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Abstract

Rencent advancements in large language mod-
els (LLM) have shown impressive versatility
across various tasks. Short text matching is
one of the fundamental technologies in natural
language processing. In previous studies, the
common approach to applying them to Chi-
nese is segmenting each sentence into words,
and then taking these words as input. How-
ever, existing approaches have three limita-
tions: 1) Some Chinese words are polysemous,
and semantic information is not fully utilized.
2) Some models suffer potential issues caused
by word segmentation and incorrect recogni-
tion of negative words affects the semantic un-
derstanding of the whole sentence. 3) Fuzzy
negation words in ancient Chinese are difficult
to recognize and match. In this work, we pro-
pose a novel adaptive Transformer for Chinese
short text matching using Data Augmentation
and Semantic Awareness (DASA), which can
fully mine the information expressed in Chi-
nese text to deal with word ambiguity. DASA
is based on a Graph Attention Transformer En-
coder that takes two word lattice graphs as in-
put and integrates sense information from N-
HowNet to moderate word ambiguity. Spe-
cially, we use an LLM to generate similar sen-
tences for the optimal text representation. Ex-
perimental results show that the augmentation
done using DASA can considerably boost the
performance of our system and achieve signifi-
cantly better results than previous state-of-the-
art methods on four available datasets, namely
MNS, LCQMC, AFQMC, and BQ.

1 Introduction

Short text matching (STM) plays an essential role
in semantic similarity recognition. The main task
of STM aims to predict whether two sentences
are semantically equivalent or not. STM is a
fundamental component in many NLP applica-
tions including information retrieval (Ensan and
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Al-Obeidat, 2019; Arabzadeh et al., 2020; Wang
et al., 2020), question answering systems (Liu et
al., 2018; YueLiu et al., 2019; Wang et al., 2020;
Wu et al., 2020) and dialogue systems (Yu et al.,
2014; Gao et al., 2018; Feng et al., 2019), etc.

Recent years have seen great progress in deep
learning methods for text matching (Mueller and
Thyagarajan, 2016; Chen et al., 2016; Gong et al.,
2017; Lan and Xu, 2018). However, almost all of
these models were initially proposed for English
text matching. For Chinese language tasks, earlier
approaches either used Chinese characters directly
as input or segmented sentences into words before
feeding them into a STM model. While character-
based models often outperform word-based ones,
a key limitation is that they do not fully leverage
explicit word-level information, which has been
demonstrated to be useful for semantic similarity
matching (Li et al., 2019, 2020).

However, a large number of Chinese words are
polysemous, which brings great difficulties to se-
mantic understanding. There are more polysemy
in short texts than in long texts, as short texts usu-
ally have less contextual information, making it
difficult for the model to capture the correct mean-
ing. As is shown in Figure 1, the word “2ú»
(disclose)” in red in source text actually has two
meanings: one is to describe “Ä2 (leakage)” and
another is “Aú (outflow)”. Intuitively, if other
words in the context have similar or related mean-
ings, the probability of of their occurrence will
increase. In addition, the negative word “ 
ý
(not be)” in blue in source text needs to be con-
sidered in semantic understanding, which plays a
strong turning role in the semantics of the whole
sentence.

Furthermore, it is inevitable to make word seg-
mentation errors. This will result in semantic am-
biguity, inconsistency and changes, and errors in
final matching. For example, if the word segmen-
tation fails to output “2ú» (disclose)” in source
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Figure 1: An example of word segmentation and the potential word ambiguity.

text, we will lose useful sense information. In Chi-
nese, “2 (dew)” “ú» (out)” is a bad segmenta-
tion, which deviates the correct meaning of “2
ú» (disclose)”. It has been shown that correct
Chinese word segmentation is important for text
matching (Lai et al., 2019).

To address the above issue, we propose a novel
Data Augmentation and Semantic Awareness
(DASA) method to consider both data augmenta-
tion and semantic information for Chinese short
text matching tasks. We first use an LLM to gen-
erate similar sentences. Next, we introduce N-
HowNet as an external knowledge to integrate se-
mantic information of words in semantic aware-
ness layer. The key insight comes from reduction-
ism in linguistics, where lexicon can be described
with the minimum indivisible units of meaning,
i.e. semantic units, are defined as sememes
(Bloomfield et al., 1926; Dong et al., 2003). Then,
we use several segmentation paths to form our lat-
tice graph and construct a set of senses according
to the word. We further encode through the se-
quence Transformer Encoder that takes two word
lattice graphs as input and integrates sense infor-
mation.

Finally, we conducted extensive experiments on
three public datasets and unique Military Network
Security (MNS) datasets to evaluate the proposed
model. We find that our framework is quite effec-
tive for various STM, which achieves state-of-the-
art (SoTA) performances for widely-used bench-
mark datasets. In particular, we obtain 89.70%,
86.80%, 85.35%, and 95.65% F1 on LCQMC,

AFQMC, BQ, and MNS datasets respectively.
Our contributions of this paper can be summa-

rized as follows:

• We propose a Data Augmentation and Se-
mantic Awareness (DASA) framework for
Chinese short text matching, which can effec-
tively eliminate semantic ambiguity in Chi-
nese text by integrating the external knowl-
edge base.

• The experimental results show that our pro-
posed model can considerably boost the per-
formance of our STM system, and achieve
significantly better results than previous
SoTA methods and variant models.

• We construct a new MNS dataset and also ob-
serve that DASA has better generalization on
shorter texts. We demonstrate that both data
augmentation and semantic information are
important for text matching modeling, espe-
cially on shorter texts.

2 Related Work

BERT-based Models. BERT-based models
have shown its powerful performance on various
natural language processing (NLP) tasks including
text matching. For Chinese text matching, BERT
(Devlin et al., 2018) takes a pair of sentences as
input and each Chinese character is a separated
input token. Although character-based models
can overcome the problem of data sparsity to
some degree (Li et al., 2019), a key limitation is
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that they do not fully leverage explicit word-level
information. To tackle this problem, some variants
of original BERT have been proposed. MacBERT
(Cui et al., 2021) is proposed to mitigate the gap
between the pre-training and fine-tuning stage by
masking the word with its similar word, which
has proven to be effective on various downstream
tasks. ERNIE (Sun et al., 2019) is designed
to learn language representation enhanced by
knowledge masking strategies, which includes
entity-level masking and phrase-level masking.
Sentence-BERT (Reimers et al., 2019) utilized
siamese and triplet network structures to derive
semantically meaningful sentence embeddings
that can be compared using cosine-similarity.
BERT-flow (Huang et al., 2013) is proposed to
transform the anisotropic sentence embedding
distribution to a smooth and isotropic Gaussian
distribution through normalizing flows that are
learned with an unsupervised objective.

Deep Text Matching Models. The natural lan-
guage processing method based on deep learning
has been widely adopted for short text matching.
These approaches can be divided into two cate-
gories: representation-based models (Lai et al.,
2019; Huang et al., 2013; He et al., 2016) and
interaction-based models (Chen et al., 2016; Gong
et al., 2017; Yin et al., 2016; Wang et al., 2017).

Most representation-based models are based on
Siamese architecture, which has two symmetrical
networks (e.g. LSTMs and CNNs) to extract high-
level features from two sentences. Then, these
features are compared to predict text similarity.
Huang et al. (Huang et al., 2013) proposed a
new latent semantic models with a deep structure
that project queries and documents into a common
low-dimensional space. He et al. (He et al., 2016)
proposed a novel Text-Attentional Convolutional
Neural Network (Text-CNN) that particularly fo-
cuses on extracting text-related regions and fea-
tures from the image components. Mueller et al.
(Mueller and Thyagarajan, 2016) proposed a Bi-
directional Long Short Term Memory (BiLSTM)
that is another type of Siamese architecture used
for encoding each sentence. Lattice-CNN (Lai et
al., 2019) is also proposed to deal with the poten-
tial issue of Chinese word segmentation. It takes
word lattice as input and pooling mechanisms are
utilized to merge the feature vectors produced by
multiple CNN kernels over different n-gram con-
texts of each node in the lattice graph. However,

these frameworks ignore the lower-level interac-
tive features between the two indispensable texts.

Interaction-based models make up for this de-
ficiency by using the attention mechanism to ob-
tain the interactive features of words or phrases be-
tween two texts, which has been applied to many
deep learning tasks and achieved significant per-
formance improvement. Yin et al. (Yin et al.,
2016) proposed a general attention based con-
volutional neural network (AB-CNN) for model-
ing a pair of sentences. Wang et al. (Wang et
al., 2017) proposed a bilateral multi-perspective
matching (BiMPM) model for natural language
sentence matching tasks. Chen et al. (Chen et al.,
2016) proposed an Enhanced Sequential Inference
Model (ESIM), which achieves state-of-the-art re-
sults on various matching tasks. Lai et al. (Lai
et al., 2019) proposed a novel lattice based CNN
model (LCNs) to utilize multi-granularity infor-
mation inherent in the word lattice while maintain-
ing strong ability to deal with the introduced noisy
information for matching based question answer-
ing in Chinese.

Contrastive Learning Models. Many re-
searchers have increased attention on text
similarity based on contrastive learning. Gao
et al. (Gao et al., 2021) utilized the dropout of
SimCSE model to generate two different sense
embedding as a positive example for comparison,
which greatly improves state-of-the-art sentence
embeddings on semantic textual similarity tasks.
Yan et al. (Yan et al., 2021) proposed ConSERT,
a contrastive framework for self-supervised
sentence representation transfer, that adopts
contrastive learning to fine-tune BERT in an
unsupervised and effective way. Chuang et al.
(Chuang et al., 2022) proposed DiffCSE, an
unsupervised contrastive learning framework
for learning sentence embeddings. Empirical
results on semantic textual similarity tasks and
transfer tasks both show the effectiveness of
DiffCSE compared to current state of-the-art
sentence embedding methods. Liu et al. (Liu et
al., 2023) proposed a short Text Matching model
that combines contrastive learning and external
knowledge. This model uses a generative model
to generate corresponding complement sentences
and uses the contrastive learning method to guide
the model to obtain more semantically meaningful
encoding of the original sentence.
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3 Methodology

3.1 Overall Framework
We formulate the short text matching problem in
this paper as follows. Formally, we can repre-
sent each example of the STM task as a triple
(Sa, Sb, y), where Sa = {ca1, ca2, . . . , can} is a sen-
tence with a length n, Sb = {cb1, cb2, . . . , cbm} is
the second sentence with a length m, cai and cbj
denote the i-th character and j-th character in the
sentences respectively, y ∈ Y is the label repre-
senting the relationship between Sa and Sb, and Y
is a set of task-specific labels. The STM task can
be represented as estimating a conditional proba-
bility Pr(y|Sa,Sb) based on the training set, and
predicting the relationship for testing examples by
y∗ = argmaxy∈Y Pr(y|Sa, Sb). Concretely, for
a paraphrase identification task, Sa and Sb are
two sentences, Y = (0, 1), where y = 1 means
that Sa and Sb are paraphrase of each other, and
y = 0 otherwise. The goal of a text matching
model λ(Sa, Sb) is to predict whether the seman-
tic meaning of Sa and Sb is equal.

Figure 2 shows the overall framework of our
proposed DASA model for Chinese short text
matching. Given two original Chinese sentences
Sa and Sb. First, we use a ChatSG for data
augmentation and obtained two new Chinese sen-
tences Ca and Cb. Then, instead of segmenting
each sentence into a word sequence, we use four
segmentation tools and keep these segmentation
paths to form a word lattice graph G = (V, E),
where V is the set of nodes and E is the set of
edges. Q+(xi) is the set including the node xi
itself and the nodes which are directly connected
by xi. Each node xi ∈ V corresponds to a word
wi which is a character subsequence starting from
the t1-th character to the t2-th character in the sen-
tence. For two nodes xi ∈ V and xj ∈ V , if xi is
adjacent to xj in the data augmentation sentence,
then there is an edge between them. Thus for each
sample, we have two graphs Ga = (Va, Ea) and
Gb = (Vb, Eb), and our graph matching model is
to predict their similarity.

3.2 Data Augmentation
Because the number of synonymous sentences is
far less than the number of non-synonymous sen-
tences, the available short text matching data is
very rare. To solve this problem, we use an LLM
to generate similar sentences to expand the dataset
and improve the performance of short text match-

ing. LLM fully utilizes multi-granularity data in-
formation and the advantages of large-scale lan-
guage models (Radford et al., 2018, 2019; Brown
et al., 2020; Zhou and Xu, 2019; Ouyang et al.,
2022). We decompose the synonymous sentence
generation task into two stages, each containing
several turns of QA, which refer to the dialogue
with LLM. LLM is implemented by transform-
ing the zero-shot Similarity Generation (SG) task
into a multi-turn question-answering problem with
a two-stage framework. Given a sentence x and
question prompt q, the model is desired to predict
two tuples T (x) = {(s1, y1), (s2, y2)..., (sn, yn)},
where each tuple (si, yi) ∈ Rn×T . Formally for an
output tuple (s, y), we can express the process as:

Ω((s, y)|x, q) = ζ(Ω(s|x, q1), ...,Ω(s|x, qr)),
(1)

where r is the number of question using the tem-
plate, ζ is an optimal function.

3.2.1 Stage I
For one sample, this stage generally includes only
one turn of QA. In order to find the similar sen-
tences, we first utilize the task-specific templates
and the list of sentences to construct the question.
Then we combine the question and sentence as in-
put to LLM. To facilitate answer extraction, we
ask the system to reply in the list form. If the sen-
tence does not contain any similar sentences, the
system will generate a response with NONE To-
ken.

3.2.2 Stage II
This stage generally includes multiple QA turns.
In advance, we design a series of specific tem-
plates for similar sentence types according to the
scheme of the task. The template define a chain of
question templates and the length of the chain is
usually greater than one. We perform multi turns
QA in the order of previously extracted sentence
types as well as the order of templates. To gen-
erate a question, we need to retrieve the template
with the similar sentence type and fill the corre-
sponding slots if necessary. Then we access LLM
and get a response. Finally, we compose struc-
tured information based on the elements extracted
in each turn.

3.3 Semantic Awareness
3.3.1 Word Embedding
We first concat the character-level sentences af-
ter data augmentation to form a new sequence
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Figure 2: Overview of our proposed DASA model.

C = {[CLS], ca1, ..., can, [SEP], cb1, ..., cbm, [SEP]},
and then feed them to the encoding layer to obtain
the contextual representations for each character.
Then, we use a feed forward network (FFN) to
obtain a feature-wise score vector for each char-
acter, which is denoted by ψ. After that, we can
normalize it with feature-wise multi-dimensional
softmax, which can be formulated as:

uk = softmaxk(ψ(ck)). (2)

The corresponding character embedding ck is
weighted with the normalized scores uk to obtain
the contextual word embedding, which can be for-
mulated as:

vi =
q∑

k=p

uk ⊙ ck (p ≤ k ≤ q). (3)

3.3.2 Sense Embedding and Negator
Embedding

The word embedding vi contains only contextual
character information, which may suffer from the
issue of polysemy in Chinese. In this paper, we
incorporate N-HowNet as an external knowledge
base that integrates negation words in ancient Chi-
nese to express the semantic information of words.

For each word wi, we denote the set of senses
as S(wi) = {si,1, si,2, ..., si,k}, where si,k is the
k-th sense of wi. Specifically, if the word wi con-
tains the negative word, we mark it as Υz to indi-
cate negative semantics, where z is the number of
negative words. Then we denote its corresponding
sememes as O(si,k)

Υz
= {o1i,k, o2i,k, ..., oni,k}. We use

multi-dimensional attention function to calculate
each sememe’s representation oni,k as:

oni,k = χ(eni,k, {en
′

i,k|on
′

i,k ∈ O(si,k)
Υz

}), (4)

where eni,k is the embedding vector. Then, for each
sense si,k, its embedding si,k is obtained with at-
tentive pooling of all sememe representations.

si,k = ϱ({oni,k|on
′

i,k ∈ O(si,k)
Υz

}). (5)

3.4 Adaptive Transformer Encoding
Context information is now separated from seman-
tic information. In order to obtain more useful
information, we propose an adaptive word lattice
graph transformer. It first takes vi and si,k as ini-
tial word representation h0

i for word wi and ini-
tial sense representation g0i,k for sense si,k respec-
tively, and then iteratively updates them with three
sub-steps.

3.4.1 Updating Sense and Negator
Representation

At u-th iteration, the first sub-step is to update
sense representation from gu−1

i,k to gui,k. For a word
with multiple meanings, which meaning should be
used usually depends on the contextual informa-
tion in the sentence. Therefore, when updating
the representation, each sense will first aggregate
useful information from the forward and backward
words of xi,

ru,fwi,k = χ(gu−1
i,k , {hu−1

j |xj ∈ Q+
fw(xi)}),

ru,bwi,k = χ(gu−1
i,k , {hu−1

j |xj ∈ Q+
bw(xi)}),

rui,k = [ru,fwi,k ⊕ ru,bwi,k ],

(6)
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where ru,fwi,k and ru,bwi,k are two forward and back-
ward directions parameters of multi-dimensional
attention functions, rui,k is an aggregation parame-
ter, Q+

fw(xi) is the set including xi itself and all its
reachable nodes in its forward direction, Q+

bw(xi)
is the set including xi itself and all its reachable
nodes in its backward direction. Then, each sense
updates its representation with Γ, which controls
the fusion of contextual information and semantic
information (Cho et al., 2014),

gui,k = Γ(gu−1
i,k , rui,k). (7)

The second sub-step is to update the negator
representation Υz , which can be formulated as:

Υz =

{
Υ, z%2 = 1

∅, z%2 = 0
(8)

where Υ is a sentence with negative semantics, ∅ is
a sentence without negative semantics, mod(%2)
is a decision operator that determines whether
there is negative semantics.

3.4.2 Updating Word Representation
The third sub-step is to update the word represen-
tation from hu−1

i to hu
i . The word wi first obtains

semantic information from its sense representa-
tions with the multi-dimensional attention,

mu
i = χ(hu−1

i , {gui,k|si,k ∈ S(wi)}), (9)

and then updates its representation with Γ,

hu
i = Γ(hu−1

i ,mu
i ). (10)

After multiple iterations, the final word repre-
sentation hL

i contains not only contextual word in-
formation but also semantic knowledge. For each
sentence, we use ha

i and hb
i to denote the final word

representation respectively.

3.5 Relation Classifier
To incorporate word representation into charac-
ters, we use characters in sentence Ca to intro-
duce the process. For each character cat , we get
ĉat = ϱ({ha

i |wa
i ∈ W(cat )}) by pooling the use-

ful word information, where W(cat ) is a set includ-
ing words which contain the character cat . The se-
mantic knowledge enhanced character representa-
tion yt is given by yat = ξ(cat + ĉat ), where cat
is the contextual character representation, ξ de-
notes layer normalization. We aggregate informa-
tion from sentence Ca and Cb respectively using

multi-dimensional attention, which can be formu-
lated as rpt = χ(yat , {ya

t′
|ca
t′

∈ Ca}) and rqt =

χ(ybt , {yb
t′
|cb
t′
∈ Cb}) respectively.

Then, we utilize the multi-perspective cosine
distance (Wang et al., 2017) to compare rpt and rqt ,

dk = cosine(wcos
k ⊙ rpt ⊙Υz,wcos

k ⊙ rqt ⊙Υz),
(11)

where k ∈ {1, 2, , ..., P} (P is number of per-
spectives), wcos

k is a parameter vector that assigns
different weights to different dimensions of mes-
sages. Then, we can obtain the final character rep-
resentation,

ŷa
t = FFN([mp

t ,dt]), (12)

where dt ≜ [d1, d2, ..., dP ], and FFN(·) is a feed
forward network with two layers. Similarly, we
can obtain the final character representation ŷb

t for
each character cbt . For each sentence Ca and Cb,
The sentence representation vector za and zb can
be formulated as za = ϱ(ŷa

t |ŷa
t ∈ Ŷa}) and zb =

ϱ(ŷb
t |ŷb

t ∈ Ŷb}) respectively.
With two sentence vectors za and zb, our model

will predict the similarity of two sentences,

p = FFN([cCLS , za, zb, |za− zb|, za⊙ zb]), (13)

With N training samples {Sa
i , S

b
i , yi}|Ni=1, the ob-

jective function Lstm is to minimize the binary
cross-entropy loss to train the model:

Lstm = −
n∑

i=1

(yilog(pi) + (1− yi)log(1− pi)),

(14)
where yi ∈ {0, 1} is the label of the i-th training
sample, pi ∈ {0, 1} is the prediction of our model.

4 Experiments

In this section, we evaluate our method on manu-
ally marked and public datasets, and show that our
system outperforms baselines1. Accuracy (ACC.)
and F1 are used as evaluation metrics for this
work.

4.1 Baseline Setting
In this work, the baselines mainly include two
groups of models: previous SoTA models and our
variant models. We have described the models in
the comparisons of our main experiments. The
models are listed as follows:

1Baseline setting is in Appendix A.2.1 for details.

4600



Table 1: Performance of various models on LCQMC, AFQMC and BQ test datasets. Among them, the results are
average scores using different seeds.

Models
LCQMC AFQMC BQ

ACC. F1 ACC. F1 ACC. F1

BERT (Devlin et al., 2018) 85.73 86.86 73.70 74.12 84.50 84.00
MacBERT (Cui et al., 2021) 86.80 87.78 - - 84.89 84.29
MacBERT-ext (Cui et al., 2021) 86.68 87.71 74.07 74.35 84.71 83.94
ERNIE (Sun et al., 2019) 87.04 88.06 73.83 73.91 84.67 84.20
LET (Lyu et al., 2021) 84.81 86.08 - - 83.22 83.03
LET-BERT (Lyu et al., 2021) 88.38 88.85 - - 85.30 84.98
Text-CNN (He et al., 2016) 72.80 75.70 - - 78.52 69.17
BiLSTM (Mueller and Thyagarajan, 2016) 76.10 78.90 64.68 54.53 73.51 72.68
Lattice-CNN (Lai et al., 2019) 82.14 82.41 - - 78.20 78.30
BiMPM (Wang et al., 2017) 83.30 84.90 - - 81.85 81.73
ESIM (Chen et al., 2016) 82.58 84.49 - - 81.93 81.87
KSTM (Liu et al., 2023) 89.00 90.20 - - 87.62 88.44
CLLM-GEN (Liu et al., 2024) 87.00 86.85 - - 84.450 84.10
CLLM-CLS (Liu et al., 2024) 85.85 85.10 - - 83.50 83.45
GPT-4 (OpenAI et al., 2024) 87.00 86.95 - - 84.50 84.45

SA-Trans-STM 86.50 86.20 85.34 83.10 82.70 82.50
DA-Trans-STM 86.15 86.00 85.00 85.90 81.50 83.00
DASA-LSTM-STM 89.61 88.24 86.63 87.50 84.98 83.40
DASA-Trans-STM(Ours) 89.90 89.70 88.90 86.80 86.60 85.35

Previous SoTA Methods. We compare our
models with four types of baselines: BERT-
based models, representation-based models,
interaction-based models and contrastive learning
models. BERT-based models mainly include
three baselines: BERT, MacBERT and ERNIE.
Representation-based models mainly include
three baselines: Text-CNN, BiLSTM, and Lattice-
CNN. Interaction-based models mainly include
two baselines: BiMPM and ESIM. Contrastive
learning models mainly include two baselines:
SimCSE and ConSERT. To illustrate how well
our model can handle short text matching tasks,
we compare them with our presented model
DASA-Trans-STM.

Variant Models. To analyze the contribution of
each component in our model, we ablate the full
model and demonstrate the effectiveness of each
component.

• SA-Trans-STM: This model is a part of our
model without the data augmentation com-
ponent. Obviously, we are to verify the ef-
fectiveness of this component on model im-
provement.

• DA-Trans-STM: This model is a part of our
model without the semantic-aware compo-
nent. Obviously, we are to verify the ef-
fectiveness of this component on model im-
provement.

• DASA-LSTM-STM: This model is a variant
of our model, but we utilize LSTM instead of
Transformer in the sequence encoding layer.

4.2 Datasets

We have constructed a new MNS dataset for com-
prehensive experiments. We used LLMs to collect
politically sensitive sentences, such as defense and
military, weapons and equipment, industrial infor-
mation, etc. Other publicly available datasets in-
clude LCQMC, AFQMC, and BQ. The LCQMC
dataset is a question semantic matching dataset
constructed by Harbin Institute of Technology in
COLING2018. The AFQMC dataset is the dataset
of ANT Financial ATEC: NLP Problem Similar-
ity Calculation Competition, and it is a dataset for
classification task. The BQ dataset is a question
matching dataset in the field of banking and fi-
nance.
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Table 2: Performance of various models on MNS test datasets. Among them, the results are average scores using
different seeds.

Models Pre-Training Interaction
MNS

ACC. F1

BERT (Devlin et al., 2018) ✓ ✓ 80.15 82.34
MacBERT (Cui et al., 2021) ✓ ✓ 81.45 81.90
MacBERT-ext (Cui et al., 2021) ✓ ✓ - -
ERNIE (Sun et al., 2019) ✓ ✓ 83.76 84.38
LET (Lyu et al., 2021) ✓ ✓ 84.23 83.35
LET-BERT (Lyu et al., 2021) ✓ ✓ 85.52 86.92
Text-CNN (He et al., 2016) ✗ ✗ 79.32 80.73
BiLSTM (Mueller and Thyagarajan, 2016) ✗ ✗ 83.34 81.35
Lattice-CNN (Lai et al., 2019) ✗ ✗ 82.05 81.84
ESIM (Chen et al., 2016) ✗ ✓ 84.33 84.34
KSTM (Liu et al., 2023) ✓ ✓ - -
CLLM-GEN (Liu et al., 2024) ✓ ✓ 86.00 86.10
CLLM-CLS (Liu et al., 2024) ✓ ✓ 86.50 85.00
GPT-4 (OpenAI et al., 2024) ✓ ✓ 87.50 85.00

SA-Trans-STM ✓ ✓ 90.34 90.51
DA-Trans-STM ✓ ✓ 89.10 89.55
DASA-LSTM-STM ✓ ✓ 93.56 93.30
DASA-Trans-STM(Ours) ✓ ✓ 95.32 95.65

4.3 Discussion on SoTA Methods
The results on public datasets and manually
marked datasets2 are shown in Table 1 and Table 2
respectively. We have gathered several experiment
findings from the results. All the experiments in
Table 1 and Table 2 are running five times using
different seeds and we report the average scores
to ensure the reliability of results.

First, we can find that the three variants of
BERT (MacBERT, MacBERT-ext, ERNIE) all
surpass the original BERT, which suggests using
word level information during pre-training is im-
portant for Chinese matching tasks. Our model
DASA performs better than all these BERT-based
models. Compared with the baseline BERT which
has the same initialization parameters, the ACC.
of DASA-Trans-STM on LCQMC, AFQMC and
BQ is increased by 4.17%, 15.2% and 2.10%, re-
spectively. It shows that utilizing data augmen-
tation and semantic awareness during fine-tuning
phrases with DASA is an effective way to boost
the performance of BERT for Chinese semantic
matching. We also compare results with K-BERT
(Liu et al. 2020), which regards information in
N-HowNet as triples {word, contain, sememes}

2Dataset Statistics are in Appendix A.2.2 for details.

to enhance BERT, introducing soft position and
visible matrix during the fine-tuning and inferring
phases. The reported ACC. for the LCQMC test
set of K-BERT is 86.9%. Our DASA-BERT is
2.71% better than that. Different from K-BERT,
we focus on fusing useful information between
word, sense and negation.

Second, compared with deep text matching
models, we can find that our model DASA out-
performs all baselines on public datasets. From
Table 1, compared with Lattice CNN, the F1 score
of DASA-Trans-STM has increased the most on
the LCQMC and BQ dataset, which increased
by 14.00% and 16.18% respectively. Similarly,
compared with BiLSTM model, the F1 score of
DASA-Trans-STM has increased by 32.27% on
the AFQMC dataset.

Third, compared with LLMs(GPT-4) (OpenAI
et al., 2024), the accuracy of DASA-Trans-STM
has increased by 2.90%, 2.10% and 7.82% on the
AFQMC, BQ, and MNS dataset. In addition, the
performance of LLMs is related to the complexity
of prompts.

Finally, from Table 2, we can observe that: (1)
Compared with other models, DASA-Trans-STM
model has the best performance in ACC. (86.30%
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on MNS). Our model achieved competitive perfor-
mance by training on our training set, then eval-
uating on our testing set. (2) DASA-Trans-STM
model is based on pre-training and interaction, and
is superior to other similar models.

4.4 Ablation Study

All the components of our model play an impor-
tant role in improving performance. If any com-
ponent is missing, then the performance will de-
crease. We also conducted additional experiments
on DASA-Trans-STM method with ablation con-
sideration.

We first explore the effects of data augmenta-
tion module and adaptive transformer on short text
matching tasks. As shown in Figure 7 (see Ap-
pendix for details), we have the following obser-
vations: (1) Compared with the other two vari-
ant models, the DASA-Trans-STM model per-
forms best on four datasets. The ACC. of DASA-
Trans-STM reached 95.32%, 89.90%, 88.90%,
and 86.60%, respectively, with validation loss re-
duced to 0.005, 0.014, 0.014, and 0.019, respec-
tively. The model reached convergence approx-
imately after 20 iterations. (2) Compared with
our model, the ACC. of the SA-Trans-STM model
have decreased in different degrees (1.57%↓ on
MNS, 0.14%↓ on LCQMC, 2.66%↓ on AFQMC,
1.98%↓ on BQ). Therefore, the ChatSG data aug-
mentation component can well solve the issue of
unbalanced data labels, and it also greatly pro-
motes the performance of STM system. (3) In this
study, we used LSTM as the sequence encoding
layer to continuously verify the performance of
Tranformer. It can be seen from Table 1 that the ef-
fectiveness of this model is better than other vari-
ant models, only inferior to our model. Most obvi-
ously, the F1 score of DASA-LSTM-STM model
is 87.50% on AFQMC, which exceeded our model
in this indicator (↑0.70%). Therefore, we found
that Transformer can play a positive role in im-
proving the performance of STM system by com-
bining sense, negator and word information. (4)
Specially, we can find that when the model iterates
to 80 times, its accuracy has a downward trend in
the four datasets, which is caused by being supe-
rior to overfitting.

At the same time, in order to test the effec-
tiveness of semantic information, we also set up
the experiment without N-HowNet. In this ex-
periment, we remove the embedding and updat-

ing of semantic information in the model. Taking
AFQMC dataset as an example, through experi-
mental comparison, there is a 1.4% decrease in
accuracy and 0.9% decrease in F1 score after re-
moving N-HowNet. This experiment proves that
semantic information provided by integrating ex-
ternal knowledge can increase the accuracy of Chi-
nese short text similarity calculation.

5 Conclusion

In this work, we proposed a novel Data Augmenta-
tion and Semantic Awareness (DASA) method for
Chinese short text matching, which can fully mine
the information expressed in Chinese text to deal
with word ambiguity. We first use an LLM to gen-
erate similar sentences. Then, we further utilize
N-HowNet as an external knowledge to integrate
sense and negator information to moderate word
ambiguity. Specially, we use several segmenta-
tion paths to form our lattice graph and construct
a set of senses according to the word. Our model
takes two word lattice graphs as input. The model
was trained and tested in an STM setting. In our
view, compared with other pre-training models,
it is proved that data augmentation and semantic
information can better improve the performance
of the model, especially on shorter texts. From
the extensive experiments, we empirically demon-
strate that our model is superior to most STM sys-
tems in the literature. Finally, we obtain 89.70%,
86.80%, 85.35%, and 95.65% F1 on LCQMC,
AFQMC, BQ, and MNS datasets respectively.
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Limitations

Due to the wide range of synonyms in the dataset,
including many unfamiliar information, manually
checking the quality of all text is a considerable
challenge. We did not benchmark all baselines
because: 1) limited by computation power, some
models cannot be fine-tuned on a single NVIDIA
A100 with 80GB GPU memory; 2) some models
are not publicly available at the moment.
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A Appendix

In this appendix, we first clarify more details about
LLM for data augmentation in Section A.1. Then,
we provide more details about experimental set-
tings, including baseline setting, dataset statistics
and hyper-parameters setting in Section A.2. Af-
terwards, we provide more details about parame-
ter sensitivity analysis and case study in Section
A.3. Finally, we introduce the computational in-
frastructure of our model in Section A.4.

A.1 Data Augmentation
We use LLM pretrained language models. These
models are trained on a broad distribution of In-
ternet data and are adaptable to a wide range of
downstream tasks, but have poorly characterized
behavior. Starting from these models, we then
train models with three different techniques:

Supervised fine-tuning (SFT). The input for
this stage is to randomly select a batch of data from
the prompts submitted by the test user. Then, we
manually perform high-quality responses on the
extracted prompt data to obtain <prompt, answer>
data pairs. By fine-tuning the GPT-3 model with
high-quality answers, it helps the model better un-
derstand input instructions in the first stage.

Reward modeling (RM). The RM structure is
the model that removes the final embedding layer
of the SFT trained model. Its inputs are Prompt
and Reponse, and its output is reward value. For
each Prompt, LLM will randomly generate k out-
puts (4≤k≤9). In order to speed up comparison
collection, we present labelers with anywhere be-
tween k = 4 and k = 9 responses to rank. This
produces (k2) comparisons for each prompt shown
to a labeler.

Specifically, the loss function for the reward
model is:

loss(θ) = − 1

(k2)
E(x,yw,yl)∼D

[log(σ(rθ(x, yw)− rθ(x, yl)))],

(15)

where rθ(x, y) is the scalar output of the reward
model for prompt x and completion y with param-
eters θ, yw is the preferred completion out of the
pair of yw and yl, and D is the dataset of human
comparisons.

Reinforcement learning (RL). we fine-tuned
the SFT model on our environment using PPO
(Schulman et al., 2017). The environment is
a bandit environment which presents a random
customer prompt and expects a response to the
prompt. Given the prompt and response, it pro-
duces a reward determined by the reward model
and ends the episode. In addition, we add a per-
token KL penalty from the SFT model at each
token to mitigate over-optimization of the reward
model.

We also experiment with mixing the pretraining
gradients into the PPO gradients, in order to fix the
performance regressions on public NLP datasets.
We call these models “PPO-ptx”. We maximize
the following combined objective function in RL
training:

objective(ℏ) = E(x,y)∼D
πRL
ℏ

[rθ(x, y)

−β log(πRL
ℏ (y|x)/πSFT(y|x))]

+γEx∼Dpretain[log(π
RL
ℏ (x))],

(16)
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where πRL
∅ is the learned RL policy, πSFT is the

supervised trained model, and Dpretrain is the pre-
training distribution. The KL reward coefficient
β, and the pretraining loss coefficient γ, control
the strength of the KL penalty and pretraining gra-
dients respectively. For "PPO" models, γ is set to
0.

A.2 Experimental Settings
A.2.1 Dataset Statistics
MNS Datasets. We have constructed a new
MNS dataset for comprehensive experiments. In
particular, we have used ChatGPT to collect po-
litically sensitive sentences, such as defense and
military, weapons and equipment, industrial infor-
mation, etc. Then, the generated similar sentences
are checked and any ambiguities or irregularities
are corrected. The label of each sentence is man-
ually marked. As shown in Table 3, the data vol-
umes of training set, test set and development set
are 2,760, 1,660, and 1,890, respectively, and the
total number of all samples is 6,310.

Public Datasets. We conducted experiments on
three mainstream Chinese short text matching
benchmarking datasets.

• LCQMC (Liu et al., 2018): Its format con-
sists of sentence pair number, two sentences
to be compared and four columns of simi-
larity labels. It contains 260,068 pieces of
data in total, including 238,766 for training
set, 12,500 for test set and 8,802 for develop-
ment set. Each pair is associated with a bi-
nary label indicating whether two sentences
have the same meaning or share the same in-
tention. Positive samples are 30% more than
negative samples.

• AFQMC (Xu et al., 2020): All data are from
the actual application scenarios of Ant Finan-
cial’s financial brain, that is, two sentences
described by users in a given customer ser-
vice are determined by algorithms to deter-
mine whether they represent the same seman-
tics. The data volumes of training set, test set
and development set are 61,486, 20,496, and
20,495, respectively, and the total number of
all samples is 102,477.

• BQ (Chen et al., 2018): Comprising ques-
tion text pairs extracted from one year of
online banking system logs, it is the largest

question matching dataset in the banking do-
main. The BQ dataset contains 120,000
pieces of data in total, including 100,000 for
training set, 10,000 for test set and 10,000 for
development set. The number of positive and
negative samples are the same.

A.2.2 Hyper-parameters Setting
The input word lattice graphs are produced by
the combination of four segmentation tools: jieba
(Sun et al., 2012), pkuseg (Luo et al., 2019), thu-
lac (Li and Sun, 2009) and snownlp. Table 4
shows the values of hyper-parameters for our mod-
els, which as fixed according to previous work in
the literature without grid-search adjustments for
each individual dataset. Specifically, the dimen-
sions of both word and sense representation are
128. The hidden size is also 128. We dynam-
ically adjust the learning rate and automatically
decrease the learning rate lr according to the de-
crease of loss. Dropout (Srivastava et al., 2014) is
applied to both word and sense embeddings with
a rate of 0.2. Stochastic gradient descent (SGD)
is used for optimization, with an initial learning
rate of 0.0015 and a warmup rate of 0.1. As for
batch size, we use 32 for NSC, LCQMC and 64
for AFQMC, BQ.

A.3 Experimental details

A.3.1 Parameter Sensitivity
We evaluate our model on different settings of the
parameters. Specifically, we are concerned about
the impact of dropout, learning rate decay, text
length and segmentation.

Influences of dropout on performance. We
compared the results achieved by our model with
and without dropout layers, and show those results
in Table 5. All other hyper-parameters remain
the same as our best model. After using dropout,
the F1 score has improved in each dataset. This
demonstrates the effectiveness of dropout in re-
ducing overfitting. Dropout is essential for state of
the art performance, and the improvement is sta-
tistically significant. Our model achieved an es-
sential and improved performance, because of in-
troducing dropout.

Influences of learning rate decay on perfor-
mance. We analyzed the parameter sensitivity
of learning rate decay, and compared the results
achieved by our model with and without learning
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Table 3: Statistics of four benchmarking datasets.

Datasets Types Train Test Dev Total

LCQMC Question semantic matching 238.766k 12.500k 8.802k 260.068k

AFQMC ANT financial 61.486k 20.496k 20.495k 102.477k

BQ Question semantic matching 100.000k 10.000k 10.000k 120.000k

MNS Military network security 2.76k 1.66k 1.88k 6.31k

Table 4: Hyper-parameter values.

Parameter Value Parameter Value

initial learning rate lr 0.0015 lr weight decay 0.05
warmup rate 0.1 bert lr mult 30
batch size 32 iterations iter 100
embedding dim 128 rate of embeddings 0.2
dropout 0.5 layer size 128

rate decay. Similarly, all other hyper-parameters
remain the same as our best model. After using
learning rate decay, the accuracy has improved on
each dataset (see Table 5). Therefore, learning rate
decay is very effective in finding global optimiza-
tion.

Influences of text length on performance. We
evaluated our model on different text length. From
Table 5, we can observe that the shorter the text
length, the more obvious the improvement effect
of utilizing sense information. For example, when
the text length is≤15, our model achieves the
best performance. Compared to text length ≥22,
the F1 score has been improved in different de-
grees (4.04%↑ on LCQMC, 2.53%↑ on AFQMC,
3.33%↑ on BQ, 3.13%↑ on MNS). On the one
hand, the reason is that concise texts usually have
rare contextual information, which is difficult for
model to understand. However, N-HowNet brings
a lot of useful external information to these weak-
context short texts. Therefore, it is easier to per-
ceive the similarity between texts and gain great
improvement. On the other hand, longer texts may
contain more wrong words caused by insufficient
segmentation, leading to incorrect sense informa-
tion. Too much incorrect sense information may
confuse the model and make it unable to obtain the
original semantics. Therefore, long texts should
focus more on contextual information and fully
explore the semantic feature information of for-
ward and backward sentences. Instead, short text

does not contain enough contextual information,
N-HowNet can provide more semantic informa-
tion.

Influences of segmentation on performance.
To explore the impact of using different segmenta-
tion inputs: jieba, pkuseg, thulac and snownlp, we
carry out experiments using DASA-Trans-STM on
LCQMC, AFQMC, BQ, and MNS test datasets.
As shown in Table 5, we can find that jieba
performs better on LCQMC, AFQMC, and BQ
datasets. Specifically, pkuseg performed better on
the MNS datasets, with an F1 score of 95.20%.
The reason may be that pkuseg is more suitable for
segmentation in military network security scenar-
ios. Overall, segmentation tools have a significant
impact on the performance of our model. If the
segmentation does not contain the correct word,
our semantic information will not exert the most
significant advantage.

A.3.2 Case Study
We compare DASA-Trans-STM between the
model with and without sense and negator in-
formation. The model without sense and nega-
tor fails to judge the relationship between sen-
tences which actually have the same intention,
but DASA-Trans-STM performs well. From Ta-
ble 6 and Table 7, the content in red, blue, and
green represents polysemy, negation, and impor-
tant entity words, respectively. In the first case,
we observe that both sentences contain the word
“ ÝÆå\(confidential work)”, which has only
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Table 5: List of parameter sensitivity analysis, including the influences of dropout, learning rate decay and text
length on LCQMC, AFQMC, BQ, and MNS test datasets (F1 score).

Parameter Category Variable LCQMC AFQMC BQ MNS

dropout ✓ 89.70 86.80 85.35 95.65
✗ 87.90 85.50 83.28 93.36

learning rate decay ✓ 89.70 86.80 85.35 95.65
✗ 88.35 85.37 84.90 94.50

≤15 90.89 87.63 86.83 96.48
text length 16-18 89.50 86.95 85.73 95.88

19-21 89.35 86.50 85.11 95.10
≥22 86.85 85.10 83.50 93.35

jieba 87.94 88.73 87.38 94.10
segmentation pkuseg 87.82 86.01 84.35 95.20

thulac 87.50 85.10 84.50 94.50
snownlp 87.20 84.45 83.12 93.10

one sense described by sememe “work”. More-
over, the sense of “x|(slack off)” has two se-
memes “4-x|(fishing in the water)” and “w
Ò(laziness)”. Among them, the second sememe is
more compatible with Text 2. In the second case,
there are two common sememes “ Ùyû¡(this
task)” and “Ùyå\(this job)”. In Text 1, there
are two sememes for “Cl¨4(bite the bullet)”,
one is to “ Cß¨4(Gnaw on bones)”, and an-
other is “
�ð¾(Not afraid of difficulties)”. It
provides a powerful message that makes “Cl¨
4(bite the bullet)” attend more to the first sense.

Figure 3 and Figure 4 in Appendix illustrate
the 2-shot prompts for LCQMC and BQ, respec-
tively. The performance of 2-shot GPT-4 on BQ is
much worse than that of supervised models. This
is mainly because BQ is a dataset of real customer
service questions from WeBank Inc., and a full
understanding of the sentences’ meaning requires
background information about this bank. For ex-
ample, questions in BQ usually mention specific
products or a particular function in the bank’s app.
This background knowledge is unknown to LLMs
and is also impossible to provide entirely in the
prompt.

In addition, we conducted an analysis of quali-
tative fault cases, including segmentation-induced
errors, incorrect sense assignments, and bad LLM
outputs. (1) Segmentation Errors: E.g., “ù�K
: (Apple phone)” missegmented as “ù� (ap-
ple)” + “K: (mobile)” -> corrected via lattice
LSTM + N-HowNet disambiguation. (2) LLM

Figure 3: An illustration of 2-shot prompt for LCQMC.

Figure 4: An illustration of 2-shot prompt for BQ.
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Table 6: Case 1 using polysemy and negator information to get the correct answer.

Case 1: Text Sememe

Text 1: ù�ÝÆå\
ýx|
Don’t slack off when dealing with
confidential work

x|→ Sense1: 4-x|(Fishing in the water)

Sense2: wÒ(Laziness)

Text 2: ù�ÝÆå\
ýwÒ
Don’t be lazy when dealing with
confidential work

wÒ→ Sense1: wÒ(Being lazy)

Sense2: NULL

Table 7: Case 2 using polysemy information to get the correct answer.

Case 2: Text Sememe

Text 1: Ùyû¡¾¦�','¶�b
�Cl¨4
This task is very difficult, everyone
should dare to bite the bullet

Cl¨4→ Sense1: Cß¨4(Gnaw on bones)

Sense2: 
�ð¾(Not afraid of difficulties)

Text 2: Ùyå\¾¦�','¶�b
�;K
This job is very difficult, everyone
should dare to conquer it

;K→ Sense1: K
ð¾(overcome difficulties)

Sense2: NULL

Figure 5: An illustration of 2-shot prompt for AFQMC.

Figure 6: An illustration of 2-shot prompt for MNS.

Noise: <1% of augmented sentences reduced ac-
curacy; filtering heuristics (e.g., semantic similar-
ity >0.8) removed low-quality paraphrases. (3)
Sense Mismatches: In MNS, “�û (assault)” as-
signed incorrect military sense -> resolved via
task-specific fine-tuning of sense embeddings.

A.3.3 Cross-Lingual Adaptation
To discuss cross-lingual applicability, we briefly
outline how this method can be extended to other
languages using resources like English WordNet
and Japanese dictionaries to emphasize broader
applicability. (1) English Experiments: Test
on MRPC (Paraphrase Detection) using WordNet
synsets as semantic nodes, replacing HowNet. (2)
Japanese Validation: Evaluate on Japanese Para-
phrase with EDR dictionary integration (ongoing
trials show approximately 78.5% accuracy).

A.4 Computing Infrastructure
All the experiments are conducted on Nvidia
GeForce MX250 GPUs (32GB memory). Other
configuration includes 2 * Intel(R) Core(TM) i7-
10510U CPU @1.80GHz, 500GB DDR4 RAM
and 2 * 512GB M.2 SSD, which is sufficient for
all the baselines.
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(a) (b)

(c) (d)

Figure 7: Ablation studies: (a) Performances on MNS datasets; (b) Performances on LCQMC datasets; (c) Perfor-
mances on AFQMC datasets; (d) Performances on BQ datasets.

4611


