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Abstract

The success of large language models (LLMs)
has attracted many individuals to fine-tune
them for domain-specific tasks by uploading
their data. However, in sensitive areas like
healthcare and finance, privacy concerns of-
ten arise. One promising solution is to gen-
erate synthetic data with Differential Privacy
(DP) guarantees to replace private data. How-
ever, these synthetic data contain significant
flawed data, which are considered as noise. Ex-
isting solutions typically rely on naive filtering
by comparing ROUGE-L scores or embedding
similarities, which are ineffective in addressing
the noise. To address this issue, we propose
RewardDS, a novel privacy-preserving frame-
work that fine-tunes a reward proxy model
and uses reward signals to guide the synthetic
data generation. Our RewardDS introduces
two key modules, Reward Guided Filtering
and Self-Optimizing Refinement, to both fil-
ter and refine the synthetic data, effectively
mitigating the noise. Extensive experiments
across medical, financial, and code generation
domains demonstrate the effectiveness of our
method. Our code and data will be available at
https://github.com/wjw136/RewardDS.

1 Introduction

The remarkable capabilities of Large Language
Models (LLMs) in general tasks have motivated
many individuals and organizations to customize
their own LLMs for domain-specific applications,
such as medical diagnosis, financial analysis, etc.
(Wu et al., 2023; Chen et al., 2023). While do-
main adaptation through fine-tuning is attractive,
high computational costs make local fine-tuning
impractical for most users. Currently, most LLM
service providers (Achiam et al., 2023; Yang et al.,
2024a; Doubao, 2024) offer fine-tuning services,
allowing users to customize LLMs for their needs
by preparing and uploading their domain-specific
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Figure 1: Illustration of how RewardDS overcomes the
dilemma of traditional synthetic data methods. The syn-
thetic data directly sampled from the generation proxy
model contain significant flaws, such as incoherent text
or incomplete storylines, which are considered noise.

data. However, these data may contain sensitive
information, and directly transferring it to the LLM
service provider can lead to significant privacy con-
cerns (Zeng et al., 2024; Abdelnabi et al., 2023).
We denote the individuals or organizations which
aim to customize LLMs as client, the LLM service
providers as server, and the model being fine-tuned
as the target LLM. It remains a critical challenge
to develop privacy-preserving fine-tuning methods
in such a client-server scenario.

Prior works proposed data synthesis as a promis-
ing solution (Kurakin et al., 2023; Yue et al., 2023;
Yu et al., 2023; Mattern et al., 2022; Flemings and
Annavaram, 2024). These approaches generate syn-
thetic data to replace the private data and can be
used for fine-tuning, thus ensuring privacy protec-
tion. Specifically, a generation proxy model is first
trained on the private data, optimized by DP-SGD
(Abadi et al., 2016) to safeguard privacy. The gen-
eration proxy model then generates synthetic data
for subsequent LLM training. However, due to the
inherent randomness of the generation process, the
synthetic data inevitably contain significant flawed
one, including text incoherence or storyline incom-
pleteness, which is considered as noise and leads
to less effective LLM fine-tuning, as illustrated in
Figure 1.
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To mitigate the noise, existing methods (Yu et al.,
2024; Wang et al., 2022; Xie et al., 2024) pro-
posed to filter out flawed data by measuring its
similarity to private data. Wang et al. (2022) use
ROUGE-L similarity, while Yu et al. (2024); Xie
et al. (2024) compute embedding similarity. How-
ever, these metrics fail to evaluate the synthetic
data’s effectiveness for domain-specific tasks. Al-
ternative methods (Wang et al., 2024; Li et al.,
2024b) attempt to distill the capabilities from the
LLM on the server side into the generation proxy
model to support domain-specific tasks. However,
since the LLM is not fine-tuned for these specific
domains, the distillation provides limited benefit
and does not effectively improve task performance.
We also present an illustrative example in Figure 7.

To more effectively mitigate noise in synthetic
data, we propose RewardDS (Reward-driven Data
Synthesis), a novel privacy-preserving framework
that improves synthetic data quality for the target
LLM’s privacy-preserving fine-tuning. RewardDS
implements a two-stage quality control process, i.e.,
filtering and refinement, as illustrated in Figure 1.
Specifically, we first train a reward proxy model
on private data to assess data quality for domain-
specific tasks, using DP-SGD to safeguard privacy.
Through Reward Guided Filtering, we apply the
reward proxy model to assess synthetic data gen-
erated by the generation proxy model and remove
samples with low reward scores. Filtering alone
may remove a large amount of data, leaving only
a small fraction. Therefore, we aim to further re-
fine the synthetic data to obtain more high-quality
data. Our Self-Optimizing Refinement module
generates multiple candidate responses for each
synthetic query and computes their rewards. The
generation proxy model analyzes the highest and
lowest scoring responses and then generates im-
provement feedback. Based on this feedback, the
target LLM refines the synthetic data following a
refinement instruction. The resulting high-quality,
filtered, and refined synthetic data are then used to
fine-tune the target LLM for domain-specific tasks.

We conduct extensive experiments across var-
ious domain-specific generation tasks, including
Medical Question Answering (QA), Legal QA, and
Code Generation tasks. The results consistently
demonstrate the effectiveness of our method in im-
proving the quality of the synthetic data, achieving
better performance while preserving privacy. Our
main contributions are summarized as follows:

• We propose RewardDS, a novel privacy-
preserving fine-tuning framework that im-
proves the quality of synthetic data by training
a Reward Proxy Model on the client side to
guide synthetic data generation.

• We introduce the Reward Guided Filtering
and Self-Optimizing Refinement modules to
filter and refine the synthetic data, thereby
enhancing its quality.

• We conducted extensive experiments across
Medical QA, Legal QA, and Code Genera-
tion tasks to validate the effectiveness of our
proposed framework.

2 Related Work

In this section, we will introduce the related
work on LLM privacy-preserving fine-tuning meth-
ods, which are currently divided into three cate-
gories: Anonymity-based methods, Encryption-
based methods and Synthesis-based methods.

Anonymity-based methods. Techniques like k-
anonymity and adversarial anonymization can iden-
tify and anonymize private data. But they will
significantly harm data quality for domain-specific
LLM fine-tuning on the server side. (Staab et al.,
2024; Sweeney, 1997; Romanov et al., 2019)

Encryption-based methods. Some approaches
employ encryption techniques, such as Homomor-
phic Encryption (HE) or Secure Multi-Party Com-
putation (SMPC), to protect private data. However,
encrypting data and maintaining secure communi-
cation between server and client incur significant
computational and time overhead, making these
methods impractical in real-world scenarios. (Fr-
ery et al., 2025; Lou et al., 2020; You et al., 2025)

Synthesis-based methods. Recent studies have
explored using synthetic data with differential pri-
vacy (DP) guarantees as a substitute for private
data in LLM fine-tuning. While this offers a practi-
cal and efficient solution, the synthetic data often
contain noisy or flawed samples that significantly
hinder LLM fine-tuning. Simple filtering based on
text similarity is insufficient to effectively elimi-
nate such noise. (Kurakin et al., 2023; Yue et al.,
2023; Yu et al., 2024; Hou et al., 2024; Wang et al.,
2024, 2022)

Due to the limited space, a detailed introduction
of the above works can be found in Appendix A.
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3 Problem Statement

We consider a scenario where the client holds
domain-specific data, such as patient’s medi-
cal records, which contain sensitive information.
Hence, directly transmitting those data to servers
for LLM fine-tuning is not allowed. This pri-
vate data typically is structured as Query-Response
pairs, with both query and response containing con-
fidential private information (Wang et al., 2024).
The server, which hosts the target LLM, offers only
API access while keeping model weights confiden-
tial, preventing clients from accessing or locally
fine-tuning the model. While clients can fine-tune
some lightweight LLMs within their computational
constraints, these models have inherently weaker
capabilities than the target LLM. This creates a crit-
ical challenge: how to leverage a client’s private
data to improve the server-hosted LLM’s perfor-
mance on domain-specific tasks while preserving
privacy.

Existing synthesis-based methods utilize a
lightweight Generation Proxy Model to gener-
ate safe synthetic data for fine-tuning the target
LLM on the server (Yue et al., 2023; Yu et al.,
2024). However, the randomness of the genera-
tion process introduces significant noise in the syn-
thetic data, potentially causing performance degra-
dation. Therefore, our main goal is to explore a
more effective method for mitigating the noise in
synthetic data, enabling better fine-tuning perfor-
mance while maintaining user privacy.

4 Method

To address the performance degradation caused by
noise in synthetic data, we propose a novel frame-
work, RewardDS (Reward-driven Data Synthesis),
as shown in Figure 2. Our approach additionally
trains a Reward Proxy Model on the client side.
Then the reward proxy model filters and refines the
synthetic data sampled from the generation proxy
model through Reward Guided Filtering and Self-
Optimizing Refinement modules on the server
side. Both modules collaborate to enhance the
quality of the synthetic data, driven by the reward
signal from the reward model. We will introduce
the training process of the generation proxy model
and reward proxy model in § 4.1. The details of
reward guided filtering and self-optimizing refine-
ment module are provided in § 4.2.

4.1 Client Side

Generation Proxy Model Training. The gen-
eration proxy model is responsible for generat-
ing safe synthetic data as a substitute for private
data. Following (Yue et al., 2023; Yu et al., 2024,
2022; Kurakin et al., 2023), we fine-tune a gen-
eration proxy model on the client’s private data
using the DP-SGD algorithm (Abadi et al., 2016).
The backbone of generation proxy model should
be lightweight due to limited computational re-
sources on the client side, e.g., Qwen2.5-0.5B-
Instruct (Yang et al., 2024b). The DP-SGD al-
gorithm protects the privacy of the training data
by injecting noise into the gradients during model
training. This noise ensures that the inclusion or
exclusion of any individual training sample has
minimal impact on the fine-tuned model, thereby
providing privacy protection.

Reward Proxy Model Training. The reward
model is responsible for evaluating the quality of
the synthetic data. It should provide higher rewards
for high-quality data while lower rewards for poor-
quality data. Following standard reward model
training practices (Liu et al., 2024), we train the
reward proxy model using paired comparison data.
Let W0 denote the initial backbone model, Wgen

the fine-tuned generation proxy model, and Wrwd
the fine-tuned reward proxy model. For each query
Q from the private dataset with its gold response
Agold, we generate two responses: A0 from W0

and Agen from Wgen. We then create preference
pairs by selecting either Agen or Agold as the cho-
sen response Ac, with A0 serving as the rejected
response Ar. The reward proxy model maintains
a lightweight architecture for client-side deploy-
ment and is fine-tuned using differential privacy
(DP-SGD) to prevent privacy leakage.

Following Rafailov et al. (2023), we define the
training loss as:

L = − log σ (frwd(Q,Ac)− frwd(Q,Ar)) , (1)

where frwd(·) represents the reward predicted by
Wrwd. This training loss encourages the reward
model to assign higher scores to responses from
the generation proxy model and gold responses
compared to those from the initial backbone model.

After training, both generation proxy model and
reward proxy model are sent to the server.

4482



Private Data
(e.g., medical QA, 

financial QA)

1. DP_SGD

Client: Data Owner Server: Model Owner

Generation Proxy
𝑾𝒈𝒆𝒏

Reward Proxy
𝑾𝒓𝒘𝒅

2. Upload Synthetic 
Queries

Synthetic 
Responses

Raw Synthetic Data𝑾𝒈𝒆𝒏

𝑾𝒓𝒘𝒅

Reward Guided 
Filtering

Self-Optimizing 
Refinement

Fine Synthetic Data
Target LLM
𝑾𝒕𝒂𝒓𝒈𝒆𝒕

3. Sample 4. Inference

5. Filter & Refine

6. Finetune7. Serve

Support

Generation Proxy Model (lightweight) 
e.g. Qwen2.5-0.5B-Instruct

Reward Proxy Model (lightweight) 
e.g. Qwen2.5-0.5B-Instruct

Target LLM
e.g. Qwen2.5-7B-Instruct

Figure 2: The overview of our RewardDS framework. The client uses DP-SGD to fine-tune two lightweight proxy
models on privacy-sensitive data: the Generation Proxy Model Wgen and the Reward Proxy Model Wrwd. Both proxy
models are then sent to the server. The Generation Proxy Model is used to sample raw synthetic data, consisting of
queries and responses. The Reward Proxy Model supports the Reward Guided Filtering and Self-Optimizing
Refinement modules, which filter and refine the raw synthetic data to produce fine synthetic data. Finally, the target
LLM Wtarget is fine-tuned on the fine synthetic data and provides service to the client for domain-specific tasks.

4.2 Server Side

Synthetic Data Generation. Following Yu et al.
(2024); Wang et al. (2024), we use Wgen to gener-
ate both synthetic queries and their corresponding
responses, collectively referred to as raw synthetic
data. Although the generation proxy model Wgen is
trained on private data and learns domain-specific
knowledge, the generation process of raw synthetic
data is random and unstable. As a result, the raw
synthetic data inevitably contains noisy samples,
and fine-tuning the LLM directly on this data can
lead to performance degradation.

Reward Guided Filtering. We leverage the re-
ward proxy model Wrwd to evaluate each synthetic
data and filter out those with low rewards. A lower
reward indicates a higher likelihood of the synthetic
data being noisy. We select only the top ⌊L/k⌋
data, where L is the total number of synthetic data
and k is the partition fold (Line 1 in Alg. 1). To
compensate for the reduced synthetic dataset size
after filtering, we replicate the high-reward data
to maintain the total data volume during the target
LLM fine-tuning (Line 1 in Alg. 1).

Self-Optimizing Refinement. While filtering
mitigates noise, it selects only a small subset of
samples, potentially leading to overfitting on lim-
ited data. Building on LLMs’ self-reflection ca-

pabilities (Madaan et al., 2023), we implement a
dynamic data refinement strategy to improve low-
reward samples, enhancing overall data quality. Ini-
tially, for each synthetic query, we generate N can-
didate responses rather than only one response us-
ing the generation proxy model (Line 1 in Alg. 1).
The reward proxy model then selects the response
with the highest reward score as the chosen re-
sponse (Line 1 in Alg. 1). We directly fine-tune the
target LLM Wtarget on the chosen response (Line 1
in Alg. 1).

After fine-tuning the target LLM Wtarget for each
epoch, we dynamically refine the synthetic data for
the next epoch’s training. For each query’s N can-
didate responses, we identify the lowest-reward re-
sponses and combine them with the highest-reward
responses to form the rejected (Ar) and chosen (Ac)
response pairs. The generation proxy model Mgen
analyzes these responses and provides feedback,
highlighting the strengths of Ac and weaknesses of
Ar (Line 1). This feedback, along with the original
query, guides the target LLM Wtarget to generate
N refined candidate responses (Line 1). Finally,
the reward proxy model selects the highest-reward
response from these refined candidates for the next
epoch’s LLM fine-tuning (Line 1).

The collaborative process between the reward-
guided filtering and self-optimizing refinement
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Algorithm 1 RewardDS based LLM Fine-tuning
Input: Synthetic query setQquery, number of synthetic query L, num-

ber of candidate responses N , partition fold k, generation
proxy model Wgen, reward proxy model Wrwd, target LLM
Wtarget, training epoch T

Output: The fine-tuned LLM WT
target

// Before Fine-tuning LLM
for each query q ∈ Qquery do

Generate candidate response set: {Aj}Nj=1 ←Wgen(q)

Predict the reward score: {sj}Nj=1 ←Wrwd(q,Aj)

Select the best and the worst response:
(Ac, Ar)←

(
Aargmaxj sj , Aargminj sj

)

Record the best reward score: sc ← maxj sj
Gather the initial synthetic dataset: D0 ← {(qi, Ai

c, A
i
r, s

i
c)}Li=1

Sort D0 by reward: Dsorted
0 ← {(qi, Ai

c, A
i
r, s

i
c)}Li=1, where

s1c ≥ · · · ≥ sLc
Partition Dsorted

0 into k folds: {Dm
0 }km=1 ← split(Dsorted

0 , k)

Extract top-⌊L/k⌋ samples: Dhigh ← D1
0

Replicate subset to obtain the train set: T0 ←
⊕

⌈L/|Dhigh|⌉Dhigh

Determine score threshold τ : τ ← minsc∈Dhigh sc

// During Fine-tuning LLM

Initialize target LLM: W 0
target ←Wtarget

for iteration t = 1 to T do
Fine-tune target LLM W t−1

target on {(q,Ac) ∈ Tt−1} and get
W t

target
for each query q ∈ Qquery do

Generate feedback ϕ: ϕ←Wgen(q,Ac, Ar)

Re-generate the candidate response set:
{Aj}Nj=1 ←W t

target(q, ϕ)
Predict the reward score, select the best and worst re-

sponses, and record the highest reward score to update
Dt−1, yielding Dt.

Filter and get new training set Tt:
Tt ← {(q,Ac, Ar, sc) ∈ Dt | sc ≥ τ}

return Mt
target

modules is presented in Alg. 1. The refinement
instruction templates are provided in Appendix J.
After the LLM is fine-tuned on the refined synthetic
data, it can provide service to the client for those
domain-specific tasks.

5 Privacy Analysis

The only transmitted contents between the client
and server are the generation proxy model and
the reward proxy model. Both models are fine-
tuned on the private dataset using the DP-SGD
algorithm (Abadi et al., 2016). According to the
definition of differential privacy (DP) (Dwork and
Roth, 2014), adversaries cannot infer any private
data from the fine-tuned proxy models. Addition-
ally, based on the post-processing property of the
DP framework (Dwork and Roth, 2014), any fur-
ther operations on the two proxy models will not
cause privacy leakage. All subsequent operations
on the server, including synthetic data generation,
reward-guided filtering, and self-optimizing refine-
ment, are privacy-preserving. Moreover, we con-
duct Data Extraction Attack (Carlini et al., 2021)
and Membership Inference Attack (Yeom et al.,

2018; Choquette-Choo et al., 2021) on our method
to empirically demonstrate its privacy protection
capability in Section 6.4.

We have fine-tuned two proxy models on the
private dataset and the privacy budget of each fine-
tuning is (ϵ, δ). According to the sequential com-
position law of DP mechanism (Dwork and Roth,
2014), the total privacy budget of our framework is
(2ϵ, 2δ).

6 Experiments

6.1 Experiments Setup

Datasets. We evaluate our method across three
domain-specific generation tasks using established
datasets: Medical QA using HealthCareMagic-
100k (Li et al., 2023), Financial QA using fingpt-
fiqa_qa (Zhang et al., 2023), and Code Generation
using opc-sft-stage2 (Huang et al., 2024).

Evaluation Metrics. For the evaluation of the
QA task, we employ the ROUGE-1 (R1), ROUGE-
L (RL) (Lin, 2004), and Perplexity (PPL) (Hu et al.,
2024) as metrics. While automated metrics focus
on lexical overlap and fluency, we also use LLM-
Judge (Zheng et al., 2023) to provide a more com-
prehensive assessment of semantic accuracy and
response quality. For the code generation task, we
use Pass@1 and Pass@10 as evaluation metrics
(Chen et al., 2021).

Implementation Details. We use the Qwen2.5-
0.5B-Instruct model (Yang et al., 2024b) as the
backbone for the generation/reward proxy model,
and the Qwen2.5-7B-Instruct model as the target
LLM on the server. During each DP-SGD fine-
tuning process of both proxy models, we set the
privacy budget to (8, 1e−5). As a result, the total
privacy budget for our method is (16, 2e−5), ac-
cording to the sequential composition law of the
DP mechanism (Abadi et al., 2016). For a fair
comparison, we set the same privacy budget for
all compared methods. The size of the synthetic
dataset is always kept to twice that of the client’s
private data across all baselines. These settings
align with established DP deployments such as Ap-
ple’s QuickType and Google’s models, as noted by
Lukas et al. (2023).

More details on the datasets used and the im-
plementation are provided in Appendix B and Ap-
pendix D, respectively.
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Methods
Medical QA Financial QA Code Generation

R1 ↑ RL ↑ PPL ↓ R1 ↑ RL ↑ PPL ↓ Pass@1 ↑ Pass@10 ↑

Vanilla LLM 21.60 11.50 1.34 23.91 11.72 1.38 18.82 42.06
Locally Fine-tuning 23.82 15.46 1.71 13.26 10.19 1.67 28.34 43.99

DP-Generation (Kurakin et al., 2023) 16.22 10.94 1.06 14.97 11.20 1.05 25.51 42.75
DP-Instruct (Yu et al., 2024) 11.94 8.44 1.04 14.06 10.76 1.04 26.27 48.06
KnowledgeSG (Wang et al., 2024) 20.28 10.74 1.31 24.14 12.33 1.21 23.93 49.58
RewardDS 27.78 17.02 1.17 24.42 14.96 1.02 32.41 49.99
w/o Reward Guided Filtering 20.38 13.11 1.28 17.93 12.52 1.25 23.03 34.96
w/o Self-Optimizing Refinement 22.70 13.42 1.36 14.14 11.07 1.18 22.27 33.17

Table 1: Comparisons of our method with baselines across three domain-specific tasks: Medical QA, Financial
QA, and Code Generation. Higher values of ROUGE-1 (R1) and ROUGE-L (RL), and lower values of Perplexity
(PPL) indicate better performance on the QA generation task. Higher values of Pass@1 and Pass@10 reflect better
performance in the code generation task. Numbers in bold and underlined represent the best and second-best results,
respectively.

6.2 Compared Methods.

To demonstrate the effectiveness of our method, we
consider several baselines for comparison:

Vanilla LLM refers to using a general-purpose
LLM for domain-specific tasks without any domain
adaptation or fine-tuning. Locally Fine-tuning
refers to training a lightweight model locally on
clients’ private data.

DP-Generation (Kurakin et al., 2023) fine-tunes
the generation proxy model on the client side using
DP-SGD. This proxy model is then used to gener-
ate synthetic data, which are subsequently utilized
to fine-tune target LLM on the server. DP-Instruct
(Yu et al., 2024) additionally filters synthetic data
based on text similarity before LLM fine-tuning;
KnowledgeSG (Wang et al., 2024) distills the ca-
pacity from LLM into the generation proxy model
to enhance its performance.

More details of the compared method are pro-
vided in Appendix C.

6.3 Main Results

As shown in Table 1, RewardDS outperforms all
other baselines across the three domain-specific
tasks, except for the PPL on the Medical QA task.
DP-Instruct achieves marginally lower PPL in med-
ical QA. This may be attributed to the filtering strat-
egy based on similarity, which could lead the target
LLM to overfit on these highly similar samples.

The Vanilla LLM exhibits suboptimal perfor-
mance across medical QA, financial QA, and code
generation tasks, primarily due to the lack of
domain-specific fine-tuning on private data. While
Locally Fine-tuning a lightweight proxy model

(with only 0.5B parameters) mitigates privacy con-
cerns, the small model’s limited capacity hinders its
ability to effectively learn domain-specific knowl-
edge, leading to subpar performance.

DP-Generation samples synthetic training data
to fine-tune the target LLM on the server. However,
due to the randomness inherent in the sampling
process, the resulting synthetic data contains signif-
icant noise, which severely impairs the fine-tuning
performance of the LLM on the server. DP-Instruct
attempts to filter the synthetic data by computing
the similarity between the synthetic query and the
private query. But, similarity alone cannot accu-
rately reflect the quality of synthetic data, where
higher similarity does not necessarily indicate bet-
ter data quality. KnowledgeSG distills the capa-
bilities of the target LLM on the server into the
generation proxy model for domain-specific tasks.
However, since the target LLM is not specifically
fine-tuned for these tasks, the improvement through
distillation is limited.

We observe consistent performance declines
across all tasks when either the Reward Guided
Filtering or Self-Optimizing Refinement module is
removed, highlighting the importance of both com-
ponents. Without these components, more noisy
synthetic samples are used during LLM fine-tuning,
leading to degraded performance.

In addition, following Zheng et al. (2023), we
employ an LLM-Judger to assess the generated
response from our method and those baseline ap-
proaches for QA tasks. Specifically, we provide the
LLM-Judger with responses from our method and
those from baseline methods, prompting it to judge
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which response is better. As shown in Figure 3,
our method consistently outperforms all baselines
on both medical and financial QA tasks. More im-
plementation details are provided in Appendix E.
We also provide a case study in Figure 7 and Ap-
pendix F to further demonstrate the effectiveness
of our method.

Figure 3: Using LLM-Judge to compare the outputs
generated by our method with those of other baselines.
Win means our method outperformed the baselines, Tie
means the results were similar, and Lose means our
method performed worse than the baselines.

6.4 Empirical Privacy Protection Results
In this section, we implement Data Extraction At-
tack (Carlini et al., 2021) and Membership Infer-
ence Attack (Yeom et al., 2018; Choquette-Choo
et al., 2021) on our method and baselines to em-
pirically evaluate the privacy protection capability.
For those baselines, including DP-Generation/DP-
Instruct/KnowledgeSG, the client only transfers
the generation proxy model to the server. In con-
trast, RewardDS transfers both the generation proxy
model and the reward proxy model. Accordingly,
the attack targets for the baselines are limited to
the generation proxy model, while for RewardDS,
both models can be attacked. We also provide the
attack results of No Protection, which serves as the
upper bound.

As shown in Figure 4, RewardDS demonstrates
superior privacy protection capacity compared to
those baselines, as indicated by its comparable
ROUGE-L scores and significantly lower F1 scores.
This is possibly due to RewardDS allocating the
privacy budget for both generation proxy model
and reward proxy model, thereby reducing the pri-
vacy budget of each individual model and making
them more difficult to be attacked.

Implementation details of these attack methods
can be found in Appendix G.

6.5 In-depth Analysis of RewardDS Design
Here, we provide more detailed analysis on the
design and effectiveness of RewardDS.

No protection
RewardDS

DP-Generation/DP-Instruct/KnowledgeSG

(a). Data Extraction Attack (b). Membership Inference Attack

Figure 4: Results of Data Extraction Attack and Mem-
bership Inference Attack for RewardDS and all baselines
under different privacy budgets ϵ on Medical QA task.

Analysis 1: Impact of RewardDS on Synthetic
Data Quality and Downstream Performance.

According to Alg. 1, RewardDS iteratively re-
fines the synthetic data during each training epoch.
As shown in Figure 5(a), the reward score of syn-
thetic data gradually increases with iterative refine-
ment, indicating improved data quality.

We also evaluate the downstream performance
of the target LLM on the Medical QA task after
being fine-tuned on the synthetic data from differ-
ent refinement stages. The results in Figure 5(b)
show that the downstream performance of the fine-
tuned LLM also improves significantly with the
improvement of the synthetic data quality, strongly
highlighting the effectiveness of RewardDS.

(a). Reward Score Change 
on Medical QA Task

(b). Downstream Performance 
Change on Medical QA Task

Noisy Clean

Figure 5: Changes of Reward Score and Downstream
Performance in RewardDS for the Medical QA Task.
Avg RS indicates the average reward score of the syn-
thetic data, while R1, RL, and PPL represent the down-
stream performance metrics of the target LLM fine-
tuned using these synthetic data.

Analysis 2: Training Cost Analysis of RewardDS.
As shown in Figure 2, RewardDS introduces

additional modules, including Reward Proxy
Model Training, Reward-Guided Filtering, and
Self-Optimizing Refinement, into the privacy-
preserving fine-tuning process of the server-side
LLM. We measure the additional time cost of these
modules and compare it with that of the original
modules: Generation Proxy Model Training and

4486



LLM fine-tuning. As shown in Table 2, the ad-
ditional time cost from our method accounts for
only 29.69% of the total time cost, with most of
the time consumed by LLM fine-tuning modules.
This is primarily due to the use of a lightweight
reward proxy model, making the associated mod-
ules highly efficient. Overall, the additional time
cost introduced by RewardDS is minimal, strongly
demonstrating the practicality of our method.

Time (min) Percentage

Initial Modules: 315 70.31%
Generation Proxy Model Training 45 10.04%
LLM fine-tuning 270 60.26%

Additional Modules From RewardDS: 133 29.69%
Reward Proxy Model Training 49 10.94%
Reward Guided Filtering 12 2.67%
Self-Optimizing Refinement 72 16.07%

Table 2: Runtime of different modules in RewardDS
for privacy-preserving fine-tuning on Medical QA task.
The most time-consuming module is marked in bold.

Moreover, we compare the overall training time
and GPU memory usage of RewardDS with other
baselines in Table 3. As for training time cost, our
method incurs only a small overhead, primarily
from dynamically filtering and refining synthetic
data to enhance the overall quality of these data.
For the GPU memory cost, we only introduce an ad-
ditional lightweight reward proxy model with 0.5B
parameters, which is relatively small and highly
efficient. Overall, with just a slight extra cost in
training time and GPU memory, our method can
achieves significant performance improvements, as
shown in Table 1, making it highly practical for
real world deployment.

Method Time Cost (min) Total Parameter (B)

DP-Generation 315 7 + 0.5
DP-Instruct 320 7 + 0.5
KnowledgeSG 166 7 + 0.5

RewardDS 448 7 + 0.5 + 0.5

Table 3: Comparison of the time cost and the GPU
memory cost between our method and the other baseline
methods. The GPU memory cost are measured by the
total model parameter amount.

Analysis 3: RewardDS vs Filtering according to
Reward Score.

According to Figure 5(a), the initial synthetic
data contains substantial samples with low reward
scores. One straightforward strategy is to filter
out these low-quality samples to reduce noise. As

shown in Table 4, simply selecting Top 50% syn-
thetic data for fine-tuning can improve the overall
data quality and slightly enhance downstream per-
formance. However, filtering also reduces the size
of the training set. As more data is discarded, the
downstream performance begins to drop due to the
limited training data.

In contrast, RewardDS applies Self-Optimizing
Refinement to improve the quality of low reward
samples instead of discarding them. It can signifi-
cantly enhance data quality while maintaining
a stable dataset size. Consequently, RewardDS
achieves superior downstream performance, as
demonstrated in Table 4.

Data Count ↑ Avg RS ↑ Downstream RL ↑
Raw Synthetic Data 6420 22.30 10.94
– Select Top 80% 5136 24.05 11.09
– Select Top 50% 3210 25.66 12.43
– Select Top 30% 1926 26.53 11.19
– Select Top 10% 642 27.43 6.82

Refinement by RewardDS 6420 26.82 17.02

Table 4: Comparison between filtering synthetic data
only based on Reward Score (RS) and iterative refine-
ment using RewardDS on Medical QA task. Higher
Avg RS indicates better overall data quality. The best
results are shown in bold, and the second-best results
are underlined.

Other Analysis: Furthermore, we analyze the
impact of different privacy budget allocations
for our method in Appendix H. Those results in
Figure 8 also clearly demonstrate the effectiveness
and robustness of our method.

6.6 Hyperparameter Analysis

In this section, we conduct hyperparameter analysis
to further prove the effectiveness of our method.

Privacy Budget ϵ. We evaluate the performance
of our method and baseline approaches under vary-
ing privacy budgets ϵ. As shown in Figure 6, our
method consistently outperforms all baselines, not
only under the commonly used setting of ϵ = 16,
but also under stricter privacy budgets (e.g., ϵ = 2,
4, and 6). These results demonstrate the superior
performance and broad applicability of our method.

Synthetic Data Count L. To further validate
the effectiveness of our method, we compare its
performance with baseline methods under differ-
ent synthetic data count L. As shown in Table 5,
RewardDS consistently outperforms all baselines
across different data counts, demonstrating its ro-
bustness and effectiveness. Notably, even when the
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Synthetic Data Count 642(1%) 1926(30%) 3210(50%) 5136(80%) 6420(100%)

DP-Generation (Kurakin et al., 2023) 6.71 9.55 10.60 10.30 10.94
DP-Instruct (Yu et al., 2024) 6.63 8.00 7.99 8.45 8.44
KnowledgeSG (Wang et al., 2024) 9.43 10.21 10.54 10.92 10.74

RewardDS 16.46 17.17 17.39 17.34 17.02

Table 5: Performance comparison between RewardDS and the other baseline methods under different synthetic data
count for the Medical QA task.

RewardDS
DP-Generation DP-Instruct KnowledgeSG

(a). ROUGE-1 Score (b). ROUGE-L Score

Figure 6: Performance of RewardDS and baselines on
the Medical QA task under different privacy budgets ϵ
for the Medical QA task. The performance is evaluated
using ROUGE-1 (R1) and ROUGE-L (RL) scores.

synthetic data—for example is extremely scarce,
only 1% (642 samples), our method still maintains
competitive performance while other baselines suf-
fer from performance degradation. This superi-
ority is mainly attributed to our self-optimizing
refinement module, which effectively improves the
quality of those limited synthetic data and can max-
imize their utility in contrast to the baselines.

More Hyperparameters. We also analyze more
hyperparameters in our method described in Alg. 1,
including the number of folds k and the number of
candidate responses N . As shown in Figure 9, 10
and 11, our method remains effective and robust
across different hyperparameter settings on three
domain-specific tasks. More detailed analyses can
be found in Appendix I.

6.7 Generalization to More Proxy Models and
LLMs

We also evaluate the performance of our method
when using different combinations of generation
proxy models and reward proxy models, as shown
in Table 6. To explore the impact of proxy model
heterogeneity, we evaluate the combination of
Qwen-0.5B + LLaMA3-1B. To explore the impact
of proxy model scale, we consider the combina-
tion of Qwen-0.5B + Qwen-1.5B. As shown in the
table, using Qwen-0.5B as the generation proxy

model and Qwen-1.5B as the reward proxy model
achieves the best performance. This is mainly be-
cause both proxy models share a similar architec-
ture, which ensures more effective collaboration
between them. Moreover, a larger reward proxy
model can more effectively enhance the quality
of synthetic data and achieve better performance,
which underscores the critical role of the reward
proxy model.

Generation Proxy Reward Proxy RL Score R1 Score PPL

Qwen-0.5B Qwen-0.5B 17.02 27.78 1.17
Qwen-0.5B Llama3-1B 17.69 28.71 1.21
Qwen-0.5B Qwen-1.5B 18.11 30.30 1.18
Llama3-1B Qwen-0.5B 12.52 19.35 1.15
Qwen-1.5B Qwen-0.5B 17.44 29.64 1.24

Table 6: Performance of our method under different
combinations of generation proxy models and reward
proxy models for the medical QA task.

Moreover, we evaluate the performance of our
method with different server-side LLMs, such as
Llama-2-7B-chat-hf (MetaAI, 2023) and Qwen2.5-
14B-Instruct (Yang et al., 2024b) in Appendix H.
As shown in Table 8, our method consistently
outperforms other baselines across various LLMs,
demonstrating its effectiveness and robustness.

7 Conclusion

We propose a novel privacy-preserving framework,
RewardDS, to mitigate noise in synthetic data dur-
ing LLM privacy-preserving fine-tuning. Specif-
ically, RewardDS fine-tunes a reward model and
leverages the reward signal to guide the synthetic
data generation process. During the data synthe-
sis process, RewardDS employs the collaboration
of Reward Guided Filtering and Self-Optimizing
Refinement modules to filter and refine synthetic
data, mitigating noise. We conduct extensive ex-
periments across medical QA, legal QA, and code
generation tasks. The results consistently demon-
strate the effectiveness of RewardDS for privacy-
preserving LLM fine-tuning.
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Limitations

Due to computational resource constraints, we
applied LoRA fine-tuning on the Qwen2.5-14B-
Instruct model to validate our method, as discussed
in Appendix H.2. Full-parameter fine-tuning may
yield even better performance.

Future work will investigate larger LLM back-
bones to further validate the effectiveness of our
method on models with greater parameter scales.

Moreover, although our method is already time-
efficient, we plan to further improve efficiency by
exploring lightweight training approaches, such as
Low-Rank Adaptation (LoRA) and prefix tuning,
during the fine-tuning of both the generation proxy
model and the reward proxy model.

Ethics Statement

We adhere to the ACL Ethics Policy and all of our
research is based on publicly available reposito-
ries and datasets. In the RewardDS framework, we
uphold strict ethical standards to protect user pri-
vacy and ensure data security. The datasets used,
covering medical QA, financial QA, and code gen-
eration domains, are publicly available and free
of personally identifiable information, minimizing
privacy risks. Our methodology does not access or
reconstruct identifiable data, safeguarding individ-
ual privacy rights.

However, as our study involves multiple LLMs,
such as Llama and Qwen, the findings may be in-
fluenced by the inherent biases, linguistic patterns,
and assertiveness of these models.
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Appendix Overview

The appendix is organized into two parts: Ap-
pendix A–D provide related work and the main ex-
perimental setup of RewardDS, while Appendix E–
J present additional experimental results to further
demonstrate the effectiveness of RewardDS.

A Detailed Related Works

In this section, we provide a more detailed
introduction to the related works on LLM
privacy-preserving fine-tuning methods, includ-
ing Anonymity-based methods, Encryption-based
methods and Synthesis-based methods.

A.1 Anonymity-based methods

Anonymity-based methods aim to identify and re-
move user-specific private information from private
data to enable privacy-preserving LLM fine-tuning.
Sweeney (1997) achieves k-anonymity by dynami-
cally identifying user-specific private information
and applying substitution or removal to protect
it. Romanov et al. (2019) employs a transformer
framework with attention mechanisms to enhance
anonymization performance. Staab et al. (2024)
proposes an adversarial anonymization approach
that leverages one LLM to anonymize user privacy
while using another LLM to detect privacy infor-
mation, iteratively improving the anonymization
performance.

All of the above anonymity-based methods re-
quire detecting and removing user privacy, which
will make the data incoherent and incomplete,
thereby reducing its quality for downstream LLM
fine-tuning.

A.2 Encryption-based methods

Encryption-based methods focus on applying en-
cryption to the private data and maintaining secure
communication between client and server to trans-
mit the private data. Lou et al. (2020) applies fully
Homomorphic encryption to protect private data,
enabling privacy security while maintaining com-
parable model performance after fine-tuning on
the encrypted data. Frery et al. (2025) combines
the Low-Rank Adaptation technique and homo-
morphic encryption to improve the efficiency of
LLM privacy-preserving fine-tuning. You et al.
(2025) introduces the hybrid secret sharing algo-
rithm by combining arithmetic secret sharing (ASS)
and function secret sharing (FSS) to achieve secure

computation during LLM privacy-preserving fine-
tuning.

However, current encryption-based methods still
require numerous time and resources for encrypting
private data and ensuring secure communication,
making them impractical for real-world applica-
tions.

A.3 Synthesis-based methods

Synthesis-based methods have recently emerged as
a more practical and reliable approach, which lever-
ages synthetic data as a substitute for private data
in LLM fine-tuning to balance utility and privacy.

Kurakin et al. (2023); Yue et al. (2023) propose
using DP-SGD to locally fine-tune a lightweight
model on the client as a generation proxy. This
proxy model is used to generate synthetic data
without privacy risks. The server utilizes the syn-
thetic data to fine-tune the LLM, achieving privacy-
preserving training. Considering that those syn-
thetic data often contain numerous incoherent and
flawed samples, Yu et al. (2024); Hou et al. (2024)
filter out low-quality data by measuring similarity
between synthetic and private data. Alternatively,
Wang et al. (2024, 2022) avoid sampling synthetic
data from the generation proxy model, instead us-
ing LLM on the server to improve the proxy model
by distillation.

Nevertheless, only text similarity is too surface-
level to accurately assess the quality of synthetic
data for domain-specific tasks. Moreover, since
the server-side LLM is not fine-tuned for domain-
specific tasks, its ability to enhance the generation
proxy model through distillation is limited.

B Details of Datasets

To evaluate the performance of the compared meth-
ods on domain-specific tasks, we focus on three
tasks: Medical Question-Answering (QA), Finan-
cial QA, and Code Generation. For the medical QA
task, we use the HealthCareMagic-100k dataset (Li
et al., 2023); for the financial QA task, we use the
fingpt-fiqa_qa dataset (Zhang et al., 2023); and for
the code generation task, we use the opc-sft-stage2
dataset (Huang et al., 2024).

As Dong et al. (2024) points out, these public
datasets suffer from a "data contamination" issue,
where some of the data may have been used to train
LLMs on the server, causing the models to memo-
rize it and leading to unnaturally high performance.
Moreover, the initial datasets are highly redundant,
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containing many similar samples. To accurately
assess the domain-specific performance of differ-
ent baselines, we should pre-process these datasets.
To be specific, firstly, we evaluate the dataset us-
ing the Qwen2.5-7B-Instruct model (Yang et al.,
2024b) and exclude samples with high accuracy, as
higher accuracy suggests these samples may have
been part of the LLM’s training data and are thus
contaminated.

After addressing the contamination issue, we use
the Sentence-T5-Base model (Ni et al., 2022) to
compute embeddings for each sample and calculate
their similarity. This allows us to remove highly
similar samples, ensuring deduplication. The pre-
processed dataset is then split into private train set,
dev set, and test set, with the detailed statistics
shown in Table 7. For fair comparison across all
methods, we control the size of our sampled syn-
thetic dataset to be twice the size of the private
training set, as shown in Table 7.

C Compared Methods

Here, we will provide more detailed introductions
to all compared methods:

Vanilla LLM: Vanilla LLM directly uses the
LLM (Qwen2.5-7B-Instruct) on the server for those
domain-specific tasks.

Locally Fine-tuning: Locally Fine-tuning fine-
tunes a lightweight model (Qwen2.5-0.5B-Instruct)
using the private data on the client for those domain-
specific tasks.

DP-Generation: As proposed by Kurakin et al.
(2023), DP-Generation first uses DP to fine-tune a
lightweight model (Qwen2.5-0.5B-Instruct) as the
Generation Proxy Model on the client side. Then, it
transmits the Generation Proxy Model to the server
for synthetic data sampling. Then, the synthetic
data is used to fine-tune the LLM (Qwen2.5-7B-
Instruct) on the server for those domain-specific
tasks.

DP-Instruct: Compared to DP-Generation, DP-
Instruct (Yu et al., 2024) introduces a filtering step
to improve the quality of synthetic data. After sam-
pling synthetic data from the Generation Proxy
Model, it computes the text similarity between
the synthetic data and those private data. It filters
out those low-similar data to improve data quality.
Then the filtered synthetic data is used to fine-tune
the LLM (Qwen2.5-7B-Instruct) on the server for
those domain-specific tasks.

KnowledgeSG: Considering the high noise in
synthetic data, KnowledgeSG Wang et al. (2024)
avoids directly sampling synthetic data from the
Generation Proxy Model. Instead, it distills knowl-
edge from the LLM to enhance the Generation
Proxy Model for domain-specific tasks. Specif-
ically, KnowledgeSG first uses DP to fine-tune
a lightweight model (Qwen2.5-0.5B-Instruct) as
the Generation Proxy Model on the client. Then,
it transmits the Generation Proxy Model to the
server and generates synthetic instructions. The
synthetic instructions are fed into the professional
LLM (Qwen2.5-7B-Instruct) to generate high qual-
ity responses. By using the high quality responses
to fine-tune the Generation Proxy Model, it can dis-
till the capacity of LLM into the Generation Proxy
Model. Finally, the Generation Proxy Model serves
for those domain-specific tasks.

D Implementation Details

We use the Qwen2.5-0.5B-Instruct (Yang et al.,
2024b) as the backbone for both the generation
proxy and reward proxy models, and the Qwen2.5-
7B-Instruct as the LLM on the server. For DP fine-
tuning of the proxy models, we follow the codebase
from Li et al. (2024a), training both models for 3
epochs with a batch size of 4 and a gradient accu-
mulation step of 16. We freeze the embedding layer
of the backbone and train the other parameters with
a learning rate of 4e-5. The privacy budget for
fine-tuning both proxy models is set to (8, 1e−5),

Task Dataset Private Train Set Dev Set Test Set Sampling Synthetic Data

Medical QA HealthCareMagic-100k 3210 112 1683 6420

Financial QA fingpt-fiqa_qa 1693 18 1711 3386

Code Generation opc-sft-stage2 1497 79 1449 2994

Table 7: The dataset statistics of the medical QA, financial QA and code generation task. All train set is hold by the
client and is regard as the private data. The size of sampling synthetic data is two times of the size of the private
train set.
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leading to a total privacy budget of (16, 2e−5) due
to the sequential composition law of the DP mecha-
nism (Abadi et al., 2016). These settings align with
established DP deployments such as Apple’s Quick-
Type and Google’s models, as noted by Lukas et al.
(2023). More comparisons between our method
and baselines under different privacy budgets are
presented in Section 6.6.

During synthetic data sampling, we use the
vLLM framework (Kwon et al., 2023) for fast in-
ference, setting the batch size to 32 and sampling 6
candidate responses for each synthetic query. The
sampling templates are detailed in Appendix J. For
Reward Guided Filtering, we sort the dataset by re-
ward score, split it into k folds, and select the fold
with the highest score, setting k to 6 for medical
QA, 5 for financial QA, and 8 for code generation.
For Self-Optimizing Refinement, we set the num-
ber of candidate responses N as 3 for medical QA
and code generation, 2 for financial QA task. The
hyperparameter analysis is provided in Section 6.6
and Appendix I. The generation temperature is 1.0
and top-p is 0.7 to enhance diversity. The tem-
plates used for generating feedback are provided in
Appendix J.

For LLM fine-tuning on the server, we use the
standard SGD algorithm and train the model for
3 epochs with a learning rate of 4e-5 and a batch
size of 64. The maximum sequence length for all
fine-tuning processes is set to 768. All training and
generation processes are conducted on an A800
80G.

E Details of LLM-Judge Evaluation

Considering ROUGE-L/ROUGE-1 metrics only
measure lexical similarity to references and PPL
only captures fluency, they often fail to assess
deeper aspects of response quality. To ensure more
reliable evaluation on the generated outputs for the
medical QA and financial QA tasks, we adopt the
LLM-Judge approach (Zheng et al., 2023) for as-
sessment.

First, we fine-tune the LLM-Judger for these
domain-specific tasks (medical QA and financial
QA). The fine-tuning process is similar to that of
our reward proxy model, where we construct pref-
erence pair data as training data and use Bradley-
Terry loss (Liu et al., 2024) for training. The
key difference is that we use the more powerful
Qwen2.5-13B-Instruct backbone and fine-tune it
with the AdamW optimizer, without adding DP

noise. We fine-tune the LLM-Judger for 3 epochs
with a learning rate of 4e-5.

During evaluation, we provide the LLM-Judger
with both the user query and the generated output,
allowing the judger to score the outputs. The judge
template is provided in Appendix J. We then com-
pare the scores of outputs from our method and
other baselines. If the score difference is less than
1, it is considered a tie. Otherwise, the output with
the higher score is viewed as the winner.

As shown in Figure 3, our method outperforms
other baselines in both the medical QA and finan-
cial QA tasks. DP-Generation and KnowledgeSG
struggle with noisy samples from synthetic data,
leading to poor performance. Although DP-Instruct
filters synthetic data by comparing with private data
and removing low-similarity samples, it achieves
only limited performance gains compared to DP-
Generation. This shows that simple similarity
measures do not fully capture the quality of syn-
thetic data. Locally Fine-tuning avoids noise from
synthetic data by fine-tuning a lightweight proxy
model on private data locally, but it still underper-
forms our method due to the limited learning ca-
pacity of the lightweight model for domain-specific
knowledge.

F Case studies

Here, we present a representative example to
demonstrate the effectiveness of our method by
comparing its generated response with those from
baseline methods, including DP-Generation, DP-
Instruct, and KnowledgeSG.

As shown in Figure 7, DP-Generation includes
repetitive and irrelevant symptoms, such as no fa-
cial weakness and no difficulty swallowing, which
are not directly related to the user’s query. DP-
Instruct avoids repeating unrelated symptoms but
still offers unhelpful advice, only suggesting that
the user see a doctor without providing any mean-
ingful medical analysis. Similarly, KnowledgeSG
offers some advice, like conducting a physical ex-
amination, but also fails to provide any professional
analysis of the user’s symptoms or potential under-
lying causes.

In contrast, RewardDS provides a more detailed
analysis of the user’s symptoms, offers some pos-
sible causes, and suggests feasible advice, such
as scheduling a cardiologist appointment and un-
dergoing an ECG test, strongly demonstrating its
effectiveness.
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Figure 7: A representative example from the medical QA task illustrates the high quality of the response generated
by RewardDS, compared to baseline methods. Text highlighted in red indicates meaningless or flawed parts of the
answer, while text in green marks meaningful and helpful content. We also provide short analyses explaining the
disadvantages or advantages of the generated responses.

G Details of Privacy Protection
Evaluation

In this section, we provide further details about
our attack methods, including the Data Extraction
Attack (Carlini et al., 2021) and Membership Infer-
ence Attack (Yeom et al., 2018; Choquette-Choo
et al., 2021). We implement both attacks for our
method and the baseline methods and lower attack
performance indicates stronger privacy protection
capacity.

Data Extraction Attack. According to Carlini
et al. (2021), the Data Extraction Attack aims to
recover private fine-tuned data from the fine-tuned
model. Specifically, the attackers provide the fine-
tuned model with partial prefixes of private data
and attempt to reconstruct the corresponding com-
plete private data. We implement this attack on our
method and the baselines to evaluate their privacy
protection capabilities. The implementation details
are as follows:

In our scenario, the private data consists of two
components: the user query and corresponding an-
swer, both of which may contain sensitive informa-
tion. We apply the data extraction attack twice to
recover the user query and the answer separately.
For the user query, we provide the generation proxy
model with the first 10 tokens of the private query

and prompt it to reconstruct the complete query.
Then, to extract the answer, we provide the model
with the previously recovered user query and the
first 10 tokens of the private answer, prompting it
to generate the full private response. We use greedy
decoding during generation and set the maximum
output length to 256.

To evaluate the attack’s performance, we utilize
the ROUGE-L score between the recovered data
(user query and answer) and ground true private
data. A higher ROUGE-L score indicates better
attack performance.

Membership Inference Attack: As proposed by
Yeom et al. (2018); Choquette-Choo et al. (2021),
the membership inference attack aims to determine
whether a specific data point was included in the
private dataset used for fine-tuning. Specifically,
the attackers collect numerous mixed data, which
may contain some private data, and utilize the fine-
tuned model to judge which one is included in the
private data. We implement this attack on both our
method and the baselines to assess their privacy
protection capabilities. The implementation details
are as follows:

To construct the mixed dataset, we apply data
augmentation techniques, such as synonym replace-
ment and content rewriting, to the private data and
generate synthetic samples that are similar in con-
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tent but not identical to the original private data.
For RewardDS, we input the mixed data into the
reward proxy model and obtain the corresponding
reward scores. Samples with higher reward scores
are considered more likely to be part of the pri-
vate training data. For the baseline methods (DP-
Generation, DP-Instruct, and KnowledgeSG), only
the generation proxy model is transferred to the
server. We then use this model to compute the Per-
plexity (PPL) of each sample in the mixed dataset.
Samples with lower PPL values are considered as
the private data.

To evaluate the effectiveness of the attack, we
calculate the F1 score of private data identifica-
tion. A higher F1 score indicates stronger attack
performance and thus weaker privacy protection.

H More Analysis of RewardDS Design

H.1 The impact of different privacy budget
allocations.

As described in Section 6.1, we allocate an equal
privacy budget to generation proxy model training
and reward proxy model training. To explore the
impact of different privacy budget allocations, we
vary the privacy budget allocation while keeping
the total privacy budget fixed at (16, 2e−5).

As shown in Figure 8, our method performs con-
sistently well across various allocations, except in
the extreme case where no budget is allocated to
reward model training (i.e., "16+0"). No budget for
reward model means that we do not train the reward
proxy model on the client for data filtering or refine-
ment. This phenomenon demonstrates the critical
role of the reward model. Notably, even allocating
a small budget to the reward model (e.g., "15+1")
leads to a significant performance boost over the
"16+0" case, suggesting that even a minimal pri-
vacy cost for reward model training yields sub-
stantial benefits.

H.2 Generalizability across more LLM
backbones.

We have evaluated our RewardDS on more LLM
backbones, such as Llama-2-7B-chat-hf (MetaAI,
2023) and Qwen2.5-14B-Instruct (Yang et al.,
2024b). Due to the computational resource con-
straints, we conduct the full-parameter fine-tuning
for Llama-2-7B-chat-hf on the synthetic data and
apply the LoRA fine-tuning (Hu et al., 2022) for
Qwen2.5-14B-Instruct. We set the lora rank r as 64
and α at 16. We add the lora layer for each linear
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Figure 8: Performance on medical QA with different
privacy budget allocations for generation proxy model
and reward proxy model training. The allocation of
‘x + (16-x)’ means the privacy budget for training the
generation proxy model is set to x, while the reward
proxy model is set to (16-x);

layer in the Qwen2.5-14B-Instruct model.
As shown in Table 8, RewardDS outperforms

other baselines regardless of whether Llama-2-7B-
chat-hf or Qwen2.5-14B-Instruct is used as the
LLM backbone. This strongly demonstrates that
our method is consistently effective, regardless of
the LLM backbone. It is worth noting that al-
though Qwen2.5-14B-Instruct has a larger number
of parameters compared to Llama-2-7B-chat-hf,
our method performs better on the Llama-2-7B-
chat-hf model. This is likely due to the use of LoRA
fine-tuning on Qwen2.5-14B-Instruct, rather than
full-parameter fine-tuning. We believe that apply-
ing full-parameter fine-tuning to the Qwen2.5-14B-
Instruct model would lead to better performance.
Overall, our method consistently achieves su-
perior performance across various LLM back-
bones, which strongly demonstrates its general-
izability.

I More Hyperparameter Analysis

In this section, we analyze the other hyperparame-
ters of our method, including the number of folds
k and the number of candidate responses N , for
the medical QA, financial QA and code generation
tasks.

As described in Alg. 1, the number of folds k
controls how much of the synthetic data is consid-
ered clean. As shown in Figure 9, k = 6 yields
the best performance on the medical QA task. For
the financial QA and code generation tasks, the
optimal values are k = 5 (Figure 10) and k = 8
(Figure 11), respectively. Larger k values lead to
stricter filtering, excluding more data, which may
cause overfitting on smaller subsets and degrade
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Methods
Llama-2-7b-chat-hf Qwen2.5-14B-Instruct

R1 ↑ RL ↑ PPL ↓ R1 ↑ RL ↑ PPL ↓
Vanilla LLM 22.37 11.47 1.37 23.19 12.26 1.12
Locally Fine-tuning 23.82 15.46 1.71 23.82 15.46 1.71
DP-Generation (Kurakin et al., 2023) 16.46 11.23 1.06 18.07 11.82 1.14
DP-Instruct (Yu et al., 2024) 14.25 10.06 1.04 16.89 11.39 1.15
KnowledgeSG (Wang et al., 2024) 22.75 12.73 1.25 21.05 11.25 1.34
RewardDS 28.19 16.06 1.17 24.15 16.31 1.81

Table 8: Comparisons of our method with baselines on the Medical QA when applied to more LLM backbones:
Llama-2-7b-chat-hf (MetaAI, 2023), Qwen2.5-14B-Instruct (Yang et al., 2024b). Numbers in bold represent
the best performances. Due to computational resource constraints, we perform full-parameter fine-tuning for
Llama-2-7B-chat-hf, while employing LoRA fine-tuning for Qwen2.5-14B-Instruct.

performance.

As for the number of candidate responses N ,
a larger N increases the likelihood of selecting
higher-quality responses but also incurs greater
computational cost. As shown in Figure 9, increas-
ing N from 1 to 3 leads to significant performance
gains, while further increments yield only marginal
improvements. Therefore, we set N = 3 for the
medical QA task. For the financial QA and code
generation tasks, we choose N = 2 (Figure 10)
and N = 3 (Figure 11), respectively.
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Figure 9: Performance of RewardDS with different num-
bers of folds (k) and candidate responses (N ) on the
dev set for the medical QA task.
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Figure 10: Performance of RewardDS with different
numbers of folds (k) and candidate responses (N ) on
the dev set for the financial QA task.
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Figure 11: Performance of RewardDS with different
numbers of folds (k) and candidate responses (N ) on
the dev set for the code generation task.

J Prompt Template Details

J.1 Sampling Queries

Prompt template shown in Figure 12 instructs GPT
to act as a data creator by generating a new ques-
tion similar to given private data from three private
datasets. GPT synthesizes structured task instruc-
tions that align with previous patterns for the sub-
sequent model fine-tuning.

J.2 Sampling Response

Figure 13, 14 and 15 show the prompt templates
we employed to sample responses from Medical
QA, Financial QA and Code Generation datasets,
respectively.

J.3 Generate Feedback

Prompt templates shown in Figure 16, 17 and
18 use LLM-generated feedback to evaluate the
strength of chosen responses and the weakness of
rejected ones from generation proxy model. The
prompt templates are respectively used for Medical
QA, Financial QA and Code Generation datasets.

J.4 Refine Synthetic Data

The prompt template illustrated in Figure 19 is
employed to refine synthetic data. User queries and
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[INST] <<SYS>>
You are a data creator and specialist tasked with generating a question based on the provided examples. Your task is to generate
a new question similar with the provided examples. The question should be relevant to real-world scenarios and enhance the 
utility of the content for subsequent model training.
<</SYS>>

Come up with a series of tasks:

## Example:
### Instruction: {INST_1}

## Example:
### Instruction: {INST_2}

## Example:
### Instruction: [INSERT GENERATED OUTPUT HERE] [/INST]

Figure 12: Prompt template for sampling queries

[INST] <<SYS>>
You are a medical doctor answering real-world medical entrance exam questions. Based on your understanding of basic and 
clinical science, medical knowledge, and mechanisms underlying health, disease, patient care, and modes of therapy, answer 
the following medical question. Base your answer on the current and standard practices referenced in medical guidelines. You 
should always provide responses in as much detail as possible. You can not help with doctor appointments and will never ask 
personal information. You always declines to engage with topics, questions and instructions related to unethical, controversial,
or sensitive issues.
<</SYS>>

[INSERT USER QUERY HERE] [/INST]

Figure 13: Prompt template for sampling responses in Medical QA dataset

feedback are sent to the target LLM Wtarget, which
then generates new candidate responses to achieve
data refinement.
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[INST] <<SYS>>
You are a financial expert providing answers to questions based on real-world financial principles and practices. Using your 
understanding of macroeconomics, microeconomics, investment strategies, financial regulations, and market analysis, answer 
the following financial question. Base your response on established financial theories, current market trends, and best practices. 
Your answers should be as detailed as possible. You cannot provide personalized investment advice, draft financial documents,
or handle personal or confidential information. You will always decline to engage with topics, questions, or instructions related 
to unethical, controversial, or sensitive financial matters. You are a financial expert providing answers to questions based on 
real-world financial principles and practices. Using your understanding of macroeconomics, microeconomics, investment 
strategies, financial regulations, and market analysis, answer the following financial question. Base your response on 
established financial theories, current market trends, and best practices. Your answers should be as detailed as possible. You 
cannot provide personalized investment advice, draft financial documents, or handle personal or confidential information. You
will always decline to engage with topics, questions, or instructions related to unethical, controversial, or sensitive financial 
matters.
<</SYS>>

[INSERT USER QUERY HERE] [/INST]

Figure 14: Prompt template for sampling responses in Financial QA dataset

[INST] <<SYS>>
You are an AI model capable of understanding and generating codes. Your task is to assist in writing, debugging, and 
improving code snippets. You can also provide explanations for code, optimize inefficient solutions, and offer suggestions for 
best practices.
<</SYS>>

[INSERT USER QUERY HERE] [/INST]

Figure 15: Prompt template for sampling responses in Code Generation dataset

[INST] <<SYS>>
You are a smart language model that evaluates the training sample for the medical question answering task. Based on your 
understanding of basic and clinical science, medical knowledge, and mechanisms underlying health, disease, patient care, and 
modes of therapy, give the feedback for training sample. You should always provide evaluations in as much detail as possible.
only evaluate existing solutions critically and give very concise feedback.

You are tasked with evaluating a chosen response by comparing it with a rejected response to a user query. Analyze the 
strengths and weaknesses of each response, step by step, and explain why one is chosen or rejected.
<</SYS>>

User Query: [INSERT USER QUERY HERE] 

Chosen Response:
[INSERT CHOSEN RESPONSE HERE] 

Rejected Response:
[INSERT REJECTED RESPONSE HERE] 

Do NOT generate a response to the query. Be concise. [/INST]

Figure 16: Prompt template for generating feedback in Medical QA dataset
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[INST] <<SYS>>
You are a smart language model that evaluates the training sample for the financial question answering task. Based on your 
understanding of basic financial knowledg, give the feedback for training sample. You should always provide evaluations in as 
much detail as possible. only evaluate existing solutions critically and give very concise feedback.

You are tasked with evaluating a chosen response by comparing it with a rejected response to a user query. Analyze the 
strengths and weaknesses of each response, step by step, and explain why one is chosen or rejected.
<</SYS>>

User Query: [INSERT USER QUERY HERE] 

Chosen Response:
[INSERT CHOSEN RESPONSE HERE] 

Rejected Response:
[INSERT REJECTED RESPONSE HERE] 

Do NOT generate a response to the query. Be concise. [/INST]

Figure 17: Prompt template for generating feedback in Financial QA dataset

[INST] <<SYS>>
You are a smart language model that evaluates the training sample for the code generation task. Based on your understanding 
of computer science, code knowledge and programming skill, give the feedback for training sample. You should always 
provide evaluations in as much detail as possible. only evaluate existing solutions critically and give very concise feedback.

You are tasked with evaluating a chosen response by comparing it with a rejected response to a user query. Analyze the 
strengths and weaknesses of each response, step by step, and explain why one is chosen or rejected.
<</SYS>>

User Query: [INSERT USER QUERY HERE] 

Chosen Response:
[INSERT CHOSEN RESPONSE HERE] 

Rejected Response: 
[INSERT REJECTED RESPONSE HERE] 

Do NOT generate a response to the query. Be concise. [/INST]

Figure 18: Prompt template for generating feedback in Code Generation dataset

[INST] <<SYS>>
You are part of an optimization system that improves the response to the user query.You will be asked to creatively and 
critically improve the response. You will receive some feedback, and use the feedback to improve the response. The feedback 
may be noisy, identify what is important and what is correct. This is very important: You MUST only output the improved 
response. The text you send will directly replace the response.

You are tasked with improve the response to the user query according to the feedback. Here is the user query with response and 
feedback we got for the response. Please output your improved reponse.
<</SYS>>

User Query: [INSERT USER QUERY HERE] 

Chosen Response:
[INSERT CHOSEN RESPONSE HERE] 

Rejected Response: 
[INSERT REJECTED RESPONSE HERE] 

Please improve the given response according to the feedback. Only output the improved response. [/INST]

Figure 19: Prompt template for refining synthetic data
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