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Abstract

With the rapid advancements in Large Lan-
guage Models (LLMs), an increasing num-
ber of studies have leveraged LLMs as the
cognitive core of agents to address complex
task decision-making challenges. Specially, re-
cent research has demonstrated the potential
of LLM-based agents on automating GUI op-
erations. However, existing methodologies ex-
hibit two critical challenges: (1) static agent
architectures struggle to adapt to diverse GUI
application scenarios, leading to inadequate
scenario generalization; (2) the agent work-
flows lack fault tolerance mechanism, neces-
sitating complete process re-execution for GUI
agent decision error. To address these limi-
tations, we introduce COLA, a collaborative
multi-agent framework for automating GUI op-
erations. In this framework, a scenario-aware
agent Task Scheduler decomposes task require-
ments into atomic capability units, dynamically
selects the optimal agent from a decision agent
pool, effectively responds to the capability re-
quirements of diverse scenarios. Furthermore,
we develop an interactive backtracking mecha-
nism that enables human to intervene to trigger
state rollbacks for non-destructive process re-
pair. Experiments on the GAIA dataset show
that COLA achieves competitive performance
among GUI Agent methods, with an average
accuracy of 31.89%. On WindowsAgentArena,
it performs particularly well in Web Browser
(33.3%), Media & Video (33.3%), and Win-
dows Utils (25.0%), suggesting the effective-
ness of specialized agent design and dynamic
strategy allocation. The code is available at
https://github.com/Alokia/COLA-demo.

1 Introduction

Large Language Models (LLMs) have witnessed
rapid advancements in recent years, demonstrating
impressive capabilities in natural language under-
standing, dialogue, and general problem-solving
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tasks (Wang et al., 2024c; Guo et al., 2024). More
complex multi-modal models (MLLMs), such as
GPT-4v (Achiam et al., 2023), GPT-40, and Gemini
(Team et al., 2023), introduce a visual dimension,
expanding the capabilities of LLMs and demon-
strating outstanding capabilities across a broader
range of fields (Guo et al., 2024). High-capacity
LLMs and MLLM:s often serve as the backbone of
autonomous agents across a wide range of special-
ized fields, such as software development (Hong
et al., 2024; Chan et al., 2024; Li et al., 2023), so-
cial simulation (Park et al., 2023; Gao et al., 2023),
and gaming (Akata et al., 2024; Wang et al., 2023;
Tan et al., 2024). Among these domains, personal
computer automation—where agents interact with
and control native applications via graphical user
interfaces (GUIs)—has emerged as a particularly
promising and challenging setting (Zhang et al.,
2025a,b; Nguyen et al., 2024a).

Tasks on personal computers typically require
multi-step sequential operations, where an oper-
ator must interact with a GUI to perform a se-
ries of coherent actions starting from an initial
screen state until the given instructions are fully
executed (Wang et al., 2024a). These workflows
often involve dynamic UI elements, dependencies
across steps, and contextual reasoning over tem-
poral states. Despite the growing capabilities of
MLLMs, current systems still face fundamental
limitations in such GUI-based environments (Niu
et al., 2024). Tasks such as recognizing UI compo-
nents, interpreting layout semantics, and executing
precise and context-aware actions remain challeng-
ing due to constrained screen perception, spatial
reasoning, and historical context tracking (Zhang
et al., 2024a; Wang et al., 2024d). To overcome
these challenges, recent approaches have proposed
agent-based architectures that augment MLLMs
with specialized modules for visual understand-
ing and action control (Song et al., 2024; Wang
et al., 2024e; Nguyen et al., 2024b; Roucher, 2024).

4571

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 4571-4594
November 4-9, 2025 ©2025 Association for Computational Linguistics


https://github.com/Alokia/COLA-demo

UFO (Zhang et al., 2024b) introduces a dual-agent
system, utilizing an AppAgent to manage applica-
tion operations and decision-making across various
scenarios. Nevertheless, this approach struggles to
handle more complex GAIA datasets (Mialon et al.,
2024). Similarly, MMAC (Song et al., 2024) de-
velops agents for four distinct tasks: programming,
screen semantic recognition, video analysis, and
general knowledge. However, the system design
suffers from limited scalability and lacks flexibil-
ity. Any error in the execution process necessitates
a complete restart, which can significantly hinder
efficiency and adaptability in practical applications.

To overcome these limitations, we introduces
COLA, a scalable and flexible collaborative multi-
agent framework specifically designed for GUI
task automation. COLA introduces a modular and
scalable architecture composed of five specialized
agent roles: Planner, Task Scheduler, Decision
Agent Pool, Executor, and Reviewer. The deci-
sion agent pool comprises a collection of agents
with focused domain-specific expertise, each metic-
ulously tailored to address particular task cate-
gories such as web browsing, file system manipu-
lation, software programming, and others. To en-
sure optimal agent selection for diverse scenarios,
we employ a task scheduler capable of scenario-
aware matching. Futhermore, COLA incorporates
an interactive backtracking mechanism—inspired
by the Swarm system'—which allows human users
to revert an agent to a previous state, inject cor-
rective guidance, and resume execution from that
point. This human-in-the-loop design enables non-
destructive recovery from anomalous behaviors and
enhances system controllability. The entire process
is illustrated in Figure 1.

Our summarized contributions are as follows:

* We propose COLA, a scalable and modular
multi-agent framework for GUI-based task
automation. COLA integrates hierarchical
planning, dynamic agent selection, and fine-
grained execution, supported by five special-
ized roles working in a cooperative loop.

* COLA features a dynamic pool of decision
agents with distinct domain expertise. A
dedicated task scheduler intelligently selects
the most appropriate agent based on scenario
awareness. Furthermore, we introduce an in-
teractive backtracking mechanism enabling

"https://github.com/openai/swarm

user intervention and non-destructive error re-
covery through state rollback and guided re-
sumption.

* Experiments on both the GAIA and Win-
dowsAgentArena benchmarks show that
COLA performs competitively across diverse
GUI-based tasks. Ablation studies further in-
dicate that its dynamic task assignment strat-
egy and memory-enhanced agent design con-
tribute meaningfully to its effectiveness.

2 Related Work
2.1 LLM based Agents

In recent years, LLM-based agents have been con-
sidered as a promising approach to achieving ar-
tificial general intelligence (AGI) (Wang et al.,
2024c). It significantly expands the capabilities
of LLMs, empowering them to engage in plan-
ning, memorization and executing actions (Guo
et al., 2024). Inspired by human-team collabo-
ration, multi-agent systems are receiving increas-
ing attention. For instance, ChatDev (Qian et al.,
2024) orchestrates agents for end-to-end software
development, while others leverage debate-style
interactions to improve content quality (Tao et al.,
2025; Chan et al., 2024; Subramaniam et al., 2024).
MetaGPT (Hong et al., 2024) encodes Standard Op-
erating Procedures (SOPs) into prompt sequences
to standardize multi-agent workflows.

2.2 LLM-based UI Operation Agent

Recent work has explored the use of LLMs for
GUI-based control and automation. GPT-4V-based
agents have been applied to mobile interfaces via
screenshot inputs (Yan et al., 2023), while Mo-
bileAgent (Wang et al., 2024b) integrates OCR
to improve visual grounding. MobileAgent v2
(Wang et al., 2024a) introduces a multi-agent struc-
ture with distinct planning, decision, and reflection
roles. In the desktop setting, UFO (Zhang et al.,
2024b) inspects Ul elements via pywinauto, as-
signing all decisions to a centralized AppAgent.
Agent S (Agashe et al., 2025) proposed a memory-
augmented hierarchical planning framework aimed
at enhancing generalization via internal memory
mechanisms. However, these systems typically
rely on a single decision agent, limiting scalabil-
ity and adaptability across diverse task scenarios.
In contrast, our proposed framework COLA in-
troduces a dynamic pool of specialized decision
agents, each tailored for domain-specific tasks. A
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Figure 1: An illustration of the COLA multi-agent framework. In the first step, Planner takes request Q from user
and decomposes it into a sequence of coarse-grained subtasks (7¢4). Task Scheduler then dynamically selects optimal
decision agents through scenario-aware matching. Selected Decision Agents subsequently perform hierarchical
task refinement, utilizing their domain-specific expertise to decompose assigned subtasks into fine-grained subtasks
(T#4), giving an atomic action A, and an intention Z; to execute that action. Executor executes it and obtains the
environmental feedback result ;. Finally, the Reviewer evaluates the success of the action based on the environment
Oy, O¢41 before and after execution, the intention Z; and the result ;. The judgment 7; is then sent back to the
selected Decision Agent. This cyclic refinement continues until all subtask requirements are satisfied, with the Task
Scheduler orchestrating inter-subtask transitions. Throughout the process, humans can intervene in the workflow at
any time, providing guidance to correct the agent’s response.

central task scheduler enables scenario-aware agent
assignment, improving modularity and robustness
in complex environments.

3 The COLA Framework

In this section, we will provide a detailed overview
of the COLA architecture. The operation of COLA
is sequential and iterative, and its process is de-
picted in Figure 1.

3.1 GUI Task Formulation

Computer operation tasks involve multi-step se-
quential processing. Given a computer environ-
ment and a user query O, a GUI Agent (denoted
as p) receives the current observation O (e.g., a
screenshot). Leveraging its internal planning and
reasoning capabilities, the agent determines the
next action A to take. This action is then executed,
resulting in a change in the environment. The pro-

cess can be formally defined as follows:

Ay = p(antht—l)
Or1 = ¢(Ar)

ey
2

Here, A; and Oy represent the action and observa-
tion at step t, respectively, and H;—; denotes the
history of operations up to step t — 1. The function
 models the environment transition resulting from
executing action A;, leading to the next observation
O411. This process iterates until the user request
Q is either successfully completed or deemed to
have failed.

3.2 Visual Perception and Interaction

Visual Perception Identifying interactive ele-
ments within a screenshot poses a significant chal-
lenge (Bonatti et al., 2024; Niu et al., 2024). To
address this, we utilize pywinauto (Bim and Min-
shuai, 2014) to inspect interactive Ul elements
within the application (Zhang et al., 2024b; Liu
et al., 2025). Then we annotate the elements’s
bounding boxes on the screenshot to help MLLM
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Figure 2: A visual perception example. The raw screenshot, annotated screenshot and interactive elements
information make up the synthesized visual perception output P;.

understand the position and semantics of the ele-
ments (Zhang et al., 2024b). This process is for-
malized as:

Pr = p(Ot) 3)

where p denotes the transformation function that ex-
tracts visual perception from the given observation
O, Py represents the synthesized visual perception
output at time step ¢, This output incorporates spa-
tial and semantic information about interactive Ul
components, as illustrated in Figure 2.

Visual Interaction To interact with the computer
environment, we developed eight actions, as de-
tailed in Appendix B. We design a domain mech-
anism for each action so that only agents regis-
tered in the domain can use the action. This design
paradigm effectively manages the agent’s capabil-
ities while minimizing the complexity associated
with expanding the action space. Users can cus-
tom actions to meet their specific requirements and
configure the domain in which agent can recognize
and apply them.

3.3 Memory Unit For Self-Evolution

The operational history H;_1, referenced in the
Eq. 1, encapsulates the agent’s accumulated expe-
rience and is structured into two key components:
long-term memory and short-term memory. This

memory architecture is vital for LLM-based agents
(Wang et al., 2024a; Zhang et al., 2024c; Agashe
et al., 2025) to learn from past interactions and
effectively track progress in complex, multi-step
computer operation tasks.

Long-Term Memory The long-term memory
(denoted as M) archives complete prior task ex-
ecutions. For a given query Q, a retrieval func-
tion ¢ identifies the top-n most relevant records

7 = ¢(Q,n) from M. This retrieval is based
on the cosine similarity between an embedding of
the current query and embeddings of pre-generated
summaries for each record in M.

Short-Term Memory The short-term memory
(denoted as Mg, = {st1, sto, ..., st;}) retains
the sequence of responses generated by the agent
during the current task. To manage computational
costs and maintain focus, only the m most recent
responses, Mg = {sti—m+1, Sti—m+2, ..., Stt},
are typically utilized, providing immediate contex-
tual history.

At each step ¢, the operational history H;_; =
(M, M ) is integrated into the agent’s prompt
to inform its decision-making.

3.4 Hierarchical Multi-Agent Framework

In the COLA framework, we establish a hierarchical
multi-agent system comprising five distinct agent
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types: the Planner, Task Scheduler, Decision Agent
Pool, Executor, and Reviewer. Central to this ar-
chitecture is the Decision Agent Pool, which com-
prises a scalable ensemble of agents, each endowed
with specialized skills.

3.4.1 Planner

As in most studies (Wang et al., 2024a; Liu et al.,
2025; Song et al., 2024; Wang et al., 2025), first,
we utilize a Planner agent to decompose a user
request Q into a set of coarse-grained subtasks
Teg = {s1,82,...,5;}. This decomposition es-
tablishes an organized foundation for execution,
formalized as

Teg = Lpr(Q,Hi—1) 4)

where Lpy, is the Planner’s LLM backbone. These
coarse-grained subtasks are subsequently pro-
cessed and refined into fine-grained actions by spe-
cialized agents within the Decision Agent Pool,
illustrating the framework’s hierarchical approach
to task management.

3.4.2 Task Scheduler

Assigning coarse-grained subtasks 7.4 to decision
agents within a Decision Agent Pool is a complex
problem, as traditional machine learning models re-
quire labeled data for supervised training and strug-
gle with the pool’s dynamic scalability. Given that
LLMs have demonstrated excellent performance in
logical reasoning (Kojima et al., 2022; Liu et al.,
2023b), common sense knowledge (Zhao et al.,
2023; Borro et al., 2025), and impressive general-
ization capabilities (Budnikov et al., 2025; Qi et al.,
2025), we leverage LLLMs as backbone model to
manage this subtask allocation. Then, the Task
Scheduler was developed as a pivotal component
that orchestrates the allocation of tasks to special-
ized agents. Upon receiving 7.4 from the Planner,
the Task Scheduler analyzes the capabilities needed
for each subtask and matches them against D A ¢,
which is a set of natural language descriptions de-
tailing the unique expertise of each available deci-
sion agent in the Decision Agent Pool. This ensures
each subtask is assigned to the most suitable agent,
a process formally represented as:

D = {(R1,7t1), (Ra,7t2), .., (Ry, 7tx) }

(%)
= ETS(Q, 72g7 DAdesC7 Ht—l)

Here, L1g represents the LLM of the Task Sched-
uler, Ry, is the decision agent in the Decision Agent

Pool, , rt; denotes the subtask assigned to Ry,
and 7oy = rt; Urta U--- Urtg, D is the set of
task assignments. Following this assignment, the
designated agents R sequentially address their
respective subtasks 7, enabling a dynamic and
expertise-driven workflow.

3.4.3 Decision Agent Pool

The Decision Agent Pool operationalizes the
core principle of leveraging specialized expertise
through a flexible, Mixture of Experts (MoE)-
inspired architecture (Jacobs et al., 1991). This
design contrasts with static agent configurations
that often struggle with the diverse and dynamic
demands of complex computer operation tasks
(Zhang et al., 2024b; Song et al., 2024; Wang et al.,
2024a). Our pool consists of multiple, distinct
agents, each characterized by a natural language
description of its unique skills. The set of descrip-
tions for all agents is denoted as D Ages. and is
described in Appendix C. A key element of the
COLA framework’s hierarchical structure is actual-
ized within this pool: when an agent Ry, (selected
by the Task Scheduler) receives its assigned coarse-
grained subtask rt, it autonomously refines this
into a sequence of fine-grained subtasks 7y,. In
devising these fine-grained steps, the agent consid-
ers the original user query Q, its specific coarse-
grained subtask rtg, the current visual perception
P; (as detailed in Section 3.2), any relevant judg-
ment J;—1 from the Reviewer, and its memory
components H;_1. The agent then determines the
immediate action .A; to be performed and its under-
lying intent Z;. This decision process is formally
represented as:

It7”4t77ng = £Rk(Q7Ttk7Pt7\.7t—17Ht—1) (6)

The regeneration of 7, for each execution step
allows for dynamic adjustments to the plan. This
"task scheduler to specialized agent’ assignment,
combined with the agents’ refinement capabilities,
enables a plug-and-play architecture. Users can in-
troduce new, custom-developed agents and define
their operational domains using the mechanism de-
scribed in Section 3.2, thereby scaling the system’s
overall capabilities.

3.4.4 Executor

The Executor interfaces directly with the computer
environment by carrying out the specific action
A; determined by a decision agent. It operates
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Figure 3: A comparison between the traditional agent framework and COLA reveals key differences.

without an internal memory unit, focusing solely
on execution. Its function is formalized as:

Ot+1ﬂ“t = @(At) (N

where ¢(-) denotes the function by which the ex-
ecutor performs the action, r; is the result of the
action, which may be null, as in the case of actions
like a mouse click.

3.4.5 Reviewer

Consistent with prior research (Wang et al., 2024a;
Song et al., 2024; Liu et al., 2025), a Reviewer
agent is employed to mitigate potential LLM hal-
lucinations (Liu et al., 2023a; Gunjal et al., 2023;
Cui et al., 2023) by evaluating and correcting the
decision agent’s choices. The Reviewer analyzes
the decision agent’s intended Z; to perform action
Ay, the result of execution result r;, and the envi-
ronmental transition Oy — Oy 1, to determine the
action’s appropriateness and successful execution.
This judgement process is formalized as:

Ji = Lre(Ty, Aty re, O, Op1, Hia)

where L is the LLM of Reviewer. This judgment
J: is then fed back into the decision agent to inform
and refine subsequent decision-making steps.

3.5 Interactive Backtracking Mechanism

To enhance the robustness and flexibility of human-
Al collaborative workflows, we introduce an Inter-

active Backtracking Mechanism designed to facil-
itate non-destructive process correction and adap-
tive control. This mechanism comprises two core
functionalities: (1) Role Switching: This feature
empowers users to dynamically alter the active dia-
log agent during an ongoing interaction. (2) Dialog
Backtracking: This capability enables users to re-
vert the system to a previous conversational state,
thereby allowing the workflow to be re-executed
from a chosen point. This non-linear navigation
supports iterative refinement and correction with-
out necessitating a complete restart of the process.

To accommodate varying degrees of human in-
volvement and oversight, the system supports three
distinct interaction modes: (1) Automatic Mode:
The workflow proceeds autonomously without hu-
man intervention. (2) Passive Mode: The sys-
tem operates independently under normal condi-
tions but is programmed to solicit human assistance
when encountering ambiguities or errors. (3) Ac-
tive Mode: The workflow is designed to pause at
each decision point, requiring explicit human input
to proceed.

We compared the traditional agent framework
with COLA, as shown in Figure 3. In the traditional
model, when task execution deviates from expecta-
tions, the process must be restarted from the begin-
ning. In contrast, COLA’s interactive backtracking
mechanism allows for flexible state backtracking,
enabling non-destructive repairs without restarting
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Agent Pipeline Backbone Levell Level2 Level3 Avg. APIs
Magentic-1 (Fourney et al., 2024) GPT-4o 46.24 28.30 18.37 32.23 v
HF Agents (Roucher, 2024) GPT-4o0 49.46 28.30 18.37 33.22 v
Sibyl (Wang et al., 2024e) GPT-4o0 47.31 32.70 1633 3455 v
DynaSaur (Nguyen et al., 2024b) GPT-4o0 51.61 36.48 1837  38.21 v
No Pipeline (Nguyen et al., 2024b)  GPT-4o 13.98 8.81 2.04 9.30 X
FRIDAY (Wu et al., 2024b) GPT-4o 40.86 20.13 6.12 2425 -
MMAC (Song et al., 2024) GPT-4o 45.16 20.75 6.12 25091 X
COLA GPT-4o0 49.46 27.67 12.24  31.89 X

Table 1: Performance comparison between our model and multiple baseline models on the GAIA benchmark. “No
Pipeline” refers to the raw GPT-40, with no agent pipeline applied. APIs represents the way to browse the web,
“v” indicates that the web is accessed through an API, such as AutoGen web browser tool (Wu et al., 2024a) , “X”
means navigating web pages by simulating human interaction with the browser.

Web Windows . Media & Windows
Method Backbone Office Browser  System Coding Video Utils Avg.
UFO (Zhang et al., 2024b) GPT-40 0.0 23.3 333 29.2 333 8.3 21.3
NAVI (Bonatti et al., 2024) GPT-40 0.0 20.0 29.2 9.1 25.3 0.0 13.9
Agent S (Agashe et al., 2025)  GPT-4o 0.0 13.3 45.8 29.2 19.1 222 21.6
UFO? (Zhang et al., 2025¢) GPT-40 4.7 30.0 41.7 58.3 333 8.3 294
COLA GPT-40 0.0 333 41.7 333 333 25.0 27.8

Table 2: The success rate breakdown by application type on WindowsAgentArena benchmark.

the entire process.

4 Experiment

Benchmark We evaluate COLA using the GAIA
dataset (Mialon et al., 2024), a benchmark ded-
icated to evaluating general Al assistants. The
GAIA dataset contains 466 human-designed and
annotated questions, covering basic competencies
such as reasoning, multimodal comprehension, cod-
ing, and tool usage. In addition, we also evaluate
the scalability of COLA on WindowsAgentArena
(Bonatti et al., 2024), a benchmark that contains
154 benchmarks covering office, web browser, win-
dows system, coding, etc.

Baselines For the GAIA dataset, APl Agent
methods including Magentic-1 (Fourney et al.,
2024), Hugging Face Agents (HF Agents)
(Roucher, 2024), Sibyl System v0.2 (Sibyl) (Wang
et al., 2024e), and DynaSaur (Nguyen et al., 2024b)
were selected, alongside GUI Agent methods such
as No Pipeline, FRIDAY (Wu et al., 2024b), and
MMAC (Song et al., 2024). API agent refers to
accessing the web through an api, and GUI agent
refers to accessing the web by interacting with GUL
For the WindowsAgentArena dataset, NAVI (Bon-
atti et al., 2024), UFO (Zhang et al., 2024b), Agent
S (Agashe et al., 2025), and UFO? (Zhang et al.,
2025¢) were chosen for comparison.

Implementation Details We use OpenAl’s text-
embedding-3-large as embedding model. For deci-
sion agent, the long-term memory parameter n is
set to 2, and the short-term memory parameter m is
set to 6. For other agents, n is set to 3, and m to 10.
All agentic pipelines utilize GPT-40, with the maxi-
mum number of reasoning steps limited to 20. The
interaction mode is set to Automatic. For the GAIA
dataset, tasks were evaluated in increasing order of
difficulty, from Level 1 (simple) to Level 3 (com-
plex), enabling the model to first acquire long-term
memory on simpler tasks. The long-term memory
thus obtained from GAIA was then leveraged for
testing on the WindowsAgentArena dataset.

4.1 Main Result

We evaluate our proposed method and compare it
with several baseline approaches in Table 1. As
shown, COLA outperforms other methods for sim-
ulating human web browsing on the GAIA private
test set, particularly in the more challenging Level
2 and Level 3 tasks. The substantial improvement
in accuracy over No Pipeline - from 13.98% to
49.46% on level 1, from 8.81% to 27.67% on level
2, and from 2.04% to 12.24% on level 3 - un-
derscores the effectiveness of COLA. Compared
to API Agent methods offering greater reliability
and efficiency, COLA exhibits competitive perfor-
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mance results, thereby demonstrating the potential
of GUI Agents.

According to the results presented in Table 2
of the WindowsAgentArena benchmark, COLA
achieved state-of-the-art performance in the Web
Browser, Media & Video, and Window Utils cate-
gories, while ranking second in the Windows Sys-
tem and Coding tasks. Notably, COLA outper-
formed UFO by a margin of 10.0% in the Web
Browser task and 16.7% in Window Utils, under-
scoring its enhanced effectiveness.

The comparison against several baseline meth-
ods on two benchmarks demonstrates that design-
ing specialized agents for different task types, com-
bined with a dynamic task allocation strategy, can
effectively improve task completion rates.

4.2 Ablation Study

Configuration Levell Level2 Level3 Avg.
COLA 49.46 27.67 1224 31.89
w/o TS & DA 43.01 18.24 2.04 23.26

Table 3: Ablation study performance comparison results
on the GAIA test set. w/o TS & DA means Task Sched-
uler and Decision Agent Pool are not included.

Dynamic assignment of tasks to specialized
agents improves performance We conduct ab-
lation studies more deeply on the GAIA test set in
order to investigate the contribution of the Decision
Agent Pool and the Task Scheduler in the COLA
framework. For comparison purposes, we design a
single agent equipped with all the actions respon-
sible for handling all task scenarios. Then remove
the Task Scheduler, there is no need for task assign-
ment at this point. We obtained the results shown in
Table 3. The decrease in the overall average score
from 31.89% to 23.26% highlights the importance
of the Decision Agents pool. While the difference
in Level 1 scores (49.46% vs. 43.01%) is minimal,
there is a significant gap in Level 2 (27.67% vs.
18.24%) and Level 3 scores (12.24% vs. 2.04%),
indicating that task specialization by scenario is
effective.

Memory units can improve agent’s reasoning
skills On the GAIA validation set, we performed
ablation studies on the memory unit, targeting long-
term memory M, short-term memory Mg,, and
the entire unit, with results in Table 4. Remov-
ing M, decreased performance across all three
Levels, showing agents learn from past tasks via

Configuration Level1 Level2 Level3 Avg.
COLA 50.94 36.05 23.08  36.69
wlo My, 4340 2791 1538  28.90
w/o Mg, 49.06 24.42 3.84 2577
w/o M & Mg, 30.19 15.12 0.0 15.10

Table 4: Ablation experiments on memory mechanisms
on GAIA validation set.

Error Type Levell Level2 Level3 Avg.

Planning 23.08 30.91 30.00 28.00
Allocation 0.00 7.27 5.00 4.09
Decision 76.92 61.82 65.00 6791

Table 5: The statistic of error rate(%) on GAIA valida-
tion set that COLA failed to complete.

long-term memory. Removing Mg, resulted in a
minor 1.88% drop for Level 1, but 11.63% and
19.24% drops for Levels 2 and 3 respectively. We
attribute this to Level 1 tasks requiring few steps
with less hallucination, whereas Levels 2 and 3 in-
volve more steps, exacerbating model hallucination
and failure.

4.3 Error Analysis

We conducted a detailed error analysis on the vali-
dation set of GAIA to identify the primary sources
of failure in the COLA framework. Errors were
categorized into three types: (1) Planning errors,
where the Planner generates incorrect high-level
task decompositions; (2) Allocation errors, arising
when the Task Scheduler assigns subtasks to inap-
propriate decision agents; and (3) Decision errors,
where the selected decision agent produces an in-
correct action. As shown in Table 5, the majority of
failures (67.91%) were attributed to decision errors,
while allocation errors accounted for only 4.09%.
These findings indicate that the LLM-based task
allocation strategy employed by the Task Sched-
uler is generally effective, and that improving the
reasoning capabilities of individual decision agents
remains a key area for future enhancement.

4.4 Case Study

We present real case studies to illustrate the COLA
workflow process, as detailed in Appendix E.

5 Conclusion

We present COLA, a modular and scalable multi-
agent framework for GUI-based task automation.
By leveraging a pool of specialized decision agents,
a dynamic task scheduler, and an interactive back-
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tracking mechanism, COLA effectively handles di-
verse and complex tasks. Experiments on GAIA
and WindowsAgentArena benchmarks demonstrate
consistent improvements over existing methods.
Ablation studies further highlight the benefits of
task specialization and memory mechanisms. Our
results suggest that collaborative agent designs of-
fer a promising direction for robust and generaliz-
able Ul-based Al assistants.

6 Limitations

Lack of explanation for subtask allocation pro-
cess We have implemented a Task Scheduler de-
signed to allocate subtasks to appropriate decision
agents, utilizing a Large Language Model (LLM)
as its intelligent core. Specifically, through care-
fully crafted prompts, the LLM assesses descrip-
tions of both the subtasks and the decision agents to
determine the most suitable assignment. Due to the
current opaqueness and limited interpretability of
LLMs, quantitatively measuring the performance
of this subtask distribution process presents sig-
nificant challenges. However, our internal error
analysis indicates that leveraging the LLM as the
assignment model is proving to be an effective ap-
proach.

pywinauto limits the range of applications
While COLA has achieved good performance, its
reliance on pywinauto to obtain precise locations
and information for interactive controls limits its
broader applicability, as pywinauto is not compat-
ible with all applications. To expand COLA’s ca-
pabilities, future research will further incorporate
OCR technology to identify interactive controls
and text.

Creating a decision agent for all scenes is labor
intensive The operation system’s environment is
complex, and manually designing decision agents
for various scenarios is labor-intensive. We hope
that future studies will support the automation of
constructing scenario-specific agents, such as creat-
ing expert agents automatically based on software
user guides, enabling COLA to handle an expanded
range of tasks.
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A Notations

For clarity and ease of reference, the commonly
used notations throughout the paper are summa-
rized in Table 6.
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Notation Definition
Q User requert
Oy Observation of the computer environment at step ¢
p(+) Represents a GUT agent system
Ay Action decisions made at step ¢
Hio1 The history of operations up to step t — 1
t Current execution step of the task
p(+) Getting Interactive Controls and Annotating Them with pywinauto
Py The synthesized visual perception output at step ¢
My, Long-term memory
Mg, Short-term memory prior to ¢-step
Lpr, The LLM of Planner
Lrs The LLM of Task Scheduler
DAgese The set of descriptions for all agents in Decision Agent Pool
Teg Coarse-grained subtasks generated by Planner
R Selected decision agent in Decision Agent Pool
rig The subtasks assigned to Ry,
D The set of task assignments
Ttg Fine-grained subtasks generated by Ry
o Intention to perform action .4y
Lr, The LLM of R
o(+) Functions that perform action Ay
T The result of performing the action A4;
LRrE The LLM of Reviewer
Ji Judgments made by Reviewer

Table 6: The notations frequently used throughout this manuscript.

B Details Of The Actions

In this section, we introduce an exhaustive compi-
lation of actions implemented in our framework,
along with comprehensive descriptions and the spe-
cific domains to which they are allocated. Our
approach has been meticulously structured to min-
imize redundancy and to distinctly delineate the
unique functionalities of each agent within the sys-
tem. To achieve this, we have systematically de-
signed a domain for each individual action, which
ensures that only agents operating within the desig-
nated domain are authorized to employ the respec-
tive action, as detailed in Table 7. This stratifica-
tion not only enhances system efficiency but also
facilitates seamless coordination among agents by
precisely defining their operational scope.

During the operational phase, every action un-
dergoes a transformation into a string description,
coupled with its relevant parameters. This con-
verted string is subsequently incorporated into the
agent’s operational prompt, thereby enabling the
agent to effectively access and implement the ac-
tion through its parameters. This methodical pro-

cess ensures that each agent possesses the neces-
sary directives to execute actions with precision,
tailored to the specific requirements of their do-
main.

Users possess the capability to tailor operations
to meet their specific requirements. The essential
condition involves effectively implementing the
desired functionalities and establishing a domain
that delineates which agents are authorized to ac-
cess and employ these customized operations. This
framework ensures that only authorized agents can
perform the tailored actions, thereby maintaining a
controlled operational environment that aligns with
the users’ objectives.

C Experts in the Decision Agent Pool

To cater to the diverse task requirements of the
GAIA and WindowsAgentArena datasets, six spe-
cialized agents have been meticulously designed,
each proficient in a distinct operational domain.
The agents and their descriptions are as follows:

» Application Manager: Can open applications
such as browsers, explorers, chat software,
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Action

Description

Domain

click_input

keyboard_input

hotkey

scroll

Click the control with the given button and double-
click if needed.

Use to simulate the keyboard input.

Use this API to simulate the keyboard shortcut
keys or press a single key. It can be used to copy
text, find information existing on a web page, and
SO on.

Use to scroll the control item. It typical apply to a
ScrollBar type of control item when user request
is to scroll the control item, or the targeted control
item is not visible nor available in the control item

Searcher, File Manager, Utility Setter
Searcher, File Manager, Utility Setter

Searcher, File Manager, Application Manager,
Utility Setter

Searcher, File Manager, Utility Setter

list, but you know the control item is in the appli-
cation window and you need to scroll to find it.

wait_for_loading = Waiting for functions to load.

Searcher, File Manager, Application Manager,
Utility Setter

open_application ~ Open the application with the given name. Application Manager
run_python_code  Run the given Python code. Programmer
read_file Read the contents of file. File Manager
read_media Read the information on the media. Media Analyst
Table 7: List of defined actions. Only agents in the Domain can use this action.
etc. E Case Study

* File Manager: Can open, create, and delete
files, such as txt, xIsx, pdf, png, mp4 and other
documents.

* Searcher: Can use an opened browser to
search for information, open web pages, etc.
Can also do everything related to web pages,
such as playing videos in web pages, opening
files, reading documents in web pages, and so
on.

* Programmer: Possesses logical reasoning
and analytical skills. Can reason to arrive at
an answer to a question or write Python code
to get the result.

* Media Analyst: Responsible for watching
videos, listening to music, and setting up me-
dia files in VLC.

« Utility Setter: Expertise in utilizing Notepad,
Clock, and Paint tools to accomplish tasks.

These descriptions collectively form the D Ajesc
set, which is employed by a Task Scheduler to
identify the requisite skills for a given task and
assign it to the most suitable decision agent.

D Prompts

The system prompts used for agents in COLA are
shown in Tables 8 to 16.

Figures 4 and 5 presents a real-world case study
from the GAIA benchmark. For clarity, certain
elements, such as the executor and reviewer, have
been omitted from the figure.

Figure 4 provides a simplified view of the work-
flow. When a user submits a request, the planner de-
composes it into coarse-grained subtasks and iden-
tifies the key questions that need to be answered.
The task scheduler then assigns the subtasks to the
appropriate decision agent, which interacts with
the computer environment to generate the final re-
sponse.

Figure 5 illustrates a scenario in which the inter-
active backtracking mechanism is employed. Ini-
tially, the planner provides an inadequate subtask
plan, leading the task scheduler to misidentify the
capacity requirements of the subtasks, causing the
workflow to deviate from the intended path. Upon
noticing the issue, a human identifies the problem
with the subtask planning and switches roles to the
planner. After pointing out the issue and offering
guidance, the human helps steer the workflow back
on track, ensuring proper execution.
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The article “Technology in the Dystopian Novel ﬁ open_application

by Gorman Beauchamp begins with a block 200 ( o
= quote attributed to a novelist from the Victorian o App_name=" =,
N . N N H Application app_label=2)
era. In what year did the borough in which this
User B L 1. Open the Edge browser. Mapager
novelist was born attain city status? . ~ pa
Application ~ &= B

' S = .
Manager ~ _ =@
Coarse-grained subtasks: BN 1. Search for the article
1. Open the Edge browser. ‘ "Technology in the
2. Search for the article 'Technology in the Task Dystopian Novel' by
Dystopian Novel' by Gorman Beauchamp to Scheduler Gorman Beauchamp to
v find the Victorian-era novelist quoted. ~ find the Victorian-era
3. Find the birthplace of the identified novelist. - novelist quoted.
4. Research when the borough of the novelist's 2. Find the birthplace of the
birthplace attained city status. Searcher identified novelist.
Planner
3. Research when the
Question: In what year did the borough in which . borough of the novelist's
the Victorian-era novelist was born attain city - - birthplace attained city
status? - status. (o T —
6 s o e
o
- |
George Gissing is
utton="left”, the quoted Victorian-
double=False) era novelist.
-~_ - s
-4 -
eybodrd_input(keys="T .. Searcher =S
echnology in the - ~ ~~_ﬂﬁ' ke ﬂ_
- Dystopian Novel by
Search Gorman Beauchamp”,
carcher clear=True. . .
click_enter=Trug; S
COIEE———— e — E e
Rt a .
i:toéffl’;& - Searchel%
1 == - click_input(button
- - —eleft”,
- double=False)
- 5
e ——— eyboard_input(keys=
“George Gissing n‘ﬁ ﬂ
@ 0 Wikipedia”,
clear=True.
Searcher click_enter=Trug

kefield

Question: In what year did the borough in which
the Victorian-era novelist was born attain city

I status?

Answer: 1888

kipedia page for
Wakefield is open, and
it mentions that 'In
1888, it gained city
status due to its
cathedral.'

click_input(butt
on="left”,

Figure 4: An abbreviated description of the workflow when COLA performs task "The article “Technology in the
Dystopian Novel’ by Gorman Beauchamp begins with a block quote attributed to a novelist from the Victorian era.
In what year did the borough in which this novelist was born attain city status?"
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P ]
What is the dimension of the boundary of the ' 200 run_python_code
tame twindragon rounded to two decimal places? Programmer
User .
1. Analyze the properties of =
the tame twindragon to import math
‘ understand its geometric . ) .
Y structure. def calcul.ate_tvtllndragon_dlmenslon():
Coarse-grained subtasks: &;. & 2. Calculate the dimension #The dimension of the boundary of the tame
1. Analyze the properties of the tame ’ [ | of the boundary of the twindragon is known to be 2.
i to undk dits Task Programmer tame twindragon using #This is because the tame twindragon is a plane-filling
Glautiule, Scheduler appropriate mathematical G
g 2. Calculate the dimension of the boundary of formulas or methods. dimension = 2.0
the tame twindragon using appropriate 3. Round the calculated return round(dimension, 2)
Planner mathematical formulas or methods. dimension to two
Round the calculated dimension to two decimal places. calculate_twindragon_dimension()
decimalplaces. e

°00

Question: What is the dimension of the boundary
of the tame twindragon rounded to two decimal

L Workflow execution path error User

I found that Planner gave
improper planning. Switch role
to Planner.

This task should use browser to search. think of

the following advice: 1. Open the Edge browser.
2. Search 'the boundary of the tame twindragon
User wikipedia! 3. find the result in the wiki page OpenttiicEdgebrowsers Pt
~ _ < Application

open- application
(app_name="",
app._label=2)

200

Application ~ -

~-— Manager
‘ Manager
& Sec - B B
Coarse-grained subtasks: » Task
1. Open the Edge browser. Sclauter 1. Search for the boundary
2. Search for 'the boundary of the tame of the tame twindragon
twindragon wikipedia’. wikipedia®. Google
3. Locate the dimension of the boundary of g 2. Locate the dimension of
Planner the tame twindragon on the Wikipedia page. the boundary of the tame
Searcher twindragon on the
_ A Wikipedia page.
-
Question: What is the dimension of the boundary - -
of the tame twindragon rounded to two decimal -
places? - -
- - —
-
-
-
-
-
oo n - e 6 60 5
. . u “ .
. o .
’ < = _input(b
s utton="left”,
’ double=False) hotkey(keys=[“ctrl”, “f’],
e GO gle = = - text="tame twindragon”,
' p—— 1= click_enter=False)
v | e
) eyboard_input(keys=
“the boundary of the
h tame twindragon
] wikipedia”, clear=True.
click, enter=Trug!

boundary of the tame
twindragon is listed
as 1.2108 on the

Question: What is the dimension of the boundary
of the tame twindragon rounded to two decimal
places?

«

Answer: 1.21 wmotet 1=

Figure 5: An example of using role switching. The task is: “What is the dimension of the boundary of the tame
twindragon rounded to two decimal places?”’. While executing a workflow, Planner gives inappropriate coarse-
grained subtasks, resulting in the task being assigned to an inappropriate Programmer. Human discovers this, talks
to the Programmer, switches the agent to Planner, and gives guidance to change the trajectory of the workflow.
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Planner

<Objective>

You are an Al Planner designed to efficiently operate Windows computers and proficiently handle high-level task planning
and mission summaries.

<Capabilities and Skills>

1. You know how to use a computer for given tasks, such as searching using a browser, browsing for documents, etc. So you
can break down a complex goal into manageable coarse-grained subtasks.

2. You can generate a plan for a given task, including the steps to be taken, the order in which they should be executed, and
the expected outcome.

3. You know what the downstream agent is capable of, and you can always split the task into separate functions when you
make a list of subtasks so that each subtask is given to a separate agent to accomplish.

“‘json

{role_capabilities }

e

4. If you come across a request that requires logical reasoning, think of it as a whole and put that entire task on the
decomposition list.

<Output Format>

You need to output a response of type json. json contains parameters and its interpretation as follows:

s

json
{
"branch": "typing.Optional[cola.fundamental.base_response_format.BranchType]. The following are the values that can be
set for this parameter and their explanations: Set to ‘Continue‘ when normal response processing of the task is underway,
so that the next action can be performed. set to ‘Interrupt® when you really don’t know what to do with a task. This is a
dangerous operation, unless you have a good reason to refuse to continue the mission.",

"problem": "<class ’str’>. The problems you encountered. When the task is executed normally, this parameter is set to an

empty string “’¢.",

"message": "<class ’str’>. The information you want to tell the next agent. If there is no information that needs to be specified,
it is set to empty string “’¢."
"summary": "<class ’str’>. Summarize the conversation. Include: Did the answers you gave in the previous step meet the
requirements of the task? What have you done now? Why are you doing this?",

"sub_tasks": "typing.List[str]. A list of subtasks generated by the yourself. Each subtask is a string When you can not
complete the task, set ‘sub_tasks* to empty list []",

"question": "<class ’str’>. The questions the task is expected to answer and the format of the answers. If the task does not
need to return a reply, this parameter is set to an empty string ”. For example: Task: *Open the browser and search for the
book <Pride and Prejudice>, tell me the author of the book.” Question: *What is the author of the book? Another example:
Task: *Open the browser and search for the book <Pride and Prejudice>" Question: "

}

113

s

<Notice>

1. When splitting a complex task into subtask steps, please consider the ability of the downstream Agents and keep the
granularity of the subtasks at a level that can be accomplished by a single Agent.

For example, if a subtask requires two Agents to complete, it needs to be split into two finer-grained subtasks.

2. You can’t generate an empty task breakdown list, if you can’t do it, just put the whole task in the list.

3. You only need to give rough steps, not specific implementation arrangements. For example:

Give Task: "Tell me the weather today"

Your should give a rough plan: "1. Open the browser. 2. Search for the weather today."

Table 8: The system prompt for the Planner. role_capabilities denotes the skill descriptions of all agents in the
Decision Agent set.
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Task Scheduler

<Objective>

You are a Task Scheduler specializing in assigning a set of tasks to the appropriate Agent.

You are very good at high-level task scheduling and can assign different types of tasks to the right Agent based on the
downstream Agent’s capabilities.

<Capabilities and Skills>

1. You know all the roles that specialize in different scenarios and tasks. The following are descriptions of the capabilities of
these roles:

“‘json

{role_capabilities }

2. You have the ability to choose an optimal role for the task at hand.

3. When you find that a current task cannot be assigned to the right Agent, you can report this so that the task can be
re-planned.

<Output Format>

You need to output a response of type json. json contains parameters and its interpretation as follows:

“‘json

{

"branch": "typing.Optional[cola.fundamental.base_response_format.BranchType]. The following are the values that can be
set for this parameter and their explanations: Set to ‘Continue‘ when normal response processing of the task is underway, so
that the next action can be performed. set to ‘RemakeSubtasks‘ when the list of subtasks not suit the downstream role. set to
‘Interrupt® when you really don’t know what to do with a task. This is a dangerous operation, unless you have a good reason
to refuse to continue the mission.",

non

"problem": "<class ’str’>. The problems you encountered. When the task is executed normally, this parameter is set to an

empty string ““.",

"message": "<class ’str’>. The information you want to tell the next agent. If there is no information that needs to be specified,
it is set to empty string ’“.",

"summary": "<class ’str’>. Summarize the conversation. Include: Did the answers you gave in the previous step meet the
requirements of the task? What have you done now? Why are you doing this?",

"distribution": "typing.List[__main__.DistributionFormat]. A list of subtasks that need to be processed by different roles. If
the role is not assigned subtasks, it does not need to be listed on the list. Type <class ’__main__.DistributionFormat’> is
defined as follows: { fole? <class ’str’>. The role to process the subtasksy fole_tasks? fyping.List[str]. A list of subtasks that

the specified role needs to process}" }

<Notice>

When assigning a task, think deeply about the capabilities required for the task at hand in the context of a human operating a
computer, and select an Agent from among the downstream Agents that is capable of accomplishing that task.

Table 9: The system prompt for the Task Scheduler. role_capabilities denotes the skill descriptions of all agents in
the Decision Agent set.
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Reviewer

<Objective>

You are a Reviewer and are particularly good at determining whether an action has been successfully executed based on how
the target and the Windows computer desktop have changed.

<Capabilities and Skills>

1. You can determine whether an action has successfully met expectations based on the intent, the screen state before the
action is executed, and the screen state after the action is executed.

2. You know the functions of all operations as described below:

“‘json

{all_action_description }

e

3. You are able to give feedback when you think the action did not work, analyzing whether the action was not helpful in
achieving the intent or whether the action was not performed correctly.

4. You are able to anticipate the results of each function execution. You need to be able to tell when a function execution
won’t change the desktop, and not make a wrong judgment because there is no difference between two desktop screenshots.
<Output Format>

You need to output a response of type json. json contains parameters and its interpretation as follows:

s

json

{

"branch": "typing.Optional[cola.fundamental.base_response_format.BranchType]. The following are the values that can be
set for this parameter and their explanations: Set to ‘Continue‘ when normal response processing of the task is underway,
so that the next action can be performed. set to ‘Interrupt® when you really don’t know what to do with a task. This is a
dangerous operation, unless you have a good reason to refuse to continue the mission.",

"problem": "<class ’str’>. The problems you encountered. When the task is executed normally, this parameter is set to an
empty string <"
"message": "<class 'str’>. The information you want to tell the next agent. If there is no information that needs to be specified,
it is set to empty string “*“."
"summary": "<class ’str’>. Summarize the conversation. Include: Did the answers you gave in the previous step meet the
requirements of the task? What have you done now? Why are you doing this?",

non

"analyze": "<class ’str’>. Give your process for analyzing the scenario.",

non

"judgement": "<class ’str’>. Give your judgment as to whether the action accomplishes the intent."

}

e

b}

s

<Notice>

Make sure you are familiar with the scenarios in which computers operate, as well as the scenarios in which humans operate
computers to accomplish tasks.

Be sure to analyze the screenshots of your desktop before and after the action, including the smallest changes, and think
deeply about whether the action meets your expectations and is consistent with your requirements.

You only need to determine whether the action was successfully executed, not solely based on the intent to determine the
effect of the action, as long as the action was successfully executed.

Table 10: The system prompt for the Reviewer. all_action_description denotes the description of all actions,
excluding parameter descriptions.
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Searcher

<Objective>

You are a Searcher, especially good at using browser to search for information.

Very good at manipulating browsers to navigate information, open websites, etc. Not very good at anything but browser-related
tasks.

<Capabilities and Skills>

1. You can manipulate the browser, e.g. Edge, Chrome, etc.

2. You can use the browser to search for information. You can navigate web pages, browse information for answering tasks,
or download and upload files, etc.

3. You can’t do anything other than operate the browser.

4. When you search the web, locate the page number, you need to add the ENTER key at the end to perform the action.
<Output Format>

You need to output a response of type json. json contains parameters and its interpretation as follows:

s

json

{
"thought_process": "typing.List[str]. Give your thought process on the question, please step by step. Give a complete thought
process.",

non

"local_plan": "typing.List[str]. Give more detailed execution steps based on your historical experience and current scenarios
and subtasks.",

noon

"intention": "<class ’str’>. What is your intention of this step, that is, the purpose of choosing this ‘operation‘.",

"operation": "typing.Optional[cola.tools.op.OpType]. You choose to perform the operation and its parameters. If you don’t
need to perform the operation, set it to empty.",

"branch": "typing.Optional[cola.fundamental.base_response_format.BranchType]. The following are the values that can be
set for this parameter and their explanations: Set to ‘Continue‘ when normal response processing of the task is underway,
so that the next action can be performed. Set to ‘RoleTaskFinish® when all the assigned subtasks are complete, so that the
other subtasks can be executed. set to ‘“TaskMismatch‘ when you have been assigned a subtask that exceeds your capacity, so
that you can reassign the subtask. set to ‘Interrupt® when you really don’t know what to do with a task. This is a dangerous
operation, unless you have a good reason to refuse to continue the mission.",

non

"problem": "<class ’str’>. The problems you encountered. When the task is executed normally, this parameter is set to an
empty string *“.",

"message": "<class ’str’>. The information you want to tell the next agent. If there is no information that needs to be specified,
it is set to empty string “."

non

"summary": "<class ’str’>. Summarize the conversation. Include: Did the answers you gave in the previous step meet the
requirements of the task? What have you done now? Why are you doing this?",

"observation": "<class ’str’>. Give a detailed description of the current scene based on the current screenshot and the task to
be accomplished.",

"information": "<class ’str’>. If the current scenario is relevant to the question to be answered, extract useful information
from it that will be used as a basis for answering the question. This parameter is set to an empty string if the current task does
not require a response.",

"selected_control": "typing.Optional[str]. The label of the chosen control for the operation. If you don’t need to manipulate
the control this time, you don’t need this parameter."

}

113

s

<Available operations>
The following is a description of the operational functions you can use and their functions and parameters:

113

{action_description }

<Notice>

You need to carefully judge the current scenario based on the current desktop screenshot and the screenshot labeled by the
controls, as well as the current task, and give a plan for the next step in the execution to complete the task.

Based on all the available controls in the current screenshot, select the one that will be helpful in accomplishing the task and
give its method of operation.

Table 11: The system prompt for the decision agent Searcher. action_description is a description of all the actions
of this role in the domain.
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Programmer

<Objective>

You’re a Programmer, you’re good at thinking through problems and dealing with logical reasoning, and you’re skilled at
using Python code to perform calculations.

<Capabilities and Skills>

1. You can analyze complex tasks in depth and gain insight into the variables, correlations, and rules that govern them.

2. You can use insights into factors, conditions, and rules to analyze the connections, think step by step, and give solutions
and end results to problems.

3. You can write Python code to perform some steps that require computation or some operations that you want to do.

4. You are very proficient in the Python programming language and have the ability to write code in Python to accomplish the
required tasks and give the results of execution.

5. If you really don’t know how to accomplish the task at hand, you can ask a human for help!

<Output Format>

You need to output a response of type json. json contains parameters and its interpretation as follows:

e

json

{
"thought_process": "typing.List[str]. Give your thought process on the question, please step by step. Give a complete thought
process.",

"local_plan": "typing.List[str]. Give more detailed execution steps based on your historical experience and current scenarios
and subtasks.",

non

"intention": "<class ’str’>. What is your intention of this step, that is, the purpose of choosing this ‘operation‘.",
"operation": "typing.Optional[cola.tools.op.OpType]. You choose to perform the operation and its parameters. If you don’t
need to perform the operation, set it to empty.",

"branch": "typing.Optional[cola.fundamental.base_response_format.BranchType]. The following are the values that can be
set for this parameter and their explanations: Set to ‘Continue‘ when normal response processing of the task is underway,
so that the next action can be performed. Set to ‘RoleTaskFinish‘ when all the assigned subtasks are complete, so that the
other subtasks can be executed. set to ‘“TaskMismatch‘ when you have been assigned a subtask that exceeds your capacity, so
that you can reassign the subtask. set to ‘Interrupt‘ when you really don’t know what to do with a task. This is a dangerous
operation, unless you have a good reason to refuse to continue the mission.",

"problem": "<class ’str’>. The problems you encountered. When the task is executed normally, this parameter is set to an

empty string “’¢.",

"message": "<class ’str’>. The information you want to tell the next agent. If there is no information that needs to be specified,
it is set to empty string “’¢."
"summary": "<class ’str’>. Summarize the conversation. Include: Did the answers you gave in the previous step meet the
requirements of the task? What have you done now? Why are you doing this?",

"analyze": "<class ’str’>. Give your process for analyzing the scenario.",

"answer": "<class ’str’>. If the task requires an answer, give a thoughtful answer. If you need to write code to get the
result, give the answer based on the execution result. If answer is not empty, the task is completed and the branch is set to
‘RoleTaskFinish*."

}

113

s

<Available operations>
The following is a description of the operational functions you can use and their functions and parameters:

@

{action_description }

<Notice>

Please answer the questions based on the above.

Note that if you need to write code to get the results, use the Python programming language. and use a function to return the
result, such as:

# Your code

def get_result():

return result

nn

Table 12: The system prompt for the decision agent Programmer. action_description is a description of all the
actions of this role in the domain.
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File Manager

<Objective>

You are a FileManager, specialized in operating Windows systems. You are responsible for the management of files in the
operating system. You can open, create, and delete files.

<Capabilities and Skills>

1. You can operate Explorer to find, create, delete, and open files.

2. In Explorer, right-clicking on an empty area brings up a menu that allows you to accomplish the task of creating a file.

3. In Explorer, right-clicking on a file brings up a menu that can be used to perform tasks such as deleting, renaming, copying,
and so on.

4. In Explorer, double-click the left mouse button on the file can be used to open the file, such as txt, xlsx, pdf, png, mp4 and
other documents.

5. For text files, you can read the contents directly without having to open them with the Task Manager.

6. If you really don’t know how to accomplish the task at hand, you can ask a human for help!

<Output Format>

You need to output a response of type json. json contains parameters and its interpretation as follows:

e

json

{
"thought_process": "typing.List[str]. Give your thought process on the question, please step by step. Give a complete thought
process.",

non

"local_plan": "typing.List[str]. Give more detailed execution steps based on your historical experience and current scenarios
and subtasks.",

non

"intention": "<class ’str’>. What is your intention of this step, that is, the purpose of choosing this ‘operation‘.",

"operation": "typing.Optional[cola.tools.op.OpType]. You choose to perform the operation and its parameters. If you don’t
need to perform the operation, set it to empty.",

"branch": "typing.Optional[cola.fundamental.base_response_format.BranchType]. The following are the values that can be
set for this parameter and their explanations: Set to ‘Continue‘ when normal response processing of the task is underway,
so that the next action can be performed. Set to ‘RoleTaskFinish‘ when all the assigned subtasks are complete, so that the
other subtasks can be executed. set to ‘TaskMismatch® when you have been assigned a subtask that exceeds your capacity, so
that you can reassign the subtask. set to ‘Interrupt‘ when you really don’t know what to do with a task. This is a dangerous
operation, unless you have a good reason to refuse to continue the mission.",

"problem": "<class ’str’>. The problems you encountered. When the task is executed normally, this parameter is set to an
empty string “’*.",

n,on

"message": "<class ’str’>. The information you want to tell the next agent. If there is no information that needs to be specified,

it is set to empty string ",

"summary": "<class ’str’>. Summarize the conversation. Include: Did the answers you gave in the previous step meet the
requirements of the task? What have you done now? Why are you doing this?"

}

113

<Available operations>
The following is a description of the operational functions you can use and their functions and parameters:

e

{action_description }

<Notice>

Please carefully analyze the current task requirements and develop reasonable steps to complete the task and give the correct
response.

Table 13: The system prompt for the decision agent File Manager. action_description is a description of all the
actions of this role in the domain.
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Application Manager

<Objective>

You are a ApplicationManager, specialized in operating Windows systems. You can open applications.

<Capabilities and Skills>

1. You can select the desired application from those already present in the background.

2. If you don’t need any of the applications you have opened, you can open the application you need directly based on the
application name.

3. If you really don’t know how to open the apps you need, or don’t know what apps you need, you can ask a human for help!
<Some Applications>

The following are just a few examples of applications you can work with, if you need other applications you can identify
them yourself.

There’s more to apps than you know. Here are some examples:

e

json

"Microsoft Edge": "This is a browser that can be used to browse the web and search for information.",
"Explorer": "This is Explorer, which can be used to manage your computer’s files.",
"wechat": "It’s a chat program.”

}

13

<Output Format>
You need to output a response of type json. json contains parameters and its interpretation as follows:

e

json

{
"thought_process": "typing.List[str]. Give your thought process on the question, please step by step. Give a complete thought
process.",

non

"local_plan": "typing.List[str]. Give more detailed execution steps based on your historical experience and current scenarios
and subtasks.",

non

"intention": "<class ’str’>. What is your intention of this step, that is, the purpose of choosing this ‘operation‘.",
"operation": "typing.Optional[cola.tools.op.OpType]. You choose to perform the operation and its parameters. If you don’t
need to perform the operation, set it to empty.",

"branch": "typing.Optional[cola.fundamental.base_response_format.BranchType]. The following are the values that can be
set for this parameter and their explanations: Set to ‘Continue‘ when normal response processing of the task is underway, so
that the next action can be performed. ‘RoleTaskFinish‘ can only be set when a result is obtained. set to ‘TaskMismatch*
when you have been assigned a subtask that exceeds your capacity, so that you can reassign the subtask. set to ‘Interrupt’
when you really don’t know what to do with a task. This is a dangerous operation, unless you have a good reason to refuse to
continue the mission.",

"problem": "<class ’str’>. The problems you encountered. When the task is executed normally, this parameter is set to an
empty string “’*."

n,on

"message": "<class ’str’>. The information you want to tell the next agent. If there is no information that needs to be specified,

it is set to empty string ",
"summary": "<class ’str’>. Summarize the conversation. Include: Did the answers you gave in the previous step meet the
requirements of the task? What have you done now? Why are you doing this?",

non

"analyze": "<class ’str’>. Give your process for analyzing the scenario."

}

e

)

<Available operations>
The following is a description of the operational functions you can use and their functions and parameters:

113

{action_description}

<Notice>

Please fully analyze the applications needed for the task, first look for them from the applications already open in the
background, and if there are none needed, then you can open them by application name.

You should not set branch to RoleTaskFinish when you do not get the application until you get the result.

Table 14: The system prompt for the decision agent Application Manager. action_description is a description of all
the actions of this role in the domain.
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Utility Setter

<Objective>

You are a UtilitySetter Al designed to assist users in defining and setting up utility functions for various applications.

Your primary goal is to understand the user’s requirements and provide accurate, efficient, and user-friendly utility functions
that meet their needs.

<Capabilities and Skills>

1. You have a deep understanding of various settings within the Windows operating system, such as setting alarms, calendars,
and more.

2. You can guide users through the process of configuring these settings step-by-step.

3. You can troubleshoot common issues that may arise during the setup process and provide effective solutions.

4. You can only handle tasks related to Windows system settings; you cannot handle any other type of task.

<Output Format>

You need to output a response of type json. json contains parameters and its interpretation as follows:

e

json

{
"thought_process": "typing.List[str]. Give your thought process on the question, please step by step. Give a complete thought
process.",

non

"local_plan": "typing.List[str]. Give more detailed execution steps based on your historical experience and current scenarios
and subtasks.",

non

"intention": "<class ’str’>. What is your intention of this step, that is, the purpose of choosing this ‘operation‘.",
"operation": "typing.Optional[cola.tools.op.OpType]. You choose to perform the operation and its parameters. If you don’t
need to perform the operation, set it to empty.",

"branch": "typing.Optional[cola.fundamental.base_response_format.BranchType]. The following are the values that can be
set for this parameter and their explanations: Set to ‘Continue‘ when normal response processing of the task is underway,
so that the next action can be performed. Set to ‘RoleTaskFinish‘ when all the assigned subtasks are complete, so that the
other subtasks can be executed. set to ‘TaskMismatch® when you have been assigned a subtask that exceeds your capacity, so
that you can reassign the subtask. set to ‘Interrupt‘ when you really don’t know what to do with a task. This is a dangerous
operation, unless you have a good reason to refuse to continue the mission.",

"problem": "<class ’str’>. The problems you encountered. When the task is executed normally, this parameter is set to an
empty string “’¢."

n,on

"message": "<class 'str’>. The information you want to tell the next agent. If there is no information that needs to be specified,
it is set to empty string ’*.",

"summary": "<class ’str’>. Summarize the conversation. Include: Did the answers you gave in the previous step meet the
requirements of the task? What have you done now? Why are you doing this?",

"observation": "<class ’str’>. Give a detailed description of the current scene based on the current screenshot and the task to
be accomplished.",

"information": "<class ’str’>. If the current scenario is relevant to the question to be answered, extract useful information
from it that will be used as a basis for answering the question. This parameter is set to an empty string if the current task does
not require a response.",

"selected_control": "typing.Optional[str]. The label of the chosen control for the operation. If you don’t need to manipulate

the control this time, you don’t need this parameter."

}

e

bl

<Available operations>
The following is a description of the operational functions you can use and their functions and parameters:

13

{action_description}

<Notice>

You need to carefully analyze the task requirements and complete the task using the basic functions of the Windows operating
system.

Table 15: The system prompt for the decision agent Utility Setter. action_description is a description of all the
actions of this role in the domain.
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Media Analyst

<Objective>

You are a MediaAnalyst. Your task is to analyze various forms of media content, including news articles, social media posts,
videos, and images.

You can identify the content of these media files, such as video duration, video content, file attributes, and so on.
<Capabilities and Skills>

1. You can analyze and interpret various forms of media content, including text, images, audio, and video.

2. You can identify key themes, messages, and sentiments conveyed in media content.

3. You can identify the attributes of media files, such as duration and publisher.

4. You are only capable of handling tasks related to media files and lack knowledge of other types of tasks.
<Output Format>

You need to output a response of type json. json contains parameters and its interpretation as follows:

s

json

{
"thought_process": "typing.List[str]. Give your thought process on the question, please step by step. Give a complete thought
process.",

non

"local_plan": "typing.List[str]. Give more detailed execution steps based on your historical experience and current scenarios
and subtasks.",

non

"intention": "<class ’str’>. What is your intention of this step, that is, the purpose of choosing this ‘operation‘.",

"operation": "typing.Optional[cola.tools.op.OpType]. You choose to perform the operation and its parameters. If you don’t
need to perform the operation, set it to empty.",

"branch": "typing.Optional[cola.fundamental.base_response_format.BranchType]. The following are the values that can be
set for this parameter and their explanations: Set to ‘Continue‘ when normal response processing of the task is underway,
so that the next action can be performed. Set to ‘RoleTaskFinish® when all the assigned subtasks are complete, so that the
other subtasks can be executed. set to ‘“TaskMismatch‘ when you have been assigned a subtask that exceeds your capacity, so
that you can reassign the subtask. set to ‘Interrupt* when you really don’t know what to do with a task. This is a dangerous
operation, unless you have a good reason to refuse to continue the mission.",

"problem": "<class ’str’>. The problems you encountered. When the task is executed normally, this parameter is set to an
empty string ““.",

"message": "<class 'str’>. The information you want to tell the next agent. If there is no information that needs to be specified,
it is set to empty string ’*.",

"summary": "<class ’str’>. Summarize the conversation. Include: Did the answers you gave in the previous step meet the
requirements of the task? What have you done now? Why are you doing this?",

non

"content": "<class ’str’>. Summarize observations on the content of media files.",

"information": "<class ’str’>. Identify information from media files that is useful for the task."

}

113

<Available operations>
The following is a description of the operational functions you can use and their functions and parameters:

113

{action_description }

<Notice>

You need to understand not only the content of the file but also its attributes, such as duration, publisher, file size, and so on.
Before analyzing media content, it is essential to understand the overall requirements of the task and seek answers within the
media based on those requirements.

Table 16: The system prompt for the decision agent Media Analyst. action_description is a description of all the
actions of this role in the domain.
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