (hops). The dataset is constructed by
systematically selecting and composing pairs of
single-hop questions that are connected, ensuring

3https: //creativecommons.org/licenses/by-sa/4.
o/

4849

https://doi.org/10.1145/243199.243202
https://doi.org/10.1145/243199.243202
https://doi.org/10.18653/V1/D18-1259
https://doi.org/10.18653/V1/D18-1259
https://doi.org/10.18653/V1/D18-1259
https://openreview.net/forum?id=ZS4m74kZpH
https://openreview.net/forum?id=ZS4m74kZpH
https://openreview.net/forum?id=ZS4m74kZpH
https://openreview.net/forum?id=ZS4m74kZpH
https://doi.org/10.18653/V1/2024.FINDINGS-NAACL.55
https://doi.org/10.18653/V1/2024.FINDINGS-NAACL.55
https://doi.org/10.18653/V1/2024.FINDINGS-NAACL.55
https://doi.org/10.48550/ARXIV.2408.11381
https://doi.org/10.48550/ARXIV.2408.11381
https://doi.org/10.48550/ARXIV.2408.11381
https://doi.org/10.48550/ARXIV.2411.06207
https://doi.org/10.48550/ARXIV.2411.06207
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

that one reasoning step critically relies on informa-
tion from another. This bottom-up methodology
provides fine-grained control over the construction
process and the properties of the resulting multi-
hop questions.

2WikimultihopQA (Ho et al., 2020) is a multi-
hop QA dataset designed to evaluate complex rea-
soning across both structured and unstructured data.
It comprises questions that require models to per-
form multiple reasoning steps, utilizing informa-
tion from different Wikipedia articles.

Bamboogle (Press et al., 2023) is a curated
dataset designed to assess the compositional rea-
soning abilities of language models. It comprises
125 questions that are intentionally challenging for
standard search engines, like Google, to answer
correctly. Each question requires the model to inte-
grate information from multiple sources or perform
multi-step reasoning to arrive at the correct answer.
The dataset covers a wide range of topics and ques-
tion formats.

PopQA (Mallen et al., 2023) is a large-scale,
open-domain QA dataset comprising entity-centric
single-hop question-answer pairs. Each question
is generated by converting a knowledge tuple from
Wikidata into a natural language format using pre-
defined templates. The dataset includes detailed
annotations such as the subject entity, object en-
tity, relationship type, and corresponding Wikidata
identifiers. PopQA is designed to evaluate language
models’ abilities to recall factual knowledge, par-
ticularly focusing on less popular long-tail entities.

D Implementation Details

We use PyTorch (Paszke et al., 2019) and Hugging-
face Accelerate library to implement our method.
The learning rate is set as 5e-5 with a warm-up
ratio of 0.02. Our method is trained for three
epochs, with a training batch size of 32. The
maximum sequence length is set as 2,048 tokens.
We use eight NVIDIA A800 GPUs for training.
For the datasets and baseline methods, we use
the version provided by FlashRAG (Jin et al.,
2024a), where Llama-3.1-8B-instruct is used
as the default backbone LLM. For the retrieval
sets, we follow previous studies (Yoran et al.,
2024a) and use Wikipedia as the retrieval corpus.
E5-base-v2 (Wang et al., 2022) is used as the re-
triever.

All of the methods in our experiments use the
same retrieval corpus, retriever, and backbone

LLM. Specifically:

(1) Standard RAG, SKR, SuRe, Trace, Blender-
Filter, IRCoT, and Iter-Retgen rely solely on
prompt engineering strategies without additional
model training.

(2) Adpative-RAG involves training a query
classifier on data sampled from SQuAD, NQ,
TriviaQA, MuSiQue, HotpotQA, and 2WikiMul-
tihopQA. We use the classifier provided by the
original authors.

(3) Self-RAG and RQ-RAG are trained using the
same dataset as ours, utilizing the publicly available
code provided by their authors.

E Efficiency Analysis

For sequential pipeline methods, they only con-
duct retrieval once, so their computational costs
are lower but their performance is also relatively
worse. For iterative pipeline methods (including
ours), we theoretically analyze the computational
costs of IRCoT, RQ-RAG, and our RoleRAG. For
clarity, we assume:

(1) All queries/sub-queries have equal length m;
answers/sub-answers have length ¢; each sub-query
retrieves k passages; and they have the same length
l.

(2) The summarizer in Ro1eRAG produces a sum-
mary with the same length of a single passage, i.e.,
its length is also .

(3) Retrieval is assumed for each sub-query to
simplify analysis.

From the results, we can see IRCoT has the high-
est computational cost due to iterative processing
and repeated input of all previous sub-results. Our
RoleRAG and RQ-RAG have a similar input token
complexity (O(nkl)), but Ro1eRAG produces addi-
tional output tokens due to the summarization step.
Nevertheless, in practical scenarios, the retrieval is
selective, thus reducing real-world overhead.

In summary, while iterative methods naturally
incur higher computational costs compared to se-
quential methods, our RoleRAG’s additional costs
remain moderate relative to its significantly im-
proved performance. Furthermore, Ro1eRAG is in-
herently parallelizable due to its modular design
driven by role tokens, making it feasible for practi-
cal deployments.

F Case Study

To further evaluate our framework qualitatively, we
conduct a case study and present three representa-

4850

Method Module Input Input tokens Output Output
tokens
RoleRAG Query graph Original query m Sub-queries n*xm
builder
Retrieval judge Sub-query n*m Judge result n
(Yes or No)
Sub-answer gener- Sub-query, retrieved pas- nxm 4+ nx kx| (Sub-)answer nxt
ator sages
Summarizer Retrieved passages nxkxl Summary n*l
New query genera- Answer memory nx(m+t+1) New sub-query m
tor
Answer reasoner Answer memory nx(m+t+1) Answer t
Total nx (dm+2kl+2t+21) + nx(m+t+
m I4+1)+m+t
IRCoT Sub-query and Sub- (previous) Sub-query, nxm-—+nx*(kxl)4+(n— Sub-queries n* (m+t)
answer generation (previous) Sub-answer 1)x(kxl4+t)+(n—2)x and Sub-
retrieved passages (kxl+t)...+kxl+t answers
Final answer gener- Original query, all re- m+n*xkx*l Answer t
ation trieved passages
Total nok(m—+ 22wk« + nx(m+t)+
"Tfl * 1) 3
RQ-RAG Sub-query genera- Original query m n*m
tion
Answer generation (Sub-)query, retrieved (n+1)xm-+nxkxl4+nxt Answer nxt
passages
Total nx(m+kl+t)+m n* (m+t)

tive examples in Table 12 and Table 13. In the first
case, our framework successfully decomposes the
query into three sub-queries, where the third sub-
query depends on the answers to the first two. By
iteratively resolving the first two sub-queries, the
answer to the third can be inferred directly with-
out requiring additional retrieval. In the second
case, our framework only rewrites the query, and
the corresponding answer is incomplete. Fortu-
nately, the new query generator successfully adds
an effective sub-query to provide supplemental in-
formation. In contrast, the third case highlights a
failure scenario. Although the original user query
is split into three sequential sub-queries, the first
two should be dependent, yet the model incorrectly
treats them as independent. This suggests that ac-
curately decomposing complex queries remains a
challenging problem. Besides, while the second
and third sub-queries are correctly formulated, the
third sub-query fails to retrieve useful knowledge,
leading to an incorrect final answer. In this sce-
nario, the new query generator attempts to repeat
the third sub-query. However, due to the limitations
of the retrieval repository, the necessary informa-
tion remains unavailable, resulting in an incorrect
response. This case demonstrates that even when
individual model components function correctly,
external factors such as retrieval limitations can
still prevent the system from generating the correct

HotpotQA MuSiQue 2WikiQA

Full 49.17 27.30 53.87
+ Rewrite Ori. Q 50.04 27.19 53.49
+ Rewrite All 48.88 2747 53.79

Table 6: Performance (F1 score) of RoleRAG with query
rewrite module.

answer.

G Impact of Query Rewrite

Query rewriting (Xu and Croft, 1996; Carpineto
and Romano, 2012) addresses the problem of users’
ambiguity and inaccurate queries by rewriting the
user’s original query, which is helpful in RAG
systems (Mao et al., 2024). Recent studies have
demonstrated that LLMs are capable of understand-
ing user intents and providing more informational
rewritten queries (Ma et al., 2023). Motivated by
these findings, we consider incorporating a query
rewriting module in our framework and evaluate
its impact under two settings: (1) applying query
rewriting only to the original query and (2) apply-
ing it to all sub-queries. The experimental results
are shown in Table 6. Generally, we can observe
that query rewriting does not consistently improve
performance. When applied to the original query, it
influences the query graph construction, leading to
mixed results. Notably, improvements are observed

4851

only on the HotpotQA dataset. A closer inspection
of the data reveals that HotpotQA queries are rela-
tively well-formed, making query rewriting benefi-
cial in this case. However, applying query rewriting
to all sub-queries also yields unstable performance,
likely because the sub-queries in our query graph
are already simple and do not require further re-
finement. Given these findings, we exclude the
query rewriting module from our final framework,
as it introduces additional computational overhead
without providing consistent benefits.

4852

Prompt for Query Graph Builder

Task Description: You are tasked with constructing reasoning directed acyclic graphs (DAGs) for complex
queries. Start by breaking down a complex main query into smaller, manageable subqueries. Each subquery
should independently contribute to solving the main query. Utilize these queries and their respective
answers to form a DAG starting from the root node (main query) and branching out without forming any
cycles. The final node or the leaf node will closely resemble the main query but will include placeholders
filled by answers from preceding nodes, adhering to the Markovian property, which requires answers from
parent nodes to resolve child subqueries.

Output Requirement: Produce a Python list of tuples where each tuple represents a connection in the DAG.
The tuples should contain pairs linking a query to its subquery. Format your output as a list of tuples
without additional text, comments, or line breaks.

Note: Ensure that the DAG is connected and forms a rooted tree structure. For straightforward queries that
do not require decomposition, simply return the original query within a list.

Examples:

Query: {Example query }
DAG: {Example DAG}

Query: {Input query}
DAG: {Output DAG}

Figure 6: Prompt using for generating data for query graph builder.

Prompt for Retrieval Judge

Task Description: As a language model, you are tasked to act as a critic determining whether a given
question can be answered directly based on the provided information or the semantics of the question
itself. When no information is provided, you should rely solely on the literal meaning of the question to
make your judgment. You will receive a question along with any corresponding information. Your job is to
assess if the question can be answered based solely on the provided information without requiring
additional context.

Output Requirement: Return a JSON object with a key "Response" and a value "True" or "False". Here, "True"
indicates that the question can be answered with the given information, while "False" indicates that
additional information is needed. Always represent the values as strings.

Note: Your output should consist solely of the JSON response without any explanatory text.
Examples:

Query: {Example query}

Provided information: {Example information}

Response: {Example response}

Query: {Input query}

Provided information: {Memory dict}
Response: {Output}

Figure 7: Prompt using for generating data for retrieval judge.

4853

Prompt for Sub-answer Generator

Task Description: You are a concise answering assistant. You need to answer the query based on the
retrieved materials and your own knowledge. If the retrieved materials are not useful, directly ignore it.

Output Requirement: Return a JSON with a single key "Response" and a value that is a short phrase or a few
words. In this JSON, you need to always put each value as a string, not float.

Note: Generate only JSON without any explanation.
Examples:

Query: {Example query}

Retrieved materials: {Example materials}

Answer: {Example answer}

Query: {Input query}

Retrieved materials: {Retrieved knowledge}
Answer: {Output}

Figure 8: Prompt using for generating data for sub-answer generator.

Prompt for Summarizer

Task Description: You are a relevant information aggregator. You need to extract and summarize information
relevant to the keyword from several retrieved materials.

Output Requirement: Return a JSON with a single key "Summary" and a value that is its content. Always
represent the values as strings.

Note: Generate only JSON without any explanation.
Examples:

Keyword: {Example keyword}

Retrieved materials: {Example materials}
Response: {Example summary}

Keyword: {Answer}

Retrieved materials: {Retrieved knowledge}
Response: {Output}

Figure 9: Prompt using for generating data for summarizer.

4854

Prompt for New Query Generator

Task Description: You are to act as a final answer reasoner tasked with evaluating if a specific query can
be answered directly by the provided question-answer pairs. If the query is answerable based on the given
data, respond with "Yes". If information is lacking, formulate a new query that would request the necessary
missing information.

Output Requirement: Produce a JSON object with a single key "Response". The value should either be the word
"Yes" or a new query, both formatted as a string. Ensure all numbers are converted to string format.

Note: Generate only JSON without any explanation.
Examples:

Final question: {Example keyword}

Reference question-answer pairs: {Example materials}
Response: {Example response}

Final question: {Original query}

Reference question-answer pairs: {Memory dict}

Response: {Output}

Figure 10: Prompt using for generating data for new query generator.

Prompt for Answer Reasoner

Task Description: As a final answer generator, synthesize information from provided question-answer pairs
to respond to a final query.

Output Requirement: Produce a JSON object with a single key "Response". The value should be a concise
phrase or a few words that directly answer the question, formatted as a string. Ensure all numerical values
are converted to strings.

Note: Generate only JSON without any explanation.
Examples:

Final question: {Example keyword}

Reference question-answer pairs: {Example materials}
Answer: {Example response}

Final question: {Original query}

Reference question-answer pairs: {Memory dict}
Answer: {Output}

Figure 11: Prompt using for generating data for answer reasoner.

4855

Original query: Are Scott Derrickson and Ed Wood of the same nationality?

Query graph: [["Q: Are Scott Derrickson and Ed Wood of the same nationality?", "Q1: What is the nationality of Scott Derrickson?"], ["Q: Are Scott
Derrickson and Ed Wood of the same nationality?", "Q2: What is the nationality of Ed Wood?"], ["Q1: What is the nationality of Scott Derrickson?",
"Q3: Are <A1> and <A2> the same nationality?"], ["Q2: What is the nationality of Ed Wood?", "Q3: Are <A1> and <A2> the same nationality?"]]

-~ Original Query
Are Scott Derrickson and Ed Wood of the same

| nationality? |
;o i Y Q2 e 3
i What is the nationality { | What is the nationality |

of Scott Derrickson? | | of Ed Wood?

e

Are Ql.answer and Q2.answer the same nationality?

Q1: What is the nationality of Scott Derrickson?

Retrieval judge: False (need retrieval)

Retrieved knowledge: [["Scott Derrickson directed the film "Doctor Strange", based on the Marvel Comics property and part of the Marvel
Cinematic Universe. It was released in November 2016. The film was both a commercial and critical success. In February 2018, it was announced
that Derrickson will executive produce the television series "You Bury Me" for Blumhouse Productions. ...]]

Answer: American

Summary: Scott Robertson is an American concept artist, known for his transportation design work and contributions to movies like Steven
Spielberg's Minority Report. He is a graduate of Art Center College of Design in Pasadena, CA and was the program director of Entertainment
Design. Robertson was born in Minnesota and grew up in Plymouth, where he was taught to draw and design by his artist father. He is also known
for his educational DVDs with the Gnomon Workshop.

Q2: What is the nationality of Ed Wood?
Retrieval judge: False (need retrieval)
Retrieved knowledge: [["Ed Wood Grey's 1992 oral biography "Nightmare of Ecstasy: The Life and Art of Edward D. Wood Jr.", the public took a

greater interest in Wood, leading up to director Tim Burton's biopic of Wood's life, "Ed Wood" (1994), a critically acclaimed film starring Johnny
Depp as Wood that earned two Academy Awards. ...]]

Answer: American

Summary: Ed Wood was an American filmmaker, actor, and author born on October 10, 1924, in Poughkeepsie, New York. He made low-budget
films in various genres, including science fiction, crime, and horror, and later made sexploitation movies and wrote pulp novels. Wood's career and
camp approach earned him a cult following, and he was awarded a Golden Turkey Award as Worst Director of All Time in 1975. He passed away on
December 10, 1978.

Q3: Are American and American the same nationality?
Retrieval judge: True (no need for retrieval)

Answer:

Original query: What state does Sang-Wook Cheong work as a materials scientist?

Query graph: [["'Q: What state does Sang-Wook Cheong work as a materials scientist?", "Q1: Where does Sang-Wook Cheong work as a materials
scientist?"]] - Original Query
i What state does Sang-Wook Cheong work as a

i materials scientist? !

v
'

- Q1 + N
' Where does Sang-Wook Cheong work as a materials

| scientist? !

Q1: Where does Sang-Wook Cheong work as a materials scientist?

Retrieval judge: False (need retrieval)
Retrieved knowledge: [["Stephen Pearton is an American materials scientist and engineer and Distinguished Professor at University of Florida.", "

Pearton's work focuses on the use of advanced materials in areas such as laser diodes and nanomaterial applications and similar applications.",
He is a recipient of the J.J...]]

Answer: Rutgers University

Summary: Sang Wook Cheong is a Korean American materials scientist at Rutgers University. He has made ground-breaking contributions to the
research field of enhanced physical functionalities in complex materials originating from collective correlations and collective phase transitions
such as colossal magnetoresistive and colossal magnetoelectric effects in complex oxides.

New query: In which state is Rutgers University located?
Retrieval judge: True (no need for retrieval)

Answer:

Figure 12: An example of Ro1eRAG execution process from HotpotQA.

4856

Original query: What was the population of the city in the same county as Eric Marcus Municipal Airport in 1900?

Query graph: [["Q: What was the population of the city in the same county as Eric Marcus Municipal Airport in 1900?", "Q1: In what county is Eric
Marcus Municipal Airport located?"], ["Q1: In what county is Eric Marcus Municipal Airport located?", "Q2: What city is in the same county as Eric
Marcus Municipal Airport?"], ["Q2: What city is in the same county as Eric Marcus Municipal Airport?", "Q3: What was the population of <A2> in
1900?"]]

¢ Original Query 5
i What was the population of the city in the same
i county as Eric Marcus Municipal Airport in 1900?]

v
'

e Q1 + \
i In what county is Eric Marcus Municipal Airport
i located?]
e Q2 l

i What city is in the same county as Eric Marcus
i Municipal Airport? i

¢ Q3 l ,‘
What was the population of <Q2.answer>in 1900? |

Q1: In what county is Eric Marcus Municipal Airport located?

Retrieval judge: False (need retrieval)

Retrieved knowledge: [["Eric Marcus Municipal Airport" Eric Marcus Municipal Airport Eric Marcus Municipal Airport is a county-owned, public-use
airport in Pima County, Arizona, United States. It is located north of the central business district of Ajo and is about southwest of Phoenix. ...]]
Answer: Pima County

Summary: Pima County in Arizona is home to the Eric Marcus Municipal Airport, a county-owned, public-use airport located north of Ajo's central
business district. The airport was formerly known as Ajo Municipal Airport and was renamed on February 11, 2006. It has one serviceable runway
and is included in the FAA's National Plan of Integrated Airport Systems as a general aviation facility. The airport was originally established in 1941

as part of the Army Air Corps expansion prior to World War Il and was later inactivated in 1946, with the land being transferred to Pima County in
1949.

Q2: What city is in the same county as Eric Marcus Municipal Airport?
Retrieval judge: True (no need for retrieval)

Answer: Ajo

Q3: What was the population of Ajo in 1900?
Retrieval judge: False (need retrieval)
Answer: Not found

Retrieved knowledge: [["Ajo, Cantabria" Ajo, Cantabria Ajo is the capital of Bareyo municipality in Cantabria, Spain. The town is from Santander.
The first historical written reference to Ajo (Asio) is in the "Liber Testamentarum" of Oviedo Cathedral from 923, in which the King Ordo\u00f1o II
of Le\u00f3n donated the church of San Juan de Asio. ...]]

Summary: (None)

Q4: What was the population of Ajo in 1900? (Generated new query)
Answer:

Retrieved knowledge: [["Ajo, Cantabria" Ajo, Cantabria Ajo is the capital of Bareyo municipality in Cantabria, Spain. The town is from Santander.
The first historical written reference to Ajo (Asio) is in the "Liber Testamentarum" of Oviedo Cathedral from 923, in which the King Ordo\u00f1o II
of Le\u00f3n donated the church of San Juan de Asio. ...]]

Summary: (None)

Figure 13: An example of Ro1eRAG execution process from MuSiQue.

4857

