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Abstract

Currently, most multimodal studies are based
on large language models (LLMs) with
quadratic-complexity Transformer architec-
tures. While linear models like RNNs enjoy
low inference costs, their application has been
largely limited to the text-only modality. This
work explores the capabilities of modern RNN
architectures in multimodal contexts. We pro-
pose ModRWKV—a decoupled multimodal
framework built upon the RWKV7 architecture
as its LLM backbone—which achieves multi-
source information fusion through dynamically
adaptable heterogeneous modality encoders.
We designed the multimodal modules in Mod-
RWKV with an extremely lightweight architec-
ture and, through extensive experiments, identi-
fied a configuration that achieves an optimal
balance between performance and computa-
tional efficiency. ModRWKV leverages the
pretrained weights of the RWKV7 LLM for
initialization, which significantly accelerates
multimodal training. Comparative experiments
with different pretrained checkpoints further
demonstrate that such initialization plays a cru-
cial role in enhancing the model’s ability to
understand multimodal signals. Supported by
extensive experiments, we conclude that mod-
ern RNN architectures present a viable alter-
native to Transformers in the domain of multi-
modal large language models (MLLMs). Fur-
thermore, we identify the optimal configuration
of the ModRWKV architecture through system-
atic exploration.

§ https://github.com/JL-er/WorldRWKV

1 Introduction

Linear complexity model (Peng et al., 2025; Gu and
Dao, 2024; Yang et al., 2024a, 2025, 2024b) have
emerged as an efficient alternative to the attention-
based Transformer architecture (Vaswani et al.,

∗ Equal contributions.
† The corresponding author.

2023; Yin et al., 2024) in Large Language Mod-
els (LLMs) (Touvron et al., 2023; Achiam et al.,
2023). Among various linear models, recurrent
neural networks (RNNs) (Peng et al., 2025) have
become a competitive approach. Characterized by
constant memory usage, RNNs can perform in-
ference at a lower cost compared to the linearly
increasing KV cache of Transformers. Recent re-
search has also enabled their parallel training ca-
pabilities (Yang et al., 2024a, 2025), facilitated
by hardware-aware designs optimized for modern
GPU architectures (Dao et al., 2022).

Currently, LLMs are undergoing a paradigm
shift—from single-modality processing to cross-
modal collaboration (Liu et al., 2023; Fang et al.,
2025; Chen et al., 2022; Défossez et al., 2024;
Li et al., 2025b,a). By leveraging transfer learn-
ing from pre-trained LLM weights, these models
achieve cross-modal semantic alignment in tasks
such as visual question answering and speech dia-
logue. However, this practice has primarily been
employed within the traditional Transformer archi-
tecture. In the context of linear models, few works
have expanded their understanding to modalities
beyond natural language. This disparity highlights
a crucial gap in the current landscape of linear mod-
els.

In this paper, we describe MODRWKV. It is the
first RNN-based linear model that extends its capa-
bilities to the cross-modal domain. MODRWKV
is based on RWKV7, a RNN-based architecture
powered by generalized delta rule with vector val-
ues gating, in-context learning rates, and relaxed
value replacement rule. We hypothesize that the in-
herent sequential processing capabilities of RNNs,
coupled with a carefully designed shared parame-
ter base, can effectively capture both intra-modal
and inter-modal dependencies across diverse data
types.

We take advantage of the RWKV7 architecture
to propose an innovative unified training paradigm

4104

https://github.com/JL-er/WorldRWKV


for multimodal fusion. MODRWKV adopts a
lightweight shared parameter base with a modality-
specific encoder framework, where simply switch-
ing the front-end encoder enables seamless trans-
fer across multimodal tasks. This approach sys-
tematically explores the representation capabili-
ties of RNN architectures within cross-modal se-
mantic spaces, aiming to break the Transformer-
dominated research paradigm. It offers new theo-
retical and practical insights into the deployment
of large RNN-based models in the multimodal do-
main.

Our contributions can be summarized as three-
fold:

1. Proposed the MODRWKV framework, pi-
oneering a unified multimodal training paradigm
based on an RNN architecture. By adopting a
plug-and-play design for modality encoders, it
significantly enhances cross-modal scalability
and integration efficiency.

2. Conducted a comprehensive and system-
atic evaluation of MODRWKV’s full-modality
understanding capabilities, establishing a bench-
mark paradigm for assessing the cross-modal
performance of RNN-based architectures.

3. Extensive Ablation experiments validate
the optimal multimodal processing design that
achieves a desirable balance between perfor-
mance and computational efficiency.

2 Background

RWKV7: Modern RNN Architecture Simple
linear RNNs (Qiao et al., 2024; Gu and Dao, 2024)
can be written in the following recurrent form:

ht = Wht−1 +Uxt, (1)

which enables parallelized training but lacks strong
language performance and long-term dependency
preservation. RWKV combines the efficiency of
linear RNNs (constant memory and time complex-
ity during inference) with powerful modeling capa-
bilities through its time-mixing block. It uses keys
kt and values vt, linearly projected from xt, and
updates the state st with input-dependent decay wt

and receptance rt:

st = e−wt · st−1 + ktv
T
t , (2)

In RWKV7, the state update is enhanced for greater
expressiveness with the form:

st = Gtst−1 + atktv
T
t , (3)

where employed a generalized delta rule with two
improvements: (1) In-context learning rate. the
term at, a vector-valued learning rate projected
as at = Waxt, controls the influence of the
new information ktv

T
t on the state. (2) Vec-

tor value gating. The dynamic transition ma-
trix Gt = (I − atktk

T
t )diag(e

−ewt ) incorpo-
rates wt, a vector-valued gating parameter from
wt = Wwxt, enabling channel-specific decay
rates. This input-dependent design makes st highly
adaptive to context.

Multimodal Large Language Models LLMs
have traditionally been trained on natural language
data and are primarily designed to understand and
generate text. These models excel in text-based
tasks but are inherently limited to the domain of hu-
man language. Recently, many works have begun
to explore the potential of large language models
beyond their linguistic roots, pushing their capabil-
ities into other modalities. From a modality per-
spective, MLLMs now handle a variety of data
types beyond text, including images (Liu et al.,
2024a), audio (Défossez et al., 2024), and video.
Structurally, these models adapt by incorporating
modality-specific encoders, such as visual trans-
formers for images or audio transformers for sound.
Input integration varies between unified tokeniza-
tion, where all modalities are converted into a
single token sequence, and cross-modal attention,
where the model attends to features across modali-
ties.

3 Methodology

MODRWKV is the first RNN-based multimodal
architecture that integrates the MLLM training
paradigm with a linear model, achieving excep-
tional hardware efficiency. In Section 3.1, we
present the encoder selection design of MODR-
WKV. In Section 3.2, we detail the adapter design
of MODRWKV. In Section 3.3, we describe the
sequence compression method for efficiently pro-
cessing diverse multimodal data.

3.1 Multimodal Encoder
Vision Encoder. We evaluated CLIP (Radford
et al., 2021) and SigLIP2 (Tschannen et al., 2025)
as alternative visual encoders for MODRWKV,
applying identical adaptation frameworks to each
model independently. Each vision-language en-
coder processes raw images to generate sequential
feature embeddings that are then aligned with the
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Figure 1: ModRWKV network architecture. Multi-modality data streams undergo initial processing via an encoder,
a 1D Convolutional layer, and an adapter. (The 1D Convolutional layer is employed to compress the sequence length
of multi-modal inputs, which significantly reduces the computational overhead during training.) Concurrently, text
data is transformed through a Text Embedding module. The outputs from the adapter and Text Embedding layers
are subsequently concatenated.

RWKV large language model through lightweight
adapter layers. Our experiments validated MODR-
WKV’s strong inherent capacity for visual informa-
tion processing, with this framework demonstrating
excellent cross-modal adaptability even without
architectural modifications to the base language
model.

Audio Encoder. In our study, we employ
WavLM (Chen et al., 2022) and Whisper (Rad-
ford et al., 2022) as audio encoders for MODR-
WKV. We select encoder models with sizes rang-
ing from approximately 100M to 400M parame-
ters, specifically choosing WavLM base+, WavLM
large, Whisper small, and Whisper medium for
evaluation. These encoders process audio sampled
at 16,000 Hz and generate feature vectors at a fre-
quency of 50 Hz. For the Whisper encoder, each
audio segment is padded to a duration of 30 sec-
onds.

Time Series Encoder. We adopt WaveNet (Van
Den Oord et al., 2016) and Timer (Liu et al., 2024b)
as alternative temporal encoders for MODRWKV.
Timer is initialized with pre-trained weights, with
the weights frozen during training, while WaveNet
is trained from scratch without pre-trained weights.
However, during inference, both encoders are
frozen to enable zero-shot evaluation. Each en-
coder transforms raw time-series data into high-
level feature embeddings, which are then aligned
with the RWKV blocks via lightweight adapters.

3.2 Adapter Design

We introduce a single-MLP adapter (Liu et al.,
2023) for dimension alignment between modali-
ties, reducing the adapter’s parameter. This forces
the RWKV7 backbone to handle the majority of

cross-modal reasoning, providing a rigorous test of
RNN-based architectures in multimodal settings:

h = Linear2(ReLU(Linear1(x))). (4)

Table 1: Multimodal Benchmark Evaluation

Benchmark Description

VQA-v2 (Goyal et al., 2017) Image Understanding
TextVQA (Singh et al., 2019) Text-Image Integration
GQA (Hudson and Manning, 2019) Reasoning
ScienceQA (Lu et al., 2022) Scientific Reasoning
POPE (Li et al., 2023) Hallucination
MMMU (Yue et al., 2024) Reasoning
MMBench (Liu et al., 2024c) Assessment
LibriSpeech (Panayotov et al., 2015) Speech Recognition
Aishell-1 (Bu et al., 2017) Speech Recognition
GIFT-Eval (Aksu et al., 2024) Time Series
UTSD (Liu et al., 2024b) Time Series

3.3 Sequence Compression

To address the computational challenges of long
sequences in LLMs, we employ 1D convolution to
effectively compress multimodal sequences (e.g.,
image patches, audio spectrograms). This approach
significantly reduces processing overhead while
maintaining model performance. For an input x ∈
RCin×L, a convolutional kernel W ∈ RCout×Cin×k,
stride s ≥ 1, padding p, the c-th output channel
Y ∈ RCout×L′

is computed as:

yc =

Cin∑

i=1




k−1∑

j=0

W c,i,j · xi,s·t+j


+ bc

︸ ︷︷ ︸
Conv1D

, (5)

where t = 0, . . . , L′ − 1 and L′ is computed as
L′ =

⌊
L+2p−k

s

⌋
+ 1.
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Table 2: Comparison with SoTA methods on 7 benchmarks. Benchmark names are abbreviated due to space
limits. VQA-v2; GQA; SQAI: ScienceQA-IMG; VQAT: TextVQA; POPE; MMB: MMBench; MMMU. PT and IT
indicate the number of samples in the pretraining and instruction tuning stages, respectively.

Method LLM PT IT VQAv2 GQA SQAI VQAT POPE MMB MMMU

LLaVA-1.5 Vicuna-7B 558K 665K 78.5 62.0 66.8 58.2 86.5 64.3 -

LLaVA-1.6 Vicuna-7B 558K 665K 81.8 64.2 72.8 65.7 86.7 67.7 35.8

LLaVA-Phi Phi-2-2.7B 558K 665K 71.4 - 68.4 48.6 85.0 59.8 -

MobileVLM-3B MobileLLaMA-2.7B 558K 665K - 59.0 61.2 47.5 84.9 59.6 -

VL-Mamba Mamba LLM-2.8B 558K 665K 76.6 56.2 65.4 48.9 84.4 57.0

+ShareGPT4V LLaMA2-13B 558K 665K 80.6 63.2 73.1 65.3 84.8 70.8

MODRWKV RWKV7 LLM-3B 558K 665K 78.3 60.8 70.9 51.1 87.1 66.6 38.7

Table 3: Model’s WER(%) on Librispeech dataset and CER(%) on Aishell-1 dataset.

Dataset Data (h) Encoder Clean WER(%) Other WER(%) Dev CER(%) Test CER(%)

Librispeech 960

wavlm large 2.43 6.51 - -
wavlm base+ 3.08 10.38 - -
whisper medium 5.33 12.28 - -
whisper small 6.24 16.92 - -

Aishell-1 178

wavlm large - - 9.68 10.33
wavlm base+ - - 12.40 13.46
whisper medium - - 5.08 5.83
whisper small - - 6.29 6.95

4 Experiments

4.1 Experimental Details

Training Settings (1) Vision. Our implemen-
tation follows the phased training paradigm of
LLaVA (Liu et al., 2023) for both vision and au-
dio understanding. In Phase I, we first freeze the
encoder and the RWKV model, training only a lin-
ear adapter with a single MLP and layer norm to
project multimodal features into the embedding
space of the language model. In Phase II, we then
unfreeze both the adapter and RWKV parameters,
while the encoder remains frozen to preserve pre-
trained representations. To comprehensively assess
the impact of encoder choice and model scale on
RWKV7 performance, we performed experiments
on four vision languagemarks using three model
sizes (0.4B, 1.5B and 3B) for each encoder. Our
models are trained on 8×NVIDIA A800 GPUs.
Details of training settings can be found at Ap-
pendix 12. (2) Audio. Training was conducted
in two phases: Phase I trained only the audio
adapter (LR=1e-4), while Phase II jointly trained
the adapter and RWKV (LR decayed from 1e-4 to
5e-5). For LibriSpeech, we ran 1 epoch in each
phase; for Aishell-1, 2 epochs in Phase I and 4 in

Phase II. The default batch size was 32, reduced to
16 for the Whisper encoder due to GPU constraints,
with epochs halved accordingly to match training
steps. All experiments used 44×090 GPUs. (3)
Time series. In the Time series task, We conducted
experiments using dual NVIDIA RTX 4090 (24GB)
GPUs, training on a 441,725-sample short-duration
univariate dataset.

Datasets We consider diverse datasets in vision,
audio, and time series (Refer to Table 1). For vi-
sion understanding ability, we use LLaVA-595K
as training dataset for Phase I, and LLaVa-665k
for Phase II. For audio, We train our MODR-
WKVmodel using two open-source datasets: (1)
LibriSpeech (Panayotov et al., 2015), which com-
prises 960 hours of English reading audio data; and
(2) Aishell-1 (Bu et al., 2017), which includes 170
hours of Chinese audio data. For each, we trained
our model exclusively on the respective training
dataset. In the time series task, we utilized pub-
lic datasets from GIFT-Eval (Aksu et al., 2024).
After thorough sorting and cleaning, we derived a
small number of univariate datasets. Additionally,
we incorporated UTSD (Liu et al., 2024b) public
datasets later in the process.
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Table 4: Zero-shot MSE with Adapter Scaling 4× use gift-eval datasets (WaveNet Encoder) (Qiu et al., 2024)

Model LB-FL ECL ETTh1 ETTh2 ETTm1 ETTm2 WTH Traffic

TimeFM 720-96 0.119 0.421 0.326 0.363 0.206 0.123 0.327
Timer 720-96 0.221 0.414 0.305 0.440 0.203 0.178 0.526
UniTS 720-96 0.175 0.377 0.323 0.761 0.249 0.194 0.481
TTM 720-96 0.170 0.368 0.286 0.415 0.186 0.152 0.509
MOIRAI 720-96 0.212 0.394 0.285 0.516 0.222 0.208 1.359
ROSE 720-96 0.209 0.382 0.298 0.512 0.224 0.200 0.572

MODRWKV(25% gift-eval) 720-96 0.342 0.746 0.633 0.754 0.559 0.797 0.512
MODRWKV(100% gift-eval) 720-96 0.342 0.648 0.453 0.227 0.426 0.203 0.342

Benchmarks To rigorously evaluate our model’s
capabilities across diverse reasoning scenarios, we
employed a comprehensive evaluation framework
spanning from basic visual recognition to advanced
knowledge-intensive tasks. This framework sys-
tematically verifies our model’s cross-modal com-
petence at various cognitive levels by assessing it
on seven multimodal benchmarks: VQA-v2 (Goyal
et al., 2017) for fundamental image understanding
and question-answering, TextVQA (Singh et al.,
2019) to evaluate optical character recognition
(OCR) and text-image integration, GQA (Hud-
son and Manning, 2019) for compositional rea-
soning and real-world visual understanding, Sci-
enceQA (Lu et al., 2022) to assess scientific mul-
timodal reasoning through multiple-choice ques-
tions, POPE (Li et al., 2023) to quantify ob-
ject hallucination via binary classification tasks,
MMMU (Yue et al., 2024) to challenge models with
college-level, cross-discipline problems, and MM-
Bench (Liu et al., 2024c), which represents a sys-
tematically designed, objective evaluation frame-
work for comprehensive assessment that uses circu-
larEval strategy for assessment stability, ETT (Qiu
et al., 2024), which focuses on long-term mul-
tivariate time-series forecasting using electricity
transformer temperature data, serving as a stan-
dard benchmark for evaluating temporal modeling
capabilities under various sequence lengths and
prediction horizons, WeatherBench (Rasp et al.,
2020) to evaluate spatiotemporal forecasting us-
ing global atmospheric data as a standard bench-
mark for data-driven weather prediction, etc.. Ad-
ditionally, we evaluated our MODRWKVmodel
using the corresponding open-source datasets: Lib-
riSpeech (Panayotov et al., 2015), which com-
prises 960 hours of English reading audio data,
and Aishell-1 (Bu et al., 2017), which includes 170
hours of Chinese audio data.

4.2 Qualitative Evaluation

Vision Understanding As summarized in Ta-
ble 2, MODRWKV demonstrates strong overall
performance across eight widely-used multimodal
benchmarks, outperforming existing state-of-the-
art (SoTA) methods in its parameter range. Com-
pared to VL-Mamba-2.8B, MODRWKV-3B con-
sistently achieves higher scores on all evaluated
tasks, reflecting its superior capability in visual
question answering, compositional reasoning, and
image-conditioned instruction following.

Notably, despite having a significantly smaller
language backbone than LLaVA-1.5-7B, MODR-
WKV achieves competitive or superior results on
several benchmarks. It surpasses LLaVA-1.5-7B
in ScienceQA-IMG, POPE, and MMBench, while
maintaining comparable performance on VQAv2.
Furthermore, MODRWKV attains the highest re-
ported score among peers on the MMMU bench-
mark, highlighting its generalization ability in chal-
lenging multi-modal understanding scenarios.

These results collectively suggest that MODR-
WKV offers a favorable trade-off between perfor-
mance and model size. Its effectiveness stems not
merely from scale, but from architectural efficiency
and a well-designed multimodal integration strat-
egy, positioning it as a competitive alternative to
larger vision-language models.

Vision Knowledge The following examples in
Table 13 showcase the capabilities of the MODR-
WKV QA chatbot. These examples illustrate how
MODRWKV effectively integrates visual informa-
tion with general knowledge, while also perform-
ing basic logical reasoning to address common user
queries.

Audio Recognition Table 3 presents the Word
Error Rate (WER) for the LibriSpeech test_clean
and test_other test sets, as well as the Character Er-
ror Rate (CER) for the Aishell-1 development and
test sets. For the LibriSpeech dataset, the model
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Table 5: Zero-shot MSE on Public Datasets: ECL, ETTh, ETTm, WTH, Traffic (Timer Encoder) (Liu et al., 2024b)

Dataset Size Adapter Scaling ECL ETTh1 ETTh2 ETTm1 ETTm2 WTH Traffic

Gift-Evel 2× 0.641 0.785 0.882 0.949 0.719 0.633 0.988
Gift-Evel + UTSD 2× 0.516 0.637 0.848 0.891 0.672 0.512 0.683
Gift-Evel + UTSD 4× 0.453 0.629 0.547 0.843 0.648 0.461 0.641
Gift-Evel + UTSD 8× 0.535 0.629 0.652 0.828 0.762 0.566 0.617

Table 6: MODRWKV Visual Models with different
Encoders and parameters tested on benchmarks.

Vision Size VQAv2 VQAT GQA SQAI

CLIP
0.4B 62.04 31.72 49.32 51.10
1.5B 72.31 40.27 54.56 62.77
3B 73.13 45.56 57.00 70.66

SigLIP2
0.4B 72.04 38.75 55.52 43.32
1.5B 76.95 44.96 58.88 63.10
3B 78.30 51.09 60.75 70.93

achieved a WER of 2.43% on the test_clean subset,
indicating a high level of precision in recognizing
clear speech. On the test_other subset, the model at-
tained a WER of 6.51%, demonstrating reasonable
performance in handling more challenging noisy
speech samples without data augmentation. For
the Aishell-1 dataset, the model achieved CERs of
5.08% on the development set and 5.83% on the
test set, using the Whisper medium encoder. These
results reflect the model’s effectiveness in handling
non-English speech recognition tasks with limited
training data.

During adapter training, we observed a phe-
nomenon akin to the capability emergence de-
scribed by (Ma et al., 2024). However, the tim-
ing of this emergence was inconsistent and heav-
ily influenced by the initialization of the adapter’s
weights. In some instances, the adapter failed to
converge during Phase I.

Time Series Forecasting We conducted com-
parative experiments on two temporal encoder
architectures: Timer and WaveNet. Results
(See Table 4) show that although Timer has a
larger parameter count (based on pre-trained
weights), it consistently underperforms WaveNet
on downstream time-series forecasting tasks.
We hypothesize that this performance gap arises
from WaveNet’s use of causal dilated convo-
lutions, which effectively capture long-range
temporal dependencies through hierarchically
expanding receptive fields. Additionally, unlike
Timer’s patch-wise embedding, WaveNet adopts
a point-wise embedding strategy, allowing it

to extract finer-grained temporal features. For
training data preparation, we constructed two
fine-tuning datasets: a baseline dataset (GIFT-
Eval)(Aksu et al., 2024) and an augmented
dataset composed of GIFT-Eval and a partially
processed subset of UTSD(Liu et al., 2024b).
Experiments indicate that models trained on
the augmented dataset—containing anomalous
samples—achieved superior generalization in
zero-shot evaluations across public benchmarks
including ECL, ETT, WTH, and Traffic. Notably,
this training strategy enables the model to maintain
stable predictions even under distribution shifts,
demonstrating strong robustness and generaliza-
tion. Architecture ablation studies further revealed
that the scaling factor of the adapter modules
plays a significant role in performance. A scaling
factor of 4× yielded the best overall results on
the validation set (see Table 5), outperforming the
8× and 2× settings by approximately 10.0% and
13.5%, respectively.

Overall, even under constrained conditions—no
data augmentation, limited training data, and fewer
training steps—the MODRWKV model achieved
competitive accuracy on time-series forecasting
tasks, providing empirical evidence for its applica-
bility in real-world, complex scenarios.

4.3 Ablation Study

The Effect of Different Vision Encoders In or-
der to evaluate the impact of different vision en-
coders on the performance of multimodal models,
this study designed rigorous comparative experi-
ments. We selected two representative visual en-
coder architectures for comparison: the contrastive
learning-based CLIP and the recently proposed
SigLIP2. In the experimental design, we specif-
ically controlled the following variables: the length
of the encoded visual feature sequences for both
(google/siglip2-base-patch16-384 and openai/clip-
vit-large-patch14-336) was set to 577, to eliminate
any potential confusion caused by differences in
sequence length that could affect the understanding
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Table 7: By controlling the kernel and stride of conv1d,
control the sequence length of multimodal signals to
compare performance differences.

Size (k,s) Token VQAv2 VQAT GQA SQAI

1.5B

(0,0) 577 76.95 44.96 58.88 63.10
(3,2) 288 75.21 45.75 58.28 66.02
(4,3) 192 74.17 44.27 57.53 65.72
(5,4) 144 73.21 42.65 57.07 65.29

ability of LLMs; cross-validation was conducted
on LLMs of different scales (ranging from 0.4B to
3B parameters) to ensure the generalizability of the
experimental conclusions.

As shown in Table 6, SigLIP2 encoder con-
sistently outperforms CLIP encoder all evaluated
benchmarks, including VQAv2, TextVQA, GQA,
and ScienceQA. Notably, the SigLIP2-based model
achieves significant improvements in both gen-
eral and text-based visual question answering
tasks, as well as in compositional reasoning. De-
spite its encoder containing only 90M parame-
ters—approximately 30% of the CLIP encoder’s
size—SigLIP2 demonstrates superior performance,
particularly in tasks requiring fine-grained visual-
text alignment and semantic understanding. These
results underscore that model effectiveness in mul-
timodal understanding is influenced more by en-
coder design and pretraining methodology than by
parameter scale alone.

Efficiency of Sequence Compression via 1D Con-
volution It is well known that the efficiency prob-
lem in processing long sequences has long been
one of the main bottlenecks limiting the perfor-
mance of LLMs. This challenge is particularly
prominent in multimodal tasks, where signals from
different modalities often generate a large number
of tokens after encoding. For example, in the MOD-
RWKVmodel, a single image encoded through the
SigLIP2 encoder generates 577 tokens, and when
extended to video sequences, the length increases
by an order of magnitude. To address this issue, this
section systematically investigates the optimization
effects of convolutional dimensionality reduction
(Conv1D), aiming to provide new technical insights
for sequence compression research.

We conducted empirical research (See Table 7
and visualization in Figure 2) on the MODRWKV-
1.5B model architecture using the LLaVA train-
ing dataset, and performed comprehensive evalua-
tions across multiple benchmark datasets, including
VQAv2, TextVQA, GQA, and ScienceQA. The ex-

Table 8: Performance differences under different pre-
training weights

Size Model VQAv2 VQAT GQA SQAI

0.4B base 72.04 38.75 55.52 43.32
g1 73.21 41.13 57.34 55.58

1.5B base 76.95 44.96 58.88 63.10
g1 77.87 50.91 60.18 64.63

perimental results show that when the sequence
length is compressed by 50%, the model exhibits
only a slight decrease in performance (on aver-
age) while achieving a 4.6% accuracy improvement
on the ScienceQA task. Further research reveals
that as the kernel size and stride increase, although
the model performance exhibits a gradual decline,
the computational efficiency is significantly im-
proved. We tested MODRWKV-1.5B on single
4090 GPU without any acceleration; The results
indicate that increasing the compression ratio of
token sequences can substantially accelerate infer-
ence speed, showing a clear efficiency gain. This
highlights an effective strategy for balancing com-
putational efficiency and model performance, offer-
ing valuable insights for practical deployment.

G1 reasoning model We experimentally validate
the effect of text pretraining weights on the ability
of large language models to understand multimodal
information by comparing two pretraining weights
(base and g1) of the RWKV7-0.4B model. It is
important to note that the g1 model is an improved
version of the base model, obtained through post-
training by introducing a large amount of ’think’-
type data. Although both models perform similarly
in pure text NLP benchmark tests, as shown in Ta-
ble 8, fine-tuning with the g1 pretraining weights
significantly outperforms the base model across all
metrics, with an exceptionally significant improve-
ment observed in the SQA metric (specific improve-
ment is 28%). This empirical result strongly con-
firms that an appropriate text pretraining strategy
can effectively enhance the language model’s abil-
ity to understand multimodal information, thereby
improving its overall performance in downstream
tasks.

Time Series Forecasting encoder Compare with
Timer and WaveNet In a feedforward neural
network (FFN), activation functions such as ReLU
introduce sparsity by setting some outputs to zero,
which in turn reduces the rank of the output ma-
trix and may impact the model’s representational
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Figure 2: Performance and efficiency of MODRWKV. Left. The scaling curve of tokens with the performance
score. Right. The inference time of MODRWKV with the number of tokens.

capacity. Through both theoretical analysis and
empirical experiments using the results in Table 5,
we observed that the effect is suboptimal when the
hidden layer dimension is set to 2x or 8x the input
dimension.

Table 5 presents the zero-shot mean squared er-
ror (MSE) performance of different adapter scaling
configurations on multiple public datasets, includ-
ing ECL, ETTh, ETTm, WTH, and Traffic. The
results indicate that increasing the adapter scaling
factor from 2× to 4× significantly improves perfor-
mance across most datasets, with the lowest MSE
values observed at 4× scaling. Specifically, the
Gift-Evel + UTSD model with 4× scaling achieves
the best results on ECL (0.453), ETTh1 (0.629),
ETTh2 (0.547), ETTm2 (0.648), WTH (0.461), and
Traffic (0.641), demonstrating that this configura-
tion effectively enhances model accuracy.

However, further increasing the scaling factor
to 8× does not consistently improve performance,
with some datasets showing increased error val-
ues. This suggests that excessively large hidden
layer dimensions may introduce instability or di-
minish representational efficiency. Based on these
findings, we recommend setting the hidden layer
dimension to at least four times the input dimen-
sion to preserve sufficient rank, thereby enhancing
the model’s representational power and stability.

p = 1−
∑n

i=m

(
n
i

)

2n

Table 4 presents the zero-shot mean squared er-
ror (MSE) results for various models using the
WaveNet encoder with adapter scaling 4× on pub-

lic datasets, leveraging the gift-eval dataset. The
models are evaluated on multiple time-series fore-
casting benchmarks, including ECL, ETTh, ETTm,
WTH, and Traffic, with a lookback length of 720
and a forecast length of 96.

From the results, TimeFM achieves the best
performance on ECL (0.119), WTH (0.123), and
Traffic (0.327), demonstrating strong predictive ca-
pabilities on these datasets. TTM performs best
on ETTh1 (0.368) and ETTm2 (0.186), while
MOIRAI achieves the lowest error on ETTh2
(0.285). Our proposed model, MODRWKV (100%
gift-eval), outperforms other models on ETTm1
(0.227), showing its effectiveness in short-term
forecasting for this dataset.

Comparing MODRWKV(25% gift-eval) and
MODRWKV(100% gift-eval), we observe that in-
creasing the proportion of gift-eval data signifi-
cantly improves performance across most datasets,
particularly on ETTh2 (from 0.633 to 0.453) and
ETTm1 (from 0.754 to 0.227). This suggests that
leveraging a larger portion of the gift-eval dataset
enhances ours model generalization and stability.

Overall, the results highlight the varying
strengths of different models across datasets, em-
phasizing the importance of dataset composition
and model architecture in achieving optimal fore-
casting performance.

5 Empirical Validation and Comparison

5.1 Inference Throughput

We first measured inference throughput on a single
NVIDIA 4090 GPU. The results show that Mod-
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RWKV achieves significantly higher throughput
than both LLaVA and Qwen2.5-VL, with the per-
formance gap widening at larger batch sizes.

A key reason for this advantage is the effi-
ciency of our vision encoder. ModRWKV uses a
lightweight SigLIP2 encoder that consistently gen-
erates a fixed-length representation of 577 tokens
per image. In contrast, the Qwen2.5-VL model em-
ploys a much heavier vision encoder that dynami-
cally generates a variable number of tokens based
on image resolution, often resulting in a larger to-
ken count and thus higher computational cost.

Table 9: Throughput (tokens/s)

Model Enc. Params bs1 bs4 bs16

qwen2.5-vl-3B qwen-vit 630 M 40 43 43
llava-1.6-7B clip-L/14 304 M 199 293 421
modrwkv-3B siglip2-B/16 93 M 433 742 1245

5.2 Scalability with Sequence Length
To directly test the impact of sequence length
on performance, we measured the prefill through-
put (tokens/second) for text generation using the
llama.cpp framework on an NVIDIA 4090 GPU.
This experiment clearly demonstrates the theoreti-
cal complexity differences.

As shown in Table 10, the throughput of the
Transformer-based Qwen2.5-3B degrades severely
as the sequence length increases, dropping by over
90% from 1k to 64k tokens. This is a direct result
of its quadratic time complexity. In stark contrast,
the RWKV-7B model maintains a nearly constant
throughput across all sequence lengths, empirically
confirming its linear scaling and efficiency for long-
context processing.

Table 10: Scalability with Sequence Length

Length qwen2.5-3B (t/s) rwkv7-2.9B (t/s)

1k 18725.66 ± 58.62 11917.64 ± 18.35
2k 17040.16 ± 25.96 11991.45 ± 3.43
4k 13768.85 ± 14.30 12004.39 ± 25.49
8k 9997.83 ± 3.98 12015.55 ± 10.16
16k 6306.18 ± 0.36 12017.75 ± 18.61
32k 3457.69 ± 0.23 12047.45 ± 13.47
64k 1826.48 ± 0.06 12010.09 ± 1.20

5.3 Training and Evaluation Time
Finally, we compared the evaluation time on the
GQA and TextVQA benchmarks. Despite being
trained on significantly fewer tokens (2.5B for Mod-
RWKV vs. 4.1T for Qwen2.5-VL), ModRWKV

demonstrates competitive or superior evaluation
speed. This highlights that our model not only per-
forms well but also achieves its results with greater
training and evaluation efficiency.

Table 11: Training and Evaluation Time

Model Tokens GQA/min TVQA/min

ModRWKV-3B 2.5B 60.5 / 24 55.2 / 14
qwen2.5vl-3B 4.1T 60.2 / 45 77.8 / 70
llava-ov-0.5B 5B 52.9 / 30 59.9 / 31
ModRWKV-0.4B 2.5B 56.9 / 9 42.0 / 7

6 Conclusion

In this paper, we propose MODRWKV, a mul-
timodal understanding framework that enables
modality switching via interchangeable encoders.
Built upon RWKV7, MODRWKV provides a com-
prehensive analysis and evaluation of the capabil-
ities of modern RNN architectures in the multi-
modal domain.

7 Limitations

This paper presents a systematic evaluation of the
proposed MODRWKV framework across a range
of benchmark tasks involving different modalities,
demonstrating the feasibility of applying linear-
structured models to multi-modal large language
models (MLLMs). Nonetheless, this work does
not yet explore more complex multi-modal fusion
scenarios, such as tri-modal tasks involving speech,
vision, and language. Future work will aim to ad-
dress these richer multi-modal settings.
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A Example Appendix

Table 12: Hyperparameter Settings for Visual Instruc-
tion Tuning of MODRWKV

Hyperparameter Step1 Step2
bsz 256 128
ctx_len 2048
lr 1e-3 2e-5
warmup_steps 100
beta1 0.9
beta2 0.99
adam_eps 1e-8
precision bf16
lr_schedule wsd

A.1 Examples
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Visual Examples

User How many Cars in this picture?
MODRWKV There are two cars in the picture, with one being the taxi cab the man is standing on.

[Start a new conversation, and clear the history]

User What is the name of this picture?
MODRWKV The name of this picture is “Starry Night ”
User Who drew it?
MODRWKV Vincent van Gogh drew this picture.

[Start a new conversation, and clear the history]

User Is this real in current life?
MODRWKV No, this is not a real animal. It is a computer-generated image (CGI) of a dinosaur, specifically a

T-Rex, walking through a forest.
User Depict the environment
MODRWKV The environment in the image is a forest with trees, rocks, and a dirt path. The CGI dinosaur is

walking through this natural setting.
User Based on the facial expression, what is it’s emotion?
MODRWKV The dinosaur appears to be angry, as it is depicted with its mouth open and teeth showing.
User Based on its emotion and the environment, what do you think this dinosaur is doing right now?
MODRWKV Based on its angry expression and the forest setting, it is possible that the dinosaur is either searching

for food, defending its territory, or reacting to a perceived threat. The fact that it is walking through
the forest suggests that it might be exploring its habitat or looking for prey. However, without more
context or information, it is difficult to determine the exact reason for its current behavior.

Table 13: Visual Example.
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Audio Examples

User What is your name?
MODRWKV Hello! My name is RWKV, and I’m your friendly voice assistant here to

help with any questions or tasks you have.

User Can I drink coffee before I go to bed?
MODRWKV Yes, you can drink coffee before you go to bed, but it’s important to do

so in moderation. Drinking coffee too close to bedtime can interfere with
your sleep quality. Try to have your last cup of coffee at least 6 hours
before bedtime. If you’re sensitive to caffeine, you might want to avoid
it altogether. Also, consider other relaxing activities before bed to help
you wind down

User Tell me something about machine learning.
MODRWKV Machine learning is a branch of artificial intelligence that focuses on

creating systems that can learn from and make decisions based on data.
It involves algorithms that enable computers to identify patterns and
make predictions or decisions without being explicitly programmed
for each task. This technology is widely used in various applications,
such as recommendation systems, speech recognition, and autonomous
vehicles. Machine learning models can improve over time as more data is
processed, making them more accurate and efficient. It’s a powerful tool
for automating tasks, enhancing user experiences, and driving innovation
across many industries.

Table 14: Interactive Audio Examples Demonstrating Question-Answer Capabilities
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