Superpose Task-specific Features for Model Merging

Haiquan Qiu', You Wu', Dong Li?, Jianmin Guo?, Quanming Yao'*,
Tsinghua University, 2Huaweti,
3State Key laboratory of Space Network and Communications

Correspondence: qyaoaa@tsinghua.edu.cn

Abstract

Model merging enables powerful capabilities
in neural networks without requiring additional
training. In this paper, we introduce a novel
perspective on model merging by leveraging
the fundamental mechanisms of neural net-
work representation. Our approach is moti-
vated by the linear representation hypothesis,
which states that neural networks encode in-
formation through linear combinations of fea-
ture vectors. We propose a method that su-
perposes task-specific features from individual
models into a merged model. Our approach
specifically targets linear transformation ma-
trices, which are crucial for feature activation
and extraction in deep networks. By formu-
lating the merging process as a linear system,
we can preserve task-specific features from
individual models and create merged models
that effectively maintain multi-task capabili-
ties compared to existing methods. Extensive
experiments across diverse benchmarks and
models demonstrate that our method outper-
forms existing techniques. Code is available at
https://github.com/LARS-research/STF.

1 Introduction

Because of the increasing resource demands of
training models, model merging has emerged as an
efficient approach to consolidate capabilities from
specialist models while reducing storage and de-
ployment costs. Various model merging methods
have been proposed, including parameter averag-
ing (Choshen et al., 2022; Wortsman et al., 2022)
and task vectors (Ilharco et al., 2022; Du et al.,
2024). However, these methods primarily focus
on parameter-level operations and do not explicitly
incorporate the fundamental working mechanisms
of neural networks in their design.

We argue that a principled approach to model
merging should be conditioned on how deep neural
networks represent and process information. There-
fore, to design our merging method, we draw upon
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(a) Task-specific feature preservation of merged methods
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(b) Performance on T5 model merging

Figure 1: We measure the task-specific feature preser-
vation of merged methods in (a) (refer to Appendix A),
where smaller values indicate better preservation. The
merging performance in (b) strongly correlates with
task-specific feature preservation.

the linear representation hypothesis (Mikolov et al.,
2013; Arora et al., 2016; Olah et al., 2020), which
states that neural network representations can be
decomposed into combinations of feature vectors.
Recent works in mechanistic interpretability (El-
hage et al., 2022; Bricken et al., 2023; Templeton
et al., 2024; Lindsey et al., 2025) validate the hy-
pothesis and also reveal that these representations
often contain features both related and unrelated to
the model input. This phenomenon motivates our
approach: linearly superposing features from indi-
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vidual models into the representation of the merged
model can preserve task-specific capabilities.
Therefore, we propose a method that Superposes
Task-specific Features(STF) from individual fine-
tuned models. Our approach specifically targets
linear transformation matrices, which comprise the
majority of model parameters and form the founda-
tion of the linear representation hypothesis. These
matrices activate features through inner products
with row vectors and extract new features through
linear combinations via column vectors, making
them crucial for detecting and processing informa-
tion in deep neural networks. We design the merged
linear transformation matrices to preserve the out-
put features from individual models when process-
ing the same input. By identifying task-specific
features through singular value decomposition of
task matrices, we formulate feature superposition
as a linear system that derives the optimal merged
task matrix. The final merged model is created by
adding this merged matrix to the pre-trained model.
Experiments verified the strong positive correla-
tion between feature preservation and performance
improvement(see Fig. 1). We validate our method
on multiple benchmark datasets and models. The
results demonstrate that our method consistently
outperforms existing model merging techniques.

Notations Throughout this paper, we use bold
uppercase letters (e.g., X) to denote matrices, bold
lowercase letters (e.g., x) to denote vectors, and
regular lowercase letters (e.g., x) to denote scalars.
For a matrix X, its transpose is denoted as X ' . We
denote task ¢ as T; and its corresponding model
parameters as 6;. For linear transformations, a lin-
ear transformation matrix in the model trained on
task 4 is represented as P;. The subscript e indi-
cates pre-trained parameters or matrices - for ex-
ample, 6y and P, denote the parameters and
linear transformation matrices of the pre-trained
model, respectively. The notation X o Y denotes
the Hadamard product of matrices X and Y.

2 Related Work
2.1 Model Merging of Fine-tuned Models

Model merging is a technique that combines mul-
tiple models into a single model to enhance per-
formance or enable the model to perform multi-
ple tasks. Previous studies have shown that aver-
aging the weights of multiple models fine-tuned
from the same pre-trained initialization is a promis-
ing approach for model merging. Fisher Merg-

ing (Matena and Raffel, 2022) advances beyond
simple averaging by utilizing the Fisher informa-
tion matrix to assess the importance of individ-
ual parameters, which are then weighted accord-
ingly during the merging process. Similarly, Reg-
Mean (Jin et al., 2022) forms a linear regression
problem with extra data for each layer and offers
a closed-form solution for the merged model’s pa-
rameters by solving the regression problem.
Beyond parameter averaging, Task Arith-
metic (Ilharco et al., 2022) introduces task vectors
and adding the task vectors of individual tasks to
merge model, demonstrating their effectiveness and
lightweight nature in facilitating cross-task gener-
alization. Building on this concept, PEM Compo-
sition (Zhang et al., 2023) extends the task arith-
metic framework to merge LoRA (Hu et al., 2021),
while Ties-Merging (Yadav et al., 2023) addresses
task conflicts by resetting redundant parameters
and resolving sign conflicts. These methods, how-
ever, use a single merging coefficient across all
task vectors, which limits their flexibility. In con-
trast, Lorahub (Huang et al., 2023) and AdaMerg-
ing (Yang et al., 2023) use different coefficients for
enhanced adaptability. Lorahub’s performance is
limited as it only searches for coefficients at the task
level, while AdaMerging requires complex training
and unlabeled test datasets, making it applicable
solely to classification problems. DARE (Yu et al.,
2024) proposes drop and rescale as preprocess-
ing steps when merging fine-tuned LLMs. PCB-
Merging (Du et al., 2024) is a lightweight, training-
free technique for model merging that balances
parameter competition by intra-balancing param-
eter significance within tasks and inter-balancing
parameter similarities across tasks, effectively en-
hancing performance across various scenarios.

2.2 Linear Representation Hypothesis

The linear representation hypothesis states that neu-
ral networks encode information by summing up
feature vectors (Mikolov et al., 2013; Arora et al.,
2016; Olah et al., 2020), i.e., a layer of a network
represents a set of features as a weighted sum of
task-associated vectors. This hypothesis has been
observed in various models, including word embed-
dings (Mikolov et al., 2013; Conneau et al., 2017),
sentence embeddings (Bowman et al., 2015), Trans-
former language models (Meng et al., 2022; Hendel
et al., 2023), and vision-language models (Trager
et al., 2023; Perera et al., 2023). The hypothesis
has been exploited in various fields, especially in
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Figure 2: Deep neural networks (a) linearly add both relevant and irrelevant features in hidden representations. This
insight motivates our approach to model merging through linear superposition of task-specific features. The second
row illustrates how STF preserves and combines essential features from individual models to create an effective

merged method.

probing (Alain and Bengio, 2018; Belinkov, 2022)
and interpretability (nostalgebraist, 2020; Elhage
et al., 2022; Bricken et al., 2023; Gao et al., 2024;
Lindsey et al., 2025).

The linear representation hypothesis has been
validated in recent research on mechanistic inter-
pretability of language models (Elhage et al., 2022;
Bricken et al., 2023; Templeton et al., 2024), which
showed that neural networks learn to represent
meaningful features through linear combinations
of neurons.

3 Method

3.1 Problem Formulation

We start with a set of tasks {T1,..., Ty} and var-
ious pre-trained models. The objective is to fine-
tune these models either by updating all parame-
ters or using parameter-efficient fine-tuning (PEFT)
methods. The goal of model merging is to com-
bine multiple fine-tuned models into a single model
that can perform all tasks {T, ..., Tr} effectively
without requiring access to training data.

To superpose task-specific features, we focus on
merging the linear transformation matrices of the
models, as these matrices are core components con-

tributed to the linear representation hypothesis (El-
hage et al., 2022). In this paper, instead of merging
linear transformation matrices directly, we merge
the task matrices M; = P; — Ppe € R™*™ where
P; is a linear transformation matrix for model of
task T;, Pp is the linear transformation matrix for
the pre-trained model, as the task matrices contain
the task-specific information compared to model
parameters that contains both task-specific and pre-
trained information. Specifically, we merge task
matrices {M,}, i.e., into a single merged matrix
M € R™*™, For an input feature x € R", we
aim to ensure that the output of the merged model
Mx maintains the features of the outputs M;x of
the models for task T;. The final merged model
is then constructed by adding the merged matrix
M to the pre-trained model with a scaling factor y:
P = Py +vM.

3.2 Task-specific Feature Superposition

Identify Task-specific Features To merge the
linear transformation matrices to linearly super-
pose task-specific features, we need to identify
these features first. In this paper, we choose
the singular vectors of the task matrices as the
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task-specific features i.e., decomposing M; as
M, =5%", O'- u )v(k) , where afk) is the k-th
singular value, and ug ) € R™ and vgk) € R" are
the corresponding left and right singular vectors.
This decomposition naturally provides task-specific
features: the right singular vectors vik
features for the input x, and agk)ugk) forms the
task-specific feature for the output of task matrices.

form input

Remark 1. Singular vectors also reveal how the
model processes information, i.e., the right singu-
lar vectors act as feature detectors through inner
products with inputs, while the left singular vec-
tors and singular values determine how detected
features are combined into outputs. Refer to Ap-
pendix B for detailed analysis of singular vector.

Objective of Superposing Features Given the
input features vgk) of task 7, we want that after the
features transformed by merged matrix M, the out-
put Mvgk) contains the task-specific output feature

(k) (k)

o, “u; . This leads to the following objective:

(oFa® My — sy =0, )

Unrelated features

where (-, -) is the inner product. In (1), we first

obtain the unrelated features by subtracting the

task-specific output feature 0'( )u(k)

formed feature MVZ( ). The inner product (1)
should be zero, which means that the unrelated
features are orthogonal to the task-specific output
feature. This ensures that the merg?d) n%a)trix M
k) (K

preserves the task-specific feature o; 'u,;”” while
allowing other features to be superposed linearly.

from the trans-

Remark 2 (Comparison against RegMean). Ide-
ally, we would fully preserve features by requiring
Mvgk) = Mivgk) for all tasks (similar to Reg-
Mean). However, due to the vast number of features,
merged parameters cannot simultaneously main-
tain all features, as this would lead to an overdeter-
mined system of equations. Instead, our approach,
STF, superposes task-specific features rather than
requiring exact feature preservation, resulting in
increased representation efficiency and superior
performance.

3.3 Merging by Solving Linear System

To merge the task matrices, we can see that the
superposition objective (1) is a linear equation with
the unknowns being the merging matrices M. How-
ever, direct solving M is not feasible because of

Algorithm 1 Merging task matrices: STF({M,})

Input: task matrices M;,i =1,...,T}

Apply SVD to M; to obtain agk), ugk) and v(k),
Prepare U, and V;

Solve (U o V) = o to obtain o™

Obtain the merged task matrix M by (2);
Return: merged task matrices M.

numerous unknowns and equations in the linear
system consisting of (1). For efficient merging,
we instead merge the task matrices M; by decom-
posing them via SVD and merging their singular
decomposition components:

k) (k v

M=S ST T
where agk) are the merging weights. This reduces
the number of unknowns and equations to r =
ZiT:1 r;, Where r; is the rank of task matrix M.
By merging in the singular space, we can ensure
that the resulting problem becomes a linear system
of equations with the following theorem (proved in
Appendix C).

Theorem 1. Given the task matrices M, with their
SVD decompositions, the merging weights agk) can
be obtained by solving the linear system:

(UoV)a =o, 3)
where
r ugl)Tugl) . ugl)Tung) n
ung) ugl) ung) ung)_
V§1)TV(11) VgT)Tvgl) B
V= : : )
_Vgl)Tvng) vng)Tvng)_
1 T 1 T
a:[ag)”af(FT)] s U:[O':(L)7’U§1T)]

By solving the linear system (3), we obtain the
optimal weights o* for merging task matrices ac-
cording to (2). The merged linear transformation
matrix P is then obtained by adding the merged
task matrix M to the pre-trained matrix Pp, with
a scaling factor v: P = Ppe + vM.

The algorithm for merging task matrices is sum-
marized in Algorithm 1 and Fig. 2. Because there
are T tasks matrices of size m X n, SVD of these
matrices takes the time complexity O(T'mn?). To
merge 7' task matrices, the linear system has r
equations and variables to solve, which takes the
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time complexity O(r3). Therefore, the overall time
complexity of STF for merging 7" task matrices is
O(Tmn? + r3). See Section 4.3 for the time con-
sumption of model merging with STF for various
models.

3.4 Complete Algorithm

Except the linear transformation matrices, there are
parameters in the model that need to be merged,
such as biases, normalization parameters, and em-
beddings. For biases and embeddings, we merge
them with task arithmetic, i.e., adding their task
vectors together. For normalization parameters, we
merge them by averaging the normalization param-
eters of the individual tasks because the normal-
ization can be seen as a linear transformation with
diagonal matrix.

We also follow Ties-Merging (Yadav et al., 2023)
and apply a trimming step. This involves keeping
only the top n% parameters by magnitude while
setting the remaining parameters to zero. This pre-
processing step helps reduce noise and focus on the
most significant parameters during merging. We
present the complete algorithm for merging models
in Algorithm 2.

3.5 Discussion

Merging Task Matrices or Fine-tuned Matrices?
In this paper, our focus is on merging task matrices
instead of fine-tuning matrices. We have discov-
ered that fine-tuned linear transformation matri-
ces tend to have more shared features across tasks.
Therefore, merging the fine-tuned linear transfor-
mation matrix is not as efficient as merging task
matrix because certain overlapping direction of sin-
gular vectors correspond to these common features.
On the contrary, the singular vectors of the task
matrix contain features that are more specific to in-
dividual tasks, making it a more effective approach
for merging. See the results of merging fine-tuned
matrices in Section 4.3.

Feature Interference and Scaling Factor In
STF, we scale the merged matrix M to reduce in-
terference between task-specific features. During
merging, features from different tasks can interfere
since we combine them through linear superposi-
tion. While using singular vectors as basis helps
minimize interference within each task, some fea-
tures may still be diminished when their directions
conflict with features from other tasks. The scal-
ing factor +y plays a crucial role in managing this
tradeoff - a small ~ reduces interference but may

Algorithm 2 Complete Merging Algorithm

1: Input: fine-tuned models {6, ..
trained model O

2: Parameters: sparsity ratio 7, scaling factor

3: for each linear transformation layer do

4:  Extract task matrices M; = P; — P for

., 07}, pre-

i=1,...,T
5:  Keep top n parameters by magnitude in each
M;

M « STF({M;}L ) {Algorithm 1}
Merged matrix P = P + M
end for
for each bias, embedding, normalization layer
do
10:  Extract task vectors 7; = 0; — Oy for i =

© ® 3D

1,...,T

11:  Keep top n parameters by magnitude in each
Ti

12:  if normalization layer then

13: Merged parameters —

mean({7y,...,7r})

14:  else

15: Merged parameters < -y ZiT:1 T

16:  end if

17: end for

18: Return: merged model parameters

weaken task-specific features, while a large v bet-
ter preserves individual task capabilities but risks
amplifying interference between tasks. Finding the
optimal y requires careful tuning based on the spe-
cific tasks and model architecture. In Section 5,
we discuss future directions for reducing feature
interference beyond scaling.

4 Experiments
4.1 Experimental Setup

Evaluation Setup. We evaluate STF across di-
verse fine-tuning methods, tasks, model architec-
tures, and model size. For the fully fine-tuning, we
evaluate NLP tasks on T35 following protocols of
Yadav et al. (2023). For parameter-efficient fine-
tuning (PEFT), we evaluate LoRA on GPT-2 for
NLP tasks since it uses linear transformation matri-
ces through low-rank adaptation, which aligns well
with our approach, rather than vector parameters
like IA3 (Liu et al., 2022) in previous research. To
evaluate STF when model size scales up, we fol-
low the setup of Du et al. (2024) to merge LLMs.
Additionally, to evaluate the out-of-distribution ro-
bustness, we follow Yadav et al. (2023) to test it on
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NLP tasks.

All experiments are conducted on NVIDIA
A100 GPUs and AMD EPYC 7763 CPUs. STF
is implemented in PyTorch and performed on
NVIDIA A100 GPUs. The hyperparameter set-
tings for STF are in Appendix D.2.

Baseline Methods. We compare STF against
four established model merging approaches: (1)
Averaging (Choshen et al., 2022; Wortsman et al.,
2022), which computes the element-wise mean of
individual models; (2) Task Arithmetic (Ilharco
et al., 2022), which merges by scaling and adding
task vectors to the initial model; (3) Fisher Merg-
ing (Matena and Raffel, 2022), which approxi-
mates Fisher Information Matrix to weight param-
eters based on their importance for each task and
combines the weighted parameters into the final
merged model; (4) RegMean (Jin et al., 2022),
which computes a closed-form solution to a least-
squares regression problem that aims to minimize
the distance between the merged model’s activa-
tions and the individual models’ activations. (5)
Ties-Merging, which enhances merging by elim-
inating redundant parameters and resolving sign
conflicts; (6) PCB-Merging, which balances pa-
rameter competition through intra-task significance
and inter-task similarity analysis. We also report re-
sults from individual fine-tuned models and a pre-
trained model on all tasks; (7) MetaGPT (Zhou
et al., 2024), which formalizes the objective of
model merging into a multi-task learning frame-
work, aiming to minimize the average loss differ-
ence between the merged model and each individ-
ual task model; (8) Knots (Stoica et al., 2024),
which utilizes Singular Value Decomposition to
transform and align task-updates from multiple
LoRA models into a shared representational space;
(9) Consensus TA (Wang et al., 2024) and (10)
Localize-and-Stitch (He et al., 2024), both of
which focus on constructing a sparse mask for each
task to reduce inter-task conflict during merging.

4.2 Results

Fully Fine-tuned NLP Model: T5 Merging For
NLP experiments, we evaluate on T5-base (Raf-
fel et al., 2020), an encoder-decoder transformer
(Vaswani et al., 2017) pre-trained with masked lan-
guage modeling. We finetune T5-base on seven
diverse tasks spanning question answering (QASC
(Khot et al., 2020), WikiQA (Yang et al., 2015),
QuaRTz (Tafjord et al., 2019)), paraphrase identifi-

cation (PAWS (Zhang et al., 2019)), sentence com-
pletion (Story Cloze (Sharma et al., 2018)), and
coreference resolution (Winogrande (Sakaguchi
et al., 2020), WSC (Levesque et al., 2012)). We use
the code from Yadav et al. (2023) to finetune the
model on these tasks. To reduce variance and en-
sure reliable evaluation, we report the experimental
results of the average performance over different
templates (Bach et al., 2022) for each task.

As shown in Table 1, STF achieves state-of-the-
art performance when merging T5-base models,
outperforming existing methods by 1.4% on aver-
age across 7 tasks. STF shows particularly strong
performance on PAWS and Story Cloze, with im-
provements of 5.9% and 12.5% respectively over
PCB-Merging, the previous best method.

PEFT of NLP Model: LORA Adapters Merg-
ing For PEFT experiments, we evaluate GPT-2
Medium model on LoRA adapters (Hu et al., 2021),
which are task-specific adapters that are fine-tuned
on NLP task datasets. These tasks include con-
verting tables (E2E(Novikova et al., 2017)), knowl-
edge graph (WebNLG(Gardent et al., 2017)) and
structured data (DART(Nan et al., 2020)) to natural
language. We use the released checkpoints from
Hu et al. (2021) and evaluate the performance of
the merged model on these datasets. Specifically,
we compare Knots, which is designed specifically
for LoORA merging.

As shown in Table 2, STF outperforms existing
baselines on all metrics. Specifically, comparing
with previous best baselines, STF shows improve-
ments of 2.2% for NIST of E2E, 4.8% over PCB-
Merging for CIDEr of E2E.

Large Model: LLM Merging We cvaluate
model merging on three fine-tuned Llama-2-7B
models (Touvron et al., 2023) focusing on different
capabilities: Chinese language proficiency!, mathe-
matical reasoning (Yu et al., 2023)?, and code gen-
eration (Roziére et al., 2023). Each model’s perfor-
mance was assessed using domain-specific bench-
marks: CMMLU (Li et al., 2023) for Chinese lan-
guage understanding, GSM8K (Cobbe et al., 2021)
for mathematical reasoning, and HumanEval (Chen
et al., 2021) for code generation abilities.

"https://huggingface.co/LinkSoul/
Chinese-Llama-2-7b

2https://huggingface.co/meta—math/
MetaMath-7B-V1.0

3https://huggingface.co/qualisZOOG/
1lama-2-7b-int4-python-code-18k
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Test Set Performance
Method Average o .

paws qasc quartz story_cloze wiki_qa winogrande wsc

Pre-trained 535 |499 358 533 48.1 76.2 50.0 61.1

Fine-tune 81.0 |91.4 955 79.1 79.6 95.2 62.8 63.6

Parameter Average | 60.2 |55.2 57.5 55.2 494 91.1 50.2 62.5

Fisher Merging 682 | 679 844 635 57.1 90.1 54.2 60.8

RegMean 71.5 762 92.8 62.6 63.6 89.4 57.4 58.3

Task Arithmetic 71.6 |71.1 814 62.1 77.1 95.0 574 56.9

Ties-Merging 722 |78.8 884 65.1 70.7 84.2 56.2 62.3

PCB-Merging 723 | 71.5 91.7 66.8 62.7 92.8 57.1 63.3

MetaGPT 585 |56.7 673 58.1 454 80.2 55.5 46.2

Consensus TA 723 |73.8 83.4 619 76.0 83.8 56.2 61.0

Localize-and-Stitch | 72.9 |75.7 88.6 62.3 73.6 93.9 55.9 60.6

STF (ours) 73.7 | 774 89.1 62.6 75.2 94.2 56.4 61.1

Table 1: Merge fully-fine-tuned T5-base model with different methods.
Test Set Performance
Method E2E DART WebNLG Rank
BLEU? NIST{ METT ROUGE-L1 CIDErf|BLEUT METT TER|  BLEU-AT MET-A1 TER-A|

Pre-trained 02 058 15 52 0.002 | 02 2.0 1524| 0.15 2.0 179.1 | -
LoRA 67.7 8.64 46.0 68.3 236 | 448 350 504 | 523 37.0 444 —
Parameter Average| 63.4 8.00 40.8 66.6 2.01 | 40.0 32.0 53.7| 439 32.0 49.2 7
Task Arithmetic | 63.2 8.02 409 66.3 1.98 | 40.8 33.0 53.7| 459 34.0 48.8 6
Ties-Merging 62.8 8.14 41.1 65.9 2.08 | 414 33.0 53.7| 46.1 33.0 48.1 5
PCB-Merging 629 8.12 414 66.0 2.08 | 413 33.0 53.5| 46.2 33.0 48.1 3
Knots 629 822 41.6 65.8 205 | 4152 34 540 46.0 34 47.5 2
MetaGPT 634 7.88 40.7 66.1 2.01 | 4223 33 521 45.9 33 47.4 4
STF (ours) 64.1 840 422 66.5 2.18 | 41.6 330 54.1 47.1 34.0 48.0 1

Table 2: Merge LoRA Adapters of GPT-2 M with Different Methods. 1 indicates higher is better, | indicates lower

is better.
Datasets

Method | ~\iMLU GSMSK Humaneval | AY6T28€
Chinese 38.6 2.3 134 18.1
Math 31.2 65.6 0 323
Code 33.3 0 17.1 16.8
Parameter Average| 35.6 48.5 6.7 30.3
Task Arithmetic 354 46.1 9.8 30.4
Ties-Merging 36.5 534 12.8 343
MetaGPT 36.2 50.6 16.9 34.6
PCB-Merging 36.4 52.3 16.5 35.1
STF (ours) 36.5 63.0 14.0 37.8

Table 3: Results on the CMMLU, GSM8K, and Hu-
maneval datasets.

As shown in Table 3, STF achieves state-of-the-
art performance across all three domains, improv-
ing overall performance by 2.7% compared to the
best baseline. The most significant improvement
is observed in mathematical reasoning, where STF
outperforms other methods by approximately 10%
on the GSM8K benchmark.

Out-of-Distribution Generalization To evalu-
ate out-of-distribution generalization, we test the
merged T5-base model (previously trained on seven
tasks) on six held-out tasks from the TO mix-
ture (Sanh et al., 2021): three question answer-

ing tasks (Cosmos QA (Huang et al., 2019), So-
cial IQA (Sap et al., 2019), QuAIL (Rogers et al.,
2020)), word sense disambiguation (WiC (Pilehvar
and Camacho-Collados, 2018)), and two sentence
completion tasks (COPA (Roemmele et al., 2011),
H-SWAG (Zellers et al., 2019)). As shown in Ta-
ble 5, STF achieves 0.9% improvement over the
best baseline on T5-base, demonstrating strong gen-
eralization capabilities to tasks outside the training
distribution.

4.3 Additional Results and Analysis

Task Matrices versus Fine-tuned Matrices We
compare merging task matrices versus fine-tuned
matrices directly on T5-base models. As shown
in Fig. 3(a), merging task matrices consistently
outperforms merging fine-tuned matrices across
all architectures by a large margin. This validates
our discussion in Section 3.5 that task matrices
better isolate task-specific features compared to
fine-tuned matrices, making them more effective
for model merging.

Feature Interference and Scaling Factor We
examine how performance of TS5 merging varies
with different number of tasks and scaling factor
in Fig. 3(b). We observe that as more tasks are
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Figure 3: Experimental results on analyzing STF.

merged, the optimal scaling factor ~y that achieves
the best performance decreases. This trend indi-
cates that larger y values amplify interference be-
tween task-specific features when merging many
tasks, requiring smaller scaling factors to maintain
performance. The results validate our discussion in
Section 3.5 about scaling merged matrix to balance
feature preservation against interference.

Hyperparameter Sensitivity We analyze the
sensitivity of STF to the hyperparameters 1 and y
on the T5-base. Three model merging methods are
compared in the experiments: STF, Ties-Merging,
and PCB-Merging. We follow the experiment setup
of previous work (Du et al., 2024) to analyze the
effect of two parameters. The first parameter is
the scaling factor v , which is used to scale the
merged task vector. For STF and Ties-Merging,
the second hyperparameter is the top-k percentage
n, indicating that the n% parameters in task vector
with the highest absolute value are retained. For
PCB-Merging, the second hyperparameter is mask
ratio 7, indicating that the % parameters in param-
eter competition balancing matrix with the biggest
absolute value will be retained. We vary the hyper-
parameters y with step size 0.1 from 0.5 to 1.0, and
1 with step size 0.05 from 0.15 to 0.5.

First, in Figs. 3(c) and 3(d), STF achieves op-
timal performance with v = 0.8 and n = 0.2 on
T5-base. Second, performance varies with both
hyperparameters. For sparsity ratio n, performance
first improves then declines as it increases. When
7 is too low, important features are filtered out as
most parameters are set to zero. When 7 is too high,
noise in the task matrices affects the quality of sin-
gular vectors. For scaling factor v, we observe a
similar trend - performance initially improves then
deteriorates with increasing values. A small ~y di-
minishes the magnitude of singular vectors, while
a large v may amplify interference between tasks.

Model Merging Time We analyze the time re-
quired for model merging with STF on different

models. As shown in Table 4, the merging time in-
creases with model size, primarily due to the SVD
computation on larger matrices. For smaller mod-
els, TIES and PCB are more efficient than Knots
and STF. However, with larger models, STF be-
comes more efficient because TIES and PCB re-
quire storing all parameters in memory simultane-
ously and run only on CPU, while STF processes
one task matrix at a time and leverages GPU accel-
eration. The relatively short merging times demon-
strate that STF is practical for real-world applica-
tions, despite its theoretical time complexity.

Method T5-base GPT-2 LoRA Llama-2-7B
TIES 34 0.08 1280
PCB 113 0.09 1593
Knots - 8 -

STF (Ours) 127 5 623

Table 4: Merging time for different models (unit: s).
We run PCB and TIES on CPU because of the large
memory requirement.

5 Conclusion

In this paper, we present STF, a novel model merg-
ing approach that preserves task-specific features
in linear transformations through feature superposi-
tion. Extensive experiments demonstrate that STF
consistently outperforms existing methods across
different architectures and tasks. The success of
STF demonstrates the value of leveraging work-
ing mechanisms of deep neural networks in model
merging, rather than treating them at the parameter
level.

Limitations

While STF effectively preserves features during
merging, it does not explicitly identify task-specific
features corresponding to semantic meanings. Fu-
ture work could leverage mechanistic interpretabil-
ity techniques like superposition analysis and
sparse autoencoders to better isolate and preserve
task-specific features in linear transformations. Ad-
ditionally, STF currently relies on a simple scaling
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approach to manage interference between tasks.
More sophisticated methods for analyzing feature
importance and selectively removing interference
from less critical features could further improve
performance. These advances would help develop
a more principled approach to preserving task capa-
bilities during model merging. Another major limi-
tation is the time complexity of SVD and solving
the linear system in STF, which can be improved by
using more efficient method for feature extraction
in the future.
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A Measure Feature Preservation

We measure feature preservation by ‘<O'Z(k)u§k), Mvgk) — agk)uz(k)) ‘, where agk)ugk) and Mvgk) and vgk)

are the task-specific features identified in Section 3.2, and M is the merged task matrix for various merging
methods without scaling. This measurement is based on the superposition objective in (1). Higher values
indicate that the output of merged task matrix M is less similar to the output feature vectors of original
task matrix M;, and thus the feature preservation is worse.

We calculate the preservation for every feature vector in the original fine-tuned models across all
datasets, and then average all these individual preservation values. In Fig. 1(a), we choose the input linear
transformation matrices of all FFN layers in T5-base model. We also measured the feature preservation for
other layers, including the attention layers. Fig. 4 shows the feature preservation for the output layers of
FFN in T5-base model, which shows the same trend with Fig. 1(a). We observe that STF exactly preserves
the magnitudes and directions of output feature vectors, while Ties-Merging and PCB-Merging have much
lower feature preservation. The results indicate that better feature preservation strongly correlates with
better performance and validate our hypothesis that feature superposition is effective for model merging.
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Figure 4: Feature preservation for FFN output layer in T5-base model

B Singular Value Decomposition of Task Matrices

Applying SVD to task matrix, we have M; = > "}* | 0, )u(k)v( )T, where agk) is the k-th singular value,

7
and ugk) and ng) are the k-th left and right singular vectors of M, respectively. These singular vectors
serve as orthogonal basis for output IM;x and input x. Specifically, any input representation x € R™ can
be decomposed as x = > ;7 | wgk) (k) + b, where b is orthogonal to all right singular vectors. When

M, transforms x, we get M;x = Zk 1 a(k)wf ])u(k) since b lies in the null space of M;. This shows
that the input x and output IM;x can be represented as a weighted sum of right and left singular vectors,

respectively.

C Proof of Theorem 1

()T (k)

Here we use X = [x; X, )i ki i to denote the matrix formed by enumerating over ¢, k for the row

index and 4/, k¥’ for the column index.

Proof. The objective of feature superposition can be converted to
<u§’“), Mvg’“)> - <u§’“), Mivg’“)> Vi k.

We bring M = Y20 S 1a, FlulF) (, )T and M; = Y1 (k,)u(k) (k) to the left side of

u; )

the equation, and move al( ) to the right side.
4213



Then, the objective becomes

T T T i
ugk)T<Z Zagﬁ)ugﬁ)vgﬁ W) vgk):al(k) & Z Zugk)Tug,k )vg,k )Tvgk)az(»,k ):UZ@ 4)

i=1k'=1 i'=1k'=1

(R)T (K (KT _ (k) (k")

which is one linear equation with u;™" u,, "v;;"~ v, as the coefficient of variable v;, ’. We can convert
all equations in (1) to a linear system for all tasks in {T1,..., Tr}:
ugl)Tugl)V?)TVgl) o ugl)Tung)Vng)Tvg) agl) 0§1)
ung)Tugl)Vgl)Tvng) . u(T7"T)Tu(TTT)V¥T)TV¥T) a(TTT) U¥T)

With Kronecker product, we can write the linear system in a more compact form:

YoUoVa=o,

(k)Tu(,k/) Z(,k/)—rvz(k)]i/,k/;i,k = V'V € R™"; ais the

i i ]i,k;z",k’ =U'UeR*;,V = [v
(k)

vector of variables ag, ); and o is the vector of singular values o;"’. The index 7, k, 7', k' share consistent

order across U and V. O

where U = [u

D More Experimental Results

Table 5: Out-of-Distribution Generalization Performance of merged T5-base model

Out-of-Distribution Performance
Method Average . . .
cosmos_ga social_iga quail wic copa h-swag

Pre-trained 31.1 21.9 18.8 24.1 65.6 438 12.5
Average 36.3 23.5 37.0 254 502 545 272
Task Arithmetic 37.0 21.9 36.8 255 495 614 266
Ties-Merging 37.1 222 37.8 249 516 622 265
PCB-Merging 37.3 23.0 38.1 246 522 590 272
STF (ours) 38.2 22.4 38.0 26.0 51.6 64.1 27.0

D.1 More Analysis

Removing Singular Vectors We investigate removing singular vectors from task matrices before
merging, analyzing on T5-base: removing smallest versus largest singular vectors. As shown in Figs. 5(a)
and 5(b), removing up to 80% of smallest singular vectors has minimal impact on performance, while
removing just 5% of largest singular vectors causes significant degradation. This indicates that while most
singular features are redundant, preserving those with largest singular values is crucial for maintaining
model capabilities. This insight could guide future work on selective feature preservation during model
merging.

Fully Fine-tuned Vision Model: ViT Merging We evaluate STF on vision tasks using two CLIP
models (Radford et al., 2021) with ViT-B/32 and ViT-L/14 architectures (Dosovitskiy, 2020) as visual
encoders. We use the released checkpoints from Ilharco et al. (2022) that were fine-tuned on eight diverse
classification tasks spanning remote sensing, traffic signs, and satellite imagery domains. These tasks
include: Cars (Krause et al., 2013), DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019), GTSRB
(Stallkamp et al., 2011), MNIST (LeCun, 1998), RESISC45 (Cheng et al., 2017), SUN397 (Xiao et al.,
2016), and SVHN (Netzer et al., 2011). For all experiments, we keep the text encoder fixed and only
merge the parameters of visual encoders.

As shown in Table 6, STF achieves state-of-the-art performance when merging fully fine-tuned ViT
models, outperforming existing methods by 1.1% and 0.3% on average across 8 tasks for ViT-B/32

4214



~
N

~

=)
~
S

@

&
@
a

@
3
Avg Performance
@
3

o
a

Avg Performance

o o
8 R

3
3
o
3

N N N
ISR NN SIS AN & QQQQ@Q S SR RN RN RN

Percentage of Removed Features Percentage of Removed Features

(a) Remove smallest singular vectors (b) Remove biggest singular vectors

Figure 5: Performance of STF with different percentage of removed features.

and ViT-L/14 architectures respectively. For ViT-B/32, STF shows particularly strong performance on
RESISC45 and EuroSAT, with 2.9% and 11.1% improvements over the best baseline. For ViT-L/14, STF
maintains high performance across all tasks, demonstrating effective preservation of task-specific features
during merging.

Table 6: Test set performance when merging ViT-B/32 and ViT-L/14 models on 8 vision tasks.

Model Task(—) Average Test Set Performance
Method(]) SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD
Pre-trained 46.3 61.7 54.7 58.5 51.2 29.1 27.4 45.6 42.1
Fine-tuned 90.5 75.3 77.7 96.1 99.7 97.5 98.7 99.7 79.4
Averaging 65.8 65.3 63.4 71.4 71.7 64.2 52.8 87.5 50.1
ViT-B/32 | Fisher Merging 68.3 68.6 69.2 70.7 66.4 72.9 51.1 87.9 59.9
RegMean 71.8 65.3 63.5 75.6 78.6 78.1 67.4 93.7 52.0
Task Arithmetic 70.1 63.8 62.1 72.0 77.6 74.4 65.1 94.0 52.2
Ties-Merging 73.6 64.8 62.9 74.3 78.9 83.1 71.4 97.6 56.2
PCB-Merging 76.3 66.7 65.5 78.5 79.3 86.4 77.1 98.2 59.1
STF (ours) 77.4 65.4 62.0 814 90.4 84.1 77.1 95.6 62.9
Pre-trained 64.1 68.2 76.4 69.7 64.7 60.4 49.4 67.9 56.3
Fine-tuned 94.2 82.3 92.4 97.4 100 98.1 99.2 99.7 84.1
Averaging 79.6 72.1 81.6 82.6 91.9 78.2 70.7 97.1 62.8
ViT-L/14 | Fisher Merging 82.2 69.2 88.6 87.5 93.5 80.6 74.8 93.3 70.0
RegMean 83.7 73.3 81.8 86.1 97.0 88.0 84.2 98.5 60.8
Task Arithmetic 84.5 74.1 82.1 86.7 93.8 87.9 86.8 98.9 65.6
Ties-Merging 86.0 76.5 85.0 89.4 95.9 90.3 83.3 99.0 68.8
PCB-Merging 87.5 76.8 86.2 89.4 96.5 88.3 91.0 98.6 73.6
STF (ours) 87.8 754 85.8 90.3 96.6 91.7 91.2 99.2 72.4

D.2 Hyperparameter Settings

Fully Fine-tuned NLP Model: T5 Merging STF is evaluated with a sparsity ratio n = 20% and a
scaling factor v = 0.8. To reduce variance and ensure reliable evaluation, we report the experimental
results of the average performance over different templates for each task, i.e., paws has 11 templates, gasc
has 5 templates, quartz has 8 templates, story_cloze has 5 templates, wiki_qa has 5 templates, winogrande
has 5 templates, and wsc has 10 templates.

PEFT of NLP Model: LORA Adapters Merging STF is evaluated with a sparsity ratio n = 30% and
a scaling factor v = 0.5.

Large Model: LLM Merging We follow the setup from Du et al. (2024) to merge these LL.Ms. For
STF, we does not apply trimming step and set the scaling factor v = 0.8.

Fully Fine-tuned Vision Model: ViT Merging With sparse ratio n = 20%, we grid search over the
scaling factor v in [0.5, 1.2] with step size 0.1 and find the best performance with v = 0.6 for ViT-B/32
and v = 0.7 for ViT-L/14.
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