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Abstract

In Large Language Models (LLMs) generation,
there exist knowledge conflicts and scenarios
where parametric knowledge contradicts knowl-
edge provided in the context. Previous works
studied tuning, decoding algorithms, or locat-
ing and editing context-aware neurons to adapt
LLMs to be faithful to new contextual knowl-
edge. However, they are usually inefficient or
ineffective for large models, not workable for
black-box models, or unable to continuously
adjust LLMs’ sensitivity to the knowledge pro-
vided in the context. To mitigate these prob-
lems, we propose CSKS (Continuously Steering
Knowledge Sensitivity), a simple framework
that can steer LLMs’ sensitivity to contextual
knowledge continuously at a lightweight cost.
Specifically, we tune two small LMs (i.e. proxy
models) and use the difference in their output
distributions to shift the original distribution of
an LLM without modifying the LLM weights.
In the evaluation process, we not only design
synthetic data and fine-grained metrics to mea-
sure models’ sensitivity to contextual knowl-
edge but also use a real conflict dataset to vali-
date CSKS’s practical efficacy. Extensive experi-
ments demonstrate that our framework achieves
continuous and precise control over LLMs’ sen-
sitivity to contextual knowledge, enabling both
increased sensitivity and reduced sensitivity,
thereby allowing LLMs to prioritize either con-
textual or parametric knowledge as needed flex-
ibly. Our data and code are available at https:
//github.com/OliveJuiceLin/CSKS.

1 Introduction

Large Language Models (LLMs) possess extensive
parametric knowledge (Petroni et al., 2019; Burns
et al., 2023). However, the parametric knowledge
is far from reliable and correct, as it can become
outdated or incorrect due to the rapid evolution
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of knowledge over time or noise in the training
data (Liska et al., 2022; Luu et al., 2022). This
leads to knowledge augmentation methods such as
retrieval-augmented generation (RAG) to provide
extra information in context (Lewis et al., 2020).
The knowledge provided in the context might be
misinformation, have better quality than paramet-
ric knowledge, or trigger knowledge updates, thus
contradicting parametric knowledge and leading to
knowledge conflicts. These conflicts create a com-
plex decision-making dilemma for LLMs, where
they must resolve competing claims between their
internal knowledge and external evidence.

Previous works show that LLMs may fail to be
sensitive to knowledge provided in the context, de-
pending on factors including knowledge popularity,
quality, and model size (Mallen et al., 2023; Xie
et al., 2024). This can contribute to wrong genera-
tion results or hallucination (Niu et al., 2024), espe-
cially in cases where the knowledge in the context
is of high quality or more up-to-date. To mitigate
this, decoding strategies (Shi et al., 2024b; Yuan
et al., 2024), neuron-editing (Shi et al., 2024a), and
prompting or tuning-based approaches (Wang et al.,
2024b) are proposed to improve the LLMs’ sensi-
tivity to contextual knowledge. Nevertheless, they
can be inefficient for larger LMs, not workable
for black-box models, ineffective against deeply
ingrained model beliefs in LLMs, and critically,
they typically lack the ability to precisely and con-
tinuously modulate sensitivity, a key requirement
when dealing with external information of varying
quality.

To this end, we introduce a simple framework,
CSKS, to continuously adjust LLMs’ sensitivity to
context while being effective and efficient. Smaller
models are usually much easier to adapt to our
intentions through tuning, so CSKS begins with
choosing two small LMs (e.g., 7b models) and
fine-tuning them to make one faithful to contextual
knowledge while the other faithful to its parametric
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knowledge. Then it shifts the original distribution
of a larger LM (e.g., 72b model) by adding the dif-
ference between the output distributions of the two
smaller models, multiplied by a hyperparameter
α. When varying the hyperparameter α, the log-
its shift toward semantics that pay more attention
to contextual information changes, thus achieving
continuous control over the sensitivity to contextual
knowledge.

To give a fine-grained evaluation of how sen-
sitive LLMs are to knowledge in the context, we
further design synthetic QA data and define the ex-
tent of knowledge conflict from three dimensions:
degree of perturbation, contextual detail, and pop-
ularity, each with ranked levels of difficulty. We
then introduce a Sensitivity Score, which aggre-
gates these ranks for correct answers, offering a
more comprehensive assessment of contextual ad-
herence than accuracy alone.

Extensive experiments demonstrate that our
CSKS framework surpasses state-of-the-art base-
lines on large LMs under our synthetic evaluation
setup while being lightweight and more accessible.
Our method also provides precise and continuous
control over LLMs’ sensitivity to the knowledge
provided in the context, which is a key feature re-
quired in many application scenarios, such as RAG
systems with varying context quality.

2 Methodology

2.1 CSKS Framework

Building Proxy Models The first step is to build
the proxy models by fine-tuning two small LMs:
one positive model P primarily faithful to the con-
textual knowledge, and one negative model N , ad-
hering to its parametric knowledge. The selected
small models are approximately one-tenth the size
of the target LM, and we do not require the two
small models and the large target model to belong
to the same model family (shared architecture), as
long as they have the same vocabulary (shared to-
kenization schemes). However, for simplicity in
the experiments of this paper, we use small mod-
els from the same family as the target model for
adjustment.

We use the ECQA dataset (Aggarwal et al., 2021)
and apply different processing methods to construct
two fine-tuning datasets, each containing 7,568
samples. Details of the fine-tuning data and settings
are provided in Appendix A. We then fine-tune the
small LMs on the curated dataset.

Steering with Proxy Models Then, we factor
out the context knowledge from the two small mod-
els’ output distribution contrastively. For the large
model L, at each time step, we modify its output
distribution by adding a scaled differential term
derived from the outputs of P and N . Intuitively,
this process amplifies the importance of contextual
information in determining the next token distribu-
tion, with the amplification degree controlled by a
hyperparameter α that scales the differential term.

Formally, given a query q and a context c that
may contain some conflict to the target model’s
internal knowledge, we generate a response X
through our CSKS Framework. At each time step t,
we condition the raw large model L, the positive
model P , and the negative model N on the query
q, the contect c and the previous response X<t This
gives us the distribution scores DL, DP and DN ,
respectively. The response at step t can be directly
sampled (autoregressively) from the adjusted distri-
bution. Specifically, the response at each time step
is computed as:

X̃t ∼ softmax[DL + (DP −DN )α]

where α is a controlling factor that adjusts the in-
fluence of the context on the final output.

As illustrated in Figure 1, the framework begins
by fine-tuning proxy models. Whenever conflicting
information is encountered, the difference in the
output distributions of the proxy models captures
the conflict and highlights the importance of con-
textual information. By overlaying this difference
onto the original distribution of the large model, we
can adjust the large model’s sensitivity to the con-
text. The degree of adjustment can be controlled
via the hyperparameter α.

2.2 Evaluation Method

To assess a model’s ability to integrate new knowl-
edge amidst conflicting internal beliefs, we design a
pipeline for creating a dedicated evaluation dataset.
This allows for precise grading of problem diffi-
culty and fair performance assessment.

The pipeline starts with an existing QA dataset.
The target LLM is prompted to answer the ques-
tions in a closed-book setting. Correct answers are
retained, while incorrect ones (often arising from
random hallucinations) are discarded. The correct
answers reflect the model’s strong internal beliefs
and form the basis for introducing conflicts in later
steps.
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Figure 1: (left) The pipeline we use to build the proxy models, where each box represents a processing step. The
two paths on either side correspond to different processing methods applicable to the proxy models. Details are
shown in Appendix A. (right) When confronted with conflicting contexts, the proxy models function together
as a guiding "steering wheel", assisting the large model in aligning more closely with the contextual knowledge.
Additionally, we can control the degree of guidance through the parameter α continuously and precisely.

Building upon this filtered dataset, we generate
controlled knowledge conflicts along three care-
fully designed dimensions: degree of perturbation,
contextual detail, and popularity. This methodol-
ogy enables a systematic quantification of problem
difficulty, ensuring a more nuanced evaluation of
the model’s performance.

Degree of Perturbation The degree of perturba-
tion reflects how much external knowledge deviates
from the model’s original parametric knowledge.
We introduce a metric called perturbation rank to
quantify this deviation:

• Rank 1 (Minor Perturbation): Involves intra-
category substitutions that maintain semantic
coherence and ontological consistency, pre-
serving the original knowledge structure while
introducing controlled variations.

• Rank 2 (Major Perturbation): Features cross-
category substitutions that violate fundamen-
tal ontological constraints, creating seman-
tic inconsistencies that challenge the model’s
ability to reconcile conflicting knowledge.

Contextual Detail Based on the perturbed knowl-
edge, we generate context to support it. To system-
atically evaluate knowledge conflict resolution un-
der varying informational conditions, we develop a

dual-level context rank metric that operationalizes
textual complexity:

• Rank1 (Single Sentence): Presents conflict-
ing knowledge minimally through atomic
factual statements, maximizing propositional
clarity while minimizing explanatory scaffold-
ing.

• Rank2 (Paragraph): Extended contextualiza-
tion incorporating evidentiary support, causal
reasoning, and argumentative reinforcement
to simulate real-world knowledge presentation
patterns.

Popularity We approximate knowledge popular-
ity using frequency in the training corpus. Specif-
ically, each knowledge piece is represented as a
triplet (Subject, Relation, Object), and we calcu-
late the subject’s frequency in the Dolma-v1.7 cor-
pus (4.5 TB) using Infini-gram (Liu et al., 2024b).
Higher frequency suggests the model encountered
the subject more during pretraining, leading to a
stronger internal belief and reduced sensitivity to
conflicting external knowledge. We define popular-
ity rank as:

• Rank 1 (Low): Bottom 33% (≤ 103 times)

• Rank 2 (Mid): Middle 33% (103 ∼ 105

times)
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• Rank 3 (High): Top 33% (≥ 105 times)

Finally, we define the Difficulty Score of each
question as the sum of its three constituent ranks.
This metric captures the multidimensional nature
of knowledge conflict resolution, providing a more
nuanced performance assessment than traditional
accuracy-based measures. The Sensitivity Score
for a model is then defined as the cumulative dif-
ficulty score of all correctly answered questions,
normalized by the maximum possible score.

Formally, for each question qi in our evaluation
dataset Q, we first calculate a Difficulty Score Di.
This score is the sum of the ranks from our three
dimensions: Degree of Perturbation(Rpert), Con-
textual Detal(Rdet), and Popularity(Rpop).

Di = Rpert(qi) +Rdet(qi) +Rpop(qi)

The Sensitivity Score is then calculated for a
given model. Let C ⊂ Q be the set of questions
that the model answers correctly. The final score is
the sum of the Difficulty Score for all correctly an-
swered questions, normalized by the total possible
score of the entire dataset, and scaled to 100.

Ssensitivity =

∑
qi∈C Di∑
qi∈QDj

× 100

We utilize GPT-4o-mini (OpenAI, 2024) to auto-
mate this pipeline above and provide prompt tem-
plates in Appendix I. Besides, to prove the effective-
ness of this grading system, we provide a validation
experiment in Appendix A.

2.3 Motivation
Here, we’d like to illustrate the motivation that
drives us to propose our CSKS framework: To gain
insights into the performance of models with vary-
ing sizes or equipped with different methods (meth-
ods details are stated in section 3.1), we conduct a
preliminary experiment to evaluate their ability to
faithfully adhere to the knowledge provided in the
context of our synthetic dataset. The results are pre-
sented in Figure 2. We have two critical findings.
First, larger LMs exhibit greater rigidity compared
to smaller models, indicating that large models are
more stubborn when faced with knowledge con-
flicts. Second, the CAD and COIECD methods
significantly enhance the small model’s capabili-
ties, but their ability to follow context seems to be
unchanged or even diminish slightly for larger mod-
els, indicating the internal beliefs of small models
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Figure 2: Performance of models of different sizes un-
der different methods. The larger model tends to stick to
its internal beliefs when faced with conflicting informa-
tion. Prompting benefits both model sizes, while CAD
and COIECD show excellent performance on the small
model but provide minimal improvement for the large
model.

are more easily changed, whereas large models
struggle to overcome their parametric knowledge
biases independently.

Drawing on these observations, we propose the
CSKS framework, which adopts small models’ supe-
rior adaptability as proxies to guide LLMs toward
better contextual knowledge integration.

3 Experiments

3.1 Baselines
We adopt representative baselines of three types,
specifically, prompting, decoding-time strategy
(CAD (Shi et al., 2024b), COIECD (Yuan et al.,
2024)), and neuron-editing method (IRCAN (Shi
et al., 2024a)). The baselines’ details and relevant
configurations are in Appendix C.

Besides, since the positive model P is already
fine-tuned to adhere to the context, its distribution
score DP can amplify the importance of contextual
information. Thus, it’s natural to ask whether it’s
necessary to use another negative model. For this
purpose, we replace the negative model with the
original small model and refer to this configuration
as "CSKS w/o negative".

3.2 Models and Settings
We employ two state-of-the-art instruction-tuned
LLMs as target models: Llama-3-70B-Instruct
(Dubey et al., 2024) and Qwen2.5-72B-Instruct
(Yang et al., 2024)1. For each target model, we uti-
lize its smaller counterpart as proxy model – specif-
ically, fine-tuned versions of Llama-3-8B-Instruct

1To illustrate transferability, we further expand our experi-
ment on another model family, gemma-2-27b-it (Team et al.,
2024) and show the results in Appendix H
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Methods Degree of Perturbation(in %) Contextual Detail(in %) Popularity(in %) Sensitivity Score
rank 1 rank 2 rank 1 rank 2 rank 1 rank 2 rank 3

MusiQue • LLaMA-3-Instruct

Origin 64.85 20.17 55.08 30.00 49.44 42.63 35.71 38.13
PROMPT 75.88 (+11.03) 38.73 (+18.56) 69.22 (+14.14) 45.44 (+15.44) 65.92 (+16.48) 58.03 (+15.40) 48.26 (+12.55) 53.10 (+14.97)
CAD 62.10 (-2.65) 19.88 (-0.29) 51.69 (-3.39) 30.44 (+0.44) 47.66 (-1.78) 40.62 (-2.01) 35.06 (-0.65) 37.04 (-1.09)
COIECD 65.00 (+0.15) 20.32 (+0.32) 54.49 (-0.59) 30.88 (+0.88) 49.67 (+0.23) 42.64 (+0.01) 35.93 (+0.22) 38.35 (+0.22)
CSKS W/O NEGATIVE 69.41 (+4.56) 44.18 (+24.01) 67.74 (+12.66) 45.88 (+15.88) 61.69 (+12.25) 54.46 (+11.83) 54.32 (+18.61) 53.96 (+15.83)
CSKS 78.08 (+13.23) 60.38 (+40.21) 79.97 (24.89) 58.53 (28.53) 75.27 (+25.83) 65.84 (+23.21) 66.66 (+30.95) 66.72 (+28.59)

MusiQue • Qwen2.5-Instruct

Origin 69.85 23.71 57.29 36.32 53.00 47.54 40.04 42.58
PROMPT 76.76 (+6.91) 36.08 (+12.37) 67.60 (+10.31) 45.29 (+8.97) 62.81 (+9.81) 58.48 (+10.94) 48.27 (+8.23) 52.32 (+9.74)
CAD 82.20 (+12.35) 57.88 (+34.17) 76.58 (+19.29) 63.53 (+27.21) 75.27 (+22.27) 67.18 (+19.64) 67.74 (+27.70) 67.68 (+25.20)
COIECD 69.85 (+0.00) 24.74 (+1.03) 57.58 (+0.29) 37.06 (+0.74) 53.45 (+0.45) 47.54 (+0.00) 41.13 (+1.09) 43.21 (+0.63)
CSKS W/O NEGATIVE 73.97 (+4.12) 71.87 (+48.16) 74.22 (+16.93) 71.61 (+35.29) 73.50 (+20.50) 73.88 (+26.34) 71.43 (+31.39) 72.54 (+29.96)
CSKS 94.85 (+25.00) 85.13 (+61.42) 90.43 (+33.14) 89.56 (+53.24) 93.54 (+40.54) 85.94 (+38.40) 90.47 (+50.43) 89.26 (+46.68)

PopQA • LLaMA-3-Instruct

Origin 52.04 23.62 52.21 23.48 43.14 37.29 33.22 34.32
PROMPT 72.99 (+20.95) 46.91 (+23.29) 74.50 (+22.29) 45.42 (+21.94) 60.20 (+17.06) 61.53 (+24.24) 58.18 (+24.96) 57.07 (+22.75)
CAD 47.63 (-4.41) 24.12 (+0.50) 49.94 (-2.27) 21.85 (-1.63) 39.80 (-3.34) 36.85 (-0.44) 31.17 (-2.05) 32.69 (-1.63)
COIECD 53.03 (+0.99) 23.62 (+0.00) 52.43 (+0.22) 24.26 (+0.78) 43.31 (+0.17) 38.13 (+0.84) 33.71 (+0.49) 34.82 (+0.50)
CSKS W/O NEGATIVE 59.64 (+7.6) 53.09 (+29.07) 67.99 (+15.78) 43.77 (+20.29) 56.18 (+13.04) 57.52 (+20.23) 53.97 (+20.75) 54.13 (+19.81)
CSKS 69.79 (+17.75) 65.45 (+41.83) 80.46 (+28.25) 54.80 (+31.32) 66.72 (+23.58) 67.72 (+30.43) 68.40 (+35.18) 66.24 (+31.92)

PopQA • Qwen2.5-Instruct

Origin 66.15 28.59 60.60 34.18 51.67 47.83 42.79 43.59
PROMPT 75.63 (+9.48) 40.17 (+11.58) 71.85 (+11.25) 43.99 (+9.81) 58.86 (+7.19) 57.86 (+10.03) 57.05 (+14.26) 54.63 (+11.04)
CAD 78.06 (+11.91) 61.15 (+32.56) 78.04 (+17.44) 61.19 (+27.01) 70.73 (+19.06) 69.23 (+21.40) 68.88 (+26.09) 67.80 (+24.21)
COIECD 65.82 (-0.33) 28.04 (-0.55) 59.49 (-1.11) 34.40 (+0.22) 50.50 (-1.17) 47.32 (-0.51) 43.11 (+0.32) 43.31 (-0.28)
CSKS W/O NEGATIVE 68.02 (+1.87) 75.83 (+47.24) 74.06 (+13.46) 69.79 (+35.61) 75.08 (+23.41) 70.57 (+22.74) 70.17 (+27.38) 71.77 (+28.18)
CSKS 93.83 (+27.68) 90.40 (+61.81) 93.27 (+32.67) 90.96 (+56.78) 88.46 (+36.79) 93.14 (+45.31) 94.65 (+51.86) 92.24 (+48.65)

Table 1: Accuracy when evaluated on specific ranks of individual dimensions in the dataset and the overall Sensitivity
Score. For each dimension, Rank 1 represents the least challenging cases, while higher ranks indicate increasing
difficulty. CSKS outperforms baseline methods under all metrics.

for the Llama-3 series and Qwen2.5-7B-Instruct
for the Qwen2.5 series. We use greedy decoding in
all the experiments to ensure reproducibility.

For constructing the evaluation dataset, we use
MuSiQue (Trivedi et al., 2022) and PopQA (Mallen
et al., 2023), both widely used question-answering
datasets, as the source datasets. Following the
setup in (Shi et al., 2024a), we format the task
as binary-choice questions. Correct options corre-
spond to the answers in context, and the incorrect
options correspond to the original answers to the
question. This design creates controlled knowl-
edge conflict scenarios where model performance
directly reflects its ability to prioritize contextual
or parametric knowledge. It is important to clarify
that the contextual answers used here are exactly
the perturbed answers we introduce during dataset
construction.

To comprehensively evaluate the model’s per-
formance across the entire dataset, we use ac-
curacy as a default metric, calculated per rank
within our three operational dimensions (perturba-
tion, context, popularity). Additionally, we employ

the previously defined Sensitivity Score to assess
the model’s ability to adhere to the given context,
which is also normalized into a 100-scale.

3.3 Results
Table 1 shows CSKS consistently outperforms all
baselines across all evaluation dimensions, achiev-
ing substantial average sensitivity score improve-
ments (LLaMA-3: +30.26, Qwen2.5: +47.67). Key
observations include:

1. Baseline Limitations: Decoding-time strat-
egy baselines exhibit inconsistent effective-
ness. While CAD shows moderate gains
on Qwen2.5 (+24.2 sensitivity score), it de-
grades performance on LLaMA-3 (-1.1 sensi-
tivity score). COIECD’s entropy-based con-
straints seem insufficient for resolving deep
parametric conflicts, yielding marginal im-
provements of less than 1.5 across all configu-
rations. The core reason for these limitations
lies in how the steering signal is generated.
CAD and COIECD rely on a single model’s
self-contrast (with vs. without context). How-
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ever, as large models are "stubborn" and resis-
tant to deviating from their strong parametric
knowledge, this "self-guidance" signal is of-
ten too weak to overcome the model’s own
biases.

In contrast, CSKS derives a powerful and ex-
plicit steering signal from the difference be-
tween two smaller, more adaptable proxy mod-
els that have been contrastively tuned. This
use of external, specialized "experts" provides
a much stronger and more reliable guide to-
wards contextual faithfulness, explaining its
significantly superior performance.

2. Robustness of CSKS and the Synergy with
Negative Models: The "CSKS w/o nega-
tive" configuration (replacing the negative
model with the original small model) re-
mains competitive, outperforming other base-
lines (e.g., +15.83 sensitivity for LLaMA-3
in MusiQue). This indicates the robustness of
the core CSKS framework, as it can leverage
the proxy model’s knowledge to mitigate para-
metric conflicts even without explicit negative
sampling. This finding also hints at potential
cost-saving opportunities in practical imple-
mentations. On the other hand, incorporating
the negative model further boosts the perfor-
mance (MusiQue avg. sensitivity: LLaMA-3
+28.59, Qwen2.5 +46.68), highlighting its crit-
ical role in enhancing the framework’s ability
to distinguish between contextual and intrinsic
knowledge.

3. Dimensional Sensitivity: Among the three
dimensions we introduce, the perturbation de-
gree has the greatest effect: large perturba-
tions create obvious conflicts demanding reso-
lution, while small, subtle deviations are more
confounding, making it harder for the model
to choose between external context and inter-
nal knowledge. Furthermore, CSKS smooths
or even reverses differences across popularity
ranks, indicating its efficacy in mitigating pre-
training bias associated with entity popularity.

After showing the effectiveness of CSKS frame-
work, we further show that our framework can
achieve continuous and precise control over the
knowledge sensitivity to contextual knowledge
through the steering parameter α. As illustrated
in Figure 3, increasing α values (α > 0) produce a
monotonic enhancement of sensitivity score from

4.32 to 39.80 for LLaMA on MuSiQue, with po-
tential for further increase. This directional control
proves critical for applications requiring dynamic
knowledge updates, where models must suppress
outdated parametric knowledge in favor of fresh
contextual evidence. Results on PopQA can be
found in Appendix E.)

The previous experiments demonstrate the ef-
fectiveness of CSKS framework when aggregating
new and conflicting knowledge in context setting
α > 0. Notably, extending α to negative values
(α < 0) reveals an inverse mode of action: the
framework can suppress contextual influence to
amplify parametric reliance. As demonstrated in
Figure 3, setting α = −2.0 reduces contextual
sensitivity score by 15.9 for LLaMA and 32.8 for
Qwen compared to their baselines (α = 0), effec-
tively transforming the target model into a para-
metric knowledge conservative. This bidirectional
control mechanism (α ∈ (−∞,+∞)) enables con-
tinuous scenario adaptation, allowing practitioners
to calibrate models for either context-sensitive sce-
narios or parametric knowledge preservation.

3.4 Real-World Knowledge Conflicts
Evaluation

To address concerns about the reliance on synthetic
datasets and further validate the practical applica-
bility of CSKS, we conducted an additional experi-
ment on the DynamicQA benchmark (Marjanovic
et al., 2024). DynamicQA is designed to evaluate
LLMs’ ability to handle knowledge conflicts aris-
ing from evolving real-world information. It cat-
egorizes questions based on conflict types: Static
(there is only one possible representation of such
facts), Temporal (conflicts arising from knowledge
updated over time) and Disputable (conflicts where
reliable sources disagree). This setting allows us
to assess CSKS’s performance in more realistic and
diverse conflict scenarios.

We provide the results of Qwen2.5-72B-Instruct
steered by CSKS on DynamicQA in Figure 4, with
varied control parameter α from -2.0 to +2.0. The
accuracy was measured separately for each con-
flict partition type, as well as overall. We also
provide results of other methods (Origin, Prompt,
CAD and COIECD) and their comparison with
CSKS in Appendix F. Consistent with our findings
on synthetic datasets, CSKS demonstrates continu-
ous control over the model’s contextual sensitivity.
As α increases, the overall accuracy monotonically
improves, indicating enhanced faithfulness to the
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Figure 3: The performance of LLaMA and Qwen controlled bidirectionally, demonstrating the continuous adjustment
capability of our method from two directions.
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flict partition type, demonstrating CSKS’s effectiveness and
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knowledge conflicts.

provided context.

3.5 Analysis

The Impact of Proxy Model Size To explore
resource savings with smaller proxy models, we
use the Qwen2.5 family (0.5B to 7B) to steer a
72B model under our framework. As shown in the
Figure 5, the 0.5B proxy has a subtle but growing
impact on the target model’s sensitivity score, while
the 1.5B proxy’s impact already becomes very sig-
nificant. A 3B proxy’s impact is comparable, oc-
casionally slightly better, than a 7B proxy. These
results demonstrate our framework can adjust con-
text sensitivity on a much larger model with signif-
icantly smaller overhead (e.g., using a 3B proxy).
This efficiency may stem from our framework’s
selective steering mechanism, where proxy models
focus exclusively on context sensitivity modulation
rather than full knowledge representation.

Trade-Off Discussion To study how scaling the
control parameter α would impact the general ca-
pabilities of the model, we conduct an evalua-

Alpha STEM Humanities Other Social Average

-2.0 89.34 78.01 88.27 82.54 85.00
-1.5 90.98 77.66 88.08 83.81 85.44
-1.0 91.39 77.32 88.64 83.17 85.51
-0.7 91.39 78.69 88.64 84.13 86.01
-0.5 91.39 79.73 89.01 84.44 86.45

72B(α = 0) 92.62 79.04 88.64 84.76 86.45
+0.5 91.80 78.01 87.71 84.44 85.65
+0.7 91.80 78.69 87.52 84.13 85.65
+1.0 90.98 78.01 87.34 83.81 85.22
+1.5 90.98 76.29 85.85 83.49 84.21
+2.0 90.98 74.91 84.92 81.27 83.06

7B 84.84 70.79 76.35 76.83 76.78

Table 2: Performance comparison showing trade-off be-
tween faithfulness to contextual knowledge and general
capabilities.

tion on the MMLU benchmark (Hendrycks et al.,
2021) for world knowledge understanding ability of
LLMs (complex reasoning on 2WikiMultiHopQA
(Ho et al., 2020) is detailed in Appendix G). For
simplicity, we tested on two tasks from each of
MMLU’s four subjects (STEM, Humanities, So-
cial, and Other). The experiment results in Table
2 reveal a crucial trade-off in knowledge sensitiv-
ity control: while increasing the absolute value
of α enables extensive adjustment of the model’s
contextual sensitivity (Figure 3), excessive values
(|α| > 1.5) lead to noticeable degradation in gen-
eral capabilities, particularly Humanities (-4.10%)
domain. This performance decline suggests that ex-
treme sensitivity adjustments may disrupt the target
model’s fundamental reasoning patterns, highlight-
ing the importance of maintaining a balanced α
range that preserves core competencies while en-
abling effective knowledge adaptation. Notably,
even with substantial α variation, the target 72B
model consistently outperforms the 7B model by
significant margins (average +8.67%), demonstrat-
ing our framework successfully leverages the large
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Figure 5: The performance of CSKS under varying proxy model sizes on MuSiQue and PopQA respectively. Smaller
proxy models (0.5B, 1.5B) have a marginal yet increasing effect on the 72B target model’s sensitivity score.
Remarkably, the 3B proxy model matches the 7B model in sensitivity adjustment, validating that our framework
enables potent context sensitivity modulation using substantially smaller models.

Raw α = 0.5 α = 0.7 α = 1.0 α = 1.5 α = 2.0

MusiQue • Proxy-LLaMA

51.24 60.38 66.36 76.32 87.79 93.45

PopQA • Proxy-Qwen

56.56 75.07 84.67 90.89 93.58 94.73

Table 3: Performance of GPT-3.5-Turbo steered by
LLaMA and Qwen. Our method also works for black-
box models such as GPT-3.5-Turbo.

model’s superior general ability alongside precise
sensitivity control. These findings indicate that
strategic α selection can achieve an effective equi-
librium between contextual adaptability and gen-
eral capability preservation, fulfilling our frame-
work’s dual objectives of precise knowledge steer-
ing and performance maintenance.

Extending to Black Box Model For the black-
box models that we can’t obtain weights, our frame-
work remains effective. We apply our framework
to adapt GPT-3.5-Turbo (Ouyang et al., 2022). In
this setting, since we can only access the log prob-
abilities for the top five tokens through the API,
CSKS only reweights the five tokens. We present
the results in Table 3. For black-box models that do
not belong to the same model family as the proxy
model, CSKS can still effectively control its con-
text sensitivity, demonstrating its broad application
domain.

4 Related Works

4.1 Knowledge Conflicts

Knowledge conflicts occur when contextual knowl-
edge contradicts parametric knowledge (Mallen

et al., 2023; Xu et al., 2024; Kortukov et al.,
2024). Previous research often prioritized con-
textual knowledge over parametric knowledge for
LLM responses (Gekhman et al., 2023; Lee et al.,
2022; Shi et al., 2024c; Zhang et al., 2020; Zhou
et al., 2023). This is a valuable setting for applica-
tions such as retrieval-augmented LMs (Ram et al.,
2023; Shi et al., 2024d), where the context may
be of high quality (e.g., containing updated knowl-
edge). However, varying context quality across
scenarios means that a constant reliance on context
is insufficient—an underexplored issue. We advo-
cate for precise, continuous control over LLMs’
contextual reliance and propose an effective, ef-
ficient framework to achieve this. Another line
of work focuses on evaluating and understanding
LLMs in knowledge conflicts and mining factors af-
fecting LLMs’ choice in knowledge conflicts. For
instance, contextual detail affects LLM choices
(Wu et al., 2024a; Tan et al., 2024a); LLMs favor
popular entity information and are sensitive to data
presentation order (Xie et al., 2023); models resist
obviously false permuted knowledge (Qian et al.,
2024); and increased conflicting hops challenge
LLM reasoning (Jin et al., 2024). We leverage
these key factors to measure knowledge manipu-
lation difficulty and offer a more comprehensive
evaluation method. We further utilize the key fac-
tors to measure the difficulty of manipulating cer-
tain knowledge and provide a more comprehensive
evaluation method.

4.2 Updating Knowledge in Language Models

To introduce new knowledge to LMs, previous
works explore tuning-based approaches (Wang
et al., 2024b), decoding strategies (Shi et al., 2024b;
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Zhao et al., 2024; Wang et al., 2024a), and model
editing methods (Meng et al., 2023; Gupta et al.,
2023; Shi et al., 2024a). Nevertheless, these meth-
ods are usually inefficient or ineffective for large
models, not workable for black-box models, or un-
able to continuously adjust LLMs’ sensitivity to the
new contextual knowledge, while our approach can
steer LLMs’ sensitivity to contextual knowledge
continuously at a lightweight cost.

4.3 Control of Language Models

Motivated by LMs’ growing capabilities (Li et al.,
2023b), many studies focus on controlling certain
attributes of LM generation, usually non-toxicity
and positive sentiment. Representation engineer-
ing is a common solution. Han et al. (2024) use
word embeddings to steer LMs for language model
detoxification and sentiment control. Zhao et al.
(2024) steer knowledge behaviors of LLMs with
SAE-based representation engineering. Zeng et al.
(2025) and Tan et al. (2024b) leverage LLMs’ inter-
nal representations for knowledge integration and
security. Some other works tune the hidden repre-
sentations of LMs to change behaviors (Wu et al.,
2024b; Hernandez et al., 2024; Li et al., 2023a;
OpenAI, 2024). Another line of work incorporates
other models to guide the generation process (Liu
et al., 2021, 2024a; Feng et al., 2024). Our work
also borrows this idea but emphasizes controlling
sensitivity to contextual knowledge and achieves
precise and continuous control.

5 Conlusion

We present CSKS, an efficient and effective frame-
work using small LMs as proxies to adjust output
distributions of LLMs, thus controlling LLMs’ sen-
sitivity to knowledge provided in context. We also
introduce a fine-grained evaluation method for this
sensitivity. Extensive experiments demonstrate that
our framework achieves state-of-the-art, more cru-
cially, achieves precise and continuous control over
how LLMs utilize information from context.

Limitations

While we show CSKS’s effective control of LLMs
in knowledge adaptation, the optimal calibration of
the guiding hyperparameter α may vary in real sce-
narios where a balance between knowledge adapta-
tion and LLMs’ general abilities is essential. Future
research could further explore methods for auto-
matically or more adaptively determining the value

of α to enhance the practical flexibility of the CSKS
framework.
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A Finetune Dataset Construction Details

To obtain our P model and N model, we fine-
tune the Llama-3-8B-instruct model and Qwen-2.5-
7B-instruct model. To ensure generalization, the
fine-tuning datasets are constructed using methods
and domains different from those of the synthe-
sized conflict datasets in our main experiment. To
achieve optimal results, we have designed a spe-
cialized pipeline for constructing the fine-tuning
dataset as shown in Figure 6.

We select ECQA as the base dataset, which is a
multiple-choice QA dataset where each question is
accompanied by five answer options.

• For the P model: We select the incorrect op-
tion least related to the correct answer as the
"contextual answer."

• For the N model: We select the incorrect op-
tion most related to the correct answer as the
"contextual answer."

Next, using GPT, we generate supportive context
based on the chosen answer and the question.

• For the P model, the generated context was
short and simple.

• For the N model, the context was long and
detailed.

Finally, we again use GPT to generate explana-
tions based on the context, question, and selected
answer.

• For the P model, the explanation justified why
the selected answer was correct.

• For the N model, the explanation detailed
why the selected answer was incorrect.

Using these constructed answers and their corre-
sponding explanations, we fine-tune the model as
follows:

• The P model was fine-tuned on the selected
answers and their associated explanations.

• The N model was fine-tuned on the original
correct answers and their explanations.

Figure 6: The pipeline to get the data used to finetune
our P model and N model

Figure 7: The accuracy of the LLaMA370BInstruct
model across questions of each difficulty score.

B Effectiveness of the Grading System

To validate the effectiveness of our grading system,
we conduct a validation experiment. We analyze
the accuracy of the target model across questions
of varying difficulty levels, with the results shown
in Figure 7. The results reveal that as question
difficulty increases, accuracy correspondingly de-
creases. This demonstrates that our grading system
successfully quantifies problem difficulty.

C Baselines

The baselines we adopt in our main experiment are:

• Origin: refers to naive LLMs without any
modifications.

• Prompt: prompts LLMs with explicit instruc-
tions to ensure their answers align with the
given context.

• IRCAN : identifies context-responsive neu-
rons within the LLM’s feedforward network
(FFN) layers and enhances their activation to
improve the utilization of contextual informa-
tion.

• CAD : is a decoding-time strategy that adjusts
the output probabilities of LLMs to empha-
size differences between context-aware and
context-agnostic scenarios.

• COIECD : adapts its decoding strategy based
on a contextual information-entropy con-
straint to discern when a context generates
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Figure 8: The effects of different methods on the
LLaMA38Binstruct model tested on PopQA.

conflicting knowledge with the model’s inter-
nal knowledge.

For CAD and COIECD, we use the optimal hype-
parameters reported in their papers for baselines.
For our method, we do not search for an optimal
parameter but just setting α the to same as CAD.
To check whether these baselines are effective, we
conducted a verification on small model. The re-
sults are presented in Appendix D, which shows
that while all baseline methods work fine for the
small model, IRCAN shows minimal performance
enhancement. This limited efficacy combined with
IRCAN’s significantly larger computational over-
head makes it unsuitable for our primary objective
of efficient large-model adaption. So we exclude
IRCAN from our main experiments.

D Fine-tune results on small models

Figure 8 illustrates the effects of different methods
on the LLaMA-3-8B-instruct model. From the
results, we observe the following:

1. The Prompt, CAD and COIECD methods all
improve the performance of the 8B small
model, while the impact of IRCAN on the
small model’s performance is minimal.

2. We also present the performance of our fine-
tuned P model and N model. The P model
performs the best, as it effectively incorpo-
rates knowledge from the context, while the
N model scores much lower, indicating that
it tends to rely on its internal knowledge and
resists external contextual information. This
indicates that our fine-tuning is successful.

E Steering Results on PopQA

We present the steering results on the PopQA
dataset, which have similar trend as that on the

MuSiQue dataset.
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Figure 9: Sensitivity score variation with alpha values
on PopQA.

F Performance Comparison on
DynamicQA

Figure 10 presents a head-to-head comparison of
these methods across overall accuracy and specific
conflict partition types (Static, Temporal, and Dis-
putable) on DynamicQA. Across all evaluated di-
mensions, CSKS consistently and substantially out-
performs all baseline approaches.

The consistently superior performance of CSKS
across diverse real-world conflict types underscores
its robustness and practical advantages over ex-
isting methods for managing knowledge conflicts
in LLMs. The substantial margins, especially in
the more challenging Disputable partition, further
validate the efficacy of our proxy-based steering
mechanism.

G The CSKS impact on reasoning ability

To further investigate the impact of CSKS on more
complex reasoning abilities, which was a concern
raised in previous reviews, we evaluate the model
on the 2WikiMultiHopQA dataset, a benchmark
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Figure 10: Comparative performance (Accuracy %) of
CSKS and baseline methods (Raw Model, Prompt, CAD,
COIECD) on the DynamicQA dataset. Results are
shown for Overall Accuracy and broken down by con-
flict partition types: Static, Temporal, and Disputable.
CSKS consistently outperforms all baseline methods
across all categories.

designed to test multi-hop reasoning capabilities
through questions requiring connecting informa-
tion from multiple sources.

The results on 2WikiMultiHopQA (Table 4)
show a similar trend to MMLU regarding the in-
fluence of α. The highest EM and F1 scores are
achieved when α is close to 0 (e.g., α ∈ [0.0, 0.7]).
As |α| increases, indicating stronger steering to-
wards either contextual or parametric knowledge,
there is a gradual decline in multi-hop reasoning
performance. For instance, at α = +2.0, the EM
score drops to 46.62 from a peak of 54.50. How-
ever, it is crucial to note that even at these more ex-
treme α values, the performance of the 72B model
(e.g., 46.62 EM at α = +2.0) remains significantly
higher than that of a much smaller 3B model (26.37
EM), which struggles with the inherent complexity
of the task. This suggests that while very strong
steering can impact complex reasoning, the CSKS
framework, within a moderate range of α, allows
for effective context sensitivity adjustment while
largely preserving the sophisticated reasoning ca-
pabilities of the large model.

The performance decline observed on both
MMLU and 2WiKiMultiHopQA suggests that ex-
treme sensitivity adjustments may disrupt the target
model’s fundamental reasoning patterns, highlight-
ing the importance of maintaining a balanced α
range that preserves core competencies while en-
abling effective knowledge adaptation. Notably,
even within this kind-of-broad range, the target 72B
model consistently outperforms the 7B/3B proxy
models by significant margins (average +8.67% on

Alpha (α) EM Score F1 Score

-2.0 48.00 59.08
-1.5 52.00 62.54
-1.0 53.50 64.33
-0.7 54.50 64.99
-0.5 54.50 64.67
72B (α = 0) 54.50 64.78
+0.5 53.63 64.11
+0.7 53.37 63.79
+1.0 52.62 62.89
+1.5 50.75 60.67
+2.0 46.62 56.60

3B (baseline) 26.37 38.35

Table 4: Performance (EM and F1 scores) of Qwen
steered by CSKS on the 2WikiMultiHopQA multi-hop
reasoning benchmark for different α values. Results for
a 3B baseline model are also shown for comparison.

MMLU, and substantially higher EM/F1 on 2Wiki-
MultiHopQA), demonstrating that our framework
successfully leverages the large model’s superior
general ability and reasoning capacity while achiev-
ing precise context sensitivity control. These find-
ings collectively indicate that strategic α selection
can achieve an effective equilibrium between con-
textual adaptability and model capability preserva-
tion, fulfilling our framework’s dual objectives of
precise knowledge steering and performance main-
tenance.

H CSKS results on Gemma-2-27b-it

To further substantiate the transferability of our
CSKS framework and demonstrate its generalization
capabilities across diverse LLM architectures, we
extended our empirical validation to the Gemma-
2 model family. For these experiments, Gemma-
2-27b-it was utilized as the target large language
model, with its smaller counterpart, Gemma-2-2b-
it, serving as the proxy model maintaining the ratio
of the size of the target model to the proxy model at
approximately 10 to 1. We evaluated performance
on both the PopQA and MuSiQue datasets, main-
taining the same experimental setup and metrics as
used for the Llama-3 and Qwen2.5 models. The
comprehensive results for the Gemma-2-it models
are presented in Table 5.

It is noteworthy that the Gemma-2-27b-it model
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Figure 11: The prompt we use to ask gpt to make a
slight permutation.

exhibits a relatively strong baseline performance
compared to the Llama-3 and Qwen2.5 models
evaluated earlier. Despite this higher baseline,
CSKS consistently delivered substantial and leading
improvements across both datasets. The success-
ful application of CSKS to the Gemma-2 architec-
ture, which differs from the previously tested mod-
els, provides compelling evidence for the frame-
work’s broad applicability and robust generaliza-
tion. These results effectively address concerns
regarding transferability, highlighting CSKS as a
versatile solution for steering knowledge sensitiv-
ity in large language models.

I Prompts used to generate our
synthesized dataset

Figure 11 - Figure 14 show the prompts used to
generate the features for different dimensions of
our dataset.

Figure 12: The prompt we use to ask gpt to make a
siginificant permutation.

Figure 13: The prompt we use to ask gpt to generate a
short context.
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Methods Degree of Perturbation(in %) Contextual Detail(in %) Popularity(in %) Sensitivity Score
rank 1 rank 2 rank 1 rank 2 rank 1 rank 2 rank 3

PopQA • Gemma-2-it

Origin 82.81 52.42 81.71 53.52 69.00 67.89 66.02 64.49
PROMPT 87.44 (+4.63) 68.28 (+15.86) 85.24 (+3.53) 70.48 (+16.96) 77.00 (+8.00) 77.59 (+9.70) 78.96 (+12.94) 76.30 (+11.81)
CAD 87.88 (+5.07) 66.96 (+14.54) 88.54 (+6.83) 66.29 (12.77) 76.33 (+7.33) 77.92 (+10.03) 77.99 (+11.97) 75.37 (+10.88)
COIECD 84.14 (+1.33) 54.62 (+2.20) 82.37 (+0.66) 56.38 (+2.86) 71.00 (+2.00) 69.56 (+1.67) 67.63 (+1.61) 66.38 (+1.89)
CSKS 88.98 (+6.17) 70.70 (+18.28) 84.80 (+3.09) 74.88 (+21.36) 81.33 (+12.33) 79.26 (+11.37) 78.96 (+12.94) 80.47 (+15.98)

MusiQue • Gemma-2-it

Origin 85.13 40.42 72.76 52.86 68.16 60.71 59.62 59.01
PROMPT 88.95 (+3.82) 50.00 (+9.58) 75.10 (+2.34) 63.90 (+11.04) 73.63 (+5.47) 67.20 (+6.49) 67.70 (+8.08) 66.60 (+7.59)
CAD 88.32 (+3.19) 53.61 (+13.19) 78.51 (+5.75) 63.48 (+10.62) 77.17 (+9.01) 67.85 (+7.14) 68.01 (+8.39) 67.89 (+8.88)
COIECD 85.56 (+0.43) 42.55 (+2.13) 73.82 (+1.06) 54.35 (+1.49) 69.45 (+1.29) 61.36 (+0.65) 61.49 (+1.87) 60.43 (+1.42)
CSKS 93.63 (+8.50) 70.85 (+30.43) 83.82 (+11.06) 80.68 (+27.82) 84.89 (+16.73) 80.19 (+19.48) 81.67 (+22.05) 80.75 (+21.74)

Table 5: Performance of CSKS and baseline methods on PopQA and MuSiQue datasets using Gemma-2-27b-it
as the target LLM and Gemma-2-2b-it as the proxy model. Results show accuracy (in %) for different ranks of
perturbation, contextual detail, and popularity, along with the overall Sensitivity Score. Improvements by CSKS over
the Origin are shown in magenta.

Figure 14: The prompt we use to ask gpt to generate a
long context.
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