
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 4780–4796
November 4-9, 2025 ©2025 Association for Computational Linguistics

QSPEC: Speculative Decoding with Complementary Quantization Schemes

Juntao Zhao, Wenhao Lu, Sheng Wang, Lingpeng Kong, and Chuan Wu

{juntaozh, whlu, u3009618}@connect.hku.hk, {lpk, cwu}@cs.hku.hk

The University of Hong Kong

Abstract
Quantization is widely adopted to accelerate
inference and reduce memory consumption
in large language models (LLMs). While
activation-weight joint quantization enables ef-
ficient low-precision decoding, it suffers from
substantial performance degradation on multi-
step reasoning tasks. We propose QSPEC, a
novel quantization paradigm that decouples ef-
ficiency from quality by integrating two com-
plementary schemes via speculative decoding:
low-precision joint quantization for fast draft-
ing and high-precision weight-only quantiza-
tion for accurate verification. QSPEC reuses
both weights and KV cache across stages, en-
abling near-zero-cost switching without retrain-
ing or auxiliary models. Compared to high-
precision baselines, QSPEC achieves up to
1.64× speedup without quality degradation,
and outperforms state-of-the-art speculative de-
coding methods by up to 1.55× in batched set-
tings. Furthermore, QSPEC supports plug-and-
play deployment and generalizes well across
model scales, quantization methods, and work-
loads. These properties make QSPEC a practi-
cal and scalable solution for high-fidelity quan-
tized LLM serving under memory-constrained
scenarios. Our code is available at https:
//github.com/hku-netexplo-lab/QSpec.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable abilities across various domains, in-
cluding mathematics, coding, and planning (Shao
et al., 2024; Guo et al., 2024a; Huang et al., 2024).
Nonetheless, their immense scales pose substan-
tial challenges for deployment due to high memory
and computational demands, especially in resource-
limited scenarios (e.g., inference on edge devices).
Quantization has been an effective compression
technique to facilitate LLM inference with limited
resources (Lin et al., 2024a; Ashkboos et al., 2024;
Zhao et al., 2024b; Lin et al., 2024b). By convert-
ing high-precision values (e.g., FP16) into their

T1 T2 T3

LM Head

T4

T2 T3 T4

T2 T3 T4

T1 T2 T3

LM Head

T4

T5

T5

T2 T3

T1 T2 T3

LM Head

T4

Draft Verify

T2 T3 T4

T2 T3
Verified

Draft

T5

Overwrite

Overwrite

FP16 INT4 Weight

Activation KV Cache

High Quality Token Low Quality Token

W4A16

W4A4

QSpec

Component

Figure 1: Diagrams of different 4-bit quantization
schemes. W4A16: uses 4-bit weight and 16-bit ac-
tivation for inference. W4A4: further adopts 4-bit acti-
vation to utilize low-precision W4A4 kernels. QSPEC:
accelerates W4A16 by drafting tokens with W4A4 and
verifying them with W4A16, and applies KV cache
overwriting for consistent memory consumption.

lower-precision counterparts (e.g., INT4), quantiza-
tion effectively lowers memory and computational
requirements, allowing for larger serving batches
and model sizes. Furthermore, the reduced mem-
ory footprint boosts token generation throughput
by accelerating the typically memory-bound au-
toregressive decoding process (Zhao et al., 2024a).

Based on the quantized objects, recent quantiza-
tion algorithms can be broadly classified into two
categories: weight-only and WXAX: (1) Weight-
only quantization, represented by W4A16 (Lin
et al., 2024a), quantizes model weights to low

4780

https://github.com/hku-netexplo-lab/QSpec
https://github.com/hku-netexplo-lab/QSpec

precision (e.g., 4-bit) for storage, and then de-
quantizes them to a higher precision (i.e., FP16)
during inference; (2) WXAX methods, such as
W4A4 (Ashkboos et al., 2024; Zhao et al., 2024b)
and W8A8 (Xiao et al., 2023), simultaneously
quantize both weights and activations, and leverage
low-precision hardware support for faster execu-
tion without dequantizing them to higher precision.
Nevertheless, WXAX schemes generally suffer
model performance degradation due to more low-
precision activations used (as verified in Sec. 2).
This poses a tough trade-off between efficacy and
efficiency, raising the question:

“Is there a quantization solution that boosts effi-
ciency while avoiding efficacy degradation?”.

Considering the comparable performance claims
on recent W4A4 methods (Zhao et al., 2024b;
Ashkboos et al., 2024), we first contend that their
conclusions are biased due to limited evaluation
tasks, and W4A4 still experiences significant per-
formance drops when compared to their higher-
precision activation counterparts. Specifically,
while W4A4 schemes such as Atom (Zhao et al.,
2024b) and QuaRot (Ashkboos et al., 2024) per-
form well on general tasks, such as PIQA (Bisk
et al., 2020), Winogrande (Sakaguchi et al., 2019)
and ARC (Clark et al., 2018), they demonstrate
notable performance declines in multi-step rea-
soning, particularly on mathematical and coding
benchmarks (Xiong et al., 2024; Guo et al., 2024b)
(shown in Table 1). This raises concerns about the
comprehensiveness of evaluation and emphasizes
the necessity of incorporating multi-step reasoning
tasks into quantization assessment.

To answer the above question, we draw inspira-
tion from speculative decoding (Leviathan et al.,
2023; Chen et al., 2023), which combines rapid
drafting of a small model with high-fidelity verifica-
tion from a larger model to boost throughput with-
out sacrificing output quality. We propose a novel
paradigm called QSPEC, which employs comple-
mentary mixed-precision quantization execution
to deliver flawless acceleration for high precision
quantization. (i.e., efficiency improvements that
preserve the fidelity and memory overhead of high-
precision quantization).

Our key insight is that a single weight-quantized
model can losslessly toggle between two paral-
lel activation modes: a fast, low-precision mode
for drafting (e.g., W4A4) and a high-precision
mode for verification (e.g., W4A16). As validated
in Sec. 2.2, the token generation with different

modes is highly similar. This allows us to adopt a
lightweight ‘draft-verify’ scheme, as shown in Fig-
ure 1, where tokens drafted with W4A4 are selec-
tively accepted by W4A16 with negligible switch-
ing costs. Unlike traditional speculative decoding
that requires a draft model, QSPEC shares weights
and KV cache across activation modes, achieving
zero extra memory overhead.

We evaluate QSPEC on a range of model sizes,
quantization methods, and batch sizes. Compared
to W4A16, QSPEC offers up to 1.64× higher
token generation throughput while preserving fi-
delity. It also effectively compensates for up
to 51.11% quality loss observed in W4A4 on
challenging multi-step reasoning tasks such as
MATH (Hendrycks et al., 2021). Furthermore,
QSPEC requires no training and can be directly
integrated into existing inference pipelines.

Our main contributions are summarized as fol-
lows:
• We demonstrate that multi-step reasoning tasks

are more sensitive to quantization-induced qual-
ity degradation than standard benchmarks, and
advocate their inclusion for more comprehensive
evaluation.

• We validate and instantiate the feasibility of
switching between two quantization schemes of
a shared weight-quantized model, as well as their
high token-level similarities, illuminating future
development of quantization schemes.

• We introduce QSPEC, the first quantization
paradigm that decouples efficiency from qual-
ity by combining complementary quantization
schemes through speculative decoding with
shared weights and KV cache.

• Experiments across various models and tasks
reveal that QSPEC achieves up to 1.64× ac-
celeration without quality loss, making it well-
suited for high-fidelity deployment in memory-
constrained scenarios.

2 Motivation

2.1 Compromised Performance of Activation
Quantization

State-of-the-art (SOTA) activation-weight joint
quantization methods, like Atom (Zhao et al.,
2024b) and QuaRot (Ashkboos et al., 2024),
achieve notable speed-ups with negligible perfor-
mance loss compared to weight-only ones. How-
ever, we argue that this conclusion is skewed by

4781

Table 1: Performance of Atom-based quantization
schemes with different weight and activation precision
across diverse tasks. “Acc”, “PPL” and “EM” stand
for accuracy, perplexity, and exact match, respectively,
with arrows indicating their positive trends. “W16A16”
refers to standard FP16 inference, where both weights
and activations are represented in FP16 precision.

Task Metric W16A16
Quantization

Atom (W4A16) Atom (W4A4)

WikiText-2 PPL ↓ 7.73 7.87 (+0.15%) 8.58 (+0.85%)
PIQA (10-shot) EM ↑ 78.6 77.5 (-1.40%) 75.6 (-3.81%)
MBPP (0-shot) EM ↑ 42.0 41.5 (-1.19%) 30.5 (-27.38%)

GSM8K (8-shot) EM ↑ 79.0 73.4 (-7.09%) 54.2 (-31.39%)

limited evaluation benchmarks, which fail to cap-
ture the negative impacts of activation quantization.

To substantiate this claim, we conduct exper-
iments on Llama-3-8B-Instruct models (Dubey
et al., 2024) quantized with W16A16, W4A16,
and W4A4 across four benchmarks: PIQA (Bisk
et al., 2020), WikiText-2 (Merity et al., 2016),
GSM8K (Cobbe et al., 2021), and MBPP (Austin
et al., 2021). While PIQA and WikiText-2 are com-
monly used in quantization evaluation, GSM8K
and MBPP involve multi-step reasoning, which re-
mains underexplored in the quantization context
despite its great importance. Detailed descriptions
of the benchmarks are provided in Appendix B.

As listed in Table 1, Atom-based quantiza-
tion schemes show comparable performance to
W16A16 across commonly adopted tasks such as
on PIQA and WikiText-2, aligning with the claims
in Zhao et al. (2024b). However, W4A4 suffers a
nearly 30% average performance decline on com-
plex reasoning tasks (i.e., MBPP and GSM8K),
whereas W4A16 only experiences about 4%. This
indicates that activation quantization leads to sev-
eral times more performance degradation on multi-
step reasoning tasks, despite the improved effi-
ciency. Besides, the performance trend observed
on multi-step reasoning tasks shows a stronger cor-
relation with quantization precision than perplexity
does, validating their adequacy in evaluation.

In summary, activation quantization still incurs
significant performance loss on more advanced
multi-step reasoning tasks. This necessitates the
inclusion of them in quantization evaluation for
a more comprehensive assessment. Furthermore,
this also underscores the demand for a quality-
preserving yet efficient quantization paradigm.

2.2 High-Similarity Token Predictions

Despite the notable performance decline caused by
activation quantization, we observe, more micro-

scopically, high similarity in top-1 token predic-
tions between quantization schemes with high and
low precision activations. Specifically, we first em-
ploy Atom-based W4A16 greedy sampling to gen-
erate the golden token sequences for the GSM8K
test set, obtaining the prediction probabilities for
each top-1 answer token. Subsequently, we per-
form one Atom-based W4A4 forward pass (i.e.,
prefill) on the concatenated input of each question
and its corresponding golden answer to acquire the
token probabilities as well. This allows us to as-
sess the prediction discrepancy between W4A4 and
W4A16. As illustrated in Figure 2, we observe that
(1) the majority of token prediction probabilities
of both W4A4 and W4A16 exceed 80%, and most
of the tokens associated with high probabilities are
accepted. (2) Compared to accepted tokens, the
number of rejected ones is negligible, underscoring
the high similarity between the two quantization
methods.

Figure 2: Scatter plot of token prediction probabilities
for Atom-based W4A4 and W4A16 on GSM8K test set,
along with their two-dimensional and marginal probabil-
ity distributions. A striking similarity between the two
quantization schemes is observed, laying the foundation
of QSPEC.

Combined with the analysis in Sec. 2.1, this can
be interpreted that a small set of salient token vari-
ations can trigger a snowball effect of errors, es-
pecially on multi-step reasoning tasks where the
subsequent steps are closely conditioned on the
previous ones, akin to findings in (Zhang et al.,
2023), thus impairing the performance of the low-
precision activation scheme. Prior studies indicate
that low similarity leads to frequent token rejec-
tions, thereby diminishing the efficiency of specu-
lative decoding (Leviathan et al., 2023). The high
token-level similarity we observe implies that gen-
erating high-quality outputs may only require de-
tecting and correcting a limited number of activa-

4782

Draft Verified

Where there is

Where there is a

Where there is a , there

Where there is a

Draft@Round 1

Verify@Round 1

Draft length

Rejected

a

are some

, there some

is

Draft@Round 2

Verify@Round2

Bonus
/Correct

will

will

will

are

Figure 3: A mini-sample of QSPEC, where yellow, red,
and blue tokens represent W4A4 draft tokens, rejected
tokens, and tokens generated directly by W4A16, re-
spectively. While these green ones are draft tokens that
have been verified and accepted by W4A16.

tion quantization-induced errors. This insight mo-
tivates our proposal of a quantization-aware spec-
ulative decoding framework that leverages token
generation similarity.

3 Method

Targeting an efficient quantization scheme without
sacrificing performance or increasing memory con-
sumption, we propose a new quantization paradigm
called Speculative decoding with complementary
Quantization execution (QSPEC). As shown in
Figure 1 and Figure 3, QSPEC employs a draft-
verify pipeline for next-token prediction with vary-
ing activation precisions and shared low-precision
quantized weights, instead of a single quantization
scheme. Only quantization schemes are switched,
and no additional weights are incorporated in this
process.

3.1 QSPEC

Draft Phase. Current LLMs typically utilize an
autoregressive process for next-token prediction.
A new token is drawn from a probability distribu-
tion conditioned on all previously generated tokens.
This process can be formulated as:

ti+1 ∼ pi+1(t) := M(ti+1|T≤i), (1)

where M denotes the model including the weight
and activation configurations, while ti+1 and T≤i

represent the next predicted token and the preced-
ing token sequence (t0, t1, . . . , ti), respectively.

Compared with previous research (Leviathan
et al., 2023; Chen et al., 2023), we employ
a weight-shared quantization scheme with low-
precision activations, rather than a standalone
small-sized model, to speculate the next γ to-
kens T̂i+1:i+γ and their associated distributions
p̂i+1:i+γ(t). In T̂i+1:i+γ , each token t̂j is sampled
from Ml(t̂j |T≤i, T̂i+1:j−1), where j ∈ [i+1, i+γ]

and Ml represents our quantized model executed
with low-precision activation. Thanks to the re-
duced activation precision, this scheme enables
fast token generation.

Verify Phase. To compensate for the perfor-
mance decline incurred by excessive quantization,
we employ a high-precision weight-only quanti-
zation scheme to verify the proposed draft token
sequence. This ensures that the final generation
quality aligns with that of a high-precision activa-
tion quantization scheme. All drafted tokens are
verified in parallel for higher efficiency.

Formally, the high-precision quantization
scheme Mh receives as input the concatenation
of T≤i and T̂i+1:i+γ , producing high-quality
prediction probabilities pi+1:i+γ+1(t) through a
single forward pass. Following this, an acceptance
policy A, which will be detailed later, is applied
to rectify each drafted token sequentially. Once
a token t̂i+j is rejected, all subsequent tokens are
discarded, and token ti+j is resampled according
to the distribution pi+j(t). In the optimal scenario,
all drafted tokens from the low-precision quantized
model are accepted by the high-precision model.
Subsequently, an additional token ti+γ+1 is
sampled from pi+γ+1(t). From this point, a new
draft-verify cycle commences, persisting until the
sequence is finalized.

Acceptance Policy. To maintain high repro-
ducibility, both low-precision and high-precision
activation quantization schemes employ greedy de-
coding. This means that one drafted tokens t̂i+j is
accepted as ti+j only when the top-1 tokens from
pi+j and p̂i+j coincide; otherwise, this token is
rejected. Nonetheless, we claim that alternative
strategies, as outlined in (Leviathan et al., 2023),
can be directly applied to our method due to the
similarities in the framework. Figure 3 illustrates
a mini-sample of this cycle with the draft token
length γ = 4. The model initially speculates four
tokens using the W4A4 scheme. Subsequently, ad-
hering to a predefined acceptance policy, it accepts
all drafted tokens after verifying them through the
W4A16 scheme. In the second loop, however, only
the first two tokens are accepted. A new token “is”
is directly derived from the prediction probability
of the W4A16 scheme, and another draft-verify
cycle will commence from the ninth token.

KV Cache Overwriting. A key advantage of
QSPEC lies in its shared-weight architecture,

4783

Table 2: Comparison of individual quantization
schemes, regular speculative decoding, and QSPEC
across memory, computation, and generation aspects.

Method
Memory Computation Generation

Draft Weight Draft KV W4A4 Kernel Draft-Verify High Acceptance Rate High Fidelity

W4A16 ✗ ✗ ✗ ✗ - ✓

W4A4 ✗ ✗ ✓ ✗ - ✗

Speculative Decoding ✓ ✓ ? ✓ ? ✓

QSpec (no-overwrite) ✗ (1x) ✓ (1.25x) ✓ ✓ ✗ (0.8x) ✓

QSPEC ✗ (1x) ✗ (1x) ✓ ✓ ✓ (1x) ✓

which naturally aligns the behavior of low- and
high-precision activations. This allows the high-
precision verification stage to produce activation
patterns and KV cache values that serve as high-
fidelity substitutes for those generated during the
low-precision draft stage. Leveraging this align-
ment, QSPEC overwrites the lower-quality KV
caches from W4A4 with accurate A16 caches from
W4A16 for accepted tokens, enabling subsequent
decoding to benefit from higher-quality context.
This design not only boosts token acceptance rates
but also sets QSPEC apart from prior specula-
tive decoding methods, which use separate models
and cannot reuse KV representations. By sharing
weights and reusing KV caches within a single
model, QSPEC eliminates the need for dual cache
maintenance, reducing memory usage without sac-
rificing accuracy.

As shown in Table 2, we compare QSPEC

against individual quantization configurations (i.e.,
W4A4 and W4A16) and speculative decoding in
terms of memory, computation, and generation.
QSPEC provides four key benefits: (1) Memory-
Efficient. By sharing weights and overwriting
KV caches, QSPEC incurs memory costs on par
with standalone high-precision activation quanti-
zation without any memory overhead caused by
speculative decoding. (2) No Efficiency–Efficacy
Trade-off. QSPEC leverages speculative decoding
to boost efficiency while preserving output quality,
avoiding the compromises in conventional quanti-
zation. (3) Plug-and-Play Compatibility. QSPEC

requires only an acceptance policy and a cache-
overwriting step, requiring no additional training
or classifiers. Hence, it can be quickly integrated
into existing quantization models. (4) High Ac-
ceptance Rate. Common weights and KV cache
overwriting ensure consistent predictions, leading
to a high rate of token acceptance.

3.2 Advantages of High Acceptance Rate
A key advantage of QSPEC lies in its superior ac-
ceptance rate. While state-of-the-art speculative
decoding approaches such as EAGLE (Li et al.,

2024b) and Medusa (Cai et al., 2024) rely on dis-
tilled draft models and tree-structured drafting to
balance speed and accuracy, QSPEC achieves high
performance without such compromises. We an-
alyze how QSPEC demonstrates superior perfor-
mance compared to these methods in quantized
settings below.
Expected average accepted token number. Let
pa(t) be the probability of accepting a token t. The
average accepted token number is given by Equa-
tion 2, where k controls the tree’s branching factor
(width) . Larger k indicates larger expected token
acceptance. When k = 1, this method reduces to
standard speculative decoding.

H(k) :=

γ∑

l

kl∑

i=1

∏

j∈Path(r,ti)

pa(aj). (2)

Cost Analysis. Denote by Cd(·) and Cp(·) the
computation cost for draft and verify, The first ar-
gument indicates the number of sequences in a
draft tree, and the second argument is the prefix
sequence length. For a prefix with length s, we
have per-valid-token cost v by dividing the total
cost by the number of accepted tokens in Equation:

v =

Drafting cost︷ ︸︸ ︷
Cd(1; s) + · · ·+ Cd

(
kγ−1; s+ γ − 1

)
+

Verify cost︷ ︸︸ ︷
Cp

(
kγ−1; s+ γ

)

H(k)︸ ︷︷ ︸
Accepted tokens

∼ C(k)

H(k)
. (3)

Batch serving efficiency of QSPEC. The efficacy
of speculative decoding relies on the assumption
that verification cost Cp approximates the target
model’s decoding cost Cd, leveraging underuti-
lized resources for parallel verification.(Chen et al.,
2023; Leviathan et al., 2023; Yan et al., 2025) This
holds in single-request, memory-bound scenarios.
However, tree-structured drafting, with verification
cost Cp(k

γ−1; s + γ), scales poorly as kγ−1 far
exceeds non-tree sequence length γ. Therefore,
in batched serving, tree-based Cp enters compute-
bound territory easily, significantly surpassing Cd

and incurring high memory overhead, invalidating
the assumption. QSPEC, using W4A4 quantiza-
tion, avoids tree structures, maintaining low Cp and
memory usage and balancing the loads between
drafting and verification stages, QSPEC delays the
onset of this inefficiency. In Section 4, QSPEC

demonstrates excellent speedup even at a batch
size of 32, also outperforming EAGLE (Li et al.,
2024b) in comparison experiments.

4 Experiments

Our evaluation answers three key questions:

4784

Q1: Does QSPEC preserve the quality of high-
precision weight-only quantization? (Sec. 4.2)

Q2: Does QSPEC speed up high-precision weight-
only quantization methods, and surpass spec-
ulative decoding methods in quantized scenar-
ios? (Sec.4.3)

Q3: How do various factors (e.g., quantization
method, sequence length) influence the ac-
ceptance rate and acceleration performance of
QSPEC? (Sec. 4.4)

4.1 General Setup

Benchmarks. We assess QSPEC with two primary
criteria: (1) generation fidelity and (2) end-to-end
serving speedup. For fidelity evaluation, we adopt
not only traditional tasks, including PIQA (500,
10-shot) (Bisk et al., 2020), WinoGrande (500, 5-
shot) (Sakaguchi et al., 2019), and WikiText2 (Mer-
ity et al., 2016), but also challenging multi-step rea-
soning tasks such as GSM8K (All, 8-shot) (Cobbe
et al., 2021), MATH (All, 4-shot) (Hendrycks et al.,
2021), MBPP (200, 0-shot) (Austin et al., 2021),
and HumanEval (All, 0-shot) (Chen et al., 2021).
To measure the acceleration, we use all the above
reasoning tasks and two additional chatbot datasets,
namely ShareGPT (RyokoAI, 2021) and LMsys-
1K (Zheng et al., 2023a). Due to space constraints,
we present results for GSM8K, HumanEval, and
LMsys-1K in the main text, with remaining results
detailed in the Appendix A. Following the setup of
Atom (Zhao et al., 2024b), we randomly sampled
the dataset for the request prompts to reduce the
workload. Due to memory limitations, we vary the
batch size from 8 to 32 and serve all requests in a
first-come, first-served (FCFS) manner. Once any
request is finished, we refill the batch, adhering to
the continuous batching approach of ORCA (Yu
et al., 2022). All experiments use greedy sampling
for token generation.

Models. To assess the effectiveness and scal-
ability of our approach, we conduct experiments
using multiple models from the Llama family (Tou-
vron et al., 2023; Dubey et al., 2024) with varying
scales and capacities: Llama3.2-3b, Llama2-7b,
Llama3-8b-instruct, and Llama2-13b.

Implementations. All experiments are per-
formed on a node equipped with four NVIDIA
L20 GPUs (48GB HBM each) running CUDA
12.5. To demonstrate the versatility of QSPEC,
we implement two SOTA 4-bit quantization meth-
ods, namely Atom (Zhao et al., 2024b) and

QuaRot (Ashkboos et al., 2024). For W4A16 con-
figurations, we incorporate AWQ-style (Lin et al.,
2024a) weight dequantization logic for runtime
inference. We select Atom to showcase the ac-
celeration of QSPEC. We use these Group-wise
quantization schemes with a group size of 128. We
configure the default draft token length γ to 3. The
implementation of QSPEC follows Atom’s setup,
incorporating flashinfer (Ye et al., 2025).

Baselines. We evaluate QSPEC against base-
line quantization configurations: W4A4, W4A16,
and W16A16. We also include EAGLE (Li et al.,
2024b), which employs a pruned draft model with
tree-structured speculative decoding, as a baseline
to compare with regular speculative decoding. In
our quantized experiments, we utilize FP16 pre-
cision for the EAGLE draft model and EAGLE-
Quant (W4A16) for the target model. This choice
was necessitated by two factors: (1) the official EA-
GLE quantization implementation (fast-gpt) lacks
efficient batching support, and (2) applying GPTQ
quantization to the EAGLE draft model resulted in
substantial degradation of the acceptance rate.

4.2 Fidelity Evaluation

QSPEC effectively maintains the generation
quality of W4A16, whereas W4A4 does not.
As listed in Table 3, with the draft verifica-
tion of W4A16, QSPEC exhibits only minimal
performance fluctuations compared to W4A16.
This negligible variation may stem from the non-
deterministic algorithms of PyTorch (PyTorch Con-
tributors, 2024) or occasional cases where two to-
kens have the same maximum prediction proba-
bility. In contrast, W4A4 experiences a substan-
tial performance decline exceeding 10% across
most tasks, with the reduction becoming more pro-
nounced as task difficulty increases. For instance,
compared to GSM8K and MBPP, the performance
drop for W4A4 is much greater on the more chal-
lenging MATH and HumanEval tasks, showing
declines of 51.11% and 38.73%, respectively. On
the other hand, this also highlights the higher sensi-
tivity of multi-step reasoning tasks to the negative
effects of quantization compared to regular tasks,
such as WikiText-2and WinoGrande. This observa-
tion fully aligns with our earlier analysis in Sec. 2,
encouraging the incorporation of multi-step reason-
ing tasks into quantization evaluation.

4785

Table 3: Performance of different quantization methods across multiple general and reasoning benchmarks: PIQA,
WinoGrande, GSM8K, MATH, MBPP, and HumanEval. The quality degradation ratio is calculated by W4A4

W4A16 − 1.

Method Quantization WikiText-2 PIQA WinoGrande GSM8K MATH MBPP HumanEval
PPL ↓ EM (%) ↑ EM (%) ↑ EM (%) ↑ EM (%) ↑ Pass@1 (%) ↑ Pass@1 (%) ↑

Atom
W16A16 7.73 76.8 61.4 76.2 24.9 42.5 53.0
W4A16 7.87 74.8 62.0 73.4 24.3 42.0 52.4
QSPEC 7.87 75.0 62.0 73.4 24.3 40.5 52.4
W4A4 8.6 (+9.58%) 65.8 (-12.03%) 56.2 (-9.35%) 54.7 (-25.47%) 15.5 (-36.21%) 33.0 (-21.43%) 31.7 (-39.50%)

QuaRot
W16A16 7.73 76.8 61.4 76.2 24.9 42.5 53.0
W4A16 8.58 74.2 59.4 70.5 24.7 40.0 45.7
QSPEC 8.58 74.4 59.2 71.0 24.7 40.5 47.6
W4A4 10.2 (+19.24%) 62.6 (-15.63%) 53.8 (-9.43%) 42.0 (-40.43%) 12.3 (-51.11%) 28.5 (-28.75%) 28.0 (-38.73%)

Table 4: Comparison of token generation throughput
across different model sizes, quantization configura-
tions, and batch sizes for various datasets. All values
are measured in token/s. "Avg." denotes the average
speedup ratio for the corresponding row or column.

Model Method Batch GSM8K HumanEval LMsys-1k

3B

W4A4
8 804.7 892.6 990.3

16 1109.1 1289.8 1581.0
32 1424.3 1488.2 2194.4

W4A16
8 420.0 535.7 559.8

16 578.5 804.4 925.8
32 726.3 954.4 1336.4

QSPEC

8 594.1
(1.41×)

723.6
(1.35×)

738.8
(1.32×)

16 811.5
(1.40×)

1042.1
(1.30×)

1171.4
(1.27×)

32 1030.4
(1.42×)

1248.5
(1.31×)

1576.0
(1.18×)

Avg. 1.41× 1.32× 1.25×

7B

W4A4
8 349.5 471.2 419.4

16 496.6 749.5 642.6
32 620.0 1043.9 865.5

W4A16
8 165.0 240.2 220.2

16 231.8 407.3 358.0
32 268.9 555.9 470.1

QSPEC

8 253.7
(1.54×)

350.9
(1.46×)

310.3
(1.41×)

16 359.8
(1.55×)

555.2
(1.36×)

473.1
(1.32×)

32 441.8
(1.64×)

749.4
(1.35×)

628.4
(1.34×)

Avg. 1.58× 1.39× 1.36×

13B

W4A4
8 194.7 261.5 228.2

16 288.3 424.9 348.4
32 369.8 665.4 508.8

W4A16
8 94.8 140.0 127.9

16 136.1 236.9 207.2
32 207.5 365.5 287.4

QSPEC

8 148.2
(1.56×)

201.2
(1.44×)

174.0
(1.36×)

16 212.8
(1.56×)

323.3
(1.36×)

266.9
(1.29×)

32 266.6
(1.28×)

483.0
(1.32×)

379.3
(1.32×)

Avg. 1.47× 1.37× 1.32×

4.3 Acceleration Evaluation

QSPEC exhibits a substantial efficiency boost
compared to W4A16. In Table 4, we present the
token generation throughput for both QSPEC and
W4A16 across different model sizes, quantization
configurations, and batch sizes on diverse datasets.

Table 5: Performance comparison of EAGLE-Quant,
QSPEC, W4A16, and W4A4 on Llama-2-7b-chat-hf
across different batch sizes and benchmarks. “OOM”
indicates out-of-memory. Better cases for QSPEC or
EAGLE is marked in gray. In the case of batch size=8,
the speedup ratio of QSPEC compared to EAGLE is
indicated in parentheses next to the data points.

Method Batch
Size

GSM8K
(8-shot)

HumanEval
(0-shot) LMsys-1k

EAGLE
1 65.81 49.15 71.29
8 140.16 136.86 167.57
16 OOM OOM OOM

1 51.25 54.22 56.14

QSPEC 8 208.95
(1.49×)

185.99
(1.36×)

260.48
(1.55×)

16 292.82 255.11 463.35

W4A16
1 59.80 72.04 72.27
8 146.34 163.54 213.66
16 190.09 211.49 371.38

W4A4
1 64.79 73.47 71.55
8 284.84 256.54 393.12
16 401.77 330.71 713.67

On average, QSPEC achieves a throughput increase
of 1.38× over W4A16 across all settings, with a
peak improvement of 1.64×.

Larger models tend to yield better speedup
ratios. We observe a consistent acceleration trend
as the base model scales, demonstrating the promis-
ing scalability of our approach with larger models.
While further validation is needed, resource con-
straints necessitate addressing this in future work.

QSPEC reduces latency through fast drafting
and parallel verifying. As illustrated in Figure 4,
we compute the per-valid-token latency by dividing
the total latency by only the number of accepted
tokens before averaging on all evaluation datasets.
Notably, QSPEC achieves remarkable latency sav-
ings ranging from 26.5% to 30.6%. Besides, the
per-token latency is further decomposed into two
parts: draft and verify. Clearly, the primary gains of
QSPEC arise from the rapid drafting capability and
the reduced latency achieved through the parallel
verification of multiple tokens.

QSPEC offers better memory and batching

4786

W4A16 QSpec W4A4 Draft Verify0.0

2.5

5.0

7.5

10.0

12.5

La
te

nc
y

(m
s)

3.56 ms
(26.5%)

Llama3.2-3B (Batch Size 8)

W4A16 QSpec W4A4 Draft Verify0

20

40

60

La
te

nc
y

(m
s)

18.05 ms
(30.6%)

Llama2-7B (Batch Size 32)

Components
Prefill
W4A16 Decode
QSpec Draft
QSpec Verify
W4A4 Decode

Figure 4: Per-valid-token latency decomposition for
different methods. The latency of QSPEC is further
decomposed into draft and verify categories for details.

efficiency than prior speculative decoding meth-
ods. Table 5 compares QSPEC and EAGLE on
Llama-2-7b-chat-hf. EAGLE delivers optimal per-
formance for single-sequence inputs (batch size=1).
However, its efficiency degrades as the batch size
grows (8 and 16). This observation aligns with
our earlier analysis in Sec. 3.2: EAGLE’s tree-
structured drafting mechanism, designed to rec-
oncile discrepancies between the draft and target
models, introduces additional latency, and reduces
the gains from higher acceptance rates in batched
serving under quantization. Furthermore, the in-
creasing key-value (KV) storage of EAGLE’s draft
model leads to out-of-memory (OOM) issues at
batch size 16. In contrast, QSPEC demonstrates
superior scalability and memory efficiency.

QSPEC excels in real-world deployment. We
integrated QSPEC into vLLM(Kwon et al., 2023)
to validate its performance in real-world serving
scenarios. Despite a suboptimal implementation,
our experiments demonstrate an average speedup of
1.24×, with effective acceleration even at a batch
size of 32. Details are provided in Appendix A.4.

4.4 Ablation Study

Ablation on draft token length. To assess pa-
rameter sensitivity, we vary the draft token lengths
γ, the only hyper-parameter of QSPEC, from 2 to 6
across all the benchmarks using Llama3.2-3b and
Llama3-8b-instruct models. As depicted in Fig-
ure 5, an increase in γ leads to a gradual decline
in the token acceptance rate, since all subsequent
tokens are discarded once a token is rejected. Nev-
ertheless, even at γ = 6, the token acceptance
rate remains relatively high, approximately 74%,
compared to 28 ∼ 58% in 160m-7b draft-target
model pair under γ = 5 in conventional specula-
tive decoding (Liu et al., 2024). Additionally, a

2 4 6
Draft token length ()

60

70

80

90

100

Ac
ce

pt
an

ce
 R

at
e

(%
) 92.70

84.01

74.65

Llama3-8B
Acceptance Rate

2 4 6
Draft token length ()

60

70

80

90

100

Ac
ce

pt
an

ce
 R

at
e

(%
) 93.13

84.41

74.15

Llama3.2-3B
Acceptance Rate

270

315

360

405

450

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

410.97 410.59

378.88

Throughput
W4A16
W16A16

500

550

600

650

700

750

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

702.45 707.14
678.65

Throughput
W4A16
W16A16

Figure 5: Acceptance rate and throughput of Llama3.2-
3b (batch size 8) and Llama3-8b-instruct (batch size 16)
with respect to the draft token length γ.

consistent improvement in throughput is observed
compared to W4A16, indicating the robustness of
QSPEC with respect to γ. More comprehensive
comparison is provided in Appendix A.2.

Ablation on base quantization method. As
shown in Appendix Table 9, QSPEC consistently
achieves high acceptance rates across diverse quan-
tization methods and datasets.

5 Related Work
This work builds on two lines of research: quantiza-
tion and speculative decoding. Weight-only quanti-
zation (W4A16) offers better accuracy, while joint
weight-activation methods (W4A4) enable faster in-
ference but degrade performance on complex tasks.
Speculative decoding improves efficiency by veri-
fying drafted tokens, but existing approaches typi-
cally require retraining and are less effective under
quantization. We provide detailed comparisons in
Appendix D.

6 Conclusion
We begin by showing that multi-step reasoning
tasks reveal performance degradation from activa-
tion quantization more clearly than current evalua-
tion protocols, and encourage their incorporation
for more comprehensive assessment. Leveraging
high token-level similarities, we propose QSPEC, a
novel quantization paradigm that seamlessly com-
bines two complementary weight-shared quantiza-
tion schemes through speculative decoding. Empir-
ically, QSPEC delivers significant acceleration—up
to 1.64×—without quality loss across diverse set-
tings. With consistent memory usage and a plug-
and-play design, QSPEC offers a practical and scal-
able solution for high-fidelity quantization, espe-
cially under memory constraints.

Acknowledgements

This work was supported in part by grants from
Hong Kong RGC under the contracts 17204423,
17205824, C7004-22G (CRF), C5032-23G (CRF)
and T43-513/23-N (TRS).

4787

7 Limitations and Impacts

7.1 Impact Statement

This paper introduces QSPEC, a novel quantization
paradigm that synergies complementary quantiza-
tion schemes through speculative decoding to en-
hance computational efficiency while preserving
model fidelity. The impact of QSPEC is twofold.

From an academic perspective, QSPEC estab-
lishes a new paradigm that decouples efficiency
from quality preservation—a longstanding trade-
off in prior quantization research. This is achieved
by the complementary quantization schemes: a low-
precision activation-weight joint quantization for
fast token drafting, and a high-precision weight-
only quantization for accurate verification, en-
abling the independent optimization for efficiency
and quality. This illuminates the pursuit of extreme
efficiency in quantization schemes (e.g., W4A4)
without the concern of performance degradation.

For industry applications, QSPEC provides a
practical solution to accelerate inference without
compromising output quality through efficient low-
precision kernels. This prompts hardware ven-
dors to reconsider their architectural support for
low-precision execution, including specialized in-
struction set architectures (ISAs) and memory
subsystems. Besides, the plug-and-play property
of QSPEC further facilitates seamless integration
into existing deployments of quantized models in
memory-constraint scenarios (e.g., edge devices).

Our research, focused on improving the com-
putational efficiency of language model serving
systems, is not anticipated to have direct negative
social impact.

7.2 Limitation Discussion

The superior performance of QSPEC relies on the
high acceptance rate, particularly in small to mod-
erate batch-size scenarios where the throughput
gap between low- and high-precision quantization
becomes pronounced. In contrast, traditional tree-
based speculative decoding methods falter in batch
serving, as discussed in Sec. 4, making QSPEC’s
advantages most evident in these settings. How-
ever, QSPEC exhibits potential limitations in single-
request scenarios, where other methods are prefer-
entially optimized. With the popularity of LLMs
and increasing batch serving, regular speculative
decoding methods, including Medusa and EAGLE,
degrade significantly (e.g., Medusa’s speedup drops
below 1 at batch size of 16 in their Figure 22 (Cai

et al., 2024)), whereas QSPEC excels.
To further address the limitations of QSPEC in

single-request scenarios, future research will focus
on leveraging its high acceptance rate and reducing
the overhead of the draft stage. Specifically, we
aim to develop adaptive mechanisms that dynam-
ically adjust the draft model’s sparsity, balancing
latency and acceptance rate to achieve robust per-
formance across both single-request and batch-size
settings. Additionally, exploring hardware-aware
optimizations, such as tailored low-precision ker-
nels for resource-constrained devices, will enhance
QSPEC’s applicability in edge deployments. Fur-
thermore, integrating QSPEC into popular repos-
itories (e.g., vLLM1) is also part of our future
work. By unifying these advancements, QSPEC

can evolve into a versatile quantization framework,
delivering consistent acceleration and fidelity for
diverse inference scenarios, from personal devices
to large-scale serving systems.

References
Joshua Ainslie, James Lee-Thorp, Michiel de Jong,

Yury Zemlyanskiy, Federico Lebrón, and Sumit Sang-
hai. 2023. Gqa: Training generalized multi-query
transformer models from multi-head checkpoints.
Preprint, arXiv:2305.13245.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximil-
ian L. Croci, Bo Li, Martin Jaggi, Dan Alistarh,
Torsten Hoefler, and James Hensman. 2024. Quarot:
Outlier-free 4-bit inference in rotated llms. Preprint,
arXiv:2404.00456.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and
Charles Sutton. 2021. Program synthesis with large
language models. Preprint, arXiv:2108.07732.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2020. Piqa: Reasoning about
physical commonsense in natural language. In Thirty-
Fourth AAAI Conference on Artificial Intelligence.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu
Peng, Jason D. Lee, Deming Chen, and Tri Dao.
2024. Medusa: Simple llm inference acceleration
framework with multiple decoding heads. Preprint,
arXiv:2401.10774.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. 2023. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318.
1https://docs.vllm.ai/en/latest/

4788

https://arxiv.org/abs/2305.13245
https://arxiv.org/abs/2305.13245
https://arxiv.org/abs/2404.00456
https://arxiv.org/abs/2404.00456
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2401.10774
https://arxiv.org/abs/2401.10774
https://docs.vllm.ai/en/latest/

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela
Mishkin, Brooke Chan, Scott Gray, and 39 others.
2021. Evaluating large language models trained on
code.

Zhuoming Chen, Avner May, Ruslan Svirschevski,
Yuhsun Huang, Max Ryabinin, Zhihao Jia, and
Beidi Chen. 2024. Sequoia: Scalable, robust, and
hardware-aware speculative decoding. Preprint,
arXiv:2402.12374.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question
answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

Yuntian Deng, Wenting Zhao, Jack Hessel, Xiang Ren,
Claire Cardie, and Yejin Choi. 2024. Wildvis: Open
source visualizer for million-scale chat logs in the
wild. Preprint, arXiv:2409.03753.

Shichen Dong, Wenfang Cheng, Jiayu Qin, and Wei
Wang. 2024. Qaq: Quality adaptive quantization for
llm kv cache. ArXiv, abs/2403.04643.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, and 1 others. 2024. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich,
Basil Hosmer, Bram Wasti, Liangzhen Lai, Anas
Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed
Roman, Ahmed Aly, Beidi Chen, and Carole-
Jean Wu. 2024. Layerskip: Enabling early exit
inference and self-speculative decoding. ArXiv,
abs/2404.16710.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024a. Deepseek-coder: When the large
language model meets programming – the rise of
code intelligence. Preprint, arXiv:2401.14196.

Hongyi Guo, Zhihan Liu, Yufeng Zhang, and Zhao-
ran Wang. 2024b. Can large language models play
games? a case study of a self-play approach. arXiv
preprint arXiv:2403.05632.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. NeurIPS.

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei
Wang, Hao Wang, Defu Lian, Yasheng Wang, Ruim-
ing Tang, and Enhong Chen. 2024. Understanding
the planning of llm agents: A survey. arXiv preprint
arXiv:2402.02716.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. Preprint, arXiv:2211.17192.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang
Zhang. 2024a. Eagle-2: Faster inference of lan-
guage models with dynamic draft trees. Preprint,
arXiv:2406.16858.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang
Zhang. 2024b. Eagle: Speculative sampling re-
quires rethinking feature uncertainty. Preprint,
arXiv:2401.15077.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang
Zhang. 2025. EAGLE-3: Scaling up inference ac-
celeration of large language models via training-time
test. Preprint, arXiv:2503.01840.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang,
Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han.
2024a. Awq: Activation-aware weight quantiza-
tion for llm compression and acceleration. Preprint,
arXiv:2306.00978.

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang,
Guangxuan Xiao, Chuang Gan, and Song Han.
2024b. Qserve: W4a8kv4 quantization and sys-
tem co-design for efficient llm serving. Preprint,
arXiv:2405.04532.

Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Alvin Che-
ung, Zhijie Deng, Ion Stoica, and Hao Zhang.
2024. Online speculative decoding. Preprint,
arXiv:2310.07177.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. Preprint, arXiv:1609.07843.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao
Cheng, Zeyu Wang, Zhengxin Zhang, Rae Ying Yee
Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, Chu-
nan Shi, Zhuoming Chen, Daiyaan Arfeen, Reyna
Abhyankar, and Zhihao Jia. 2024. Specinfer: Accel-
erating large language model serving with tree-based
speculative inference and verification. In Proceed-
ings of the 29th ACM International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, Volume 3, ASPLOS ’24. ACM.

4789

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2402.12374
https://arxiv.org/abs/2402.12374
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2409.03753
https://arxiv.org/abs/2409.03753
https://arxiv.org/abs/2409.03753
https://api.semanticscholar.org/CorpusID:268264510
https://api.semanticscholar.org/CorpusID:268264510
https://api.semanticscholar.org/CorpusID:269362647
https://api.semanticscholar.org/CorpusID:269362647
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2211.17192
https://arxiv.org/abs/2211.17192
https://arxiv.org/abs/2406.16858
https://arxiv.org/abs/2406.16858
https://arxiv.org/abs/2401.15077
https://arxiv.org/abs/2401.15077
https://arxiv.org/abs/2503.01840
https://arxiv.org/abs/2503.01840
https://arxiv.org/abs/2503.01840
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2405.04532
https://arxiv.org/abs/2405.04532
https://arxiv.org/abs/2310.07177
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://doi.org/10.1145/3620666.3651335
https://doi.org/10.1145/3620666.3651335
https://doi.org/10.1145/3620666.3651335

PyTorch Contributors. 2024. Reproducibility.
https://pytorch.org/docs/stable/notes/
randomness.html. PyTorch Documentation,
Accessed: January 2024.

David Rein, Betty Li Hou, Asa Cooper Stickland,
Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R. Bowman. 2023.
Gpqa: A graduate-level google-proof qa benchmark.
Preprint, arXiv:2311.12022.

RyokoAI. 2021. Sharegpt52k.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2019. Winogrande: An adver-
sarial winograd schema challenge at scale. Preprint,
arXiv:1907.10641.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, Y. K. Li, Y. Wu, and Daya Guo. 2024.
Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. Preprint,
arXiv:2402.03300.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, and 49 oth-
ers. 2023. Llama 2: Open foundation and fine-tuned
chat models. Preprint, arXiv:2307.09288.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack
Hessel, Tushar Khot, Khyathi Raghavi Chandu,
David Wadden, Kelsey MacMillan, Noah A. Smith,
Iz Beltagy, and Hannaneh Hajishirzi. 2023. How far
can camels go? exploring the state of instruction tun-
ing on open resources. Preprint, arXiv:2306.04751.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,
Julien Demouth, and Song Han. 2023. Smoothquant:
Accurate and efficient post-training quantization for
large language models. In International Conference
on Machine Learning.

Wei Xiong, Chengshuai Shi, Jiaming Shen, Aviv Rosen-
berg, Zhen Qin, Daniele Calandriello, Misha Khal-
man, Rishabh Joshi, Bilal Piot, Mohammad Saleh,
Chi Jin, Tong Zhang, and Tianqi Liu. 2024. Build-
ing math agents with multi-turn iterative preference
learning. Preprint, arXiv:2409.02392.

Minghao Yan, Saurabh Agarwal, and Shivaram
Venkataraman. 2025. Decoding speculative decod-
ing. Preprint, arXiv:2402.01528.

Zihao Ye, Lequn Chen, Ruihang Lai, Wuwei Lin, Yi-
neng Zhang, Stephanie Wang, Tianqi Chen, Baris
Kasikci, Vinod Grover, Arvind Krishnamurthy, and
Luis Ceze. 2025. Flashinfer: Efficient and cus-
tomizable attention engine for llm inference serving.
Preprint, arXiv:2501.01005.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo-
jeong Kim, and Byung-Gon Chun. 2022. Orca: A
distributed serving system for Transformer-Based
generative models. In 16th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 22), pages 521–538, Carlsbad, CA. USENIX
Association.

Muru Zhang, Ofir Press, William Merrill, Alisa
Liu, and Noah A Smith. 2023. How language
model hallucinations can snowball. arXiv preprint
arXiv:2305.13534.

Juntao Zhao, Borui Wan, Yanghua Peng, Haibin Lin,
and Chuan Wu. 2024a. Llm-pq: Serving llm on het-
erogeneous clusters with phase-aware partition and
adaptive quantization. Preprint, arXiv:2403.01136.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn
Chen, Size Zheng, Luis Ceze, Arvind Krishnamurthy,
Tianqi Chen, and Baris Kasikci. 2024b. Atom: Low-
bit quantization for efficient and accurate llm serving.
Preprint, arXiv:2310.19102.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Tianle
Li, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zhuohan Li, Zi Lin, Eric Xing, and 1 others. 2023a.
Lmsys-chat-1m: A large-scale real-world llm conver-
sation dataset. arXiv preprint arXiv:2309.11998.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023b. Judg-
ing llm-as-a-judge with mt-bench and chatbot arena.
Preprint, arXiv:2306.05685.

4790

https://pytorch.org/docs/stable/notes/randomness.html
https://pytorch.org/docs/stable/notes/randomness.html
https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2306.04751
https://arxiv.org/abs/2306.04751
https://arxiv.org/abs/2306.04751
https://arxiv.org/abs/2409.02392
https://arxiv.org/abs/2409.02392
https://arxiv.org/abs/2409.02392
https://arxiv.org/abs/2402.01528
https://arxiv.org/abs/2402.01528
https://arxiv.org/abs/2501.01005
https://arxiv.org/abs/2501.01005
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
https://arxiv.org/abs/2403.01136
https://arxiv.org/abs/2403.01136
https://arxiv.org/abs/2403.01136
https://arxiv.org/abs/2310.19102
https://arxiv.org/abs/2310.19102
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685

A Full Experiment Result.

A.1 Acceleration Evaluation

Versus quantization configurations. Table 6
presents the comprehensive comparison of token
generation throughput across multiple dimensions:
model sizes, quantization configurations, and batch
sizes, evaluated on various datasets. It is notewor-
thy that Llama2-7B shows higher speedup than
Llama3-8B. This stems from the size difference
primarily related to vocabulary, coupled with the
introduction of Group-Query Attention (Ainslie
et al., 2023), reducing the computation workload.

Versus speculative decoding. Table 7 presents a
comprehensive comparison between our approach
and the EAGLE method across multiple bench-
marks.

A.2 Ablation Studies

Performance Trade-offs: QSPEC versus W4A16.
We conduct a thorough analysis of the trade-offs
between throughput and accuracy for our proposed
framework against all baseline implementations.
Figure 6 illustrates this comparison, plotting gen-
eration quality (accuracy) against computational
efficiency (throughput). Our analysis reveals that
while W4A4 suffers substantial performance degra-
dation (18.5%-39.5% reduction) on multi-step rea-
soning benchmarks compared to W4A16, QSPEC

achieves comparable accuracy to W4A16 while
delivering significantly higher throughput. Al-
though QSPEC’s accuracy is marginally lower than
W16A16 due to weight quantization-induced mem-
ory optimization, it successfully preserves the per-
formance characteristics of W4A16 while offering
superior computational efficiency.

A.3 Datasets and Sampling

For the PIQA and Winogrande datasets, we ran-
domly select 500 questions from each for perfor-
mance evaluation. In contrast, we process the en-
tire GSM8K and MATH datasets, as detailed in
Atom Zhao et al. (2024b). When adapting QSPEC

to the Quarot method, we sample 200 samples from
the GSM8K dataset, while sampling 700 from the
MATH dataset, ensuring balanced representation
by selecting 100 questions from each of the seven
distinct question types. Additionally, we sample
200 questions from the MBPP dataset, while pro-

cessing the entire HumanEval dataset. This pre-
serves a thorough assessment of the model’s per-
formance across various datasets. For accelera-
tion evaluation, we maintain the random seed at
42, and sample 100 samples from the GSM8K,
MATH, MBPP, HumanEval, ShareGPT, and LM-
Sys datasets, respsectively. This consistent method-
ology guarantees that our evaluation remains re-
producible and representative across these diverse
datasets.

A.4 QSPEC on vLLM: Real-World Serving
Evaluation

To validate QSPEC’s effectiveness in real-
world serving scenarios, we integrated it into
vLLM2(Kwon et al., 2023) by developing cus-
tom kernels and a tailored vLLM worker, enabling
shared weights and KV rewriting. We conducted
performance tests on Llama-3-8b-instruct model
with five diverse test sets: Wild Chat(Deng et al.,
2024), GSM8K(Cobbe et al., 2021), MBPP(Austin
et al., 2021), MT-Bench(Zheng et al., 2023b), and
GPQA-Diamond(Rein et al., 2023)—covering do-
mains such as chat, mathematics, coding, and gen-
eral knowledge. Note that vLLM’s support for the
speculative decoding paradigm remains subopti-
mal3 due to its complex scheduling and memory
management mechanisms. Our experiments were
performed on an NVIDIA A100 GPU (40GB), with
batch sizes ranging from 1 to 32, a draft length
γ = 3, and a baseline of autoregressive decod-
ing using W4A16 with same weights. Results are
shown in Table 8. QSPEC achieves an average
speedup of 1.24×, maintaining effective accelera-
tion even at a batch size of 32—a challenging feat
for prior work. Additionally, we report acceptance
rates across these test sets, with QSPEC achiev-
ing an impressive 93%–95% acceptance rate. This
aligns with our findings in the Section 2, suggesting
that leveraging these high acceptance rates for fur-
ther acceleration is a promising direction for future
QSPEC research.

Our integration of QSPEC into vLLM also ini-
tially aimed to enable a fair comparison with EA-
GLE (Li et al., 2024b). Unfortunately, we could
not reproduce EAGLE’s performance on vLLM,
as it exhibited significant performance degradation
in batched scenarios, even losing speedup in the

2We implemented QSPEC on Commit 9a7c3a0 of vLLM
from 21 Jan. 2025

3For more detailed explanation, please refer to
https://docs.vllm.ai/en/stable/features/spec_decode.html.

4791

Table 6: Comparison of token generation throughput across different model sizes, quantization configurations, and
batch sizes for various datasets. All values are measured in token/s. “Avg.” denotes the average speedup ratio for the
corresponding row or column.

Model Method Batch GSM8K MATH MBPP HumanEval ShareGPT LMsys-1k Avg.

3B1

W16A16
8 511.1 588.7 756.6 647.2 785.7 711.2 –
16 666.5 845.6 1171.0 948.3 1292.2 1126.4 –
32 833.4 1081.5 1697.7 1111.6 1975.6 1553.3 –

W4A4
8 804.7 921.2 1002.0 892.6 1091.6 990.3 –

16 1109.1 1374.5 1548.0 1289.8 1763.5 1581.0 –
32 1424.3 1899.3 2300.6 1488.2 2777.3 2194.4 –

W4A16
8 420.0 476.7 604.5 535.7 610.4 559.8 –
16 578.5 715.9 989.7 804.4 1080.2 925.8 –
32 726.3 933.8 1536.7 954.4 1704.5 1336.4 –

QSPEC

8 594.1 (1.41×) 648.2 (1.36×) 760.1 (1.26×) 723.6 (1.35×) 787.5 (1.29×) 738.8 (1.32×) 1.33×
16 811.5 (1.40×) 936.0 (1.31×) 1157.8 (1.17×) 1042.1 (1.30×) 1294.5 (1.20×) 1171.4 (1.27×) 1.27×
32 1030.4 (1.42×) 1240.2 (1.33×) 1617.4 (1.05×) 1248.5 (1.31×) 1969.6 (1.16×) 1576.0 (1.18×) 1.24×

Avg. 1.41× 1.33× 1.16× 1.32× 1.21× 1.25 × 1.28×

7B

W16A16
8 213.4 254.3 278.8 316.7 322.4 285.3 –
16 290.3 362.1 447.7 505.1 541.3 441.6 –
32 340.9 441.6 585.3 663.6 735.3 564.2 –

W4A4
8 349.5 411.7 396.1 471.2 471.8 419.4 –

16 496.6 612.2 614.3 749.5 760.9 642.6 –
32 620.0 793.6 801.5 1043.9 1083.2 865.5 –

W4A16
8 165.0 193.1 224.5 240.2 243.5 220.2 –
16 231.8 286.5 384.4 407.3 435.9 358.0 –
32 268.9 359.9 480.0 555.9 620.2 470.1 –

QSPEC

8 253.7 (1.54×) 291.5 (1.51×) 298.3 (1.33×) 350.9 (1.46×) 345.7 (1.42×) 310.3 (1.41×) 1.44×
16 359.8 (1.55×) 420.2 (1.47×) 466.7 (1.21×) 555.2 (1.36×) 557.8 (1.28×) 473.1 (1.32×) 1.37×
32 441.8 (1.64×) 527.2 (1.46×) 575.3 (1.20×) 749.4 (1.35×) 770.0 (1.24×) 628.4 (1.34×) 1.39×

Avg. 1.58× 1.48× 1.25× 1.39× 1.31× 1.36× 1.39×

8B

W16A16
8 189.4 211.5 256.0 259.1 290.7 265.8 –
16 262.0 311.2 408.7 401.2 511.0 447.4 –
32 303.8 390.8 566.3 522.6 820.0 649.8 –

W4A4
8 295.3 323.5 344.6 354.4 395.9 366.8 –

16 431.4 503.3 536.8 566.4 697.5 621.1 –
32 532.8 688.5 755.7 763.7 1167.9 956.8 –

W4A16
8 155.6 173.8 215.0 208.7 231.1 215.6 –
16 222.9 263.0 354.8 345.9 422.8 369.4 –
32 299.3 363.3 509.8 468.7 706.0 580.5 –

QSPEC

8 222.6 (1.43×) 233.9 (1.35×) 256.7 (1.19×) 271.5 (1.30×) 285.0 (1.23×) 268.3 (1.24×) 1.29×
16 322.6 (1.45×) 362.5 (1.38×) 402.7 (1.14×) 438.5 (1.27×) 507.5 (1.20×) 453.5 (1.23×) 1.28×
32 400.2 (1.34×) 483.0 (1.33×) 578.1 (1.13×) 573.0 (1.22×) 798.8 (1.13×) 684.5 (1.18×) 1.27×

Avg. 1.44× 1.36× 1.15× 1.26× 1.19× 1.22× 1.27 ×

13B1

W16A16
8 121.9 146.6 183.1 182.0 187.1 160.1 –
16 169.6 211.2 304.4 291.0 311.0 243.0 –
32 202.4 253.8 426.0 423.5 311.0 334.2 –

W4A4
8 194.7 228.2 253.6 261.5 259.8 228.2 –

16 288.3 349.2 415.3 424.9 431.5 348.4 –
32 369.8 469.9 606.7 665.4 431.5 508.8 –

W4A16
8 94.8 112.9 143.4 140.0 146.7 127.9 –
16 136.1 171.9 250.8 236.9 255.9 207.2 –
32 207.5 241.6 376.4 365.5 255.9 287.4 –

QSPEC

8 148.2 (1.56×) 167.9 (1.49×) 193.6 (1.35×) 201.2 (1.44×) 194.5 (1.33×) 174.0 (1.36×) 1.42×
16 212.8 (1.56×) 248.6 (1.45×) 316.8 (1.26×) 323.3 (1.36×) 327.4 (1.28×) 266.9 (1.29×) 1.29×
32 266.6 (1.28×) 320.0 (1.32×) 451.5 (1.20×) 483.0 (1.32×) 327.4 (1.28×) 379.3 (1.32×) 1.32×

Avg. 1.56× 1.47× 1.27× 1.37× 1.29× 1.32× 1.38×

W4A16 setting. Moreover, due to the poor per-
formance and inconsistent compatibility of other
speculative decoding methods on vLLM, our ad-
ditional experiments here do not include compar-
isons with other methods. We also note that the
EAGLE team released EAGLE-3(Li et al., 2025) in
late March 2025, open-sourcing partial pretrained
model weights in April and claiming competitive

speedup on vLLM. However, as of now, the code
to reproduce this claim on vLLM is unavailable,
preventing us from evaluating EAGLE-3’s perfor-
mance on vLLM. Thus, we exclude comparisons
with EAGLE-3, in line with the guidelines on han-
dling contemporaneous work. This does not de-
tract from the fact that both QSPEC and EAGLE-3
represent outstanding contributions developed con-

4792

Table 7: Performance comparison of EAGLE-Quant, QSPEC, W4A16, and W4A4 on Llama-2-7b-chat-hf across
different batch sizes. Results are reported for GSM8K (8-shot), MATH (4-shot), MBPP (0-shot), HumanEval
(0-shot), ShareGPT, and LMsys-1k benchmarks. “OOM” indicates out-of-memory errors. Better case for QSPEC
or EAGLE is marked in gray. In the case of batch size=8, the speedup ratio of QSPEC compared to EAGLE is
indicated in parentheses next to the data points.

Method Batch Size GSM8K (8-shot) MATH (4-shot) MBPP (0-shot) HumanEval (0-shot) ShareGPT LMsys-1k

EAGLE
1 65.81 70.11 68.53 49.15 79.60 71.29
8 140.16 210.52 138.01 136.86 247.42 167.57

16 OOM OOM OOM OOM OOM OOM

1 51.25 48.36 56.87 54.22 56.77 56.14
QSPEC 8 208.95 (1.49×) 249.97 (1.19×) 185.13 (1.34×) 185.99 (1.36×) 329.44 (1.33×) 260.48 (1.55×)

16 292.82 356.93 269.87 255.11 562.07 463.35

W4A16
1 59.80 63.65 75.49 72.04 76.04 72.27
8 146.34 185.52 180.12 163.54 250.06 213.66

16 190.09 251.59 254.24 211.49 458.57 371.38

W4A4
1 64.79 66.32 74.72 73.47 73.09 71.55
8 284.84 369.27 250.11 256.54 492.21 393.12

16 401.77 540.82 357.62 330.71 895.77 713.67

Batch Size 8 Batch Size 16

Figure 6: Comparison of accuracy and efficiency among W16A16, W4A16, W4A4, and QSPEC across various
datasets with batch sizes of 8 and 16 on Llama3-8b-instruct model. The bars and lines represent the accuracy and
throughput of each method.

currently. As discussed in Section 7.2, QSPEC and
EAGLE exemplify two distinct design paradigms:
EAGLE follows a training-intensive route with an
independently optimized draft model and a refined
acceptance policy, while QSPEC adopts a training-
free framework that leverages shared weights and
KV cache in a unified structure. Each approach has
its own strengths, and we look forward to future
opportunities for dialogue and collaboration with
the EAGLE team.

Table 8: Performance of QSPEC on vLLM across dif-
ferent batch sizes and test sets, with acceptance rates
per test set respectively. All speedup values are reported
with a × multiplier.

Test Set Batch Size Acceptance Rate
(%)

1 2 4 8 16 32

Wild Chat 1.29× 1.33× 1.29× 1.26× 1.28× 1.13× 93.1

GSM8K 1.36× 1.33× 1.23× 1.24× 1.25× 1.01× 92.1

MBPP 1.34× 1.26× 1.16× 1.18× 1.18× 1.12× 95.5

MT-Bench 1.33× 1.24× 1.28× 1.30× 1.16× 1.15× 93.5

GPQA-Diamond 1.33× 1.31× 1.21× 1.18× 1.23× 1.10× 94.1

A.5 Artifact Documentation

We provide the official implementation of QSPEC

in the supplementary materials. The codebase is
fully documented and includes4:

• Installation guide covering dependency setup
(CUDA 12.5, Python 3.10), environment rec-
ommendations (NVIDIA A100 or L20), and
instructions for installing required third-party
libraries and compiling QSPEC kernels.

• Docker support for reproducible deployment,
including editable mount path and data path
configurations, and build/run scripts.

• Execution scripts for reproducing our
throughput and latency results using demo.py,
which supports different model paths, specu-
lative token lengths, and batch sizes.

4https://github.com/hku-netexplo-lab/QSpec

4793

• Pretrained models hosted on Huggingface
for QSPEC’s Llama-3-8b-instruct model used
in our vLLM experiments.

• Notes and caveats describing limitations of
our current implementation (e.g., not opti-
mized for all GPU types, partial vLLM in-
tegration, cold start auto-tuning delay).

• License and Intended Use: We confirm that
all third-party artifacts used in this work (e.g.,
vLLM, Huggingface-hosted models) were ac-
cessed and used in accordance with their li-
censes (Apache License 2.0) and intended
research purposes. Our implementation of
QSPEC is released under the Apache License
2.0 and is explicitly intended for academic
and non-commercial use. Users are instructed
to obtain such resources directly from their
original providers and to comply with the cor-
responding terms of use.

All artifacts are accompanied by a README.md
file that details the usage and experimental instruc-
tions. The code is released under an anonymous
GitHub repository to ensure reproducibility.

A.6 Understanding FP16 vs. W4A16
Performance in Main Results

While W4A16 quantization (e.g., AWQ) is often
expected to outperform FP16 in small-to-medium
batch sizes due to its design for improved efficiency
in weight-only quantization (Lin et al., 2024a), our
main results consistently show FP16 surpassing
W4A16 across various implementations, including
vLLM, Atom’s system, and even Hugging Face’s
official benchmarks5. This discrepancy may lead
some readers to question the relative performance,
as implementation-specific factors such as device
characteristics, kernel optimizations, and system
engineering significantly influence outcomes. We
conducted a complementary experiment to eluci-
date this phenomenon, illustrated in Figure 7, com-
paring FP16 and W4A16 under different implemen-
tation settings.

In this experiment, Atom-FP16 and Atom-AWQ
are derived from Atom’s system implementation,
following the end-to-end benchmark settings of
our main experiments (Section 4), with FlashIn-
fer integrated into a Punica-style serving system
to support continuous batching (Yu et al., 2022).

5huggingface.co/docs/transformers/main/quantization/awq

Conversely, Benchmark-FP16 and Benchmark-
AWQ are sourced from the AutoAWQ repository,
leveraging an optimized AWQ kernel and Flash-
Attention, but employing a classic dummy bench-
mark method (directly invoking the model for the
context length duration)6. Additionally, we include
vLLM-FP16 and vLLM-AWQ, implemented in the
vLLM framework (Commit 9a7c3a0, Appendix
A.4), to provide a broader perspective.

Figure 7 reveals distinct performance trends
across batch sizes of 8, 16, and 32. In Atom’s im-
plementation, FP16 consistently outperforms AWQ
across all batch sizes, aligning with our main re-
sults. However, in the AutoAWQ dummy bench-
mark, AWQ exhibits superior throughput, revers-
ing the trend. In vLLM, AWQ slightly outperforms
FP16 at a batch size of 8, but FP16 surpasses AWQ
at batch sizes of 16 and 32. These variations un-
derscore the impact of system implementation and
kernel optimization on relative performance. Since
our main experiments strictly adhere to Atom’s
setup for fair and rigorous comparisons (Sec. 4),
the observed speed disparity between FP16 and
W4A16 due to implementation differences does
not undermine the validity of our claims regarding
QSPEC’s performance.

8 16 32
Batch Size

0.0

0.5

1.0

1.5

No
rm

al
ize

d
Th

ro
ug

hp
ut

ATOM-FP16
ATOM-AWQ

vLLM-FP16
vLLM-AWQ

Benchmark-FP16
Benchmark-AWQ

Figure 7: Normalized throughput of FP16 and AWQ
implementations across batch sizes 8, 16, and 32. Atom-
FP16 and Atom-AWQ use Atom’s system with Flash-
Infer and continuous batching. Benchmark-FP16 and
Benchmark-AWQ are from AutoAWQ with optimized
AWQ kernels and Flash-Attention, using a dummy
benchmark method. vLLM-FP16 and vLLM-AWQ are
implemented in vLLM. The generation length is set to
512.

B Evaluation Datasets

We comprehensively evaluate the performance of
QSPEC, covering language modeling, common-
sense reasoning, mathematical reasoning, code and
chatbot. Each dataset is briefly introduced below,

6github.com/casper-hansen/AutoAWQ

4794

along with the associated sampling strategy for en-
hanced efficiency.

Language Modeling and Commonsense Reason-
ing.

• WikiText-2 (Merity et al., 2016): A language
modeling dataset comprising over 100 million
tokens extracted from high-quality Wikipedia
articles.

• PIQA (Bisk et al., 2020): A benchmark for
physical commonsense reasoning, focusing
on questions about everyday physical interac-
tions.

• Winogrande (Sakaguchi et al., 2019): A
dataset of 44,000 problems inspired by the
Winograd Schema Challenge, designed to test
commonsense reasoning with reduced linguis-
tic biases.

Mathematical Reasoning

• GSM8K (Cobbe et al., 2021): A collection of
8,500 linguistically diverse grade school math
problems that require multi-step reasoning us-
ing basic arithmetic operations.

• MATH (Hendrycks et al., 2021): A dataset
of 12,500 challenging competition-level math
problems, each accompanied by detailed step-
by-step solutions.

Code

• MBPP (Austin et al., 2021): A benchmark
of approximately 1,000 beginner-level Python
programming problems, each with a task de-
scription, solution code, and automated test
cases.

• HumanEval (Chen et al., 2021): An evalu-
ation set of 164 original programming prob-
lems used to assess functional correctness in
code synthesis from docstrings.

Chatbot

• ShareGPT52K (RyokoAI, 2021): This
dataset comprises approximately 52,000 con-
versations collected via the ShareGPT API
before it was discontinued. The dataset cap-
tures both user prompts and the corresponding
responses from OpenAI’s ChatGPT, providing
insights into human-AI dialogue dynamics.

• LMsys-chat-1M-1K (Zheng et al., 2023a):
Gathering one million authentic conversa-
tions with 25 leading large language models
(LLMs), this dataset was sourced from over
210,000 unique IP addresses interacting with
the Vicuna demo and Chatbot Arena websites.

C Datasets Sampling

To construct our test sets, we randomly sam-
pled from the original datasets using torch.sample
with a fixed seed of 42, and constructed them as
prompt instructions following the Open-Instruct
templates (Wang et al., 2023). The sample sizes for
each dataset are as follows:

• Fidelity Evaluation:

– WikiText-2: All samples
– PIQA: 500 samples
– Winogrande: 500 samples
– GSM8K: 200 samples
– MATH: 700 samples, balanced by select-

ing 100 questions from each of the seven
distinct question types

– MBPP: 200 samples
– HumanEval: All samples

• Acceleration Evaluation: 100 samples from
each dataset, maximum output length set to
200 tokens.

D Related Work

Quantization is a common technique for deploy-
ing LLMs on resource-limited scenarios. Broadly,
recent quantization algorithms can be classified
into two categories: weight-only W4A16 and
weight-activation joint W4A4. Notably, AWQ
(W4A16) (Lin et al., 2024a) redistributes the quanti-
zation burden by scaling salient weight channels to
protect them from degradation. In contrast, W4A4
aggressively quantizes activations to leverage low-
precision hardware for improved speed at the cost
of model quality degradation. To address this
challenge, Atom (Zhao et al., 2024b) proposes re-
ordering outlier channels in the activation through
offline profiling. Similarly, QuaRot (Ashkboos
et al., 2024) employs Hadamard matrices to ap-
ply computational invariance on weights. Despite
these advancements, our observations indicate that
W4A4 methods still exhibit substantial degradation
compared to weight-only quantization approaches
across multi-step reasoning tasks. Works such as

4795

W4A8 (Lin et al., 2024b) and adaptive quantiza-
tion (Zhao et al., 2024a; Dong et al., 2024) seek to
identify an optimal trade-off point. However, these
methods struggle to fully preserve the generation
quality associated with higher precision.

Speculative Decoding leverages a draft model to
generate candidate tokens, which are then validated
by a target model (Leviathan et al., 2023). Recent
research has primarily focused on improving the
acceptance rate and generation speed of candidate
tokens. SpecInfer (Miao et al., 2024) introduces
a boost-tuned small language model to generate
candidate tokens in tree structures, enabling single-
pass verification. In contrast, EAGLE (Li et al.,
2024b) adopts an aggressive pruning strategy for
the draft model’s architecture, allowing penulti-
mate layer feature prediction with minimal com-
putational overhead. Self-speculative decoding, a
subset of this technique, employs a single model for
both draft generation and verification. LayerSkip
(Elhoushi et al., 2024) introduces a training method-
ology for early exit with layer drop, subsequently
verifying partially generated tokens through full
model inference. Medusa (Cai et al., 2024) aug-
ments the original LLM with additional heads atop
the final hidden state while relaxing the acceptance
policy. However, these approaches inevitably re-
quire retraining of the original model, which can
be computationally expensive and time-consuming.
We further demonstrate their deficiency in batched
serving under quantization scenario.

Tree-Structured Drafting. Tree-structured
drafting (Chen et al., 2024; Miao et al., 2024; Li
et al., 2024b,a) is a widely adopted technique to
improve acceptance rates in speculative decoding.
Instead of generating a single draft token at a time
using the draft model Md, Md select k (i.e., top-
k) tokens and infers γ times to form a draft tree
with depth γ. The target model M then verifies
the tokens using masked tree attention, with the ex-
act verification strategy depending on the sampling
method (Cai et al., 2024; Miao et al., 2024). Un-
der greedy sampling, the highest-probability token
at each position is selected, forming the longest
branch with the common prefix as the accepted
sequence. In this tree, the root node presents the
past sequence, any token ti has a path from the root
node r to ti, denoted by Path(r, ti), consisting of
ancestors a1, . . . , aj .

E Supplementary Figures and Tables

To improve the clarity of the main text and stream-
line presentation, we provide additional visualiza-
tions and ablation results related to QSPEC in this
appendix. These include supporting data refer-
enced in the main body and additional experiments.

Table 9: Ablation study comparing acceptance rates (%)
across base quantization methods using QSPEC.

Quantization Method ShareGPT MATH (4-shot) MBPP (0-shot)

Atom 83.8 89.4 88.6
QuaRot 81.6 88.9 85.4

Table 10: Ablation study comparing acceptance rates
(%) across large reasoning model and difficult reasoning
tasks using QSPEC.

Model GPQA-Diamond Super-GPQA AIME ARC MMLU

Llama3-8b
-Instruct

94.1 96.5 96.1 92.6 92.4

OpenBookQA RACE SQuAD v2 TruthfulQA HellaSwag
92.6 94.2 95.0 92.0 91.7

HumanEval LAMBADA Social IQa Avg.
87.5 89.6 93.8 92.93

DeepSeek-R1-Distilled
-QWen14B

96.2 96.0 97.9 90.4 90.8

OpenBookQA RACE SQuAD v2 TruthfulQA HellaSwag
90.5 92.8 92.8 88.6 96.7

HumanEval LAMBADA Social IQa Avg.
96.7 94.3 91.7 93.49

Table 11: Performance results for the reasoning model
DeepSeek-R1-Distilled-QWen14B. We follow the set-
tings of our main experiments and set the batch size (bs)
to 16.

Dataset GSM8K MATH MBPP HUMANEVAL SHAREGPT LMSYS AVG.
W4A16 (tokens/s) 139.38 203.52 200.84 216.54 194.31 194.22 191.47
QSpec (tokens/s) 171.56 282.17 278.74 292.75 259.48 246.07 255.13
Speedup 1.23 1.39 1.39 1.35 1.34 1.27 1.33

F AI Assistance Statement

We used AI tools (e.g., ChatGPT) exclusively for
language polishing and LaTeX formatting. No part
of the core research, including ideation, experimen-
tal design, or analysis, was generated by AI tools.
All scientific contributions are the sole work of the
authors.

4796

