
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 4331–4351
November 4-9, 2025 ©2025 Association for Computational Linguistics

DIDS: Domain Impact-aware Data Sampling for
Large Language Model Training

Weijie Shi1*†, Jipeng Zhang1*, Yaguang Wu2, Jingzhi Fang1,
Shibo Zhang2, Yao Zhao3, Hao Chen1, Ruiyuan Zhang1,

Yue Cui1, Jia Zhu4, Sirui Han1‡, Jiajie Xu5, Xiaofang Zhou1‡

1The Hong Kong University of Science and Technology, 2MetaX,
3Alibaba Group, 4Zhejiang Normal University, 5Soochow University

Abstract

Large language models (LLMs) are commonly
trained on multi-domain datasets, where do-
main sampling strategies significantly impact
model performance due to varying domain im-
portance across downstream tasks. Existing
approaches for optimizing domain-level sam-
pling strategies struggle with maintaining intra-
domain consistency and accurately measuring
domain impact. In this paper, we present Do-
main Impact-aware Data Sampling (DIDS).
To ensure intra-domain consistency, a gradi-
ent clustering algorithm is proposed to group
training data based on their learning effects,
where a proxy language model and dimension-
ality reduction are employed to reduce com-
putational overhead. To accurately measure
domain impact, we develop a Fisher Informa-
tion Matrix (FIM) guided metric that quanti-
fies how domain-specific parameter updates af-
fect the model’s output distributions on down-
stream tasks, with theoretical guarantees. Fur-
thermore, to determine optimal sampling ra-
tios, DIDS combines both the FIM-guided do-
main impact assessment and loss learning tra-
jectories that indicate domain-specific poten-
tial, while accounting for diminishing marginal
returns. Extensive experiments demonstrate
that DIDS achieves 3.4% higher average per-
formance while maintaining comparable train-
ing efficiency. The code is available at https:
//github.com/shiweijiezero/DIDS.

1 Introduction

Large language models (LLMs) have demon-
strated remarkable capabilities across diverse tasks
through training on massive multi-domain datasets,
enabling robust generalization and adaptation abil-
ities (Weber et al., 2024; Biderman et al., 2023;
Chen, 2024; Azaria et al., 2024; Zhang et al.,
2024). While the composition of training data

*Equal contribution
† Email: wshiah@connect.ust.hk
‡Corresponding authors

(e.g., code, scientific papers, web text) significantly
shapes model performance, their relative impor-
tance varies substantially with respect to target
applications. On the one hand, some data do-
mains contribute positively to model performance,
whereas others may even impair effectiveness and
waste computational resources (Xia et al., 2024;
Zhou et al., 2024). On the other hand, each do-
main’s contribution to model learning evolves dy-
namically throughout the training process (Luo
et al., 2024; Kang et al., 2024). This necessitates
an approach for optimizing domain-level data sam-
pling strategies during LLM training to maximize
performance across downstream tasks while main-
taining training efficiency. Unfortunately, design-
ing such an algorithm presents several crucial chal-
lenges.

Intra-domain Consistency. A fundamental pre-
requisite for effective domain-level sampling strate-
gies is maintaining data consistency within each
domain. Existing approaches either rely on data
source categorization (Xie et al., 2024; Fan et al.,
2024b) or employ BERT semantic clustering (Fan
et al., 2024a). However, these methods often fail
to ensure that data within each domain has sim-
ilar training effects, which is crucial for making
domain-level sampling strategies meaningful. To
address this limitation, gradient information serves
as a more direct measure of training impact. Gradi-
ents inherently capture how each data point influ-
ences model parameters during training, enabling
us to group samples based on their learning effects
rather than superficial characteristics.

Domain Impact and Mixing Strategy. The
next key challenge lies in accurately measur-
ing each domain’s impact on downstream tasks
throughout the dynamic training process. Unfor-
tunately, existing grid search methods (Ye et al.,
2024; Liu et al., 2024b; McKinzie et al., 2025)
are computationally intensive and cannot adapt to
the dynamic of domain importance during training,

4331

https://github.com/shiweijiezero/DIDS
https://github.com/shiweijiezero/DIDS
mailto:wshiah@connect.ust.hk

while gradient similarity approaches (Fan et al.,
2024b,a) only measure the instantaneous parame-
ter update direction alignment without considering
how these updates actually affect the model’s pre-
dictive behavior on downstream tasks. To quantify
such influence in a principled way, a natural ob-
jective is minimizing the output distributional dis-
crepancy between how different domains’ updates
shift the model’s predictions. Beyond measuring
impact, determining optimal sampling ratios re-
quires balancing computation resources across all
downstream tasks while considering the marginal
utility of domain data, as domain-specific capabil-
ities may saturate with diminishing returns over
time.

In this paper, we propose Domain Impact-aware
Data Sampling (DIDS), which dynamically opti-
mizes domain-level sampling probability by mea-
suring domains’ impact on model’s predictive be-
havior. To ensure intra-domain consistency, a gra-
dient clustering algorithm is proposed to group
training data, where a small proxy language model
is employed instead of the full-size model to reduce
computation cost, followed by gradient norm-based
subsampling and Johnson-Lindenstrauss random
projection for dimensionality reduction. To accu-
rately measure domain impact, a Fisher Informa-
tion Matrix (FIM) guided metric is developed to
quantify the output distributional shift based on the
second-order Taylor approximation of KL diver-
gence, enabling efficient assessment of how each
domain affects the model’s predictive behavior on
downstream tasks. We also provide theoretical
foundations for the FIM-guided metric. To deter-
mine domain sampling proportions, weights are
computed by combining both the FIM-guided do-
main impact on downstream tasks and their loss
improvement trajectories indicating learning poten-
tial. Extensive experiments on Llama-3.1 across 9
downstream tasks demonstrate that DIDS achieves
3.4% higher average performance. Our contribu-
tions are summarized as follows:

• We present a gradient-based data clustering
that leverages proxy models and dimensional-
ity reduction to group training samples, ensur-
ing intra-domain training consistency.

• We propose a FIM-guided impact metric that
measures how domain-specific parameter up-
dates shift model’s output distributions on
downstream tasks, enabling accurate assess-
ment of domain importance during training

with theoretical foundations.

• We design DIDS, a domain sampling frame-
work that dynamically adjusts mixing ra-
tios by combining domain impact with learn-
ing trajectories, accounting for diminishing
marginal returns of domain-specific perfor-
mance.

2 Related Work

2.1 Instance-level Data Sampling

Instance-level data sampling approaches for lan-
guage model training primarily focus on select-
ing high-quality training samples that maximize
model performance. LIMA (Zhou et al., 2024)
demonstrates that a small set of 1,000 carefully
curated prompts can achieve strong performance,
Ge et al. (2024) ensures both quality and diver-
sity through BERT-based scoring and clustering,
and DEITA (Liu et al., 2023) further considers in-
struction complexity by ChatGPT. Moreover, to
align requirements of the specific downstream task,
DSIR (Xie et al., 2023) utilizes N-gram feature-
based importance resampling, while LESS (Xia
et al., 2024) and TracIn (Pruthi et al., 2020) lever-
age gradient-based methods to identify influential
training samples through gradient alignment and
descent tracing. However, these approaches either
lack downstream task awareness or are computa-
tionally expensive, motivating domain-level sam-
pling strategies.

2.2 Domain-level Data Sampling

Domain-level data sampling strategies can be cate-
gorized into static and online methods. Static meth-
ods determine fixed sampling ratios using proxy
models before full-scale training begins. MM1
(McKinzie et al., 2025) employs grid search to eval-
uate different sampling ratios empirically, while
Mixing Laws (Ye et al., 2024) extends this by
proposing scaling law formulas to model the re-
lationship between mixing ratios and model perfor-
mance. REGMIX (Liu et al., 2024b) introduces
regression models to predict this scaling curve.
Moreover, Doremi (Xie et al., 2024) incorporates
reference models to consider excess loss, and Doge
(Fan et al., 2024b) utilizes gradient alignment be-
tween training and validation sets. However, AU-
TOSCALE (Kang et al., 2024) reveals that optimal
mixing ratios derived from proxy models may not
transfer effectively to larger models. Thus, online

4332

Step 1: Data Repartition

Train Dataset 𝒟𝒟

Small Proxy
Model

……
Random

Projection

……

K-means
Cluster

𝒟𝒟1

𝒟𝒟2
𝒟𝒟𝑘𝑘

Gradient Vector

Step 2: Domain Impact Matrix

𝒟𝒟1

𝒟𝒟2
…

𝒟𝒟𝑘𝑘

Downstream Tasks 𝒮𝒮

𝑆𝑆1 𝑆𝑆2 … 𝑆𝑆𝑚𝑚

0.07

0.05

0.19

…

0.12

0.09

-0.06

… …

0.26

0.03

0.11

…

…

…

…

Step 3: Update Sampling Vector

𝐹𝐹 ≈ 𝔼𝔼 ∇log 𝑝𝑝 y 𝜃𝜃 ⊙ ∇log 𝑝𝑝 𝑦𝑦 𝜃𝜃

𝐼𝐼 𝐷𝐷𝑖𝑖 ,𝑆𝑆𝑗𝑗 = 𝐾𝐾𝐾𝐾 𝑝𝑝 y 𝜃𝜃 + ∇ℓ𝐷𝐷𝑖𝑖 ‖ 𝑝𝑝 𝑦𝑦 𝜃𝜃 + ∇ℓ𝑆𝑆𝑗𝑗

 ≈
1
2
∇ℓ𝑆𝑆𝑗𝑗 − ∇ℓ𝐷𝐷𝑖𝑖

𝑇𝑇
𝐹𝐹 ∇ℓ𝑆𝑆𝑗𝑗 − ∇ℓ𝐷𝐷𝑖𝑖

Potential 𝑙𝑙𝑝𝑝Current
Improvement 𝑙𝑙𝑐𝑐

𝒟𝒟1
𝒟𝒟2…
𝒟𝒟𝑘𝑘
Last Mixture 𝒑𝒑𝒕𝒕−𝟏𝟏

𝒟𝒟1
𝒟𝒟2…
𝒟𝒟𝑘𝑘

Updated Mixture 𝒑𝒑𝒕𝒕

𝑝𝑝𝑡𝑡,𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
∑𝑗𝑗 𝐼𝐼 𝐷𝐷𝑖𝑖 , 𝑆𝑆𝑗𝑗 ∗ 𝑙𝑙𝑐𝑐 + 𝑙𝑙𝑝𝑝

𝑝𝑝𝑡𝑡−1,𝑖𝑖

Figure 1: Overview of DIDS’s three-step process: (1) Domain repartition using gradient-based clustering with
a proxy model and dimensionality reduction through random projection, (2) Domain impact measurement using
FIM-guided metrics that quantify how domain-specific parameter updates affect model’s output distributions on
downstream tasks, and (3) Dynamic sampling probability updates that combine both FIM-guided domain impact
assessment and loss learning trajectories to account for diminishing marginal returns.

methods directly adjust sampling ratios through-
out the training process. DGA (Fan et al., 2024a)
extends Doge’s gradient-based approach to online
scenarios, while Velocitune (Luo et al., 2024) mon-
itors learning velocity to adaptively adjust domain
proportions.

Moreover, DRPruning (Deng et al., 2024) em-
ploys distributionally robust optimization to it-
eratively shift data distribution toward underper-
forming domains during training, ensuring bal-
anced recovery across all areas rather than al-
lowing some domains to lag behind after model
pruning. It shares our motivation for adaptive
domain reweighting but focuses specifically on
post-pruning recovery scenarios. DDK (Liu et al.,
2024a) computes perplexity ratios between teacher
and student models across domains and uses factor-
smooth updating mechanisms to periodically adjust
sampling probabilities. DDK allocates more train-
ing data to domains where the student model under-
performs relative to the teacher, thereby reducing
performance gaps during knowledge distillation.

Yet existing methods either rely on gradient sim-
ilarity alone without capturing downstream impact,
or use computationally expensive techniques like
Scaling Law, limiting their practicality. This moti-
vates our efficient, theoretically grounded approach
to dynamic domain-level sampling.

3 Problem Formulation

In this part, we formalize the problem of optimizing
domain-level sampling strategy for LLM training.

Consider D = {D1, ..., Dk} denote a train-

ing dataset comprising k disjoint domains and
S = {S1, ..., Sm} represent a collection of down-
stream tasks. Given a large language model fθ
parameterized by θ and a computational budget of
n training instances, our goal is to optimize the
model’s performance across all tasks by adjusting
the sampling probabilities across different domains
during parameter training.

We characterize the domain sampling strategy
through a probability vector pt = [pt,1, ..., pt,k]
at each training step t, where pt,i represents the
sampling probability from domain Di subject to
the (k− 1)-dimensional probability simplex Πk−1:

pt ∈ Πk−1 = {pt,i ≥ 0,
k∑

i=1

pt,i = 1} (1)

The objective of the training process follows a
bi-level optimization framework to optimize both
model parameters θ and sampling probabilities p:

max
θ,p∈Πk−1

m∑

j=1

Accj(fθ;Sj) (2)

where Accj(fθ;Sj) measures the model’s accuracy
on downstream task Sj .

To update the model parameters, we perform
standard gradient descent:

θt+1 = θt − η∇ℓ(θt,Bt), Bt ∼ pt (3)

where Bt denotes a mini-batch sampled according
to the domain sampling probabilities pt, η denotes

4333

the learning rate, and ∇ℓ computes the loss gradi-
ents with respect to the model parameters.

To update the domain sampling probabilities,
we periodically adjust the sampling distribution
every τ steps to optimize the expected model per-
formance across all downstream tasks:

pt = argmax
p∈Πk−1

m∑

j=1

Accj(fθt+τ ;Sj) (4)

where θt+τ represents the model parameters after
τ steps of training using sampling distribution pt.

4 Methodology

4.1 Gradient-based Domain Repartition
Effective domain-level sampling strategies require
consistent training behavior within each domain.
Traditional approaches to domain partitioning typi-
cally rely on superficial characteristics, such as data
sources or semantic similarity measured through
BERT embeddings. However, these methods of-
ten fail to capture how different training samples
actually influence model learning. For instance,
mathematical proofs and programming implemen-
tations, despite being traditionally categorized into
different domains, often induce similar gradient
patterns during training due to their shared logical
reasoning nature. Conversely, two web documents
from the same domain might trigger drastically dif-
ferent parameter updates. To better organize the
training data, a gradient-based domain repartition-
ing is suitable to directly reflect parameter update
behaviors.

Unfortunately, computing and clustering gradi-
ents using a full-size LLM for all samples would be
computationally prohibitive. A small proxy model
maintaining the same architecture but with reduced
width and depth serves as an efficient alternative.
For each training sample xi ∈ D, gradient com-
putation yields vector gi through ∇ℓ(θ′, xi). Here
we only keep the last 10% gradients to accelerate
computation. To make clustering computationally
feasible, gradient norm-based subsampling retains
only the top-k elements with the largest magnitudes
in each gradient vector. Next, dimensionality reduc-
tion is performed via Johnson-Lindenstrauss ran-
dom projection (Park et al., 2023) to compress the
gradient vectors from parameter-scale dimension-
ality (millions-level) to a clustering-manageable
dimension (thousands-level):

g̃i = RT gi, R ∈ Rh×s (5)

where h represents the original dimension and s
denotes the target dimension satisfying s≪ h. The
random projection matrix R is initialized by ran-
domly orthogonal matrices. The detailed Johnson-
Lindenstrauss theorem and initialization methods
are provided in Appendix A.

Building upon initial semantic categorization, k-
means clustering on these reduced gradient vectors
refines each domain, where the number of clusters
serves as a hyperparameter. The resulting domains
are denoted as D = {D1, ..., Dk}, where k repre-
sents the total number of domains.

4.2 FIM-guided Domain Impact

After establishing consistent domain partitions, a
key challenge is accurately measuring how each do-
main’s training data impacts model performance on
downstream tasks. Existing approaches either rely
on computationally expensive grid search methods
that cannot adapt to dynamic training processes, or
use gradient similarity metrics. For example, DGA
(Fan et al., 2024a) measures the domain impact on
specific downstream tasks as:

I(Di,Sj)=Exi∼Di,xj∼Sj [⟨∇ℓ(θt, xi),∇ℓ(θt, xj)⟩]
(6)

where I(Di, Sj) measures the impact of
training domain Di on downstream task Sj ,
⟨∇ℓ(θt, xi),∇ℓ(θt, xj)⟩ represents the inner
product of gradients. However, they only cap-
ture instantaneous parameter update directions
without considering their actual effects on model
behavior. We need a more principled approach
that can efficiently quantify how domain-specific
parameter updates influence the model’s predictive
distributions on target tasks.

To this end, we propose a Fisher Information Ma-
trix (FIM) guided metric that quantifies the output
distributional changes induced by domain-specific
data. The core insight is that the Kullback-Leibler
(KL) divergence between the original and updated
model predictions provides a natural measure of
how parameter updates affect model behavior. Due
to the intractable nature of direct KL divergence
computation in infinite input spaces, here we em-
ploy a second-order Taylor approximation.

For notational simplicity, let p(y|θ) be denoted
as p(θ), θDi = θ+∇ℓDi and θSj = θ+∇ℓSj repre-
sent the parameters after updates from domain Di

and task Sj respectively, and ∆ = ∇ℓSj − ∇ℓDi

represent the gradient difference between down-
stream task updates and training domain updates.

4334

Formally, we define the domain impact metric as:

I(Di, Sj) = KL[p(θDi) ∥ p(θSj)]

=

∫
p(θDi) log

p(θDi)

p(θSj)
dy

= Ep(θDi
)[log p(θDi)]−Ep(θDi

)[log p(θSj)]

(7)

When the gradient updates are small (i.e.,∇ℓDi ≈
∇ℓSj ≈ 0), we can approximate using second-
order Taylor expansion around θDi as:

KL[p(θDi)∥p(θSj)]≈ Ep(θDi
)[log p(θDi)]−Ep(θDi

)[

log p(θDi)+∇log p(θDi)∆+
1

2
∆T∇2log p(θDi)∆]

= −Ep(θDi
)[∇ log p(θDi)∆]

− Ep(θDi
)

[
1

2
∆T∇2 log p(θDi)∆

]

(8)

The first term can be simplified through integration-
differentiation interchange:

Ep(θDi
)[∇log p(θDi)∆]=

∫

θDi

∇p(θDi)

p(θDi)
p(θDi)∆dθDi

=∇
∫

θDi

p(θDi)dθDi ·∆

=∇(1) ·∆ = 0

(9)

For the second term, the expected Hessian of the
negative log-likelihood is equivalent to Fisher In-
formation Matrix:

Ep(θDi
)[∇2 log p(θDi)] = Ep(x|θDi

)[Hlog p(x|θDi
)]

= −F
(10)

Considering that the FIM for LLMs is extremely
large and cannot be computed at θDi since the
model has not been updated, we instead use di-
agonal approximation at θ in practice:

F ≈ E[∇ log p(θ)⊙∇ log p(θ)] (11)

Note that FIM only measures the local geometry
of the parameter space, and the difference between
using FIM at θDi and θ is negligible when the gra-
dient updates are small. Afterward, the domain

impact metric could be rewritten as:

I(Di, Sj) =KL[p(θDi) ∥ p(θSj)]

=−Ep(θDi
)

[
1

2
∆T∇2 log p(θDi)∆

]

=
1

2
∆TF∆

(12)

This quadratic form captures how the difference in
gradient updates affects the model’s output distri-
bution, weighted by the FIM which characterizes
the local geometry of the parameter space. The
complexity analysis is provided in Section 5.4.

4.3 Dynamic Domain Sampling Strategy
Building upon the FIM-guided domain impact mea-
surement, a dynamic sampling strategy is proposed
to optimize domain mixing ratios by considering
both current learning progress and future potential.
The sampling probability for each domain is up-
dated periodically using a combination of three key
components:

Current Performance Impact. To identify valu-
able domains that can achieve larger performance
improvements with lower sampling probabilities,
we compute a utility score for each domain Di and
downstream task Sj that measures the domain’s
effectiveness in improving task performance:

U(Di, Sj) =
I(Di, Sj) · lc

pt−1,i
(13)

where I(Di, Sj) is the normalized FIM-guided im-
pact score, lc represents the loss improvement on
task Sj between consecutive updates ∆L(Sj), and
pt−1,i is the previous sampling probability for do-
main Di.

Future Potential Estimation. To account for
the diminishing returns in domain-specific learning
and prioritize unsaturated domains, we introduce
a potential factor lp that estimates future improve-
ment opportunities. Given the loss history l1, ..., lt
for each downstream task, we fit an exponential de-
cay model1, which is a typical pattern for learning
curves:

lt = ae−bt + c (14)

where parameters a, b, and c are estimated using
curve fitting. The potential factor lp is then com-
puted as the difference between current loss and

1https://scikit-learn.org/stable/auto_
examples/linear_model/plot_bayesian_ridge_
curvefit.html

4335

https://scikit-learn.org/stable/auto_examples/linear_model/plot_bayesian_ridge_curvefit.html
https://scikit-learn.org/stable/auto_examples/linear_model/plot_bayesian_ridge_curvefit.html
https://scikit-learn.org/stable/auto_examples/linear_model/plot_bayesian_ridge_curvefit.html

predicted future loss:

lp = lt − lt+τ (15)

where τ represents the prediction window size.
Sampling Probability Update. The final sam-

pling probabilities are updated using an exponential
moving average (EMA) to maintain stability:

pt,i = βpt−1,i+(1−β)
(∑

j I(Di, Sj) · (lc + lp)

pt−1,i

)

(16)
where β is the EMA momentum coefficient, lc rep-
resents the current loss improvement, and lp is the
estimated potential factor. A softmax normaliza-
tion ensures valid probability distribution while
the division by previous probabilities implements
importance sampling correction. The complete al-
gorithm is summarized in Appendix C.

5 Experiments

5.1 Experimental Setup

5.1.1 Datasets and Tasks
We utilize the Tulu-3 (Lambert et al., 2024) post-
training dataset containing 939,344 samples from
18 sources across web text, academic papers, code,
mathematics, and books. The downstream eval-
uation suite comprises: BIG-Bench Hard (BBH)
(Suzgun et al., 2022) for reasoning and problem-
solving, BoolQ (Clark et al., 2019) for read-
ing comprehension and binary question answer-
ing, GSM8K (Cobbe et al., 2021) and Minerva-
MathQA (Lewkowycz et al., 2022) for mathemati-
cal reasoning, IFEval (Zhou et al., 2023) for instruc-
tion following, MMLU (Hendrycks et al., 2020)
for multitask language understanding, PIQA (Bisk
et al., 2020) for physical commonsense reasoning,
PubMedQA (Jin et al., 2019) for biomedical ques-
tion answering, and TruthfulQA (Lin et al., 2021)
for measuring truthfulness in model responses.

5.1.2 Baselines
We evaluate DIDS against several domain sam-
pling strategies: Uniform and Random sampling,
Doremi (Xie et al., 2024), Velocitune (Luo et al.,
2024), Doge (Fan et al., 2024b), and DGA (Fan
et al., 2024a). For all baseline implementations, we
partition a small subset from the downstream task’s
validation set to serve as observable samples for
domain reweighting. Detailed implementations are
provided in Appendix B.

5.2 Main Results

Table 1 presents comprehensive evaluation results
across nine downstream tasks under both multi-
task and single-task optimization scenarios. For
reference, we include results from the base Llama-
3.1-8B model and its variant trained on the full
929k samples.

For multi-task optimization, DIDS with only
100k samples achieves an average score of 62.3,
significantly outperforming all baseline methods
while surpassing the performance of full data train-
ing at 61.2. Specifically, DIDS improves over the
strongest baseline Doge by 2.1 on average, with
particularly notable gains on mathematical reason-
ing tasks such as Minerva-MathQA improving by
2.7 points from 17.8 to 20.5. This demonstrates
DIDS’s effectiveness in identifying and prioritizing
the most impactful training samples across diverse
downstream tasks. Notably, we observe that for
some tasks like MMLU and PIQA where the base
model is already approaching saturation, additional
training with irrelevant data can be detrimental, as
evidenced by the Full Data approach’s performance
decline from 64.7 to 64.3 on MMLU. Furthermore,
given the limited training data budget, unbalanced
resource allocation across multiple tasks can lead
to improved performance on some tasks at the ex-
pense of others, as demonstrated by DGA’s poor
performance of 42.1 on IFEval.

When optimizing for individual tasks, DIDS
demonstrates even stronger performance with an
average score of 63.7, surpassing the second-best
method DGA by 2.1. DIDS shows significant gains
on Knowledge-intensive tasks, with IFEval increas-
ing from 53.2 to 57.5 and TruthfulQA improving
from 38.5 to 44.8. This indicates that DIDS’s FIM-
guided domain impact measurement and dynamic
sampling strategy are especially effective when fo-
cusing on specific downstream objectives. Notably,
even with just 100k samples, roughly 10 percent
of the full dataset, DIDS achieves higher average
performance than training on the full 929k samples
with scores of 63.7 versus 61.2.

5.3 Ablations

To analyze the contribution of each component in
DIDS, we conduct ablation experiments by progres-
sively removing key components through gradient-
based clustering DIDS-GC, FIM-guided impact
measurement DIDS-FIM, and loss trajectory con-
sideration DIDS-LT. Results are shown in Table 2.

4336

Method Reasoning Mathematics Instruction Commonsense Domain Truthfulness Average
BBH BoolQ GSM8K MathQA IFEval MMLU PIQA PubMedQA TruthfulQA

Multi-task Optimization

Llama-3.1-8B 62.5 81.8 48.9 15.7 18.5 64.7 81.1 75.8 28.5 53.1
+ Full Data (929k) 68.0 87.3 65.2 16.2 61.2 64.3 81.0 78.0 29.5 61.2
+ Random (100k) 67.4 85.6 58.9 11.4 48.2 64.0 82.0 77.4 31.5 58.9
+ Uniform (100k) 66.2 83.2 57.5 11.8 48.2 64.1 81.5 76.0 31.2 57.7

+ Doremi (100k) 67.5 85.8 58.8 17.5 49.8 64.5 81.9 77.8 35.8 59.9
+ Velocitune (100k) 67.2 85.5 56.2 17.2 49.0 64.4 81.7 77.5 35.0 59.3
+ Doge (100k) 67.8 86.0 57.5 17.8 51.2 64.6 82.0 78.5 37.2 60.2
+ DGA (100k) 67.0 85.4 58.8 18.2 42.1 64.8 81.8 75.2 33.4 58.5
+ DIDS (100k) 68.3 86.9 59.0 20.5 55.6 64.9 82.2 80.4 43.0 62.3

Single-task Optimization

+ Doremi (100k) 68.8 86.2 60.8 18.2 51.2 64.8 82.6 78.5 37.2 60.9
+ Velocitune (100k) 68.0 86.0 60.5 18.0 50.8 64.5 82.0 78.2 36.8 60.5
+ Doge (100k) 68.2 86.8 60.9 18.4 51.5 64.9 82.2 79.0 37.5 61.0
+ DGA (100k) 68.6 86.5 61.8 19.2 53.2 65.2 82.4 78.8 38.5 61.6
+ DIDS (100k) 69.2 87.5 63.0 21.5 57.5 65.8 83.0 81.2 44.8 63.7

Table 1: The overall performance comparison. Cells with blue background indicate high scores , while

red background indicates low scores . The top section shows results when optimizing for multiple downstream
tasks simultaneously, while the bottom section shows results when optimizing for individual tasks.

Variant BBH MathQA IFEval TruthfulQA Avg

DIDS (100k) 68.3 20.5 55.6 43.0 46.9
DIDS-GC 67.7 19.7 53.0 40.1 45.1
DIDS-FIM 67.2 18.6 51.9 38.5 44.0
DIDS-LT 67.5 19.5 51.4 38.1 44.1

Table 2: Ablation results. We progressively remove
key components: gradient-based clustering (DIDS-GC),
FIM-guided impact measurement (DIDS-FIM), and loss
trajectory consideration (DIDS-LT).

DIDS-GC replaces gradient-based clustering with
BERT semantic clustering, leading to a 1.8-point
drop in average performance from 46.9 to 45.1.
DIDS-FIM removes the FIM-guided impact mea-
surement, causing a 2.9-point decline to 44.0, most
notably affecting TruthfulQA with a 4.5-point drop
and IFEval with a 3.7-point decrease. DIDS-LT
eliminates the loss trajectory and saturation con-
sideration, resulting in 2.8-point decrease to 44.1,
demonstrating that dynamic adaptation to learning
progress is crucial for optimal performance. These
results show that each component contributes sig-
nificantly to DIDS effectiveness.

5.4 Efficiency Analysis

To comprehensively evaluate DIDS’s computa-
tional overhead, we analyze the efficiency of each
component: gradient-based clustering, FIM-guided
impact measurement, and loss trajectory estima-
tion. Our implementation optimizes computational

Component TFLOPs GPU Hours
DGA DIDS DGA DIDS

Base Training 5.47 × 104 5.47 × 104 101.6 101.6
Cluster (BERT vs. Gradient) 7.77 × 102 1.87 × 103 1.5 3.3
Impact (Gradient vs. FIM) 9.86 × 101 1.78 × 102 0.1 0.2
Loss Trajectory Consideration - < 10−1 - < 0.1

Total 5.56 × 104 5.67 × 104 103.2 105.2

Table 3: Computational cost analysis of different compo-
nents in DIDS. Base training refers to standard training
of an 8B parameter model on 1B tokens.

costs by retaining gradients only from the final 10%
of layers, requiring complete forward passes but
partial backward passes. Table 3 presents the com-
putational requirements in terms of TFLOPs and
GPU Hours on H800.

Base training of an 8B parameter model on 1B
tokens requires 5.47 × 104 TFLOPs for forward
and backward passes, consuming approximately
101.6 GPU hours. For the clustering component
processing 1B tokens, we evaluate two approaches
using 500M models. BERT semantic clustering re-
quires only forward passes at 7.77× 102 TFLOPs,
while gradient-based clustering with dimensional-
ity reduction necessitates both forward and partial
backward computation at 1.87× 103 TFLOPs, re-
quiring 1.5 and 3.3 GPU hours respectively.

For domain impact measurement using an 8B pa-
rameter base model with 25 mixing ratio updates,
we compare FIM-guided metrics against gradient
alignment. Across 72 training domains, maintain-

4337

0 20 40 60 80 100

56

58

60

62

64

Update Count

A
ve

ra
ge

Sc
or

e

DIDS
DGA

Random

(a) Impact of Update Frequency

0 5 10 15 20 25
45

50

55

60

65

Irrelevant Data Ratio (%)

A
ve

ra
ge

Sc
or

e

DIDS
DGA

Random

(b) Impact of Irrelevant Data

Figure 2: Effects of update frequency and irrelevant
data.

ing running averages of domain-specific gradients
incurs negligible overhead. Evaluating 9 down-
stream tasks with 200 samples per task, gradient
alignment requires 9.86×101 TFLOPs. DIDS addi-
tionally computes FIM diagonal elements, adding
negligible overhead at approximately 1.78 × 102

TFLOPs, totaling 0.2 GPU hours. The loss tra-
jectory estimation component introduces minimal
computational burden below 10−1 TFLOPs as it
only involves scalar loss value curve fitting. While
DIDS introduces roughly 1.9% additional compu-
tational cost compared to DGA, this overhead is
justified by substantial performance improvements
and reduced training data requirements.

5.5 Parameter Analysis

5.5.1 Impact of Update Frequency

Figure 2a shows how the number of domain sam-
pling probability updates during training affects
model performance. When using only 5 up-
dates throughout the entire training process, DIDS
achieves an average score of 58.2, which is com-
parable to the random sampling baseline at 58.9.
As we increase the number of updates to 25 and
45, DIDS shows substantial improvements, reach-
ing scores of 60.1 and 61.8 respectively. The per-
formance continues to improve with 65 updates,
achieving 62.3, and peaks at 62.4 with 85 updates.
However, further increasing to 95 updates leads to
a slight performance decline back to 62.3. DGA ex-
hibits a similar trend but with lower overall perfor-
mance, reaching its peak of 60.1 at 65 updates. Ran-
dom sampling maintains a constant performance
of 58.9 regardless of update frequency, serving as
a stable baseline. These results suggest that per-
forming a limited update number during training
provides optimal performance for domain sampling
strategies.

500M 1B 8B
60

61

62

63

64

62.3 62.4 62.5

Model Size

A
ve

ra
ge

Sc
or

e

(a) Impact of Proxy Model
Size

0 500 1,000 1,500 2,000 2,500
61

61.5

62

62.5

63

Number of Domains

A
ve

ra
ge

Sc
or

e

(b) Impact of Domain Count

Figure 3: Effects of model size and domain count.

5.5.2 Impact of Irrelevant Data Ratio
To evaluate DIDS’s robustness to noise in training
data, we introduce varying proportions of irrele-
vant financial domain data and measure the model
performance. As shown in Figure 2b, DIDS demon-
strates strong resilience to irrelevant data. Starting
at a baseline performance of 62.3 with no irrelevant
data, DIDS maintains and even improves its perfor-
mance as noise increases, reaching a peak of 63.5 at
20% irrelevant data before showing slight decline
to 63.1 at 25%. In contrast, both comparison meth-
ods exhibit clear degradation with increased noise.
DGA’s performance drops from 58.5 to 57.1, show-
ing moderate sensitivity to irrelevant data. Random
sampling demonstrates the most severe degrada-
tion, falling from 58.9 to 54.2. These results high-
light DIDS’s robust ability to identify and leverage
valuable training samples through its FIM-guided
impact measurement, even in challenging scenarios
with substantial noise in the training dataset.

5.5.3 Impact of Proxy Model Size
We evaluate DIDS using different sizes of proxy
models for gradient-based clustering: 500M, 1B,
and the full 8B target model. As shown in Figure
3a, the choice of proxy model size has minimal
impact on final performance, with average scores
of 62.3, 62.4, and 62.5 respectively. This validates
our design choice of using a 500M proxy model for
clustering, as it provides comparable quality while
significantly reducing computational costs.

5.5.4 Impact of Domain Partition Count
We further examine how the granularity of domain
partitioning affects model performance. Figure 3b
shows that increasing domains from the initial 18
based on data sources leads to substantial early
improvements in performance. The average score
rises sharply from 61.4 to 62.0 when increasing to
36 domains, followed by moderate gains up to 62.3
with 72 domains. However, further partitioning
yields small returns, with performance plateauing

4338

around 62.7 even when scaling to 1152 domains.
Based on this analysis, we select 72 domains as our
default configuration to balance effectiveness and
computational efficiency.

6 Conclusion

In this paper, we proposed DIDS, a domain impact-
aware data sampling framework for large language
model training. To ensure consistent domain par-
titioning, DIDS groups training samples based on
gradient patterns, which leads to more effective
sampling decisions. FIM-guided metrics measure
domain impact accurately, while dynamic sam-
pling optimization combines impact assessment
with learning trajectories. Experiments demon-
strated that DIDS achieves superior performance
across multiple tasks using only 10% training data.

Limitations

Our work has several limitations that should be
acknowledged:

First, while DIDS demonstrates strong perfor-
mance with limited training data, the gradient-
based domain repartitioning introduces additional
computational overhead when processing large-
scale datasets. Although we mitigate this through
proxy models and dimensionality reduction, the
clustering process still requires considerable com-
putational resources when scaling to billions of
training samples. Future work could explore more
efficient methods for gradient-based domain parti-
tioning to further reduce this overhead while main-
taining clustering quality.

Second, the effectiveness of our FIM-guided im-
pact measurement depends on the accuracy of the
diagonal approximation of the Fisher Information
Matrix. While this approximation is computation-
ally necessary, it may not capture all parameter
interactions, potentially leading to suboptimal sam-
pling decisions in cases where off-diagonal ele-
ments are significant. Additionally, our current
approach to loss trajectory modeling assumes ex-
ponential decay patterns which may not hold for
all learning scenarios.

Ethics Statement

While DIDS improves training efficiency through
selective sampling, it may inadvertently amplify
existing biases in the training data by preferentially
selecting certain domains based on their measured
impact. This could lead to underrepresentation of

minority groups or less common topics in the final
model. In future applications, DIDS should be inte-
grated with ethical auditing tools to ensure fairness
in the sampling process and maintain model ethics.

Acknowledgments

We would like to specially thank the support from
the A3 project of the HKUST & MetaX Joint Lab-
oratory. The research work described in this pa-
per was supported by Hong Kong Research Grants
Council (grant# 16202722, 16210625, T43-513/23-
N, T22-607/24N). It was partially conducted in JC
STEM Lab of Data Science Foundations funded
by The Hong Kong Jockey Club Charities Trust.
We acknowledge the support of Natural Science
Foundation of Zhejiang Province under Grant
(LY23F020010). This work is supported by the Na-
tional Natural Science Foundation of China (Grant
No.62272334, 6257073827).

References
Amos Azaria, Rina Azoulay, and Shulamit Reches.

2024. Chatgpt is a remarkable tool—for experts.
Data Intelligence, 6(1):240–296.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, et al. 2023.
Pythia: A suite for analyzing large language models
across training and scaling. In ICML, pages 2397–
2430. PMLR.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. Piqa: Reasoning about physical com-
monsense in natural language. In AAAI, volume 34,
pages 7432–7439.

Huajun Chen. 2024. Large knowledge model: Perspec-
tives and challenges. Data Intelligence, 6(3):587–
620.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. arXiv.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv.

Hexuan Deng, Wenxiang Jiao, Xuebo Liu, Jing Li, Min
Zhang, and Zhaopeng Tu. 2024. Drpruning: Ef-
ficient large language model pruning through dis-
tributionally robust optimization. arXiv preprint
arXiv:2411.14055.

4339

https://doi.org/10.1162/dint_a_00235
https://doi.org/10.3724/2096-7004.di.2024.0001
https://doi.org/10.3724/2096-7004.di.2024.0001

Simin Fan, David Grangier, and Pierre Ablin. 2024a.
Dynamic gradient alignment for online data mixing.
arXiv.

Simin Fan, Matteo Pagliardini, and Martin Jaggi. 2024b.
Doge: Domain reweighting with generalization esti-
mation. In ICML.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2024. A framework for few-shot language model
evaluation.

Yuan Ge, Yilun Liu, Chi Hu, Weibin Meng, Shimin
Tao, Xiaofeng Zhao, Hongxia Ma, Li Zhang, Box-
ing Chen, Hao Yang, et al. 2024. Clustering and
ranking: Diversity-preserved instruction selection
through expert-aligned quality estimation. arXiv.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William W
Cohen, and Xinghua Lu. 2019. Pubmedqa: A dataset
for biomedical research question answering. arXiv.

Feiyang Kang, Yifan Sun, Bingbing Wen, Si Chen,
Dawn Song, Rafid Mahmood, and Ruoxi Jia. 2024.
Autoscale: Automatic prediction of compute-optimal
data composition for training llms. arXiv.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin,
Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V Miranda, Alisa Liu, Nouha Dziri,
Shane Lyu, et al. 2024. T\" ulu 3: Pushing frontiers
in open language model post-training. arXiv.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, et al. 2022. Solving quantitative rea-
soning problems with language models. Advances
in Neural Information Processing Systems, 35:3843–
3857.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2021.
Truthfulqa: Measuring how models mimic human
falsehoods. arXiv.

Jiaheng Liu, Chenchen Zhang, Jinyang Guo, Yuanxing
Zhang, Haoran Que, Ken Deng, Jie Liu, Ge Zhang,
Yanan Wu, Congnan Liu, et al. 2024a. Ddk: Distill-
ing domain knowledge for efficient large language
models. Advances in Neural Information Processing
Systems, 37:98297–98319.

Qian Liu, Xiaosen Zheng, Niklas Muennighoff, Guang-
tao Zeng, Longxu Dou, Tianyu Pang, Jing Jiang, and
Min Lin. 2024b. Regmix: Data mixture as regression
for language model pre-training. arXiv.

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and
Junxian He. 2023. What makes good data for align-
ment? a comprehensive study of automatic data se-
lection in instruction tuning. arXiv.

Zheheng Luo, Xin Zhang, Xiao Liu, Haoling Li, Yeyun
Gong, Chen Qi, and Peng Cheng. 2024. Veloci-
tune: A velocity-based dynamic domain reweighting
method for continual pre-training. arXiv.

Brandon McKinzie, Zhe Gan, Jean-Philippe Fauconnier,
Sam Dodge, Bowen Zhang, Philipp Dufter, Dhruti
Shah, Xianzhi Du, Futang Peng, Anton Belyi, et al.
2025. Mm1: methods, analysis and insights from
multimodal llm pre-training. In ECCV, pages 304–
323. Springer.

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guil-
laume Leclerc, and Aleksander Madry. 2023. Trak:
Attributing model behavior at scale. arXiv.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund
Sundararajan. 2020. Estimating training data influ-
ence by tracing gradient descent. Advances in Neural
Information Processing Systems, 33:19920–19930.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny
Zhou, et al. 2022. Challenging big-bench tasks and
whether chain-of-thought can solve them. arXiv.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foun-
dation language models. arXiv.

Maurice Weber, Daniel Fu, Quentin Anthony, Yonatan
Oren, Shane Adams, Anton Alexandrov, Xiaozhong
Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams,
et al. 2024. Redpajama: an open dataset for training
large language models. arXiv.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan,
Sanjeev Arora, and Danqi Chen. 2024. Less: Se-
lecting influential data for targeted instruction tuning.
arXiv.

Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du,
Hanxiao Liu, Yifeng Lu, Percy S Liang, Quoc V
Le, Tengyu Ma, and Adams Wei Yu. 2024. Doremi:
Optimizing data mixtures speeds up language model
pretraining. NIPS, 36.

Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and
Percy S Liang. 2023. Data selection for language
models via importance resampling. Advances in
Neural Information Processing Systems, 36:34201–
34227.

Jiasheng Ye, Peiju Liu, Tianxiang Sun, Yunhua Zhou,
Jun Zhan, and Xipeng Qiu. 2024. Data mixing laws:
Optimizing data mixtures by predicting language
modeling performance. arXiv.

4340

https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv.

Xilin Zhang, Zhixin Mao, Ziwen Chen, and Shen Gao.
2024. Effective tool augmented multi-agent frame-
work for data analysis. Data Intelligence, 6(4):923–
945.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma.
2024. Llamafactory: Unified efficient fine-tuning of
100+ language models. In ACL, Bangkok, Thailand.
Association for Computational Linguistics.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer,
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping
Yu, Lili Yu, et al. 2024. Lima: Less is more for align-
ment. Advances in Neural Information Processing
Systems, 36.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha
Brahma, Sujoy Basu, Yi Luan, Denny Zhou, and
Le Hou. 2023. Instruction-following evaluation for
large language models. arXiv.

A Johnson-Lindenstrauss Theorem and
Random Projection Initialization

A.1 Johnson-Lindenstrauss Lemma
The Johnson-Lindenstrauss lemma states that for
any set X of m points in RN and 0 < ε < 1,
there exists a linear map f : RN → Rn where
n > 8 ln(m)/ε2 such that:

(1−ε)||u−v||2 ≤ ||f(u)−f(v)||2 ≤ (1+ε)||u−v||2

where u, v ∈ X . This theorem guarantees that we
can project high-dimensional vectors into a lower-
dimensional space while approximately preserving
their pairwise distances.

A.2 Gaussian Random Projection
For practical implementation, we utilize Gaussian
random projection matrices which satisfy the fol-
lowing properties:

1. Spherical symmetry: For any orthogonal ma-
trices A,B ∈ O(d), RART and RBRT have iden-
tical distributions.

2. Orthogonality: The rows of R are approxi-
mately orthogonal.

3. Unit length: Each row of R is normalized to
unit length.

The projection matrix R ∈ Rh×s is constructed
as follows:

1. Generate entries Rij independently according
to:

Rij =

{
+1/
√
t with probability 1/2

−1/
√
t with probability 1/2

where t = Ω(k/ε2) for dimension reduction pa-
rameter k and error tolerance ε.

2. Normalize each column to ensure unit length:
R̃j = Rj/||Rj ||2

A.3 Application to Gradient Dimensionality
Reduction

In the context of gradient-based domain repartition-
ing, given gradient vectors gi ∈ Rh, we project
them to g̃i ∈ Rs where s≪ h using:

g̃i = RT gi

The choice of target dimension s balances com-
putational efficiency with distance preservation,
typically set as:

s = O(log(m)/ε2)

where m is the size of gradient vectors and ε is
the desired distance preservation tolerance (typi-
cally 0.1-0.3).

This projection enables efficient clustering of
gradient vectors while maintaining their essential
geometric relationships, facilitating meaningful do-
main repartitioning based on training behavior pat-
terns.

B Implementation Details

B.1 Training Data Distribution

The training dataset consists of 939,344 sam-
ples from 18 diverse sources, covering do-
mains including mathematics, coding, instruc-
tion following, and general dialogue. The
dataset is available at https://huggingface.co/
datasets/allenai/tulu-3-sft-mixture. The
largest components are Tulu 3 Persona MATH with
149,960 samples focusing on mathematical reason-
ing, followed by FLAN v2 with 89,982 samples
of general task instructions, and Evol CodeAlpaca
with 107,276 coding-related samples. We provide
a detailed breakdown of the dataset composition in
Table 4.

4341

https://doi.org/10.3724/2096-7004.di.2024.0013
https://doi.org/10.3724/2096-7004.di.2024.0013
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
https://huggingface.co/datasets/allenai/tulu-3-sft-mixture
https://huggingface.co/datasets/allenai/tulu-3-sft-mixture

Dataset Samples Percentage (%)

Tulu 3 Persona MATH 149,960 16.0
Evol CodeAlpaca 107,276 11.4
FLAN v2 89,982 9.6
NuminaMath-TIR 64,312 6.8
Tulu 3 Persona GSM 49,980 5.3
Tulu 3 WildGuardMix 50,000 5.3
Tulu 3 WildJailbreak 50,000 5.3
Tulu 3 Persona Python 34,999 3.7
Tulu 3 Persona IF 29,980 3.2
Tulu 3 Persona Algebra 20,000 2.1
CoCoNot 10,983 1.2
No Robots 9,500 1.0
OpenAssistant Guanaco 7,132 0.8
TableGPT 5,000 0.5
Tulu 3 Hardcoded 240 0.03
Aya 100,000 10.6
WildChat GPT-4 100,000 10.6
SciRIFF 10,000 1.1

Total 939,344 100.0

Table 4: Distribution of training data across different
sources.

B.2 Model Architecture

We implement DIDS based on multiple foundation
models: Llama-3.1 (8B and 70B variants), Llama-
2-7B, and Pythia-6.9B. For the proxy model, we
utilize Qwen-2.5 (500M) and Llama-3.2 (1B).

B.3 Baseline Description

We compare DIDS against the following baseline
methods:

• Uniform sampling: A basic baseline that
assigns equal probabilities to all domains
throughout training.

• Random sampling: Randomly selects do-
main data at each step without optimization.

• Doremi (Xie et al., 2024): Trains a proxy
model using group distributionally robust op-
timization to produce offline domain weights
for resampling.

• Velocitune (Luo et al., 2024): Dynamically
adjusts domain proportions based on learning
velocity guided by scaling laws.

• Doge (Fan et al., 2024b): Uses bi-level opti-
mization with a proxy model to learn offline
domain weights through gradient alignment.

• DGA (Fan et al., 2024a): Employs online gra-
dient alignment to dynamically estimate opti-
mal pre-training data mixtures.

For all baselines, we use identical validation set
splits from downstream tasks and tune hyperparam-
eters on a separate development set to ensure fair
comparison.

To ensure fair comparison across all methods, we
adapted the baseline approaches to work with ob-
servable downstream tasks. Specifically, DoReMi
was originally designed for in-domain scenarios
where test sets follow the same distribution as train-
ing data. We seamlessly transferred this algorithm
to our downstream task settings by computing ex-
cess loss over downstream domains. VelociTune
was similarly adapted to observe loss over down-
stream domains for adjusting training data propor-
tions. DOGE and DGA naturally support down-
stream domain settings as they compute data pro-
portions based on gradient similarity between train-
ing and validation sets (observable sets). Impor-
tantly, all baseline methods use the same gradient-
based domain partitioning strategy as DIDS, en-
suring that computational overhead and domain
granularity are consistent across comparisons.

B.4 Training Details
The training process employs the AdamW opti-
mizer with a learning rate of 5 × 10−4 and linear
decay scheduling based on Llama-Factory (Zheng
et al., 2024) 2. We apply gradient clipping at 1.0
and weight decay at 0.1. The model processes se-
quences with a maximum length of 8, 192 tokens
and uses a batch size of 128, distributed across 8
H800 GPUs. For DIDS-specific configurations, we
set the domain update interval τ = 4, 000 steps and
use an EMA coefficient β = 0.1. The framework
utilizes 72 domains for gradient-based clustering.
Our dimensionality reduction approach first retains
the top 10% of elements by magnitude before pro-
jecting the gradients to 1, 024 dimensions.

B.5 Evaluation Details
We conduct evaluations using the lm-eval-harness
platform (Gao et al., 2024)3. All tasks are evaluated
under a 3-shot setting using the Vllm backend with
chat templates applied. Other parameters follow
the platform’s default configurations.

C Algorithm Description

The Domain Impact-aware Data Sampling (DIDS)
algorithm is shown in Algorithm 1, which begins

2https://github.com/hiyouga/LLaMA-Factory
3https://github.com/EleutherAI/

lm-evaluation-harness/

4342

https://github.com/hiyouga/LLaMA-Factory
https://github.com/EleutherAI/lm-evaluation-harness/
https://github.com/EleutherAI/lm-evaluation-harness/

with initialization and domain repartitioning. Start-
ing with uniform sampling probabilities across k
domains, the algorithm employs a proxy model
f ′ to compute gradients for each training sample
xi. These gradients undergo TopK selection and
Johnson-Lindenstrauss random projection for di-
mensionality reduction before k-means clustering
establishes the k domains {D1, ..., Dk}.

At intervals of τ training steps, DIDS performs
domain impact assessment and probability up-
dates. For each domain-task pair (Di, Sj), the
algorithm calculates gradient differences ∆ and
impact scores I(Di, Sj) using the FIM-guided met-
ric, while simultaneously fitting exponential decay
curves to task loss histories to estimate future po-
tential Lp(Sj) and current improvements ∆L(Sj).
The algorithm then updates sampling probabilities
by computing utility scores U(Di) that combine
these impact scores and loss improvements, apply-
ing softmax normalization and exponential moving
average with coefficient β.

Between updates, mini-batches are sampled ac-
cording to current probabilities pt, with model pa-
rameters updated through standard optimization.
This design balances theoretical foundations with
practical efficiency through its use of proxy models,
strategic gradient processing, and periodic updates,
enabling effective domain sampling while main-
taining computational feasibility.

D Extended Experimental Results

D.1 Experiments on Additional Models and
Datasets

To validate the effectiveness of DIDS across differ-
ent model architectures and datasets, we conducted
additional experiments using Mixtral-7B 4 along-
side Llama-3.1-8B, and tested on both Tulu-v3 and
the OpenHermes-2.5 5 datasets. These comprehen-
sive evaluations strengthen our claims regarding
DIDS’s broad applicability.

D.1.1 Results on Mixtral-7B with Tulu-v3
Table 5 presents the performance of Mixtral-7B
when trained on the Tulu-v3 dataset using various
sampling strategies. Similar to our findings with
Llama-3.1-8B, DIDS demonstrates superior per-
formance across most tasks, achieving an average
score of 61.2 in multi-task optimization, which out-
performs the full data training (60.4) despite using

4https://huggingface.co/mistralai/Mistral-7B-v0.1
5https://huggingface.co/datasets/teknium/openhermes

only 10% of the training examples. Notably, DIDS
shows substantial improvements on mathematical
reasoning tasks (MathQA: 17.8 vs. 15.8 for DGA)
and truthfulness (TruthfulQA: 50.5 vs. 47.2 for
Doge).

D.1.2 Results on Llama-3.1-8B with
OpenHermes-2.5

We further evaluated DIDS using the OpenHermes-
2.5 dataset, which offers a different distribution
of training data compared to Tulu-v3. Table 6
shows that DIDS consistently outperforms baseline
methods across various downstream tasks, achiev-
ing an average score of 62.7 in multi-task opti-
mization, which is comparable to training on the
full dataset (62.4). In single-task optimization,
DIDS achieves even better performance with a
score of 64.1, demonstrating the effectiveness of
our domain-aware sampling approach on different
data distributions.

D.1.3 Results on Mixtral-7B with
OpenHermes-2.5

To further demonstrate the robustness of our
approach across different model-dataset com-
binations, we evaluated Mixtral-7B on the
OpenHermes-2.5 dataset. As shown in Table 7,
DIDS continues to outperform baseline methods,
achieving an average score of 60.1 in multi-task
optimization and 61.3 in single-task optimization.
These consistent improvements across different
models and datasets strongly support the gener-
alizability of our approach.

D.2 Complete Ablation Study on All
Downstream Tasks

Table 8 presents a comprehensive ablation study
of DIDS across all nine downstream tasks. This
expanded analysis provides a more detailed under-
standing of how each component contributes to the
overall performance gains.

The ablation results clearly demonstrate the con-
tribution of each component of DIDS. Gradient-
based Clustering significantly improves perfor-
mance, as replacing it with BERT semantic clus-
tering leads to a 1.2-point drop in average perfor-
mance from 62.3 to 61.1. This highlights the im-
portance of grouping data based on actual training
effects rather than semantic similarity alone. The
FIM-guided Impact Measurement proves crucial,
with its removal resulting in a 2.1-point decline to
60.2. This component shows particularly notable

4343

Method Reasoning Mathematics Instruction Commonsense Truthfulness AverageBBH BoolQ GSM8K MathQA IFEval MMLU PIQA PubMedQA TruthfulQA

Multi-task Optimization

Mixtral-7B 56.0 84.7 36.9 13.2 36.6 61.9 81.6 77.8 41.3 54.4
+ Full Data (929k) 61.0 87.8 52.5 14.0 63.2 62.0 81.8 79.5 42.0 60.4
+ Random (100k) 60.2 86.7 47.8 9.5 55.3 61.8 82.2 78.5 43.0 58.3
+ Uniform (100k) 59.1 85.3 46.5 9.8 55.0 61.5 81.8 77.5 42.8 57.7
+ Doremi (100k) 60.5 86.5 48.0 15.0 56.5 62.0 82.0 79.0 46.5 59.5
+ Velocitune (100k) 60.2 86.2 46.0 14.8 56.0 61.8 81.9 78.8 45.8 59.1
+ Doge (100k) 60.8 86.8 47.0 15.3 57.8 62.1 82.3 79.6 47.2 59.9
+ DGA (100k) 60.0 86.3 48.0 15.8 53.5 62.2 82.0 77.0 44.5 58.8
+ DIDS (100k) 61.5 87.0 48.5 17.8 60.0 62.4 82.5 81.0 50.5 61.2

Single-task Optimization

+ Doremi (100k) 61.8 86.8 50.0 15.8 57.5 62.3 82.8 79.8 47.0 60.4
+ Velocitune (100k) 61.0 86.5 49.5 15.5 57.0 62.0 82.3 79.5 46.5 60.0
+ Doge (100k) 61.3 87.0 50.2 16.0 57.8 62.4 82.5 80.0 47.5 60.5
+ DGA (100k) 61.7 86.8 51.0 16.7 58.8 62.6 82.6 79.8 48.0 60.9
+ DIDS (100k) 62.5 87.5 52.0 18.5 62.0 63.0 83.0 82.0 52.0 62.5

Table 5: Performance comparison of Mixtral-7B model trained on Tulu-v3 dataset under different sampling
strategies.

Method Reasoning Mathematics Instruction Commonsense Truthfulness AverageBBH BoolQ GSM8K MathQA IFEval MMLU PIQA PubMedQA TruthfulQA

Multi-task Optimization

Llama-3.1-8B 62.5 81.8 48.9 15.7 18.5 64.7 81.1 75.8 28.5 53.1
+ Full OH-2.5 (1000k) 67.5 86.8 67.0 17.5 60.0 64.5 81.5 77.5 39.5 62.4
+ Random (100k) 66.8 85.0 60.2 12.5 49.0 64.2 82.0 76.8 34.0 59.0
+ Uniform (100k) 65.8 83.5 59.0 12.8 48.8 64.0 81.6 76.2 33.5 58.4
+ Doremi (100k) 67.2 85.5 61.5 17.0 50.5 64.5 82.0 77.5 38.0 60.4
+ Velocitune (100k) 67.0 85.2 60.0 16.8 50.0 64.3 81.8 77.2 37.5 60.0
+ Doge (100k) 67.5 85.8 61.0 17.5 52.0 64.6 82.1 78.0 39.0 60.8
+ DGA (100k) 66.8 85.2 61.8 17.8 46.5 64.7 81.9 76.5 36.5 59.7
+ DIDS (100k) 68.0 86.5 62.5 19.5 56.0 64.8 82.3 79.5 45.0 62.7

Single-task Optimization

+ Doremi (100k) 68.5 86.0 63.0 18.0 52.5 64.8 82.5 78.2 39.0 61.4
+ Velocitune (100k) 67.8 85.8 62.5 17.8 52.0 64.6 82.2 78.0 38.6 61.0
+ Doge (100k) 68.0 86.5 63.0 18.2 53.0 64.8 82.3 78.8 39.5 61.6
+ DGA (100k) 68.4 86.2 64.0 19.0 54.5 65.0 82.5 78.5 40.5 62.1
+ DIDS (100k) 69.0 87.2 65.5 21.0 58.5 65.5 82.8 80.5 46.5 64.1

Table 6: Performance comparison of Llama-3.1-8B model trained on OpenHermes-2.5 dataset under different
sampling strategies.

4344

Method Reasoning Mathematics Instruction Commonsense Truthfulness AverageBBH BoolQ GSM8K MathQA IFEval MMLU PIQA PubMedQA TruthfulQA

Multi-task Optimization

Mixtral-7B 56.0 84.7 36.9 13.2 36.6 61.9 81.6 77.8 41.3 54.4
+ Full OH-2.5 (1000k) 59.8 87.9 64.2 14.4 45.8 62.0 82.6 76.6 50.5 60.4
+ Random (100k) 58.5 86.5 54.0 10.5 42.0 61.8 82.0 76.0 46.0 57.5
+ Uniform (100k) 57.8 86.0 52.5 10.8 41.8 61.7 81.8 75.5 45.5 57.0
+ Doremi (100k) 59.0 87.0 55.5 13.8 43.5 62.0 82.2 76.2 48.0 58.6
+ Velocitune (100k) 58.7 86.8 54.5 13.5 43.0 61.9 82.0 76.0 47.5 58.2
+ Doge (100k) 59.2 87.2 55.8 14.0 44.0 62.1 82.3 76.8 48.5 58.9
+ DGA (100k) 58.5 86.8 56.5 14.2 41.0 62.2 82.1 75.8 47.0 58.2
+ DIDS (100k) 60.0 87.5 58.0 15.8 45.0 62.3 82.5 77.5 52.0 60.1

Single-task Optimization

+ Doremi (100k) 60.5 87.5 58.0 14.5 44.5 62.2 82.8 77.0 49.0 59.6
+ Velocitune (100k) 60.0 87.2 57.5 14.2 44.0 62.0 82.5 76.8 48.5 59.2
+ Doge (100k) 60.2 87.8 58.2 14.8 44.8 62.3 82.7 77.2 49.5 59.7
+ DGA (100k) 60.8 87.5 59.5 15.0 46.0 62.5 82.9 77.0 50.0 60.1
+ DIDS (100k) 61.5 88.0 61.0 16.5 47.5 62.8 83.0 78.0 53.0 61.3

Table 7: Performance comparison of Mixtral-7B model trained on OpenHermes-2.5 dataset under different sampling
strategies.

Variant Reasoning Mathematics Instruction Commonsense Truthfulness AverageBBH BoolQ GSM8K MathQA IFEval MMLU PIQA PubMedQA TruthfulQA

DIDS (100k) 68.3 86.9 59.0 20.5 55.6 64.9 82.2 80.4 43.0 62.3
DIDS-GC 67.7 85.7 58.2 19.7 53.0 64.4 81.8 78.9 40.1 61.1
DIDS-FIM 67.2 85.0 57.4 18.6 51.9 64.1 81.5 77.2 38.5 60.2
DIDS-LT 67.5 85.3 57.8 19.5 51.4 64.2 81.6 77.5 38.1 60.3

Table 8: Comprehensive ablation study of DIDS across all downstream tasks. DIDS-GC replaces gradient-based
clustering with BERT semantic clustering, DIDS-FIM removes the FIM-guided impact measurement, and DIDS-LT
eliminates the loss trajectory and saturation consideration.

4345

benefits for TruthfulQA, PubMedQA, and MathQA
tasks, confirming that measuring domain impact
through output distributional changes provides a
more accurate assessment than gradient similarity
alone. Finally, Loss Trajectory Consideration plays
a vital role, as its elimination causes a 2.0-point de-
crease to 60.3, with substantial performance drops
in instruction following and truthfulness tasks. This
demonstrates the importance of accounting for both
current learning progress and future potential when
determining sampling probabilities.

D.3 Domain Mixing Analysis

Understanding how domain weights evolve during
training provides valuable insights into DIDS’s op-
eration. Table 9 shows the weight changes for 10
randomly selected domains (out of 256) throughout
the training process for both DIDS and DGA.

This comparison reveals several key differences
between DIDS and DGA. DIDS makes more deci-
sive weight adjustments, with stronger amplifica-
tion of valuable domains like D023 reaching 2.8
compared to DGA’s 1.3, while aggressively reduc-
ing less useful domains such as D045 to 0.0 ver-
sus DGA’s 0.1. This decisive resource allocation
contributes significantly to DIDS’s superior per-
formance. Furthermore, domains like D078 show
non-monotonic weight changes in DIDS, demon-
strating its ability to adapt to the dynamic impor-
tance of domains during training, in contrast to
DGA’s more gradual and sometimes inconsistent
adjustments. DIDS also tends to converge more
quickly to stable domain weights, particularly for
highly valuable or less useful domains, enabling
more efficient training as the optimal sampling dis-
tribution is established earlier. Analysis of domain
overlap between DIDS and DGA shows approxi-
mately 40% consistency in domain selection, with
substantial differences in the remaining 60%, high-
lighting the distinct impact assessment approaches
of the two methods and explaining their perfor-
mance differences.

D.4 Domain Clustering Insights

Our gradient-based domain clustering revealed sev-
eral interesting patterns in how training data is or-
ganized:

• Fine-grained Topic Distinction: With suf-
ficiently large cluster counts (over 1,000),
DIDS can distinguish between closely related
topics. For example, in scientific data, middle

school and high school biology knowledge are
clustered separately, reflecting their different
training effects on the model.

• Format Sensitivity: Within the same subject
area (e.g., middle school biology), different
question formats like multiple-choice and fill-
in-the-blank are clustered into separate do-
mains. This suggests that format significantly
influences how data affects model learning,
beyond just semantic content.

• Cross-domain Similarity: Some seemingly
distinct topics like mathematical proofs and
programming implementations are clustered
together due to their shared logical reason-
ing patterns, despite their different semantic
categories in traditional domain partitioning.

• Instruction Pattern Recognition: Data with
similar instruction patterns tends to be clus-
tered together regardless of content topic,
highlighting the importance of task structure
in determining training effects.

E Theoretical Analysis of FIM-guided
Impact Measurement

The Fisher Information Matrix (FIM) plays a cru-
cial role in DIDS by enabling accurate measure-
ment of how domain-specific parameter updates
affect model behavior on downstream tasks. Here,
we provide additional theoretical analysis to justify
our approach.

E.1 Relationship to Model Uncertainty
The FIM is inherently connected to model uncer-
tainty through the Cramér-Rao bound, which es-
tablishes that the inverse of FIM provides a lower
bound on the covariance of any unbiased estimator
of the parameters. In the context of domain impact
measurement, this means that parameters with high
Fisher Information have a stronger influence on the
model’s predictive distribution and consequently
on task performance.

For a parameter set θ, the Fisher Information
Matrix is defined as:

F (θ) = Ep(x|θ)
[
∇θ log p(x|θ)∇θ log p(x|θ)T

]

(17)
When we compute the impact metric between do-

main Di and task Sj as I(Di, Sj) =
1
2∆

TF∆, we
are effectively measuring the expected change in

4346

Domain ID Method 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

D023 DIDS 0.4 0.5 0.7 0.9 1.2 1.6 1.9 2.3 2.5 2.7 2.8
DGA 0.4 0.4 0.5 0.6 0.7 0.9 1.0 1.1 1.2 1.3 1.3

D045 DIDS 0.4 0.3 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0
DGA 0.4 0.3 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1

D078 DIDS 0.4 0.6 0.8 1.0 1.5 1.2 1.2 1.3 1.3 1.4 1.3
DGA 0.4 0.5 0.6 0.7 0.8 0.8 0.9 0.4 0.6 0.3 0.4

D102 DIDS 0.4 0.7 0.9 1.2 1.4 1.5 1.6 1.7 1.7 1.7 1.7
DGA 0.4 0.5 0.6 0.7 0.8 0.8 0.9 1.0 1.0 1.0 1.0

D129 DIDS 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DGA 0.4 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.0

D147 DIDS 0.4 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.0
DGA 0.4 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.1

D175 DIDS 0.4 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8
DGA 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6

D198 DIDS 0.4 0.7 1.0 1.3 1.5 1.7 1.8 1.9 1.9 1.9 1.9
DGA 0.4 0.6 0.7 0.8 0.9 0.9 1.0 1.0 1.0 1.0 1.0

D221 DIDS 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DGA 0.4 0.3 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0

D244 DIDS 0.4 0.4 0.5 0.4 0.4 0.4 0.4 0.5 0.4 0.4 0.4
DGA 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

Table 9: Comparison of domain weight evolution between DIDS and DGA across training progress (from 0% to
100% completion).

the model’s log-likelihood on task Sj when updated
with domain Di data, weighted by the parameter
sensitivity through the FIM.

E.2 Consistency with KL Divergence

The KL divergence between two distributions
p(y|θDi) and p(y|θSj) measures how much infor-
mation is lost when using one distribution to ap-
proximate the other. Our use of the second-order
Taylor approximation of KL divergence:

KL[p(θDi) ∥ p(θSj)] ≈
1

2
∆TF∆ (18)

Captures this information loss efficiently and ac-
curately when the parameter updates are relatively
small. Furthermore, this approximation has the ad-
vantage of being positive definite and symmetric
(when properly scaled), which makes it a suitable
measure for domain impact.

E.3 Extensions to Alternative Divergences

While our implementation focuses on KL diver-
gence, the framework can be extended to other
divergence measures such as Wasserstein distance
or Jensen-Shannon divergence. The general form
would remain similar:

D[p(θDi)∥p(θSj)]≈(∇ℓSj−∇ℓDi)
TM(∇ℓSj−∇ℓDi)

(19)
where M is a metric tensor appropriate for the

chosen divergence. This flexibility allows DIDS
to be adapted to different notions of distribution
similarity based on specific requirements.

F Practical Guidelines for DIDS
Implementation

Based on our experiments and analyses, we provide
the following practical guidelines for implementing
DIDS effectively:

• Domain Count Selection: Start with a
medium number of domains (approximately
50-100) for gradient-based clustering. Increas-
ing the domain count beyond 100 provides
diminishing returns in most cases, while in-
creasing computational cost.

• Update Frequency: Set the domain sampling
probability update interval to approximately 5-
10% of the total training steps. More frequent
updates can cause instability, while less fre-
quent updates may miss important adaptation
opportunities.

4347

Mixing Strategy GSM8K HumanEval MT-Bench

Mix[(code,math), 1 general] 47.53 14.63 5.76
Mix[(code,math), 1/4 general] 48.44 15.85 5.73
Mix[(code,math), 1/16 general] 47.99 15.24 5.27
Mix[(code,math), 1/64 general] 47.23 14.63 5.16
Mix[(code,math), 1/256 general] 48.52 16.46 4.69

Mix[1(code,math), general] 47.53 14.63 5.76
Mix[1/4(code,math), general] 41.31 10.97 5.81
Mix[1/16(code,math), general] 33.20 11.58 5.76
Mix[1/64(code,math), general] 25.17 12.19 5.84
Mix[1/256(code,math), general] 16.52 9.14 5.82

DIDS (dynamic) 52.21 18.05 5.88

Table 10: Performance with different static mixing ra-
tios between specialized and general domains.

• EMA Coefficient Tuning: Use an EMA co-
efficient (β) of 0.1-0.3 for stability. Lower
values allow for more rapid adaptation, which
is beneficial in early training stages, while
higher values provide stability in later stages.

• Proxy Model Selection: A proxy model with
5-10% the size of the target model typically
provides a good balance between computa-
tional efficiency and gradient similarity. The
proxy model should maintain the same archi-
tecture family as the target model for best
results.

• Downstream Task Selection: Include a di-
verse set of downstream tasks in the obser-
vation set, covering different capability areas
like reasoning, knowledge, instruction follow-
ing, etc. This diversity ensures balanced op-
timization across different aspects of model
performance.

• FIM Computation Efficiency: Compute the
diagonal FIM approximation using a small
batch size (16-32) for efficiency without sig-
nificant loss in accuracy. The FIM computa-
tion only needs to be performed during do-
main sampling probability updates.

G Mixed Ratio Analysis

To further validate the effectiveness of different do-
main mixing strategies, we conducted a grid search
analysis similar to that reported in previous work
(Zhang et al., 2022; McKinzie et al., 2025). Table
10 presents results for different mixing ratios of
code/math domains versus general domains.

This analysis demonstrates several key points.
First, DIDS’s dynamic approach outperforms all
static mixing ratios across all three tasks, high-
lighting the limitations of fixed domain proportions

throughout training. Second, different tasks show
different optimal static mixing ratios - GSM8K
and HumanEval benefit from higher proportions
of code and math content, while MT-Bench per-
forms better with more balanced or general-leaning
distributions. Third, increasing the proportion of
specialized domains like code and math signifi-
cantly improves performance on related tasks such
as GSM8K and HumanEval but can negatively im-
pact general capabilities measured by MT-Bench.
DIDS effectively navigates these trade-offs through
dynamic adaptation.

These results align with findings from industry
practices in models like MM1 (McKinzie et al.,
2025) and Llama3 (Touvron et al., 2023), where
mixed ratios are carefully tuned through extensive
grid search. DIDS automates this process and im-
proves upon static optimal ratios through dynamic
adaptation.

H Domain Partitioning Robustness
Analysis

To evaluate DIDS’s sensitivity to domain partition-
ing quality, we conducted destructive experiments
by artificially corrupting the domain structure.
Starting with our standard 72-domain gradient-
based partitioning, we randomly swapped half of
each domain’s data with samples from other do-
mains, creating mixed domains that violate intra-
domain consistency assumptions.

Table 11 demonstrates that while unreasonable
partitioning degrades DIDS performance by 3.5
points (from 63.7 to 60.2), it still outperforms ran-
dom sampling by 1.3 points. This indicates that
DIDS exhibits graceful degradation and maintains
effectiveness even when domain assumptions are
violated, highlighting the robustness of our FIM-
guided impact measurement and dynamic sampling
components beyond perfect domain organization.

I Detailed Computational Cost Analysis

We provide a comprehensive breakdown of compu-
tational costs across all baseline methods to demon-
strate DIDS’s efficiency advantages.

DoReMi and DoGE employ offline reweight-
ing strategies using 280M parameter proxy models.
DoReMi requires: (1) reference model training
with uniform sampling (2.05 × 103 TFLOPs, 3.8
GPU hours), (2) proxy model training with Group
DRO (2.05 × 103 TFLOPs, 3.8 GPU hours), and
(3) excess loss computation (0.37 TFLOPs, 0.004

4348

Method BBH BoolQ GSM8K MathQA IFEval MMLU PIQA PubMedQA TruthfulQA Avg

Random 67.4 85.6 58.9 11.4 48.2 64.0 82.0 77.4 31.5 58.9
DIDS (Original) 69.2 87.5 63.0 21.5 57.5 65.8 83.0 81.2 44.8 63.7
DIDS (Unreasonable) 67.4 86.1 60.6 14.5 50.6 65.1 82.6 79.6 35.4 60.2

Table 11: Robustness analysis under corrupted domain partitioning on Llama-3.1-8B.

GPU hours). DoGE follows similar complexity
but uses gradient similarity calculations instead of
excess loss computation.

Velocitune employs two phases: (1) target esti-
mation using full 8B models on 51% subsampled
data (2.79×104 TFLOPs, 51.8 GPU hours), and (2)
velocity-guided training with periodic updates ev-
ery 150 steps (1.2× 102 TFLOPs, 0.2 GPU hours).
The method requires significantly more resources
due to full-size model training for target estimation.

DGA uses online gradient alignment with mini-
mal overhead for maintaining running averages of
domain-specific gradients.

Table 12 demonstrates that DIDS achieves supe-
rior performance improvements while maintaining
competitive computational efficiency. Our method
requires only 3.7% additional overhead, signifi-
cantly lower than Velocitune’s 51.2% and compara-
ble to efficient methods like DGA, while providing
substantial performance gains.

J Out-of-Distribution Generalization
Analysis

For potential overfitting to specific downstream
tasks, we evaluate DIDS’s generalization capability
on unseen out-of-distribution (OOD) tasks across
two experimental setups.

For the diverse downstream task setup, we used
our standard 9-task evaluation suite (BBH, BoolQ,
GSM8K, MathQA, IFEval, MMLU, PIQA, Pub-
MedQA, TruthfulQA) during training, then evalu-
ated on four unseen OOD tasks: WMT16 English-
German translation (BLEU), TLDR summarization
(Win Rate vs. Llama-3.1-8B), ARC-Challenge sci-
ence questions (ACC), and MBPP code generation
(Pass@1).

For the single task setup, we also tested the ex-
treme case where only one downstream task guides
training on MathQA and TruthfulQA.

The results in Table 13 demonstrate that DIDS
maintains competitive OOD performance, espe-
cially when optimized for diverse downstream
objectives, achieving the highest average perfor-
mance (53.5) across all OOD evaluation tasks. As

shown in Table 14, when using single downstream
tasks, DIDS shows meaningful cross-task trans-
fer—mathematical reasoning benefits scientific rea-
soning (ARC: 86.4) and code generation (MBPP:
60.6), while truthfulness training improves sum-
marization (TLDR: 54.1). While domain-specific
optimization can lead to some specialization effects
in unrelated areas, DIDS’s FIM-guided approach
captures meaningful cross-task dependencies and
maintains reasonable generalization capabilities.

4349

Method Total TFLOPs Overhead Total GPU Hours

Base Training 5.47× 104 - 101.6
DGA 5.56× 104 1.6% 103.2
DIDS 5.67× 104 3.7% 105.2
DoReMi 5.88× 104 7.5% 109.2
DoGE 5.88× 104 7.5% 109.2
Velocitune 8.27× 104 51.2% 153.6

Table 12: Comprehensive computational cost comparison across all methods.

Method WMT16 EN-DE TLDR ARC-Challenge MBPP Average

Llama-3.1-8B (no training) 17.1 50.1 76.4 55.6 49.8
Random (100k) 16.8 47.5 82.7 57.3 51.0
DGA (100k) 17.3 49.8 83.6 59.7 52.6
DIDS (100k) 17.2 50.0 85.7 61.3 53.5

Table 13: OOD generalization performance with diverse downstream task training.

Training Target: MathQA Training Target: TruthfulQA
Method WMT16 TLDR ARC MBPP WMT16 TLDR ARC MBPP

Llama-3.1-8B (no training) 17.1 50.1 76.4 55.6 17.1 50.1 76.4 55.6
Random 16.8 47.5 82.7 57.3 16.8 47.5 82.7 57.3
DGA 15.9 45.3 83.7 59.2 17.8 48.9 81.4 56.8
DIDS 15.9 45.8 86.4 60.6 17.6 54.1 82.3 56.6

Table 14: OOD generalization under single-task optimization scenarios.

4350

Algorithm 1: Domain Impact-aware Data Sampling (DIDS)
Input: Training dataset D; Downstream tasks S; Proxy model f ′; Number of domains k; Update

interval τ ; EMA coefficient β; Training steps T
Output: Domain sampling probabilities pt

1 // Initialize sampling probabilities uniformly;
2 p0 ← [1/k, ..., 1/k];
3 // Domain repartition based on gradients;
4 G← ∅;
5 foreach xi ∈ D do
6 gi ← ∇ℓ(f ′, xi) ;
7 gi ← TopK(gi) ;
8 g̃i ← RT gi;
9 G← G ∪ {g̃i};

10 end
11 {D1, ..., Dk} ← KMeans(G, k);
12 for t← 1 to T do
13 if t mod τ = 0 then
14 // Compute domain impact matrix;
15 foreach Di ∈ {D1, ..., Dk} do
16 foreach Sj ∈ {S1, ..., Sm} do
17 ∆← ∇ℓSj −∇ℓDi ;
18 F ← E[∇ log p(θ)⊙∇ log p(θ)];
19 I(Di, Sj)← 1

2∆
TF∆;

20 end
21 end
22 // Compute future potential;
23 foreach Sj ∈ {S1, ..., Sm} do
24 Fit L(t) = ae−bt + c using loss history {L1(Sj), ..., Lt(Sj)};
25 Lp(Sj)← Lt(Sj)− L(t+ τ);
26 ∆L(Sj)← Lt−1(Sj)− Lt(Sj);
27 end
28 // Update sampling probabilities;
29 foreach Di ∈ {D1, ..., Dk} do
30 U(Di)←

∑
j
I(Di,Sj)·(∆L(Sj)+Lp(Sj))

pt−1,i
;

31 p̂t,i ← softmax(U(Di));
32 pt,i ← βpt−1,i + (1− β)p̂t,i;
33 end
34 pt ← pt/

∑
i pt,i;

35 end
36 Sample batch Bt according to pt;
37 Update model parameters θ using Bt;
38 end
39 return pt

4351

