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Abstract

Stance detection, a critical task in Natural Lan-
guage Processing (NLP), aims to identify the
attitude expressed in text toward specific tar-
gets. Despite advancements in Large Language
Models (LLMs), challenges such as limited
interpretability and handling nuanced content
persist. To address these issues, we propose the
Multi-Path Reasoning Framework (MPRF),
a novel framework that generates, evaluates,
and integrates multiple reasoning paths to im-
prove accuracy, robustness, and transparency
in stance detection. Unlike prior work that re-
lies on single-path reasoning or static explana-
tions, MPRF introduces a structured end-to-end
pipeline: it first generates diverse reasoning
paths through predefined perspectives, then dy-
namically evaluates and optimizes each path
using LLM-based scoring, and finally fuses the
results via weighted aggregation to produce
interpretable and reliable predictions. Exten-
sive experiments on the SEM16, VAST, and
PStance datasets demonstrate that MPRF out-
performs existing models. Ablation studies fur-
ther validate the critical role of MPRF’s com-
ponents, highlighting its effectiveness in en-
hancing interpretability and handling complex
stance detection tasks.

1 Introduction

Stance detection (Hasan and Ng, 2014; Küçük and
Can, 2020), the task of determining the attitude
expressed in a text towards a specific target, plays
a crucial role in applications such as opinion min-
ing (Graells-Garrido et al., 2020), combating mis-
information (Lai et al., 2020), and understanding
public sentiment (Lei et al., 2024). By analyzing
structural and linguistic patterns in stance reason-
ing, researchers can gain insights into opinion dy-
namics, address the evolution of harmful behav-
iors, and foster a more ethical online environment
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(De Vinco et al., 2024; Graells-Garrido and Baeza-
Yates, 2022; Zhang et al., 2023b).

Existing stance detection methods often treat
the task as a classification problem, where mod-
els output a stance label without providing inter-
pretable reasoning paths (Allaway et al., 2021;
De Vinco et al., 2024; Graells-Garrido and Baeza-
Yates, 2022; Li and Zhang, 2024; Xu et al., 2022;
Yang and Urbani, 2021; Zhang et al., 2023b). This
lack of transparency is particularly problematic in
complex tasks that involve subtle or ambiguous
opinions, such as those expressed in social media
content(Gatto et al., 2023).

Recent advances in large language models
(LLMs), particularly those leveraging Chain-of-
Thought (CoT) prompting (Wei et al., 2022), have
demonstrated remarkable reasoning capabilities in
tasks such as multihop question answering (Lu
et al., 2022) and mathematical problem solving
(Wei et al., 2022). These models achieve zero-shot
and few-shot success across diverse tasks by utiliz-
ing machine-generated instruction-following data
and reasoning mechanisms. While prior work has
shown that explanations from models like GPT can
improve interpretability in stance detection (Zhang
et al., 2024a; Taranukhin et al., 2024), they often
rely on single-path or heuristic-based reasoning,
which may fail to capture diverse perspectives or
provide robust explanations.

In this work, we introduce the Multi-Path Rea-
soning Framework (MPRF), a novel framework
designed to address the interpretability challenges
in stance detection by generating, evaluating, and
integrating multiple reasoning paths. Unlike pre-
vious approaches (Ding et al., 2024a; Taranukhin
et al., 2024), which often rely on static reasoning
or single-path explanations, MPRF introduces a
structured and dynamic pipeline: it first generates
diverse reasoning paths through predefined perspec-
tives (e.g., separating sentiment from factual anal-
ysis), then evaluates each path using LLM-based
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scoring (relevance, evidence strength, logical con-
sistency), and finally fuses the results via weighted
aggregation to produce interpretable and reliable
predictions. This systematic integration of gener-
ation, evaluation, optimization, and fusion repre-
sents a meaningful system-level innovation beyond
prompt engineering or isolated use of LLM capa-
bilities.

Our contributions are as follows:
- We propose the Multi-Path Reasoning Frame-

work (MPRF), a novel end-to-end framework
for stance detection that goes beyond traditional
prompt engineering by combining multiple reason-
ing paths in a structured, iterative, and interpretable
manner.

- We design a dynamic evaluation and optimiza-
tion mechanism that ensures high-quality reasoning
paths through LLM-based scoring (relevance, evi-
dence strength, logical consistency) and refinement
of weak paths. We introduce a weighted fusion
strategy that prioritizes well-supported reasoning
paths, improving prediction reliability and inter-
pretability.

- Extensive experiments show that MPRF
achieves state-of-the-art performance across multi-
ple datasets in both zero-shot and few-shot settings,
while providing interpretable reasoning chains for
each prediction. Our detailed ablation studies high-
light the importance of reasoning path evaluation
and fusion in improving the accuracy and inter-
pretability of stance detection predictions.

2 Related Work

Early stance detection approaches primarily treated
the task as a classification problem, relying on tra-
ditional machine learning models with handcrafted
features (Aldayel and Magdy, 2019; Dey et al.,
2017). With the emergence of pretrained language
models (PLMs) such as BERT (Devlin et al., 2019;
Nguyen et al., 2020), these methods achieved sig-
nificant improvements by learning features from
in-domain or cross-domain datasets (Augenstein
et al., 2016; Zhang et al., 2019; Allaway et al.,
2021; Liu et al., 2021; Liang et al., 2022b). How-
ever, these models often lacked interpretability, as
they treated stance detection as a black-box process
without explicitly modeling the reasoning steps.

Recent advancements in large language models
(LLMs) have significantly enhanced stance detec-
tion, with a focus on improving reasoning capabil-
ities through Chain-of-Thought (CoT) prompting

(Yao et al., 2024). CoT prompting enables LLMs to
perform step-by-step reasoning, achieving state-of-
the-art results in complex tasks such as arithmetic,
logical reasoning, and stance detection. For ex-
ample, Wei et al. (2022) and Zhou et al. (2022)
demonstrated CoT prompting’s effectiveness in
multihop reasoning tasks. Ding et al. (2024a) ap-
plied multi-step CoT prompting to capture the po-
sitional perspective of targets in stance detection,
while Fei et al. (2023) proposed decomposing tasks
into multiple stages for better predictions. Simi-
larly, Ling et al. (2023) introduced deductive rea-
soning and iterative verification to enhance task in-
ference. Hardalov et al. (2022) designed a prompt-
based framework for cross-language stance detec-
tion, Zhu et al. (2024) incorporated soft knowledge
during cue fine-tuning to improve context under-
standing, and Huang et al. (2023) expanded the
verbalizer in prompt-tuning with external semantic
knowledge. While these methods demonstrate the
power of CoT prompting in LLMs, they often rely
on static reasoning processes and struggle to adapt
to tasks requiring diverse perspectives.

Building on these advancements, we propose the
Multi-Path Reasoning Framework (MPRF), a novel
framework that addresses the limitations of existing
CoT-based methods by generating, evaluating, and
integrating multiple reasoning paths.

3 Methodology

In this study, we propose a novel framework
for stance detection, called Multi-Path Reasoning
Framework (MPRF), which is designed to address
the critical challenges in stance detection tasks, par-
ticularly the lack of transparency and interpretabil-
ity. MPRF enhances the accuracy, robustness, and
interpretability of stance detection by generating
multiple reasoning paths, evaluating and optimiz-
ing these paths, and finally combining the results
through a weighted fusion mechanism. Our ap-
proach is structured into five key steps: generating
multiple reasoning paths (3.2), evaluating the paths
(3.3), optimizing the paths (3.4), weighted fusion
of the paths (3.5), and outputting the stance label
along with the interpretable reasoning paths (3.6).
MPRF shown in figure 1 ensures that the detected
stance is not only accurate but also transparent, pro-
viding clear, traceable reasoning behind the final
decision.
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Figure 1: This is the Multi-Path Reasoning Framework. We generate four reasoning paths. A final score s′i is assigned
to each path i by combining the relevance ri, evidence strength ei , and logical consistency scores li weighted by α,
β, and γ after optimization. St is the aggregated weighted score for label t, t ∈ {favor, against, neutral}. The label
with the highest score is selected as the final stance.

3.1 Task Definition

Let D = {(xj , pj , yj)}Nj=1 be a dataset consisting
of N instances, where each instance (xj , pj , yj)
represents the input text xj for which the stance
needs to be detected, the corresponding target pj
towards which the stance of xj is to be determined,
and the stance label yj for the input xj towards the
target pj , where yj ∈ {favor, against, neutral}.

Stance detection aims to predict the stance label
yj for each input sentence xj towards the given
target pj .

3.2 Generating Multiple Reasoning Paths

In this step, we generate multiple reasoning paths
for stance detection, each representing a distinct
chain of thought from a theoretically grounded per-
spective. This multi-path approach is designed
to deconstruct the complex process of stance for-
mation into its fundamental cognitive and social
components, ensuring a more robust, accurate, and
interpretable analysis. The specific prompts used
to guide each reasoning path are detailed in Ap-
pendix B.

The first reasoning path is Sentiment Analysis.
This path is rooted in the understanding that stance
is often an expression of affective state. Emo-
tions are powerful drivers of human judgment and
decision-making, frequently serving as the primary
motivator for taking a position on an issue (Dey
et al., 2017). The model identifies key emotional
lexicons in the text (e.g., "happy", "angry", "disap-
pointed") to determine the overall valence - posi-
tive, negative, or neutral.

The second reasoning path is Factual Reason-
ing. This path addresses the cognitive process of
evidence-based justification. It is grounded in the
principle that rational argumentation relies on ob-
jective information to support a claim (Mohammad

et al., 2016). The model acts as an analytical agent,
extracting verifiable facts such as statistical data,
scientific research findings, or legal precedents. It
then evaluates whether this evidence logically sup-
ports or contradicts the target. This path is crucial
for distinguishing between opinions based on truth
claims and those based on mere assertion, thereby
enhancing the logical rigor of the stance detection
process.

The third reasoning path is Expert Opinion.
This path models the social influence of author-
ity and expertise, a cornerstone of persuasive com-
munication. In contentious or complex domains,
individuals often defer to the judgment of trusted
professionals or institutions (e.g., scientists, med-
ical doctors, legal scholars) (Wang et al., 2024a).
The model identifies explicit or implicit references
to such authoritative sources within the text. If the
referenced expert’s position aligns with the target
(e.g., a scientist stating that climate change is an-
thropogenic), the stance is inferred as "favor". This
path captures the heuristic of "appeal to author-
ity," a common and powerful mechanism in public
discourse.

The fourth reasoning path is Public Opinion.
This path reflects the powerful role of social con-
formity and normative influence in shaping individ-
ual stances. Humans are social beings, and their
opinions are often influenced by perceived soci-
etal consensus, social media trends, or mainstream
media narratives (Wang et al., 2024a). The model
identifies phrases that indicate collective sentiment
(e.g., "most people think", "everyone is talking
about", "public opinion is shifting"). If the per-
ceived public sentiment supports the target, the
stance is classified as "favor". This path accounts
for the bandwagon effect and the desire to align
with the majority.
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The selection of these four paths is not arbitrary
but is grounded in a comprehensive analysis of hu-
man reasoning and empirical validation. They rep-
resent a spectrum of influence: from internal affec-
tive states (Sentiment) to external rational evidence
(Factual), from institutional authority (Expert) to
social consensus (Public). This holistic framework
ensures that MPRF can capture the multifaceted
nature of real-world arguments. Alternative paths,
such as Metaphorical Analysis (Allaway and McK-
eown, 2020) and Temporal Reasoning (Allaway
and McKeown, 2020), were explored but found to
be less effective due to ambiguity and sparsity in
short texts, respectively. The final four paths thus
provide a balanced, theoretically sound, and em-
pirically validated foundation for multi-perspective
stance analysis.

3.3 Evaluating Reasoning Paths

Once multiple reasoning paths have been generated,
each path is evaluated by a large language model
(LLM) based on three main criteria: relevance,
evidence strength, and logical consistency. These
criteria are inspired by established frameworks in
argumentation quality assessment (Hasan and Ng,
2014) and are defined as follows:

- Relevance Score ri: Measures how closely the
reasoning aligns with the target stance. A higher
score indicates stronger alignment.

- Evidence Strength ei: Assesses the reliability
and robustness of the evidence supporting the rea-
soning (e.g., factual references to studies or statis-
tics).

- Logical Consistency li: Evaluates whether
the reasoning steps follow a coherent and logically
sound structure without contradictions.

To ensure consistent and objective scoring across
different paths, we designed standardized prompts
(see Appendix B) that guide the LLM through struc-
tured evaluation steps for each criterion. While hu-
man annotation could provide additional validation,
our experiments demonstrate a strong correlation
between LLM-assigned scores and downstream per-
formance, indicating the practical effectiveness of
this automated approach.

After evaluating each reasoning path using these
criteria, a final score si is assigned to each path by
combining the relevance, evidence strength, and
logical consistency scores:

si = α · ri + β · ei + γ · li (1)

where i ∈ {0, 1, 2, 3} represents the four rea-
soning paths being evaluated, and α, β, and γ are
weights determined through experiments on weight-
ing configurations (Table 5) . The final score si
reflects the overall quality and contribution of the
path to the stance detection task.

3.4 Optimizing Reasoning Paths

After generating and evaluating reasoning paths,
we focus on optimizing those that receive low
scores in relevance, evidence strength, or logical
consistency. Specifically, any path i that score be-
low 5 in any of the evaluation criteria is considered
a low-scoring path.

The optimization process involves re-prompting
the LLM to refine the reasoning path using a dedi-
cated prompt template (Appendix B), which guides
the model to improve specific weak areas—such
as enhancing relevance to the target, strengthening
supporting evidence, or correcting logical inconsis-
tencies:

i′ = M(i, promptrefine) if min(ri, ei, li) < 5 (2)

Once refined, the updated path i′ is re-evaluated
using the same scoring criteria:

s′i = α · r′i + β · e′i + γ · l′i (3)

where r′i, e
′
i, l

′
i denote the improved relevance,

evidence strength, and logical consistency of the
optimized path.

This iterative refinement ensures that only high-
quality reasoning paths contribute to the final
stance prediction, significantly improving both in-
terpretability and accuracy.

3.5 Fusing Reasoning Paths

In step 4, for each reasoning path i, we cal-
culate the weighted score for each label t ∈
{favor, against, neutral}. This is done by comput-
ing the weighted sum of the individual scores s′i
for each path i assigned to label t, where wi is the
weight of each path based on its contribution to the
reasoning process:

St =
∑

i∈Pt

wi · s′i (4)

Here, Pt represents the set of paths assigned to
label t, and St is the aggregated weighted score for
label t.
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Next, we calculate the weighted scores for each
label (favor, against, neutral) based on the re-
evaluated scores for all the reasoning paths: Sfavor,
Sagainst and Sneutral.

After the weighted scores for each label are
computed, the label with the highest score is se-
lected as the final stance prediction. For example,
if Sfavor > Sagainst and Sfavor > Sneutral, then the
final stance is favor. The same approach is applied
for the other labels.

In the case where multiple labels have equal
scores, the final stance label is determined by a ma-
jority vote. Specifically, the label associated with
the most reasoning paths is chosen. Even when the
scores are equal, the label with more supporting
paths generally indicates stronger evidence, mak-
ing it more likely to represent the true final stance.
This voting mechanism resolves tie situations and
enhances the robustness of the model by ensuring
that the most evidence-backed label is selected.

3.6 Outputting Stance and Reasoning Paths

After determining the final stance prediction in Step
4, we now output both the selected stance label and
the corresponding reasoning paths.The reasoning
paths that contributed to the selected stance label,
illustrating the logical progression and supporting
evidence behind the decision. Specifically, the final
output consists of:

Final Stance Label: The label selected in Step
4, which can be one of the following: favor, against,
or neutral.

Reasoning Paths: The set of reasoning paths
associated with the selected stance label, showing
how the decision was made. These paths are the
ones that contributed to the weighted score for the
selected label.

4 Experiments

4.1 Datasets

We conduct experiments on the VAST, SEM16,
and PStance datasets to evaluate our proposed
method. The VAST dataset (Allaway and McK-
eown, 2020) includes a wide range of targets, each
instance comprising a sentence r, a target t, and a
stance label y (classified as ’Pro’, ’Con’ or ’Neu-
tral’) towards t.

The SEM16 dataset (Mohammad et al., 2016)
contains six predefined targets, including Donald
Trump (DT), Hillary Clinton (HC), Feminist Move-
ment (FM), Legalization of Abortion (LA), Athe-

ism (A), and Climate Change (CC). Each instance
is categorized as Favor, Against, or Neutral.

The PStance dataset (Li et al., 2021) focuses
on the stance of individuals towards three promi-
nent political figures in the United States: Don-
ald Trump (trump), Joe Biden (biden), and Bernie
Sanders (sanders). This large-scale dataset includes
only two stance labels: favor or against. Detailed
statistics of datasets can be found in Appendix A.

4.2 Evaluation Metrics
For the VAST dataset, following Allaway and McK-
eown (2020), we calculate the Macro-averaged F1
score across the Pro, Con, and Neutral labels to
evaluate the performance of the models on the test
set. For the SEM16 and PStance datasets, we re-
port the Favg, which is the average of the F1 scores
for the Favor and Against classes, in line with Mo-
hammad et al. (2016); Li et al. (2021). We compute
Favg for each target. Fmacro is calculated by averag-
ing the Favg across all targets.

4.3 Baselines
We compare our proposed Multi-Path Reasoning
Framework (MPRF) against a comprehensive set of
state-of-the-art baselines, categorized into statistics-
based models, BERT-based models, and LLM-
based models.

Statistics-based models rely on traditional ma-
chine learning architectures. We include BiLSTM
(Schuster and Paliwal, 1997), a bidirectional LSTM
without target information; CNN (Kim, 2014), a
convolutional network also without target model-
ing; TAN (Du et al., 2017), an attention-based
LSTM for target-specific features; BiCond (Au-
genstein et al., 2016), which jointly encodes text
and target with bidirectional LSTMs; CrossNet
(Xu et al., 2018), a BiLSTM enhanced with self-
attention; GCAE (Xue and Li, 2018), a CNN using
a gating mechanism to filter irrelevant information;
and PGCNN (Huang and Carley, 2018), a gated
CNN that generates target-sensitive filters.

BERT-based models are built upon the BERT
architecture and are typically fine-tuned. We in-
clude BERT (Devlin et al., 2019), the standard
model; BERTweet (Nguyen et al., 2020), pre-
trained on tweets; PT-HCL (Liang et al., 2022a),
which uses contrastive learning for zero-shot tasks;
JointCL (Liang et al., 2022b), a joint contrastive
learning framework; WS-BERT (He et al., 2022),
which infuses Wikipedia knowledge; CKI (Yan
et al., 2024), a collaborative knowledge infusion
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approach; TATA (Hanley and Durumeric, 2023),
using topic-agnostic and topic-aware embeddings;
KPatch (Lin et al., 2024), introducing a "knowl-
edge patch" for zero-shot detection; CNet-Ad
(Zhang et al., 2024c), a commonsense-based ad-
versarial learning framework; and EZSD-CP (Yao
et al., 2024), a model based on a gated MLP and
prompt learning.

LLM-based models leverage the reasoning ca-
pabilities of LLMs, often through prompting. We
include KEprompt (Huang et al., 2023), using
knowledge-enhanced prompt-tuning; KASD (Li
et al., 2023), integrating Wikipedia knowledge with
retrieval; COLA (Lan et al., 2024), a collabora-
tive role-infusion framework; Stanceformer (Garg
and Caragea, 2024), a target-aware transformer;
DEEM (Wang et al., 2024a), using dynamic expert
modeling; GPT-3.5 and GPT-3.5+COT (Lan et al.,
2024), the base and CoT-prompted versions; GPT-
EDDA (Ding et al., 2024b), an encoder-decoder
data augmentation framework; Llama-2-7b-chat
and Llama-2-13b-chat (Garg and Caragea, 2024),
the 7B and 13B chat models; Manual-CoT (Wei
et al., 2022)and Auto-CoT (Zhang et al., 2023c),
CoT methods with manual or automatic demonstra-
tions; ExpertPrompt (Xu et al., 2023), instructing
LLMs to act as experts; SPP (Wang et al., 2024b),
a solo performance prompting method; and LC-
CoT (Zhang et al., 2023a), a logically consistent
CoT approach.

Detailed descriptions and performance results
for these models across different datasets are pro-
vided in Appendix C.

4.4 Implementation Details

In our study, we utilize four large language mod-
els : GPT-3.5(Brown et al., 2020), Qwen2.5-
7B-Instruct(Qwen Team, 2024) Llama-3.3-70B-
Instruct(Llama Team, 2024), and Mistral-7B-
Instruct-v0.3(Jiang et al., 2023). The experiments
were conducted on a single NVIDIA A800 GPU
with 80GB of RAM, utilizing bfloat16 precision
to optimize memory usage and computational effi-
ciency. To ensure the reproducibility of the LLMs’
responses, we set the temperature parameter to 0
during inference. This configuration helps main-
tain consistent outputs across multiple runs. The
results reported in our experiments are averaged
over 5 repeated runs to ensure statistical reliability
and mitigate the impact of any variance in model
performance.

5 Results and Discussion

This section addresses the following research ques-
tions (RQs) based on our experimental results:
RQ1: How does the performance of our MPRF
compare to state-of-the-art stance detection models
on PStance , SEM16 and VAST datasets? RQ2: Is
each component of the MPRF effective and contrib-
utory to overall performance? RQ3: How do the
weighting configurations of reasoning path scores
(s′i) and path weights (wi) affect the performance
of MPRF? RQ4: How does the performance of
MPRF vary across different models ?

Methods DT HC FM LA A CC
Statistics-based Models
BiCond 30.5 32.7 40.6 34.4 31.0 15.0
CrossNet 35.6 38.3 41.7 38.5 39.7 22.8
BERT-based Models
BERT 40.1 49.6 41.9 44.8 55.2 37.3
PT-HCL 50.1 54.5 54.6 50.9 56.5 38.9
TGA-Net 40.7 49.3 46.6 45.2 52.7 36.6
Joint-CL 50.5 54.8 53.8 49.5 54.5 39.7
KPatch 41.1 49.7 43.9 43.8 39.9 31.9
TATA 63.8 65.4 66.9 62.9 52.1 41.6
EZSD-CP 68.8 76.3 62.2 64.4 54.4 37.3
CNet-Ad 47.8 59.2 50.7 54.9 57.4 50.7
TarBK-BERT 50.8 55.1 53.8 48.7 56.2 39.5
LLM-based Models
KASD-ChatGPT - 80.3 70.4 62.7 - -
COLA 68.5 81.7 63.4 71.0 70.8 65.5
GPT-3.5 62.5 68.7 44.7 51.5 9.1 31.1
GPT-3.5+COT 63.3 70.9 47.7 53.4 13.3 34.0
GPT-EDDA 69.5 80.1 69.2 62.7 67.2 68.5
LCDA 70.0 79.8 70.0 69.4 - -
LC-CoT 71.7 82.9 70.4 63.2 - -
MPRF (Ours)
GPT-3.5 80.3 83.5 83.2 84.1 80.4 82.9
Qwen2.5-7B-Instruct 84.4* 83.1* 84.5* 82.5 83.9* 82.3*
LLaMA-3.3-70B 81.5 83.4 83.4 85.3* 84.3* 83.6*
Mistral-7B-Instruct-v0.3 82.6 84.5* 87.7* 83.2 82.7 83.4

Table 1: Zero-shot stance detection results on the
SEM16 dataset. The best scores are in bold.Results with
* denote that MPRF significantly outperforms baselines
with the p-value < 0.05.

Performance Comparison with State-of-the-Art
Models As shown in Tables 1, 2, and 3, MPRF
significantly outperforms state-of-the-art models
across all three datasets—SEM16, VAST, and
PStance—demonstrating both effectiveness and in-
novation in stance detection.

On SEM16, MPRF achieves the highest scores
across multiple targets (e.g., FM: 87.7%, HC:
84.5%), surpassing strong LLM-based baselines
such as GPT-EDDA and KASD by a large margin.
In particular, our method shows robust general-
ization to challenging targets like "Atheism" and
"Climate Change", where traditional models often
struggle.
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On VAST, MPRF achieves an overall F1 score of
83.5% with Mistral-7B-Instruct-v0.3, outperform-
ing existing methods by more than 3%. Notably, it
performs exceptionally well in zero-shot settings
(85.4%), highlighting its ability to generalize with-
out target-specific training data.

On PStance, MPRF sets a new state of the art
with an Fmacro of 88.41%, surpassing DEEM by
3.26%. The model also achieves the best individ-
ual performance on Biden (89.36%) and Trump
(89.33%), demonstrating strong adaptability to real-
world political discourse. These results affirm that
MPRF’s structured multi-path reasoning frame-
work brings substantial improvements over conven-
tional single-path or static prompting approaches,
offering both enhanced accuracy and interpretabil-
ity.

Model Zero-Shot Few-Shot Overall
BiCond 42.8 40.0 41.5
CrossNet 43.4 47.4 45.5
TGA-Net 66.6 66.3 66.5
BERT-GCN 68.6 69.7 69.2
CKE-Net 70.2 70.1 70.1
GDA-CL 70.5 - -
PT-HCL 71.6 - -
WS-BERT 75.3 73.6 74.5
CNet-Ad 73.2 71.8 72.6
TarBK-BERT 73.6 - -
Joint-CL 72.3 71.5 -
EZSD-CP 73.6 - -
StSQA 68.9 - -
COLA 73.4 - -
TATA 77.1 74.1 76.3
GPT-3.5-Turbo 65.0 - -
GPT-3.5-Turbo-CoT 66.4 - -
KASD-BERT 76.8 - -
LKI-BART 79.6 - -
CKI 81.9 79.6 80.7
EDDA-LLaMA 70.3 - -
LC-CoT 72.5 - -
LCDA 80.3 - -
MPRF (Ours)
GPT-3.5 81.1 82.3 82.1
Qwen2.5-7B-Instruct 85.4* 82.0 83.2
LLaMA-3.3-70B 80.6 82.1 81.2
Mistral-7B-Instruct-v0.3 84.2* 83.1* 83.5*

Table 2: Stance detection performance (%) on VAST.
The best scores are in bold.Results with * denote that
MPRF significantly outperforms baselines with the p-
value < 0.05.

Contribution of Each Component of MPRF To
evaluate the effectiveness of each component, we
conducted ablation studies on SEM16 (Table 4),
with additional results for PStance and VAST in
Appendix D. Removing any component leads to
performance drops, confirming their importance.

Sentiment Path significantly influences targets
involving emotional expression. Its removal causes

Method Trump Biden Sanders Fmacro
BiLSTM 76.92 77.95 69.75 74.87
CNN 76.80 77.22 71.40 75.14
TAN 77.10 77.64 71.60 75.45
BiCond 77.15 77.69 71.24 75.36
PGCNN 76.87 76.60 72.13 75.20
GCAE 78.96 77.95 71.82 76.24
BERT 78.28 78.70 72.45 76.48
BERTweet 82.48 81.02 78.09 80.53
WS-BERT 84.97 82.86 79.97 82.60
TarBK-BERT 65.80 75.49 70.45 70.58
GPT-3.5 79.80 79.65 77.77 79.07
Llama-2-7b-chat-ft 72.00 67.96 65.57 68.51
Llama-2-13b-chat-ft 76.62 71.88 68.44 72.31
Stanceformer 85.35 83.96 80.57 83.30
CKI 86.2 84.1 80.5 83.6
Manual-CoT 85.4 83.8 80.9 83.37
StSQA 85.7 82.8 80.8 83.1
Auto-CoT 84.1 82.8 80.6 82.5
ExpertPrompt 84.7 84.7 81.2 83.53
SPP 85.1 84.6 81.5 83.73
DEEM 86.4 86.1 82.1 84.87
COLA 86.6 84.0 79.7 83.1
KASD-ChatGPT 85.06 84.59 79.96 83.2
MPRF (Ours)
GPT-3.5 88.20 88.60 85.10 87.60
Qwen2.5-7B-Instruct 89.50* 88.15* 86.75* 88.13
LLaMA-3.3-70B 89.63* 88.26 85.35 87.75
Mistral-7B-Instruct-v0.3 89.33 89.36* 86.53 88.41*

Table 3: Comparison of different models on the PStance
. The best scores are in bold.Results with * denote that
MPRF significantly outperforms baselines with the p-
value < 0.05.

a 4.6% drop on FM (from 87.7% to 83.1%) on
SEM16 and a 1.9% drop on Trump (from 89.33%
to 87.4%) on PStance.

Fact-Based Reasoning is crucial for evidence-
based stance formation. Without it, FM drops by
3.7% on SEM16 and Trump drops by 1.6% on
PStance.

Expert Opinion Path enhances predictions
through authoritative viewpoints. Removing it
leads to a 3.4% drop on FM and a 1.2% drop on
Trump.

Public Opinion Path contributes moderate but
consistent improvements, especially in social con-
text modeling. Its removal results in a 3.3% drop
on FM and a 1.3% drop on Trump.

Optimization plays a key role in refining low-
quality paths. Without optimization, FM drops
sharply by 7.1%, indicating its critical impact on
reasoning quality.

Weighted Fusion has the most significant im-
pact among all components. Removing it causes
an 8.6% drop on FM and a 3.6% drop on Trump,
highlighting its essential role in integrating diverse
perspectives effectively.
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Model DT HC FM LA A CC
MPRF 82.6 84.5 87.7 83.2 82.7 83.4
w/o Sentiment Path 80.3 81.2 83.1 81.4 81.8 81.9
w/o Fact-Based Path 81.1 82.4 84.0 82.6 82.3 82.0
w/o Expert Opinion Path 81.5 82.8 84.3 82.9 83.1 82.6
w/o Public Opinion Path 81.7 83.1 84.4 83.0 83.3 82.9
w/o Optimization 79.7 80.4 80.6 80.3 80.5 80.0
w/o Weighted Fusion 78.9 79.8 79.1 79.6 79.8 78.5

Table 4: Ablation Study Results on SEM16 (%) using
Mistral-7B-Instruct. The best scores are in bold.

Impact of Weighting Configurations on MPRF
Performance Table 5 shows the impact of dif-
ferent weighting configurations on MPRF’s perfor-
mance. The optimal configuration (α = 0.4, β =
0.3, γ = 0.3) yields the highest F1 scores, includ-
ing 87.7% for FM and 84.5% for HC, outperform-
ing other configurations. This demonstrates that
a balanced weighting prioritizes relevance while
maintaining adequate consideration of evidence
strength and logical consistency.

Other configurations, such as the equal weight-
ing (α = 0.33, β = 0.33, γ = 0.33), result in
significant performance drops, with FM and HC
scores dropping to 83.1% and 81.2%, respectively.
Skewed configurations that emphasize a single cri-
terion—like relevance (α = 0.5, β = 0.25, γ =
0.25), evidence (α = 0.25, β = 0.5, γ = 0.25), or
logical consistency (α = 0.25, β = 0.25, γ = 0.5)
also perform poorly. These configurations fail to
balance the complementary contributions of all
components, leading to suboptimal results.

Weighting Configurations DT HC FM LA A CC
MPRF 82.6 84.5 87.7 83.2 82.7 83.4
Balanced Weights 80.3 81.2 83.1 81.4 81.8 81.9
Enhanced Relevance 81.4 82.2 81.0 80.4 81.1 81.6
Enhanced Evidence Strength 81.8 83.5 82.1 81.3 80.0 82.0
Enhanced Logical Consistency 81.4 82.7 82.9 83.0 80.6 81.8

Table 5: Effect of Weighting Configurations on SEM16
(%) using Mistral-7B-Instruct. The best scores are in
bold.

Table 6 illustrates the impact of different weight-
ing configurations on the SEM16 dataset. The
MPRF (wi ∝ s′i) configuration, which dynami-
cally adjusts path weights based on their scores
(s′i), achieves the best performance, with F1 scores
of 87.7% for FM and 84.5% for HC, outperforming
all other configurations.

In contrast, the Equal Weights configuration
shows a significant performance drop, with FM and
HC scores decreasing to 83.1% and 81.2%, respec-
tively. Configurations assigning high weights (0.8)
to specific paths, such as sentiment or fact-based
reasoning, also fail to surpass the MPRF (wi ∝ si)

configuration.
The superiority of dynamic weighting highlights

the importance of prioritizing high-quality reason-
ing paths. Equal weighting dilutes the contributions
of critical paths, while overemphasizing a single
path reduces the complementary contributions from
other paths.

In conclusion, dynamically adjusting weights
based on path scores is crucial for maximizing per-
formance, while equal or skewed weighting results
in significant performance decline, emphasizing
the need for balanced contributions from multiple
reasoning paths.

Weighting Configurations DT HC FM LA A CC
MPRF ( wi ∝ s′i) 82.6 84.5 87.7 83.2 82.7 83.4
Equal Weights 80.3 81.2 83.1 81.4 81.8 81.9
High for Sentiment Path 81.4 82.8 84.3 81.9 81.6 82.1
High for Fact-Based Path 81.8 83.7 85.1 82.6 82.0 82.5
High for Expert Path 80.8 82.3 83.5 82.0 81.7 82.2
High for Public Path 80.9 82.5 83.8 81.8 81.5 81.9

Table 6: Comparison of Weighting Configurations (%)
on SEM16 using Mistral-7B-Instruct. The best scores
are in bold.

Performance of MPRF Across Different Models
Table 1, Table 2, and Table 3 summarize the perfor-
mance of MPRF across four distinct large language
models on the SEM16, VAST, and PStance datasets.
These results demonstrate that MPRF consistently
improves stance detection performance across di-
verse model architectures, suggesting that its effec-
tiveness stems from the framework design rather
than specific model capabilities.

On SEM16, for example, all four models
achieve strong results under MPRF, with Mistral-
7B-Instruct-v0.3 performing best on FM (87.7%)
and HC (84.5%), and Qwen2.5-7B-Instruct lead-
ing on DT (84.4%). The relatively smaller perfor-
mance gaps between models suggest that MPRF
mitigates inherent model-specific biases or limita-
tions by leveraging structured reasoning paths and
weighted fusion. Similarly, in zero-shot and few-
shot settings on VAST and PStance, MPRF enables
consistent improvements across models.

The key takeaway is that MPRF’s performance
gains are not solely attributable to the choice of
LLM, but rather to its ability to generate, evalu-
ate, and integrate multiple reasoning paths effec-
tively. This consistency across models confirms
that MPRF provides a robust and model-agnostic
enhancement to stance detection frameworks.
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Figure 2: Stance Detection Process: Multi-Path Analysis of the Statement on Climate Change

Case Study: Stance Detection on "Climate
Change is a Real Concern" To demonstrate
the interpretability of our Multi-Path Reasoning
Framework (MPRF), we present a detailed case
study in Figure 2: "Climate change is something
we should pay attention to, but it’s not the end of
the world. Many people exaggerate the effects of
climate change. Yes, it’s real, but there are much
bigger issues at hand." Our goal is to detect the
stance towards the target "Climate Change is a Real
Concern".

MPRF analyzes this statement through four dis-
tinct, human-understandable reasoning paths, each
representing a different dimension of opinion for-
mation. First, the Sentiment Analysis path identi-
fies the overall tone as neutral. The text acknowl-
edges the reality of climate change ("it’s real") but
tempers this with phrases like "not the end of the
world" and "many people exaggerate," resulting
in a balanced emotional expression and a stance
prediction of Neutral. Second, the Factual Reason-
ing path focuses on the evidence presented. The
claim that "many people exaggerate the effects"
is interpreted as a direct challenge to the sever-
ity of the scientific consensus on climate change,
leading to a stance prediction of Against. Third,
the Expert Opinion path infers that the statement
contradicts the overwhelming consensus of climate
scientists. By downplaying the urgency and scale
of the issue, the argument implicitly opposes the
authoritative viewpoint, resulting in a stance of
Against. Fourth, the Public Opinion path inter-
prets the phrase "many people exaggerate" as a
reflection of a perceived public sentiment that over-
states the problem, thus classifying the stance as
Against.

Crucially, MPRF does not treat these paths
equally. Each path is rigorously evaluated by an
LLM on three criteria: relevance, evidence strength,

and logical consistency, and assigned a quantita-
tive score. For instance, the Fact-Based path re-
ceived a high relevance score (8) due to its direct en-
gagement with the core issue, though its evidence
strength was moderate (5). The Expert Opinion
path scored highly in logical consistency (8), re-
flecting a coherent argument structure. These indi-
vidual scores (s′i) are then used in a weighted fusion
mechanism. The paths predicting Against (Fact-
Based, Expert Opinion, Public Opinion) collec-
tively contribute a significantly higher aggregated
weighted score (Sagainst) than the single Neutral
path. This transparent, score-driven aggregation
process results in the final prediction of Against.

6 Conclusion

In this paper, we proposed the Multi-Path Rea-
soning Framework (MPRF), a novel framework
for stance detection that enhances accuracy, ro-
bustness, and interpretability by generating, eval-
uating, and optimizing multiple reasoning paths.
Through experiments on three datasets, SEM16,
VAST, and PStance, MPRF consistently demon-
strated strong performance across various models.
The results highlight the adaptability and effective-
ness of MPRF in both zero-shot and few-shot set-
tings, achieving state-of-the-art performance and
providing interpretable reasoning chains.

Despite these achievements, there are still some
limitations to our approach. The reliance on manu-
ally designed prompts for path evaluation and scor-
ing may limit scalability to more complex tasks
or datasets. In future work, we aim to explore au-
tomated prompt optimization and more efficient
reasoning strategies to further enhance MPRF’s
scalability and performance in real-world applica-
tions.
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Limitations

While the Multi-Path Reasoning Framework
(MPRF) demonstrates strong performance and
adaptability across various datasets and models,
there are several limitations to address. First, the re-
liance on manually designed prompts for evaluating
and scoring reasoning paths may limit scalability to
more complex tasks or domains where predefined
prompts may not generalize well. Second, gener-
ating and optimizing multiple reasoning paths in-
troduces additional computational overhead, which
could hinder its deployment in large-scale or time-
sensitive applications. Lastly, the interpretability
of MPRF, while improved compared to traditional
black-box models, still requires further exploration
to ensure that reasoning paths are both human-
readable and aligned with domain-specific require-
ments.

Ethical Considerations

The Multi-Path Reasoning Framework(MPRF)
aims to improve stance detection by enhancing
transparency and interpretability in its decision-
making process. However, the use of large lan-
guage models (LLMs) in MPRF raises potential
ethical concerns. First, LLMs are trained on vast
amounts of internet data, which may include bi-
ased or harmful content, potentially influencing the
reasoning paths generated by MPRF. Second, the
interpretability of the reasoning paths may lead to
unintended misuse, such as generating misleading
or manipulative arguments. Finally, while MPRF
strives for fairness, it inherits biases present in the
underlying models and datasets, which could result
in unfair or inaccurate stance detection in certain
contexts. To mitigate these risks, we have carefully
evaluated MPRF’s outputs and employed diverse
datasets to reduce potential biases. Future work
will focus on improving fairness, bias detection,
and ethical safeguards to ensure responsible appli-
cation of MPRF in real-world scenarios.
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A Dataset Statistics

Train Dev Test
# Examples 13477 2062 3006
# Unique Comments 1845 682 786
# Zero-shot Topics 4003 383 600
# Few-shot Topics 638 114 159

Table 7: Statistics of VAST dataset.

Target Favor Against Neutral
DT 148 299 260
HC 163 565 256
FM 268 511 170
LA 167 544 222
A 124 464 145
CC 335 26 203

Table 8: Statistics of SEM16 dataset.

Trump Biden Sanders
Train Favor 2,937 2,552 2,858

Against 3,425 3,254 2,198
Val Favor 365 328 350

Against 430 417 284
Test Favor 361 337 343

Against 435 408 292
Total 7,953 7,296 6,325

Table 9: Label distribution across different targets for
P-Stance.

B Prompts

We selected these four reasoning paths—sentiment
analysis, factual reasoning, expert opinions, and

public opinion—based on their semantic distinc-
tiveness and empirical effectiveness in capturing
key dimensions of stance reasoning. Each path ad-
dresses a unique aspect that commonly influences
human judgment:

- Sentiment Analysis Path: Captures emo-
tional tone (e.g., "happy", "angry") to infer stance.
Emotional language often strongly correlates with
stance expression.

- Factual Reasoning Path: Analyzes factual
evidence (e.g., statistics, legal references) to de-
termine alignment with the target stance. Stance
decisions frequently hinge on objective claims or
data.

- Expert Opinion Path: Evaluates references to
authoritative sources (e.g., scientists, legal schol-
ars). Authority-driven arguments are particularly
influential in contentious or technical topics.

- Public Opinion Path: Reflects collective sen-
timent derived from social media, surveys, or news
coverage. Public consensus can significantly shape
individual stances through social influence.

Prompt Template for Sentiment Path:

Your task is to classify the stance of
the comment on the topic as “favor”,
“against”, or “neutral”.
Topic: Target
Comment: Text
Stance:
Explain:
1. Analyze the emotional tone of the
comment. Identify key emotional words
such as “happy”, “sad”, “angry”, “disap-
pointed”, “excited”, etc.
2. Based on the sentiment, determine if
the comment expresses a positive, nega-
tive, or neutral emotion.
3. If the comment expresses a posi-
tive sentiment, classify the stance as “fa-
vor”; if negative, classify the stance as
“against”; if neutral, classify the stance
as “neutral”.

Prompt Template for Fact-Based Reasoning
Path:

Your task is to classify the stance of
the comment on the topic as “favor”,
“against”, or “neutral”.
Topic: Target
Comment: Text
Stance:
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Explain:
1. Extract factual information from the
comment, such as data, studies, or legal
references related to the target.
2. Determine if the facts support or op-
pose the target stance.
3. If the facts present a positive out-
come or support legalization, classify the
stance as “favor”; if they present neg-
ative impacts or oppose it, classify the
stance as “against”; if the facts are neu-
tral or inconclusive, classify the stance
as “neutral”.

Prompt Template for Expert Opinion Path:

Your task is to classify the stance of
the comment on the topic as “favor”,
“against”, or “neutral”.
Topic: Target
Comment: Text
Stance:
Explain:
1. Identify expert opinions or references
within the comment.
2. Determine if the expert opinions sup-
port or oppose the target stance.
3. If the expert opinions support the tar-
get, classify the stance as “favor”; if they
oppose it, classify the stance as “against”;
if the expert opinions are neutral or in-
conclusive, classify the stance as “neu-
tral”.

Prompt Template for Public Opinion Path:

Your task is to classify the stance of
the comment on the topic as “favor”,
“against”, or “neutral”.
Topic: Target
Comment: Text
Stance:
Explain:
1. Extract public opinion from the com-
ment, such as social media reactions,
public surveys, or common sentiments.
2. Determine if the public opinion sup-
ports or opposes the target.
3. If the public opinion supports target,
classify the stance as “favor”; if it op-
poses, classify the stance as “against”; if
the public opinion is neutral, classify the
stance as “neutral”.

Prompt for Relevance Score:

Please evaluate the relevance
of the following reasoning
path: reasoning path, in rela-
tion to the target Target, given
the comment: Text.
How relevant is the reason-
ing path to the target Tar-
get? Please provide a rel-
evance score from 1 to 10,
where 1 represents low rele-
vance and 10 represents high
relevance.

Prompt for Evidence Strength Score:

Evaluate the strength of the
evidence in the following rea-
soning path :reasoning path
for Target. Does the evidence
strongly support the stance of
target? Please provide an evi-
dence strength score from 1 to
10, where 1 indicates weak or
unreliable evidence and 10 in-
dicates strong and reliable evi-
dence.

Prompt for Logical Consistency Score:

Evaluate the logical consis-
tency of the following rea-
soning path:reasoning path for
Target. Are the reasoning
steps coherent and logically
connected? Please provide a
logical consistency score from
1 to 10, where 1 indicates poor
consistency and 10 indicates
excellent consistency.

Prompt Template for Optimization of Low-
Scoring Reasoning Paths:

Your task is to review and improve the
following reasoning path for Target. This
path has been evaluated and received
low scores in one or more of the fol-
lowing areas: Relevance Score ri, Evi-
dence Strength Score ei, or Logical Con-
sistency Score li. The scores below 5
indicate weak areas that need optimiza-
tion. The initial reasoning path is:

reasoning path
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Please focus on improving the areas
where the scores are low. Specifically,
address the following:

1. Low Relevance Score (ri): - Re-
view the reasoning steps that have been
marked as irrelevant or weakly con-
nected to the target stance. Adjust these
steps to ensure they are directly rele-
vant to the target. If necessary, provide
stronger connections to the target stance.

2. Low Evidence Strength Score (ei): -
Identify reasoning steps that lack strong
supporting evidence or facts. Propose
more robust evidence, studies, or ex-
pert opinions to support these steps and
strengthen the overall argument.

3. Low Logical Consistency Score (li): -
Examine any steps that show logical in-
consistencies or errors. Identify these in-
consistencies and suggest improvements
to fix any logical flaws, ensuring the rea-
soning follows a consistent and sound
structure.

After revising the weak areas, provide
the updated reasoning path with all im-
provements incorporated.

Revised reasoning path:

C Baselines

In this appendix, we provide detailed descriptions
and performance results for the baseline models
compared to MPRF across the SEM16, PStance,
and VAST datasets.

C.1 Statistics-based Models
We include BiLSTM(Schuster and Paliwal, 1997),
which takes tweets as inputs without considering
the target information; CNN(Kim, 2014), similar
to BiLSTM, the vanilla CNN only takes tweets as
inputs and does not consider the target information;
TAN(Du et al., 2017) an attention-based LSTM
model that extracts target specific features ; Bi-
Cond (Augenstein et al., 2016), which uses bidirec-
tional LSTM to encode both the text and the target;
CrossNet (Xu et al., 2018), which enhances BiL-
STM with self-attention mechanisms to improve
focus on relevant text segments; GCAE(Xue and
Li, 2018) , a CNN model that utilizes a gating
mechanism to block targetunrelated information;
PGCNN(Huang and Carley, 2018), which is based

on gated convolutional networks and encodes target
information by generating target-sensitive filters.

C.2 BERT-based Models

We benchmark against BERT (Devlin et al., 2019),
a transformer model fine-tuned for stance detection,
PT-HCL (Liang et al., 2022a), which incorporates
contrastive learning within a BERT framework tar-
geting zero-shot and cross-target tasks. BERT-
joint-ft(Liu et al., 2021) and TGA-Net-ft(Liu et al.,
2021), in which BERT has been fine-tuned during
the training process. BERTweet(Nguyen et al.,
2020), CKE-Net(Liu et al., 2021), GDA-CL(Li
and Yuan, 2022), WS-BERT(He et al., 2022), BS-
RGCN(Luo et al., 2022), BERT-joint(Allaway
and McKeown, 2020), TGA Net (Allaway and
McKeown, 2020), JointCL (Liang et al., 2022b),
KPatch(Lin et al., 2024), TATA(Hanley and
Durumeric, 2023), EDDA-LLaMA(Ding et al.,
2024b); EZSD-CP(Yao et al., 2024), a stance de-
tection model underpinned by a gated multilayer
perceptron and a prompt learning strategy ;CKI
(Yan et al., 2024), a collaborative knowledge in-
fusion approach , BERT-based models showing
strong performance on datasets; CNet-Ad(Zhang
et al., 2024c), a commonsense based adversarial
learning framework that comprises a commonsense
graph encoder and a feature separation adversarial
network.

C.3 LLM-based Models

We compare with KEprompt (Huang et al., 2023),
which leverages knowledge-enhanced prompt tun-
ing; KASD (Li et al., 2023), enhancing detection
by integrating Wikipedia knowledge with retrieval-
enhanced generation; COLA (Lan et al., 2024),
which employs a collaborative role-infusion frame-
work with multiple LLMs;Llama-2-7b-chat2 ,
Llama-2-13b-chat and finetuned settings for the
Llama models(Garg and Caragea, 2024);Manual-
CoT (Wei et al., 2022) manually provides the
explanations in demonstrations and enhances
the chainof-thought reasoning ability of LLMs;
StSQA(Zhang et al., 2024b) proposes automatic
“thought-inducing” and add them to the demonstra-
tions for step-by-step question answering; Auto-
CoT (Zhang et al., 2023c) automatically selects
demonstrations from training data according to se-
mantic diversity; ExpertPrompt(Xu et al., 2023)
introduces the identity of experts and customizes
information descriptions for LLMs before giving
responses; SPP (Wang et al., 2024b) proposes
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solo performance prompting by engaging in multi-
turn collaboration with multi-persona during rea-
soning; DEEM(Wang et al., 2024a), dynamic ex-
perienced expert modeling for stance detection;
Stanceformer(Garg and Caragea, 2024), a target-
aware transformer model; GPT-3.5 (Lan et al.,
2024), GPT-3.5+COT (Lan et al., 2024), GPT-
EDDA(Ding et al., 2024b), and LKI-BART(Zhang
et al., 2024d) .LC-CoT(Zhang et al., 2023a) em-
ploys the structured chain-of-thought approach for
stance detection. LCDA enhances data quality by
maintaining logical coherence (Zhang et al., 2025)

D Ablation Study Results

In this appendix, we present the ablation study re-
sults for the VAST and PStance datasets. These
tables illustrate the performance of the model with
various components removed. The results demon-
strate the importance of each component in stance
detection.

D.1 Ablation Study Results on VAST

Model Zero-Shot Few-Shot Overall
Mistral-7B-Instruct-v0.3 84.2 83.1 83.5
w/o Sentiment Path 82.7 81.4 81.9
w/o Fact-Based Path 83.2 82.1 82.5
w/o Expert Opinion Path 83.0 82.5 82.7
w/o Public Opinion Path 83.1 81.9 82.5
w/o Optimization 81.6 80.5 80.9
w/o Weighted Fusion 80.8 79.3 79.9

Table 10: Ablation Study Results on VAST (%) using
Mistral-7B-Instruct-v0.3. The best scores are in bold.

The results on VAST using Mistral-7B-Instruct-
v0.3 are shown in Table 10. The performance de-
creases when components like optimization and
weighted fusion are omitted, highlighting their im-
portance for improving the final stance prediction.

D.2 Ablation Study Results on PStance

Method Trump Biden Sanders Fmacro
MPRF 89.33 89.36 86.53 88.41
w/o Sentiment Path 87.4 85.9 84.0 85.4
w/o Fact-Based Path 87.7 86.3 84.5 85.8
w/o Expert Opinion Path 88.1 87.0 85.1 86.2
w/o Public Opinion Path 88.0 86.5 84.8 85.8
w/o Optimization 86.5 85.1 83.4 84.6
w/o Weighted Fusion 85.7 84.2 82.8 83.8

Table 11: Ablation Study Results on PStance (%) using
Mistral-7B-Instruct-v0.3. The best scores are in bold.

The results on PStance using Mistral-7B-
Instruct-v0.3 are shown in Table 11. The table
shows the performance drop when certain compo-
nents, such as the sentiment path, fact-based path,
and others, are removed.
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