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Abstract

Large language models (LLMs) rely on mas-
sive amounts of training data, however, the
quantity of empirically observed data is lim-
ited. To alleviate this issue, lots of LLMs lever-
age synthetic data to enhance the quantity of
training data. Despite significant advancements
in LLMs, the efficiency and scalability charac-
teristics of data synthesis during pre-training
phases remain insufficiently explored. In this
work, we propose a novel data synthesis frame-
work, Cognitive Combination Synthesis (CCS),
designed to achieve highly efficient and scal-
able data synthesis. Specifically, our methodol-
ogy mimics human cognitive behaviors by re-
combining and interconnecting heterogeneous
data from diverse sources thereby enhancing ad-
vanced reasoning capabilities in LLMs. Exten-
sive experiments demonstrate that: (1) effective
data organization is essential, and our mapping-
based combination learning approach signifi-
cantly improves data utilization efficiency; (2)
by enhancing data diversity, accuracy, and com-
plexity, our synthetic data scales beyond 100B
tokens, revealing CCS’s strong scalability. Our
findings highlight the impact of data organiza-
tion methods on LLM learning efficiency and
the significant potential of scalable synthetic
data to enhance model reasoning capabilities.

1 Introduction

“One ounce of practice is worth a thou-
sand pounds of theory”

– Swami Vivekananda

Large Language Models (LLMs) have achieved
remarkable advancements across various domains,
including conversation (Achiam et al., 2023; Hurst
et al., 2024), mathematics (Guo et al., 2025), cod-
ing (Anthropic, 2024), and writing (OpenAI, 2025).
The success of LLMs is fundamentally dependent
upon large-scale training data, according to scaling
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laws (Kaplan et al., 2020; Hoffmann et al., 2022),
models trained on more data generally tend to ex-
hibit predictable performance improvements. Pre-
training data, which are utilized during the pre-
training phase of LLMs, serve as a crucial compo-
nent by providing foundational knowledge and gen-
eral capabilities that underpin model performance.

Scaling pre-training data has emerged as a crit-
ical imperative in the development and advance-
ment of LLMs, however some studies (Villalobos
et al., 2022; Muennighoff et al., 2023) indicate that
the volume of human-generated data is capped and
exhibits slow growth. Consequently, efforts are un-
derway to scaling pre-training data beyond merely
scaling raw text, such as multimodal data (Team
et al., 2023) and synthetic data (Gunasekar et al.,
2023). Synthetic data, serving as a supplement
and extension to raw data, is garnering increasing
attention (Liu et al., 2024b). The Phi series (Gu-
nasekar et al., 2023; Li et al., 2023; Abdin et al.,
2024) and Qwen2.5 series (Yang et al., 2024b,a;
Hui et al., 2024) extensively utilized synthetic data
during pre-training to enhance their mathematical
and coding abilities, leading to remarkable perfor-
mance. Numerous studies (Zhou et al., 2024; Lu
et al., 2024; Toshniwal et al., 2024) utilize syn-
thetic mathematical problems to enhance models’
reasoning abilities.

However, existing data synthesis methods pri-
marily focus on supervised fine-tuning (SFT) phase,
and their scalability remains unverified, while large-
scale synthesis methods specifically designed for
pre-training are still under-explored. Furthermore,
the lack of transparency in the data synthesis strate-
gies employed by the Phi and Qwen2.5 series im-
pedes the advancement in data synthesis. Finally,
the learning efficiency of synthetic data remains un-
derstudied; while existing refinement-based meth-
ods (Maini et al., 2024; Yue et al., 2024) can im-
prove learning efficiency, their diversity and accu-
racy are often limited. This raises critical questions:
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Q1: "What are the key factors governing the scala-
bility of synthetic data generation for large-scale
pre-training?"; Q2: "How can data synthesis be
performed efficiently to enhance the learning effi-
ciency of LLMs?"

To address these limitations, we propose Cog-
nitive Combination Synthesis (CCS), a novel
framework that enables scalable and efficient data
synthesis through data recombination and for-
ward/backward extension of raw data. To answer
Q1, we conducted large-scale data collection and
comprehensive CCS-based experiments, identify-
ing critical scaling factors in synthetic data gener-
ation. To answer Q2, we enhanced data learning
efficiency through cognitive theory-guided map-
ping techniques. According to established cogni-
tive models (Illeris, 2018; Wang and Chiew, 2010),
skill acquisition from declarative knowledge neces-
sitates deliberate practice and corrective feedback
across learning stages. Inspired by those learn-
ing theories, our CCS framework accelerates the
learning process by establishing knowledge-to-skill
mappings. Specifically, our CCS framework in-
cludes three stages: (1) Mapping Establishment
(Section 3.1): collecting reasoning-density data
from multiple sources and constructing knowledge-
to-skill mapping data; (2) Solution Refinement
(Section 3.2): refining data through LLM to en-
hance learning efficiency; and (3) Quality Filtering
(Section 3.3): applying fine-grained filtering to en-
sure synthetic data quality.

We validate the efficacy of the proposed ap-
proach in mathematical reasoning domains. Ex-
tensive experiments show that our CCS framework
successfully scales to over 100B tokens, validating
the strong scalability of our method. Compared to
other data synthesis methods, our mapping-based
approach achieves significantly higher learning ef-
ficiency, confirming the superiority of our cogni-
tive mapping paradigm. Our findings demonstrate
the significant potential of synthetic data in the
research and development of LLMs, offering a
promising avenue for scaling existing pre-training
data to substantially larger scales. Moreover, the
methodology within CCS involving the recombi-
nation and extension of original data also serves
as an effective approach to enhance the utilization
efficiency of currently available data. Our contribu-
tions are summarized as follows:

1. We introduce CCS, a novel framework that
scales beyond 100B tokens, and revealing the

key factors governing synthetic data scalabil-
ity: diversity, accuracy, and complexity.

2. Our mapping-based synthesis approach
achieved high learning efficiency, highlight-
ing the importance of data combination
strategies.

2 Human Cognitive Process

Learning is a relatively permanent change in behav-
ior or behavioral potential that results from expe-
rience (Hilgard and Bower, 1966). This definition
encompasses both the acquisition of declarative
knowledge (’knowing-that’)—facts, concepts, and
information that alter our understanding and the
development of procedural knowledge (’knowing-
how’)—skills and habits manifested through perfor-
mance. According to cognitive psychology, human
learning is inherently accompanied by comprehen-
sion (Council, 2000), when solving specific prob-
lems, individuals must identify which conceptual
frameworks or prior knowledge to rely upon, as
well as how to effectively apply them to address
the given challenges. Fitts and Posner’s stage of
learning theory (Fitts and Posner, 1967) comprises
three distinct phases: the cognitive stage, the asso-
ciative stage and the autonomous stage. This model
describes the progression of a performer from an
novice to an expert in acquiring a specific skill.

During the cognitive stage, learners comprehend
task requirements and develop an initial concep-
tual understanding of the skill, primarily relying
on declarative knowledge. In the associative stage,
the learner is learning how to perform the skill
well and how to adapt the skill. At this stage, the
focus shifts from declarative knowledge to proce-
dural knowledge — translating what to do into how
to do it. This stage mirrors deliberate practice in
expertise development, where targeted exercises
bridge the gap between theoretical understanding
and autonomous skill execution. Finally, in the
autonomous stage, the skill becomes highly auto-
matic, requiring minimal conscious effort to per-
form.

Inspired by human cognitive and learning pro-
cesses, we propose an efficient data synthesis
framework that connects knowledge acquisition
with skill learning to enhance learning efficiency.
Taking mathematics as an example, we define
declarative knowledge in the cognitive stage as fun-
damental mathematical knowledge (such as arith-
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Step 3: Perimeter of the hexagon.....
Final Answer:  42  inches
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A regular hexagon is a six-sided polygon with all sides of 
equal length and all interior angles measuring 120 . It has 
a high degree of symmetry and can be divided into six 
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Figure 1: The overall pipeline of our Cognitive Combination Synthesis framework comprises three main stages:
Mapping Establishment, Solution Refinement, and Quality Filtering. The Mapping Establishment stage focuses on
constructing specific data patterns to achieve knowledge-to-skill mapping. The Solution Refinement stage utilizes a
large language model to regenerate more detailed solution steps. Subsequently, the Quality Filtering stage enhances
the quality of the synthetic data by validating the knowledge explanations and refined answers.

metic operations, algebraic concepts and basic sta-
tistical methods) and define procedural knowledge
or skills in the associative stage as mathematical
problem-solving ability. Extensive experiments
demonstrate the effectiveness of applying human
cognitive learning theory to LLMs.

3 The Cognitive Combination Synthesis
Framework

In this section, we present details of our Cognitive
Combination Synthesis framework for data syn-
thesis. The core principle of our framework lies
in linking declarative knowledge and skills to en-
hance data utilization efficiency. The overall frame-
work comprises three main components: Mapping
Establishment, Solution Refinement, and Quality
Filtering, as illustrated in Figure 1. In the Mapping
Establishment process, acknowledging the hetero-
geneity of existing data sources (e.g., books, web-
pages, exercises), we employ multiple strategies
to construct the knowledge-to-skill mappings. The
Solution Refinement process primarily involves uti-
lizing LLM to rewrite the solution steps of mathe-
matical problems, thereby generating more detailed
procedures to facilitate model learning. Finally, the
Quality Filtering component performs quality as-
sessments on both the answers and the knowledge
explanations to filter out low-quality synthetic data.

3.1 Mapping Establishment

We collect a substantial amount of seed data for
synthesis, during the seed construction phase, we
systematically collect and extract mathematical

knowledge data and problem-solving data, detailed
in Appendix A.1. By integrating the aforemen-
tioned mathematical knowledge data with problem-
solving data to establish knowledge-to-skill map-
ping, we enhance data utilization efficiency. Given
the data heterogeneity, four mapping strategies are
utilized, as illustrated in Figure 2

Question-guided Mapping Establishment This
method uses math problems as seeds to construct
synthetic data. For a given math problem Q,
which typically involves multiple knowledge points
(KPs), we employ Qwen2.5-7B-Instruct (Yang
et al., 2024a) to identify the relevant knowledge
points and generate detailed explanations (KEs).
These explanations are then followed by the origi-
nal problem Q (KPs + Q&A), thereby forming syn-
thetic data. We refer to this synthetic data construc-
tion method as Question-guided Mapping Estab-
lishment (QME). We expect this data format to mit-
igate the model’s tendency to memorize problems
when lacking sufficient knowledge or mastery of
the underlying concepts, thereby promoting a more
reasonable knowledge-based reasoning framework
during learning. To ensure data diversity, inspired
by (Ge et al., 2024) , we employ various expla-
nation styles to enhance data diversity. Detailed
prompts are provided in the Appendix A.2.

Knowledge-guided Mapping Establishment In
contrast to the QME approach, this method gen-
erates math problems from knowledge data to es-
tablish knowledge-skill mappings. First, we em-
ploy the Qwen2.5-7B-Instruct model to extract
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Figure 2: Our mapping establishment process involves four approaches: (a) Question-guided: generating knowledge
explanations based on Q&A data; (b) Knowledge-guided: generating problems from knowledge data and utilizes a
self-consistency method to derive answers; (c) Excavation-based: mining paired knowledge-reasoning data from
existing datasets; (d) Matching-based: bridging existing knowledge data and Q&A data by leveraging shared
knowledge points.

knowledge points embedded in the knowledge
data. Mathematical problems are then synthe-
sized based on these extracted knowledge points
using MathScale’s prompt (Tang et al., 2024)
with Qwen2.5-72B-Instruct. Subsequently, these
synthesized problems are filtered by the above
LLM to exclude issues such as incompleteness
or contradictions. For the filtered problems, we
utilize Qwen2.5-Math-72B-Instruct to generate
32 candidate answers per problem. The final
answer for each problem is obtained using a
self-consistency approach with majority voting
(cons@32). We refer to this synthetic data con-
struction method as Knowledge-guided Mapping
Establishment (KME). Our method distinguishes
itself from other math question synthesis method
(Tang et al., 2024; Huang et al., 2025) in two as-
pects: Firstly, our method established a direct link
between the generated problems and their source
knowledge explanations. Secondly, we leverage
self-consistency to ensure the accuracy of the gen-
erated problem answers.

Excavation-based Mapping Establishment We
observe that knowledge-skill mappings naturally
exist in large-scale unsupervised data, such as text-
books, educational websites and similar resources.
We first mine a large corpus of data containing
knowledge explanations(KEs) and reasoning pro-
cesses (Skills). We then extract these reasoning pro-

cesses and utilize Qwen2.5-72B-Instruct to synthe-
size corresponding questions and answers (Q&A).
The mined KEs and generated Q&A are subse-
quently combined to form the synthetic dataset
(KEs → Q&A). We term this approach Excavation-
based Mapping Establishment (EME).

Matching-based Mapping Establishment Un-
supervised data inherently contains a wealth of
knowledge and problems, all of which are associ-
ated with specific knowledge points. This method
establishes connections between existing knowl-
edge data and problem data through knowledge
points, thereby creating a mapping from knowl-
edge to skills. We extract corresponding knowledge
points from both conceptual knowledge data and
problems. These knowledge points then serve as
bridges to link the two data types based on shared or
similar concepts. We term this approach Matching-
based Mapping Establishment (MME). Notably,
rather than generating new data synthetically, our
method recombines existing data to form novel
training examples.

3.2 Solution Refinement
Existing raw mathematical problems often have
concise and irregular solutions, frequently skip-
ping steps or presenting the final answer before
the reasoning. We posit that this data structure is
suboptimal for training large models to learn ro-

4725



Model GSM8K MATH MathQA College Gaokao Olympiad Omni
Average

# shots 4-shot 4-shot 4-shot 4-shot 4-shot 4-shot 4-shot

based on Qwen2.5-1.5B
Qwen2.5-1.5B 68.5 33.0 42.0 22.8 22.1 18.1 13.1 31.4
Qwen2.5-Math-1.5B 76.8 49.0 53.0 37.9 29.9 28.2 20.5 42.2
FineMath-4plus(9.6B) 68.8 34.6 41.5 23.7 23.1 19.1 13.6 32.1
WebInstruct(5B) 69.9 36.2 45.0 24.7 25.2 20.0 14.1 33.6
MegaMath-Synth-Q&A(7B) 71.7 37.4 44.3 25.6 25.5 20.7 16.2 34.5
CCS-QME(5B) 72.9 38.8 46.5 29.1 27.0 21.1 15.6 35.9
CCS-KME(5B) 72.9 37.4 45.4 27.0 25.7 20.7 16.4 35.1
CCS-EME(5B) 73.2 38.4 46.2 28.9 26.0 22.0 17.5 36.0
CCS-MME(5B) 72.5 38.8 46.3 28.7 26.2 21.3 16.8 35.8
CCS(100B) 81.1 51.0 56.6 41.5 36.6 30.4 22.3 45.6

based on Qwen2.5-7B
Qwen2.5-7B 85.4 51.0 59.6 33.6 31.7 22.7 15.7 42.8
Qwen2.5-Math-7B 91.6 57.0 63.0 44.1 40.0 31.3 21.2 49.8
CCS(100B) 92.9 59.6 68.3 44.0 40.8 31.8 23.6 51.6

based on Qwen2.5-72B
Qwen2.5-72B 91.5 66.8 77.1 48.0 44.9 36.0 20.3 55.0
Qwen2.5-Math-72B 90.8 69.4 76.1 54.5 47.5 40.4 27.4 58.0
CCS(100B) 92.4 71.2 80.8 54.4 50.4 41.1 28.5 59.8

Table 1: Performance of models of different sizes on math benchmarks. All metrics are reported as percentages
(%). We evaluate three model sizes, with the best result highlighted in bolded. The number in () represents
training sample number. The underlined numbers indicate the best performance among comparative methods. Main
results: (1) The CCS synthesis method outperforms alternative approaches, even with less training data; (2) CCS
demonstrates strong scaling properties, achieving Qwen2.5-Math level performance at the 100B-token scale.

bust reasoning patterns. To address this issues, we
employ Qwen2.5-Math-72B-Instruct to regenerate
well-structured solutions for synthetic data, with
the goal of maximizing the detail of the reason-
ing steps. Detailed prompts are provided in the
Appendix A.2.

3.3 Quality Filtering

To ensure synthetic data quality, we implement
automated quality checks on both knowledge ex-
planations and solution steps generated by models.
For knowledge explanations, we employ Qwen2.5-
72B-Instruct to detect potential factual errors. For
solution steps generated by large language mod-
els in both QME, EME and MME approaches, we
filter out instances where the model-generated an-
swers deviate from standard reference answers to
improve accuracy. In the EME approach, the ref-
erence answers are taken directly from the mined
data, to further ensure answer reliability, we strictly
control data sources by using high-quality materials
such as textbooks. All filtered erroneous solutions
undergo three regeneration attempts to maximize
data utilization efficiency.

4 Experiments

4.1 Experimental Settings

Datasets. We collected approximately 76M
knowledge documents from various online sources
and around 21M problems with answers from ed-
ucational websites, forums, exams, and internal
datasets. Ultimately, a total of 100B tokens of data
was selected for the experiments, the data synthesis
configurations for different mapping establishment
methods and their corresponding sampling ratios
are provided in the Appendix A.3.

Evaluation. We assess models’ mathematical
reasoning on synthetic data using diverse bench-
marks, including GSM8K (Cobbe et al., 2021),
MATH-500(MATH) (Lightman et al., 2023),
MathQA (Amini et al., 2019), OlympiadBench-
Math(Olympiad) (He et al., 2024), Omni-
MATH(Omni) (Gao et al., 2024), Gaokao 2023
En(Gaokao) (Liao et al., 2024), and College-
Math(College) (Tang et al., 2024).

Baselines. Large-scale open-source synthetic
mathematical data for pre-training remains scarce.
We compare CCS synthetic data against FineMath-
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Figure 3: Average accuracy of different methods trained on Qwen2.5-1.5B. (a) Our CCS method achieves superior
learning efficiency over other approaches by establishing knowledge-to-skill mappings. (b) The diversity of original
seed data is critical for scaling synthetic data.

4plus (Allal et al., 2025), WebInstruct (Yue
et al., 2024) and the recent MegaMath-Synth-
Q&A (Zhou et al., 2025). To further evaluate our
method’s scaling properties, we compare it with
the math-specific Qwen2.5-Math series. Training
settings are detailed in the Appendix A.4

4.2 Main Results

We evaluate our CCS framework on mathmatical
benchmarks. First, we validate the effectiveness of
the CCS synthesis method. we performed contin-
ued pre-training on the Qwen2.5-1.5B base model
using different datasets: CCS synthetic data(5B to-
kens), FineMath-4plus (9.6B tokens), WebInstruct
(5B tokens), and MegaMath-Synth-Q&A (7.0B to-
kens). As presented in Table 1, the CCS data syn-
thesis method yields significantly better results than
other methods. Furthermore, to examine scaling
properties, we performed continued pre-training on
Qwen2.5 base models with 100B tokens synthetic
data, as showed in Table 1, which achieving bet-
ter performance than comparable-sized Qwen2.5-
Math models, thereby confirming the scalability of
our CCS synthesis method.

Comparison of Different Mapping Methods
We compared different mapping establishment ap-
proaches while controlling the data scale. As pre-
sented in Table 1, strategies using questions as
seeds are superior to those using knowledge as
seeds. We attribute this primarily to the fact that,
for current LLMs, generating reasonable questions

and providing correct answers is significantly more
challenging than generating correct knowledge.

4.3 Learning Efficiency of Our Method

We compared the effectiveness of mapping-based
methods with non-mapping methods. For non-
mapping approaches, we evaluated Q&A data and
knowledge-based data separately, as well as a 50%-
50% hybrid of both to validate our combination
method. Figure 3a show that the mapping-based
approach significantly outperformed using only
Q&A or knowledge data. Furthermore, the CCS
method surpassed the hybrid method, indicating
that effective data organization, not just the seed
data, drives performance improvements.

Additionally, we compared our method with
mainstream data synthesis methods: (1) For
refinement-based methods, we use the recently
open-sourced MegaMath-Synth-Q&A, due to its
demonstrated excellent performance. (2) For prob-
lem generalization methods, we synthesized ques-
tions from the open-source Persona-Hub dataset
(Ge et al., 2024) and generated answers via
Qwen2.5-Math-72B-Instruct. For datasets smaller
than 30B tokens, we train for multiple epochs to
reach 30B tokens. As shown in Figure 3a, our
CCS method outperformed all baselines, achiev-
ing results comparable to MegaMath-Synth-Q&A
with only 1/4 of the data, demonstrating superior
learning efficiency. We hypothesize this is because
this approach, which mimics human learning pro-
cesses, facilitates reasoning within a more appro-
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Figure 4: (a)The impact of data accuracy on the scalability of synthetic data. data accuracy is a critical factor for
successful scaling. (b) The impact of data complexity on the scalability of synthetic data.

priate framework and establishes a mapping from
knowledge to skills, thereby smoothing the learning
process and achieving higher learning efficiency.

4.4 The Scalability of Our Method

In contrast to synthetic data used for the SFT phase,
scaling synthetic data for pre-training remains a
key challenge. Our CCS framework successfully
scaled synthetic data generation to the hundreds
of billions of tokens. Based on extensive experi-
mentation, we revealed the key factors affecting
the scaling properties of synthetic data: diversity,
accuracy, and complexity. Furthermore, we evalu-
ated our method’s generalization on STEM tasks.
The results show that our CCS synthesis method
exhibits strong generalization. See Appendix A.5
for details.

Diversity Within the CCS framework, using the
QME method as an example, we investigated the in-
fluence of original seed data and explanation style
prompt diversity on synthetic data scalability. We
compared generating knowledge explanations in 1
style versus 5 styles per seed. Figure 3b shows that
at equal data scales, using diverse seed questions
outperforms multi-style prompts. Moreover, multi-
style prompts generation per seed surpasses repeat-
edly training on each seed without style variation.
Our experiments highlight that the diversity of orig-
inal seed data is critical for scaling synthetic data.
In the CCS framework, we enhance the diversity of
the final synthetic data through seed diversity, style
prompt diversity, and method diversity (employing

various mapping strategies).

Accuracy The accuracy of LLM-generated syn-
thetic data is often unreliable. We demonstrate
that data accuracy is a critical factor for successful
scaling. First, within the KME method, we com-
pared the performance of using the model’s direct
output as the final answer (KME-direct) against
using the result of applying self-consistency to
multiple model responses (KME-self_consistency).
Figure 4a shows that the self-consistency approach
significantly outperforms using the model’s direct
output. Second, for the QME method, we examined
the impact of reference-based consistency filtering.
As shown in Figure 4a, while the unfiltered QME
method plateaus around 25B tokens, the filtered
method demonstrates continuous improvement and
is significantly superior, highlighting the critical
role of data quality for synthetic data scaling. Fi-
nally, we analyzed the sensitivity of different sized
models to data quality. Figure 4a shows that on
unfiltered QME data, the 7B model continued to
improve, whereas the 72B model quickly plateaus
or even degrades in performance, suggesting dimin-
ishing returns from lower-quality data for stronger
base models.

Complexity Using QME as a case study, we
simulate data complexity through different ques-
tion seed sources: QME-K12 (containing K12-
level questions) and QME-Competition (contain-
ing competition-level questions). Figure 4b shows
QME-Competition significantly outperforms QME-
K12, demonstrating the importance of synthetic
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Data Average

CCS(10B) 37.9
CCS-QME only 37.3
w/o solution refinement 35.9
w/o quality filtering 36.4

Table 2: The average accuracy across different meth-
ods demonstrates that multiple mapping approaches,
solution refinement, and quality filtering significantly
impact the effectiveness of the synthesized data.

data complexity. For simpler data, LLMs plateau
after learning from a certain volume, with addi-
tional data providing diminishing returns.

4.5 Ablation Study

In this section, we present detailed ablation stud-
ies on our CCS framework. We synthesized 10B
tokens of data using the same seeds to evaluate the
impact of various factors. For datasets smaller than
10B tokens, we repeated training until reaching
10B tokens to ensure fair comparison.

First, we investigated the effectiveness of em-
ploying multiple mapping methods during data
synthesis. As shown in Table 2, using four map-
ping methods outperformed using only the QME
method, primarily due to the contribution of
method diversity, as mentioned previously. As dis-
cussed previously, this is because multiple synthe-
sis methods result in better data diversity, thereby
enhancing the final results.

Next, we investigated the impact of solution re-
finement. Table 2 indicates that skipping this step
leads to a 2-point performance drop. These find-
ings validate the effectiveness of our Solution Re-
finement method in improving the ill-structured
problems commonly found in raw Q&A data. This
is primarily because raw Q&A data often contains
issues such as incomplete reasoning and skipped
steps that hinder model learning. Solution refine-
ment generates more structured and detailed step-
by-step explanations, facilitating better model train-
ing.

Finally, we assessed the effect of quality filtering
on synthetic data. Table 2 shows that omitting fil-
tering results in an average 1.5-point performance
decline. As previously noted, quality filtering im-
proves accuracy, which significantly influences the
effectiveness of the synthesized data.

5 Related Work

Synthetic Data Generation. Synthetic data has
emerged as an integral component in the devel-
opment of LLMs, playing a critical role in both
pre-training (Gunasekar et al., 2023; Li et al., 2023;
Abdin et al., 2024; Yang et al., 2024b) and post-
training phases (Grattafiori et al., 2024; Adler et al.,
2024). However, improper use of synthetic data
can lead to model collapse (Shumailov et al., 2024)
and hallucination issues (Liu et al., 2024b), numer-
ous studies have sought to enhance the usability of
synthetic data. (Yu et al., 2023; Li et al., 2024a)
increase the volume of synthetic data through prob-
lem generalization, (Yue et al., 2024) extracts Q&A
from the large-scale websites to ensure data diver-
sity, (Li et al., 2024c; Morishita et al., 2023) ensure
the accuracy of synthetic data through code or for-
mal verification. These methods have only been
validated on small-scale data, lacking large-scale
scalability verification. (Qin et al., 2025) has inves-
tigated the scaling laws of synthetic data, however,
their approach exhibits performance saturation, re-
vealing its limitations. Although models like the
Phi series (Gunasekar et al., 2023; Li et al., 2023;
Abdin et al., 2024) and Qwen2.5 series (Yang et al.,
2024b,a; Hui et al., 2024) have extensively utilized
synthetic data during pre-training, achieving no-
table results, their underlying methodologies re-
main opaque. Addressing these limitations, this
paper introduces a novel data synthesis framework,
demonstrates its scalability properties, and reveals
the critical factors underlying successful scaling.
Data Efficiency in LLM Training. Humans pos-
sess the remarkable ability to learn and infer from
limited data (Illeris, 2018), whereas LLMs typi-
cally require extensive samples to acquire compa-
rable knowledge (Allen-Zhu and Li, 2024). De-
spite the significant advancements achieved by
LLMs recently, their learning efficiency remains
under-investigated. Existing approaches to im-
prove data efficiency include data augmentation
(Ding et al., 2024), curriculum learning (Liu et al.,
2024a; Li et al., 2022), and data selection (Li et al.,
2024b). (Sachdeva et al., 2024) achieve efficient
model training through the automatic assessment
of data diversity and coverage. (Maini et al., 2024)
demonstrates rephrased data enables significantly
more efficient training than original web data. (Ye
et al., 2024) shows that carefully synthesized error-
correction data yields higher learning efficiency
than raw data. In this paper, we propose a data-
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efficient synthesis method through strategic data
combination, demonstrating superior learning effi-
ciency over alternative approaches.

6 Conclusion

In this work, we propose CCS, a novel data syn-
thesis framework inspired by human cognitive
learning processes, and demonstrate its ability to
achieve efficient learning through the combination
of knowledge-based and skill-based data. This ap-
proach achieves superior efficiency over other data
synthesis methods, validating the efficacy of this
combination learning paradigm. Furthermore, we
scale CCS to hundreds of billions of tokens, with
extensive experiments revealing three critical fac-
tors for scalable data synthesis: diversity, accu-
racy, and complexity. In future work, we spire
to extend CCS to broader reasoning domains and
explore additional combination learning data syn-
thesis paradigms to push the capability boundaries
of large language models.

Limitations

Although our combination learning approach en-
hances training efficiency, the underlying learning
mechanisms of large language models and more
effective data utilization strategies require further
investigation. The effectiveness of the CCS frame-
work relies heavily on the quality of the original
knowledge-based and skill-based datasets, as bi-
ases or inaccuracies in the source data may propa-
gate through the synthesis process. Although qual-
ity filtering is employed to enhance synthesized
data, there remains significant scope for achieving
higher data quality, potentially through the devel-
opment of improved synthesis models or the inte-
gration of formal verification.
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Margaret Mitchell, Colin A Raffel, Leandro
Von Werra, Thomas Wolf, and 1 others. 2024. The
fineweb datasets: Decanting the web for the finest
text data at scale. Advances in Neural Information
Processing Systems, 37:30811–30849.

Zeyu Qin, Qingxiu Dong, Xingxing Zhang, Li Dong,
Xiaolong Huang, Ziyi Yang, Mahmoud Khademi,
Dongdong Zhang, Hany Hassan Awadalla, Yi R Fung,
and 1 others. 2025. Scaling laws of synthetic data for
language models. arXiv preprint arXiv:2503.19551.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-
lian Michael, and Samuel R. Bowman. 2024. GPQA:
A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling.

Noveen Sachdeva, Benjamin Coleman, Wang-Cheng
Kang, Jianmo Ni, Lichan Hong, Ed H Chi, James
Caverlee, Julian McAuley, and Derek Zhiyuan Cheng.
2024. How to train data-efficient llms. arXiv preprint
arXiv:2402.09668.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Yang Wu, and 1 others. 2024.
Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint
arXiv:2402.03300.

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas
Papernot, Ross Anderson, and Yarin Gal. 2024. Ai
models collapse when trained on recursively gener-
ated data. Nature, 631(8022):755–759.

Zhengyang Tang, Xingxing Zhang, Benyou Wang, and
Furu Wei. 2024. Mathscale: Scaling instruction
tuning for mathematical reasoning. arXiv preprint
arXiv:2403.02884.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie Mil-
lican, and 1 others. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

M-A-P Team, Xinrun Du, Yifan Yao, Kaijing Ma, Bingli
Wang, Tianyu Zheng, Kang Zhu, Minghao Liu, Yim-
ing Liang, Xiaolong Jin, Zhenlin Wei, Chujie Zheng,
Kaixing Deng, Shuyue Guo, Shian Jia, Sichao Jiang,
Yiyan Liao, Rui Li, Qinrui Li, and 76 others. 2025.
Supergpqa: Scaling llm evaluation across 285 gradu-
ate disciplines. Preprint, arXiv:2502.14739.

Shubham Toshniwal, Ivan Moshkov, Sean Narenthi-
ran, Daria Gitman, Fei Jia, and Igor Gitman. 2024.
Openmathinstruct-1: A 1.8 million math instruction
tuning dataset. Advances in Neural Information Pro-
cessing Systems, 37:34737–34774.

Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay
Besiroglu, Lennart Heim, and Marius Hobbhahn.
2022. Will we run out of data? limits of llm scal-
ing based on human-generated data. arXiv preprint
arXiv:2211.04325.

Yingxu Wang and Vincent Chiew. 2010. On the cogni-
tive process of human problem solving. Cognitive
systems research, 11(1):81–92.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, and 1 others. 2024a. Qwen2.
5 technical report. arXiv preprint arXiv:2412.15115.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao,
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong
Tu, Jingren Zhou, Junyang Lin, and 1 others. 2024b.
Qwen2. 5-math technical report: Toward mathe-
matical expert model via self-improvement. arXiv
preprint arXiv:2409.12122.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-
Zhu. 2024. Physics of language models: Part 2.2,
how to learn from mistakes on grade-school math
problems. arXiv preprint arXiv:2408.16293.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023.
Metamath: Bootstrap your own mathematical ques-
tions for large language models. arXiv preprint
arXiv:2309.12284.

4732

https://cdn.openai.com/gpt-4-5-system-card-2272025.pdf
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://arxiv.org/abs/2502.14739
https://arxiv.org/abs/2502.14739


Xiang Yue, Tianyu Zheng, Ge Zhang, and Wenhu Chen.
2024. Mammoth2: Scaling instructions from the web.
Advances in Neural Information Processing Systems,
37:90629–90660.

Fan Zhou, Zengzhi Wang, Nikhil Ranjan, Zhoujun
Cheng, Liping Tang, Guowei He, Zhengzhong Liu,
and Eric P. Xing. 2025. Megamath: Pushing
the limits of open math corpora. arXiv preprint
arXiv:2504.02807. Preprint.

Kun Zhou, Beichen Zhang, Zhipeng Chen, Xin Zhao,
Jing Sha, Zhichao Sheng, Shijin Wang, Ji-Rong Wen,
and 1 others. 2024. Jiuzhang3. 0: Efficiently improv-
ing mathematical reasoning by training small data
synthesis models. Advances in Neural Information
Processing Systems, 37:1854–1889.

A Appendix

A.1 Seed Construction

Knowledge-based data. This serve as the pri-
mary carriers of mathematical knowledge, encom-
passing diverse sources such as textbooks, wiki
entries, web-pages, and syllabus. To construct a
comprehensive mathematical knowledge base, we
systematically extract math-relevant content from
large-scale unsupervised data through the follow-
ing methods:

• Web-pages: for web-based mathematical con-
tent, we use FineMath (Allal et al., 2025), a
large scale mathematical educational content
filtered from CommonCrawl.

• Books: mathematical textbooks and refer-
ence materials are retrieved from open-access
digital libraries, including Anna’s Archive 1

and Project Gutenberg 2. We apply a math-
ematical content classifier to filter out non-
mathematical books and retain only those with
substantial mathematical relevance.

• Wikis: We develop a mathematical classifier
to automatically identify and extract math-
specific concepts and knowledge entities from
Wikipedia articles. Following the training
methodology proposed in (Shao et al., 2024),
we first trained an initial classifier using web
data labeled by Qwen2.5-72B-Instruct. We
then iteratively refined the model to construct
a dataset of 200k samples. The final classifier
achieved an accuracy of 87.3% on a human-
annotated test set.

1https://annas-archive.org/
2https://www.gutenberg.org/

• Educational Supplements: Additional struc-
tured mathematical materials, such as exercise
sets, lecture notes, and curriculum-aligned
content, are collected from GitHub reposito-
ries, open educational datasets (e.g., Open-
Stax), and institutional websites. A model-
based parser is used to standardize the ex-
tracted content into a unified format. Specif-
ically, we first applied Qwen2.5-VL-72B-
Instruct (Bai et al., 2025) to convert non-
textual image content into text. We then
discarded articles containing fewer than 50
words. Finally, the data were processed
following the FineMath (Allal et al., 2025)
pipeline to facilitate subsequent text classifi-
cation.

This multi-source approach ensures broad cover-
age of mathematical knowledge while maintain-
ing rigorous filtering to exclude noisy or non-
relevant data. For our knowledge data, we will
use FineWeb’s PII removal method (Penedo et al.,
2024) to remove personal information. All col-
lected data adheres to the original data usage agree-
ments.

Problem-Solving data. The problem dataset
serves as a critical component of our study, en-
compassing a comprehensive collection of math-
ematical problems spanning elementary school to
postgraduate levels. This dataset is carefully cu-
rated from diverse sources, including examinations,
practice exercises and competitions. The dataset
comprises tens of millions of problems, provid-
ing broad representation across key mathematical
domains: Algebra, Functions, Inequalities, Set The-
ory, Probability and Statistics. Data acquisition in-
volved several methods: collection of open-source
datasets (e.g., WebInstruct (Yue et al., 2024)), min-
ing public resources such as CommonCrawl, extrac-
tion from textbooks and examination materials, and
the use of proprietary data. We employed Qwen2.5-
72B-Instruct to filter out questions that are incom-
plete, ambiguous, or involve proof problems with
answers that are difficult to verify, while also ex-
tracting final answers for subsequent verification.
We perform MinHash-based fuzzy deduplication
on these questions against evaluation benchmarks.

A.2 Prompts of Our Method
Knowledge Points Extraction Leveraging an ex-
isting mathematic taxonomy - MSC2020 (Mathe-
matics Subject Classification) (Associate Editors
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Figure 5: The seed data construction pipeline for data synthesis framework. The whole process contains two
categories : (a) mathematical knowledge data, mined from multi-source unsupervised datasets, and (b) mathematical
skills data, extracted from examinations, textbooks, and open-source materials.

of Mathematical Reviews and zbMATH, 2020), we
identify knowledge points in mathematical texts
and problems. Due to MSC2020’s multi-level tag-
ging system, we extracted knowledge points hierar-
chically. The prompt used is shown in Figure 6.

Knowledge Explanation Generation Building
upon the extracted knowledge points, given prob-
lems, and math-relevant personas selected from
Persona Hub (Ge et al., 2024), we utilize a LLM
to generate multi-style detailed explanations of the
concepts, with the prompt illustrated in Figure 7.

Solution Refinement The generated explana-
tions of knowledge points and the problem are pro-
vided as input to a large language model to generate
detailed solution steps. The prompt is presented in
Figure 8.

A.3 Data composition of the experiment

For different mapping methods, we used different
configurations to synthesize data. For QME, 5 dis-
tinct styles of knowledge point explanations were
generated per problem, yielding 105M entries (see
section A.2). for KME, one problem was generated
from each of 10M selected knowledge documents,
resulting in 10M entries. For EME, problems were
generated from 6M knowledge and reasoning docu-
ments, resulting in 6M entries. For MME, for each
problem, we select one or more pieces of knowl-
edge data based on its identified knowledge points
to form knowledge explanations, finally, 5 kind of
knowledge explanations were assembled via knowl-
edge point matching, creating approximately 105M
total entries. This process ensures comprehensive

knowledge coverage, mitigating potential halluci-
nation caused by incomplete knowledge coverage.
For our experiments, we sampled 100B tokens from
the complete dataset, with the distribution across
different methods shown in Table 3. This selection
was based on both performance variations observed
in preliminary experiments and the available data
scale for each method.

Methods Tokens(B)
QME 40
KME 10
EME 10
MME 40

Table 3: composition of synthetic data in the experi-
ment.

A.4 Training Settings

We employ the Qwen2.5 series for data synthesis.
Given the large scale of the training data, unless
otherwise specified, we conduct experiments on the
Qwen2.5-1.5B base model. We perform continued
pre-training on base models. The Adam optimizer
is employed with a linear learning rate scheduler,
starting at 1e-4 and decaying to a minimum of 3e-5,
using a batch size of 12M tokens.

A.5 Generalization of Our CCS method

We evaluate the generalization capability of our
CCS framework beyond mathematics using STEM
benchmarks, including GPQA (Rein et al., 2024),
SuperGPQA (Team et al., 2025), MMLU-STEM
(Hendrycks et al., 2021), and OlympiadBench-
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As a Mathematics Knowledge Classification Expert, you are tasked with identifying one or more knowledge points from a 
given mathematical document or problem. Select knowledge points exclusively from the provided list {{KPs}}.

Follow these requirements:
1. For non-mathematical content, return `others`.
2. For a mathematical problem, identify all applicable knowledge points being tested.

Input Text: {{text}}
Output: List all identified knowledge points, separated by `#`.

Figure 6: prompt for knowledge points extraction

As an erudite mathematician, given a mathematical problem and its associated knowledge points, provide an explanation of 
the foundational knowledge underlying this problem to an eager learner.

The learner's background information is as follows:
{{persona}}

**Instruction Requirements for the Final Explanation:**
1. When explaining knowledge points, reference the given problem and provide concrete examples where applicable.
2. Tailor the explanation to the learner's knowledge level and background ({{persona}}).
3. Do not merely list concepts—develop each one thoroughly before proceeding to the next. Prioritize depth of 
understanding and comprehensive exploration over breadth.
4. Maintain rigor (ensure in-depth conceptual coverage) and practical relevance (use specific examples, equations, or proofs 
where appropriate—e.g., if teaching integration, demonstrate its application through worked solutions).

**Given:**
- Problem: {{qustions}}
- Knowledge Points: {{KPs}}

**Proceed with the detailed explanation.**

Figure 7: prompt for knowledge explanation generation

Act as a meticulous mathematician. Given a mathematical problem and its underlying background knowledge, provide the 
solution steps and the final answer.

**Requirements:**
1. **Detail:** Include all intermediate steps, calculations, and reasoning. Do not skip any logical transitions. Explain 
*why* each step is taken.
2. **Rigor:** Ensure mathematical and logical correctness. Use precise terminology and notation. Justify key inferences or 
assumptions. Include relevant definitions, theorems, formulas, and proofs where necessary to maintain rigor (e.g., using 
LaTeX for mathematical expressions).
3. **Step-by-Step:** Present the solution as a numbered list of distinct steps. Each step should represent a clear progression 
towards the final solution.
4. **Completeness:** The solution should be self-contained and fully explain how to arrive at the answer from the problem 
statement.

Underlying background Knowledge:
{{knowledge explanations}}

**Problem:**
{{problem}}

**Output:**

Figure 8: prompt for solution refinement
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Model GPQA SuperGPQA MMLU-STEM OlympiadBench-Physics
Average

# shots 4-shot 4-shot 4-shot 4-shot

ability generalization
Qwen2.5-1.5B 30.3 19.27 50.36 6.12 26.51
Qwen2.5-Math-1.5B 30.3 14.24 46.97 15.96 26.87
CCS-Math(100B) 33.84 17.07 53.03 11.44 28.85

method generalization
Qwen2.5-1.5B 30.3 19.27 50.36 6.12 26.51
CCS-STEM(5B) 33.84 20.77 57.69 14.63 31.73

Table 4: Average accuracy of our method on STEM benchmarks, demonstrates the strong generalization capability
of our CCS data synthesis approach.

Physics(He et al., 2024), with a 4-shot evaluation
protocol. OlympiadBench-Physics incorporates a
subset of Chinese examination questions, with the
remaining benchmark items presented in English.
First, we validate our mathematics-based synthetic
data on science reasoning tasks. Table 4 shows that
our CCS method yields broader improvements in
STEM reasoning capabilities compared to the base-
line. Second, we demonstrate the generalizability
of the CCS method to other domains: using only
5B synthetic data derived from STEM sources, it
achieves significant gains on GPQA and Olympiad-
Bench, highlighting the method’s applicability be-
yond mathematics.
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