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Abstract

Large Language Models (LLMs) require high
quality preference datasets to align with human
preferences. However, conventional methods
for constructing such datasets face significant
challenges: reliance on pre-collected instruc-
tions often leads to distribution mismatches
with target models, while the need for sampling
multiple stochastic responses introduces sub-
stantial computational overhead. In this work,
we explore a paradigm shift by leveraging inher-
ent regulation of LLMs’ representation space
for efficient and tailored preference dataset con-
struction, named ICON2. Specifically, it first
extracts layer-wise direction vectors to encode
sophisticated human preferences and then uses
these vectors to filter self-synthesized instruc-
tions based on their inherent consistency. Dur-
ing decoding, bidirectional inherent control is
applied to steer token representations, enabling
the precise generation of response pairs with
clear alignment distinctions. Experimental re-
sults demonstrate significant improvements in
both alignment and efficiency. Llama3-8B and
Qwen2-7B achieve an average win rate im-
provement of 13.89% on AlpacaEval 2.0 and
13.45% on Arena-Hard, while reducing compu-
tational costs by up to 48.1%.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities across various NLP
tasks, with a key factor behind their success be-
ing the alignment of LLMs from human prefer-
ences(Achiam et al., 2023; Brown, 2020; Touvron
et al., 2023). While numerous preference learning
algorithms have been developed to enhance this
alignment (Ouyang et al., 2022; Rafailov et al.,
2024), their effectiveness critically depends on
large-scale, high-quality human-annotated prefer-
ence datasets, which are notoriously challenging
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Figure 1: Comparison of approaches: (a) Previous meth-
ods require multiple responses, while (b) ICON? can
directly generate both chosen and rejected responses.

to obtain. Such datasets, typically structured as
triplets of instructions, chosen responses (human-
preferred output), and rejected responses (dispre-
ferred output), impose significant collection costs
due to the intensive human labor required for anno-
tation (Cui et al., 2023; Dong et al., 2024).

To address these challenges, researchers have ex-
plored using LLM:s to construct preference datasets,
such as substituting human preferences with ad-
vanced LLMs (Cui et al., 2023; Yuan et al., 2024),
scoring responses with reward models (Xu et al.,
2024), or refining outputs iteratively (Dong et al.,
2024; Cheng et al., 2024). Despite their effective-
ness, these methods generate multiple responses for
each instruction in a pre-collected dataset, which
introduces two significant limitations. First, the re-
liance on pre-collected instructions often results in
preference datasets that lack customization for the
specific characteristics of the target LLM. This lim-
itation leads to distributional mismatches, which
reduce alignment efficiency and generalization abil-
ity (Xu et al., 2024; Yang et al., 2024), and may
even result in catastrophic forgetting (Huang et al.,
2024). Second, the inherent stochasticity in LLM
outputs makes it difficult to reliably control the
qualitative distinction between chosen and rejected
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responses (Dong et al., 2024). Consequently, multi-
ple candidate responses must often be sampled and
filtered for each instruction to ensure a meaning-
ful preference gap, incurring substantial and often
prohibitive computational overhead.

Reflecting on these limitations, we find that ex-
isting methods predominantly rely on external ran-
domness, overlooking the internal properties of
LLMs themselves, which offer a more determin-
istic and structured way to encode sophisticated
human preferences (Zou et al., 2023; Feng et al.,
2024; Liu et al., 2024). This realization leads us
to ask: Could we instead regulate the inherent rep-
resentation space of LLMs to integrate these pref-
erences directly into generation? By shifting the
focus to the inherent representation within LLMs,
we propose ICON?, a unified framework that in-
cludes tailored instruction selection and precise
token-level steering during decoding (Liu et al.,
2023; Zhang et al., 2024b; Ji et al., 2024), thereby
addressing the key challenges of customization, ef-
ficiency, and controllability in a systematic way.

Specifically, we first extract layer-wise direction
vectors from the representation space of LLMs to
capture sophisticated human preferences, such as
honesty, harmlessness, and helpfulness. These vec-
tors are derived using contrastive system prompts
and aggregated through PCA to identify the most
representative directions for each criterion. Next,
the model self-synthesizes a diverse set of instruc-
tions, which are then filtered based on their inherent
consistency with the extracted preference direc-
tions, ensuring tailored customization with the tar-
get LLM’s capabilities. Finally, we employ bidi-
rectional inherent control to steer token represen-
tations during decoding, enabling the direct gener-
ation of response pairs with precise alignment dif-
ferences, thereby eliminating the need for multiple
responses. Figure 1 illustrates the key distinctions
between our approach and previous methodologies.

The experimental results demonstrate that ICON?
not only enhances the alignment of LLMs with hu-
man preferences but also delivers significant com-
putational efficiency. In particular, the Llama3-
8B and Qwen2-7B models achieve notable im-
provements in length-controlled win rates, reaching
17.63 and 10.15 on AlpacaEval 2.0, and 13.7 and
13.2 on Arena-Hard, respectively. More impor-
tantly, ICON? achieves up to a 48.1% reduction in
computational costs compared to other baselines.

Our contributions can be summarized as follows:
(1) We propose ICON?, a novel and systematic ap-

proach for efficiently constructing tailored prefer-
ence datasets. (2) ICON? extracts direction vec-
tors from the representation space of LLMs, uti-
lizing inherent regulation for instruction filtering
and precise response generation. (3) Experiments
demonstrate superior alignment and efficiency of
ICON?, achieving high performance with signifi-
cantly fewer resources.

2 Related Works

2.1 Preference Data Construction

The construction of preference data typically re-
lies on manual annotation (Ouyang et al., 2022;
Bai et al., 2022; Nakano et al., 2021) or advanced
LLMs (Cui et al., 2023; Ding et al., 2023), such
as GPT-4, to label different responses. To mitigate
the substantial costs associated with these methods,
there has been growing research interest in leverag-
ing LL.Ms themselves to generate preference data.
Strategies include implementing reward models to
select responses with higher rewards (Zhang et al.,
2024a; Tian et al., 2024), using LLMs as judges to
filter responses that better conform to human pref-
erences (Wang et al., 2024b; Wu et al., 2024; Yuan
et al., 2024) or utilizing self-play mechanisms to
refine response quality (Cheng et al., 2024; Dong
et al., 2024; Chen et al., 2024). Previous meth-
ods often generate multiple responses per instruc-
tion to ensure preference distinctions, but this in-
troduces significant computational overhead and
amplifies stochastic inconsistencies (Dong et al.,
2024). In contrast, our approach directly generates
response pairs with precise alignments, eliminating
the need for excessive sampling while maintaining
efficiency and consistency.

2.2 Synthetic Data for LLMs

Synthetic data as an efficient method for construct-
ing training data for LLMs has garnered consider-
able attention (Tan et al., 2024; Long et al., 2024).
Previous approaches can generally be divided into
two categories. One category is based on a seed-
data paradigm, where methods typically rely on
predefined seed instructions (Honovich et al., 2023;
Wang et al., 2023b; Xu et al., 2023) or seed top-
ics (Li et al., 2024a; Gunasekar et al., 2023), al-
lowing strong LL.Ms to synthesize more diverse
data based on these examples. Another approach
involves training specialized instruction synthesis
models to generate diverse instructions (Ding et al.,
2024; Dong et al., 2024). The fine-tuned models
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can generate a variety of instructions by sampling
from a broad search space without the need for ad-
ditional seed instructions or knowledge constraints.
Our approach directly constructs instruction data
by prompting aligned LL.Ms with a pre-query tem-
plate for sampling instructions (Xu et al., 2024).
Afterwards, we employed a novel inherent consis-
tency filtering approach to select samples that are
more tailored towards the target LLMs.

3 IcON?: Aligning Large Language
Models using Self-Synthetic Preference
Data via Inherent Regulation

In this section, we demonstrate how ICON? synthe-
sizes datasets for preference optimization without
requiring additional annotation or training. We
begin by introducing the extraction of linear repre-
sentation features in Section 3.1. These features are
then utilized for both the selection of instructions,
as detailed in Section 3.2, and the generation of
responses, as described in Section 3.3.

3.1 Linear Representation Feature Extraction

Building on the linear representation and super-
position hypotheses (Olah, 2023; Bricken et al.,
2023; Templeton et al., 2024; Zou et al., 2023),
our methodology extracts features that encode
sophisticated human preferences from the represen-
tation space of LLMs. To achieve precise feature
extraction (Zou et al., 2023), we deconstruct
complex human preferences into fundamental
criteria. Inspired by Liu et al. (2023); Tekin
et al. (2024), we define the set of criteria as C =
{honesty, harmlessness, helpfulness, general },
where the first three represent basic principles
(referred to as 3H later), and the last one serves
as an additional general standard to cover a
wider range of human preferences (referred to
as General later). To capture the directions of
advanced human preferences, we manually design
contrastive system prompts for each criterion.
These prompts enable the extraction of features
that distinguish between positive and negative
alignment with the specified criteria. More
information about the contrastive system prompts
for each criterion can be found in the Appendix E.
For each criterion ¢ € C, we define positive
and negative system prompts, denoted as P.
and P_, which align with and contradict the cri-
terion, respectively. Given a dataset Dg,y =
{di,..., dmkm‘} containing | Dfey| instructions, we
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Figure 2: Direction Vector Computation: (a) Posi-
tive and negative system prompts P and P_ gener-
ate corresponding representations hij and hi’_(f; (b)
Contrastive vectors vf;7C are derived as the difference
between positive and negative representations at each
layer; (c) PCA extracts layer-wise direction vectors u’,
for each criterion c.

concatenate each instruction d; with the positive
and negative system prompts to form complete in-
puts P & d; and P, & d;. These inputs are then
fed into the LLMs to obtain their corresponding
feature representations.

Considering the heterogeneous representation
spaces across different layers of LLMs (Chuang
et al., 2024; Sun et al., 2024), we extract the rep-
resentation of the last token from each layer. This
choice is due to decoder architectures where causal
attention (Wang et al., 2023a) ensures only the last
token’s representation at each layer has integrated
the entire preceding sequence, thus serving as the
layer’s representation of the whole input. Formally,
for each instruction d; and criterion ¢ € C, we ob-
tain representations {h}7 }, and {h}_ }}', for
the positive and negative system prompts, respec-
tively. Here, IV denotes the total number of layers
in the LLMs, and hi‘, . represents the last token’s
representation at the [-th layer.

After obtaining the representations through con-
trastive system prompts, we propose to identify the
direction vectors that characterize the target crite-
rion c. As shown in Figure 2, the contrastive vector
at the [-th layer for instruction d; is formally de-
fined as the vector difference between the represen-
tations of positive and negative inputs. Specifically,
given the positive input P} @ d; and negative input
P. @ d;, we compute their hidden state represen-
tations hij and hi; respectively, then derive the
contrastive vector as:

Vie=hyl —hy.. ()
Following the methodology of Zou et al. (2023),

we compute layer-wise direction vectors for crite-
rion ¢ through contrastive vector aggregation and
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dimensionality reduction. Formally, for each layer
[ € [1, N], we first aggregate the contrastive vec-
tors {Vic Eff““‘ across all instructions in dataset
Dreat. We then perform PCA on the aggregated
vectors, where the first principal component u’,
captures the maximal variance direction in the con-
trastive space. The final direction vectors of crite-
rion c is therefore defined as the layer-wise com-
ponent set u, = {ul}Y . Appendix G details a
sensitivity analysis, indicating the representation’s
robustness to human preferences.

3.2 Selective Instruction Generation via
Inherent Consistency

To produce a variety of tailored instructions, we
employ a sample then select paradigm (Tan et al.,
2024), which involves initially generating an exten-
sive range of diverse instructions. Previous meth-
ods typically rely heavily on prompt engineering
and careful selection of initial instructions (Xu
et al., 2023; Wang et al., 2023b), leading to a trend
of decreasing synthetic data diversity as the size
of the dataset increases, which is not conducive to
scaling up the dataset. Thus, we aim to generate
instructions without relying on seed instructions
but rather by inputting the pre-query templates up
to the position reserved for user messages, inspired
by Xu et al. (2024); Ding et al. (2024).
Specifically, for open-weight aligned language
models, we design pre-query templates that match
their predefined instruction formats. These auto-
regressive LLMs, having been fine-tuned on data in
similar formats, automatically generate appropriate
instructions when provided with the template input.
The generation process terminates upon produc-
ing an end-of-sequence token, ensuring instruction
completeness. By repeating the above process mul-
tiple times, we obtain a diverse instruction set Dyay
without requiring seed instructions or training.
After obtaining a diverse set of instructions, the
next step is to filter out instructions that are more
tailored to the target model, enabling it to achieve
better results given the data size. To this end, we
propose a method of instruction filtering using in-
herent consistency. Specifically, this step involves
two aspects: on one hand, it is necessary to con-
struct a high-quality and tailored subset of instruc-
tions; on the other hand, it is essential to iden-
tify the specific contribution of each instruction to
the model’s capabilities. For instance, the instruc-
tion "What is the model number of Xiaomi’s latest

phone?" primarily enhances the model’s honesty,
whereas "Help me write a quick sort code" focuses
more on improving the model’s helpfulness.

To effectively tailor instructions, we first evalu-
ate their contributions across the predefined criteria
C. This evaluation helps identify which model ca-
pabilities each instruction is most likely to enhance.
For this purpose, we assess the alignment of an
instruction with a specific criterion by measuring
its inherent consistency (Zou et al., 2023). This
involves comparing the criterion’s feature direction
in the representation space with the instruction’s
representations. We adopt this approach of moni-
toring inherent consistency, rather than relying on
prompting or fine-tuning LLMs, as it more accu-
rately reflect the model’s internal understanding
and alignment with the desired human preferences.

Specifically, for a given instruction d; from the
raw set Dy, and a criterion ¢ € C, we utilize the
extracted direction vectors u. = {ul}¥, (as de-
tailed in Section 3.1) alongside the instruction’s
layer-wise representations h; = {h.}# . The con-
sistency score, consistency; ., which quantifies the
alignment between instruction d; and criterion c,
is then computed as the mean-pooled dot product
across all N layers:

“li=1

2
After computing consistency, . values for all
instruction-criterion pairs, we aim to assign a sin-
gle, representative score to each instruction that
reflects its overall potential for alignment. Since a
higher consistency score indicates a stronger align-
ment between an instruction and a particular crite-
rion, we define the final inherent consistency score
for an instruction d;, denoted as consistency;, to be
its maximum consistency value achieved with any
criterion in C. This approach ensures that the score
captures the instruction’s most prominent align-
ment with the defined capabilities. Formally, this
is expressed as:

: TN
consistency; . = meanpool ( (h; -u .

consistency, = max consistency, ..  (3)
ceC ’

This procedure results in a set of final inherent
consistency scores, A = {consistencyi}grf‘”', for
all instructions present in Dy,y. These scores then
serve as the basis for ranking or applying a thresh-
old to filter the instructions. The ultimate goal is

to curate a more tailored and high-quality subset,

3953



Selective Instruction Generation

1
1
! N'" Layer of LLM L] |:|
: ..d
1
: A 3rdLayer of LLM |:| b 4 |:| — D
1 Generated 4 D
I Instruction Set

2nd Layer of LLM
s yer e
1
: ' 1st Layer of LLM |:| |:I Mean
! —] Pooling

Preference Response Generation

t

I + 1th Layer of LLM

oo o g@@

Ith Layer of LLM

Figure 3: Framework for Instruction Filtering and Preference Response Generation. The process begins with a
diverse set of synthesized instructions, which are filtered by measuring their consistency with predefined criteria
using direction vectors extracted from contrastive representations. These vectors then guide the generation of
preference response pairs through inherent control, where token representations are steered during decoding to
produce chosen and rejected responses. This approach enables efficient and tailored dataset construction for
preference optimization without additional annotations or multiple response generations.

Dsit, which comprises instructions demonstrating
a strong alignment with only one specified criteria.

3.3 Preference Response Generation via
Inherent Control

Datasets employed for preference optimization are
generally structured as triplets, comprising an in-
struction, a chosen response, and a rejected re-
sponse. Consequently, once a diverse and tailored
collection of instructions is acquired, correspond-
ing chosen and rejected responses should be gener-
ated for each instruction.

Previous methods often generate multiple re-
sponses for a single instruction, typically produced
by different models and selected using reward
models or advanced LLMs for labeling prefer-
ences (Ouyang et al., 2022; Cui et al., 2023; Yuan
et al., 2024). However, this approach introduces
significant challenges. The variability in model
capabilities can obscure subtle preference distinc-
tions, while the need for distinct differences be-
tween chosen and rejected responses requires ex-
cessive sampling, leading to high computational
costs and inefficient data utilization (Dong et al.,
2024). Additionally, reliance on reward models or
advanced LLMs for annotation further increases
complexity without ensuring consistent alignment
with human preferences. While alternative strate-
gies for generating preference pairs, such as us-
ing distinct positive and negative system prompts,
might appear computationally efficient, they are
prone to critical issues like reward hacking and lack
of fine-grained control, rendering them impractical
(See Appendix I for more details).

Therefore, we propose using inherent control
to generate preference response pairs, which not
only exhibit clear distinctions but also do not re-

quire multiple responses, thus enhancing the ef-
ficiency of constructing preference optimization
datasets. Crucially, for each instruction d; € Dgy,
this inherent control is guided by the specific crite-
rion ¢* € C that yielded the highest consistency
score consistency, for that instruction, as deter-
mined in Section 3.2. According to the superposi-
tion hypothesis (Templeton et al., 2024; Liu et al.,
2023; Ilharco et al., 2022), aligning LLMs with
this specific criterion ¢* can be enhanced by mod-
ifying token representations during decoding to
steer the model’s outputs closer to the direction
that embodies this criterion. Specifically, for this
identified criterion ¢*, we can derive its direction
u = {ul.}iep,. (where Lo+ C [1,...,N] de-
notes the subset of controlled layers) from Equa-
tion 1. Let Zy, = {2} },c._. represent the token rep-
resentations for the k-th token at these controlled
layers. We then apply a linear combination func-
tion for preference steering:

Z

s Uer

uc* ‘Vl S EC*})

k,c* — Z + Yex

4)
= {ZZ + Yex

In Equation 4, the coefficient .« controls the
steering intensity along u.+ within the selected
layers L.«. To synthesize the preference pair
(pehosen prejected) for each instruction, rosen is gen-
erated using positive steering and r'°c®d yging
negative steering. This method requires exactly
two generation passes per instruction. As illus-
trated in Figure 3, preference steering is applied
layer-specifically and token-by-token during gener-
ation, offering a simple yet effective approach with
less impact on inference costs.
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4 Experiments

In this section, we present our experimental results
to answer the following question:

o Does ICON? improve the alignment of LLMs
across various LLMs? (Section 4.2, Table 1)

o Is ICON? also effective to improve overall
LLM’s capability? (Section 4.3, Table 2)

o Can ICON? generate diverse and tailored in-
structions? (Section 4.4, Table 3)

o Does ICON? save the cost of preference data
construction? (Section 4.5, Table 4)

o How do the hyperparameters introduced by
ICON? affect model performance? (Sec-
tion 4.6, Figure 4)

4.1 Experimental Setups

Models. We performed preference optimization
on Qwen2-7B and Llama3-8B Base models, start-
ing from supervised fine-tuned versions like Meng
et al. (2024); Dong et al. (2024). Both models were
fine-tuned on the UltraChat-200k dataset using the
LLaMA-Factory pipeline (Zheng et al., 2024).".

Baselines. Our study uses initial SFT models
as baselines, alongside models optimized with
preference data from various methods. We uti-
lize UltraFeedback (Cui et al., 2023), a manu-
ally collected dataset with preferences annotated
by GPT-4 (Achiam et al., 2023). For preference
judgment, we employ Sampling-Ranking, similar
to Meng et al. (2024), where LLMs sample five
responses per instruction, and ArmoRM-Llama3-
8B-v0.1 (Wang et al., 2024a) selects the chosen
and rejected responses with reward scores. We
also use the Self-Rewarding method (Yuan et al.,
2024), generating preference data based on the
model’s self-assessed rewards via LLM-as-a-Judge
prompting (Bai et al., 2022). Additionally, the
Self-Refine method (Kim et al., 2024; Dong et al.,
2024) involves LLMs sampling three responses, us-
ing a Self-Refine prompt for the chosen response,
and randomly selecting a pre-refine response as
rejected. More details are in Appendix B.

Evaluations. We evaluate the model alignment
performance on AlpacaEval 2.0 (Li et al., 2023)
and Arena-Hard (Li et al., 2024b), and overall ca-
pabilities on MT-Bench (Zheng et al., 2023). More
details about evaluation datasets can be found in the
Appendix B.4. To further enhance the robustness

"https://github.com/hiyouga/LLaMA-Factory

of the verification, we conducted a leakage analy-
sis on the synthetic preference dataset. Details are
presented in Appendix D.

Implementation Details. For all experiments,
we performed one epoch of offline DPO with a
fixed 5 = 0.1. The global batch size was set to
128, and the learning rate was 5 x 10~7. For the
hyperparameters introduced by our method, we set
v = 0.1 for the chosen response and v, = —0.05
for the rejected response. For all models, the
control layer interval is set to [10,20]. Dy, con-
tains 1M diverse English instructions, Dg; con-
tains 100K filtered instructions, of which 98K are
for training and 2K for validation. Dgy¢ is com-
posed of 1024 samples randomly selected from the
Alpaca dataset (Taori et al., 2023). Additional im-
plementation details are available in Appendix A.

4.2 Evaluation on AlpacaEval 2.0 and
Arena-Hard

We compare the instruction-following and human
preference alignment capabilities on AlpacaEval
2.0 (Li et al., 2023) and Arena-Hard (Li et al.,
2024b) in Table 1. Compared to the initial model
after SFT, ICON? can significantly improve the
win rate on different benchmarks. On AlpacaE-
val 2.0, Llama3-Base achieved the highest increase
of 17.63% in length control win rate and 13.29% in
raw win rate. Similarly, Qwen2 achieved the high-
est increases of 10.05% and 8.2%, respectively. In
the more challenging Arena-Hard setting, [CON?
also achieved the highest improvements of 13.7
and 13.2, respectively. Moreover, the setting of
General+3H always achieves the best performance,
surpassing all conventional baseline methods, indi-
cating that fine-grained attribution through inherent
consistency for each instruction, followed by tar-
geted inherent control, can effectively improve the
quality of responses. More results using different
model sizes can be found in the Appendix.

4.3 Evaluation on MT-Bench

To further validate the improvements of ICON? in
overall capabilities and multi-turn dialogue, we
conducted evaluations on MT-Bench, with the
results shown in Table 2. ICON?(General+3H)
achieves the strongest overall performance on both
base models under multi-turn evaluation which in-
dicate that ICON? enhances not only first-turn per-
formance, with an increase of over 0.86 points, but
also the second turns, with an increase of over 1.05
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Llama3-Base (8B)

Qwen2-Base (7B)

Data Construction

AlpacaEval 2.0  Arena-Hard AlpacaEval 2.0  Arena-Hard
LC (%) WR (%) WR (%) LC(%) WR (%) WR (%)
SFT 5.59 3.11 2.7 9.95 4.53 3.8
Manual Collection 12.68 7.90 9.5 16.26 10.00 11.2
Sampling-Ranking 16.52 10.43 13.9 17.24 11.42 15.3
Self-Rewarding 16.02 10.19 13.5 16.46 10.37 14.7
Self-Refine 18.38 12.80 14.2 17.39 11.80 16.2
Icon? (General) 16.07 10.12 13.4 17.24 11.74 14.9
Icon? (3H) 18.63 15.22 14.5 19.13 12.17 15.6
IcoN? (General+3H)  23.22 16.40 16.4 20.00 12.73 17.0

Table 1: Performance comparison of different preference dataset construction methods on AlpacaEval 2.0 and
Arena-Hard benchmarks. The metrics reported include length-controlled win rates (LC) and raw win rates (WR)
for two base models: Llama3-Base (8B) and Qwen2-Base (7B). These results highlight the effectiveness of the
proposed approaches in enhancing model performance across diverse evaluation settings.

Llama3-Base Qwen2-Base
Turnl Turn2 Turnl Turn2
SFT 6.54 5.76 6.80 6.00

Manual Collection 7.09 6.44 7.15 6.11
Sampling-Ranking 6.95 6.00 7.32 6.39

Data Construction

Self-Rewarding 6.98 6.14 7.30 6.31
Self-Refine 7.10 6.56 7.46 6.56
IcoN2(General) 695 620 751  6.79
ICON?(3H) 7.13 6.83 7.85 6.83

ICON?(General+3H)  7.38 6.76 7.68 7.11

Table 2: Multi-turn evaluation results on MT-Bench
comparing different preference data construction meth-
ods for Llama3-Base and Qwen2-Base models.

points. Similarly, General+3H also achieved the
best performance, demonstrating its generalization
capability. The specific scores for different instruc-
tion types can be found in the Appendix F.

4.4 The Impact of Original Instructions and
Filtering Method

To demonstrate that ICON? can generate diverse
and customized instructions, we compare the in-
structions self-synthesized by ICON? with man-
ual collected instructions (Cui et al., 2023), Self-
Instruct (Wang et al., 2023b), and Tulu V2 (Ivison
etal., 2023). In addition, we also analyze the perfor-
mance differences caused by various filtering meth-
ods. For each instruction construction method, we
sampled 20k instructions using random selection
or filtering with inherent consistency, constructed
response pairs via ICON? and Sampling-Ranking,
and performed DPO on Llama3-8B. As presented
in Table 3, both the IcON? and Sampling-Ranking

IcoN?
LC (%) WR (%) LC (%) WR (%)

Data Filter Sampling-Ranking

ST X 11.1 7.0 10.2 6.7
v 11.6 8.9 10.8 8.6
X 12.8 9.7 10.4 7.5
Mc v 13.9 10.6 12.0 9.3
T X 15.7 10.7 12.8 8.7
v 16.8 12.3 14.2 9.7
ICON2 X 17.1 12.0 15.0 10.1
v 18.0 13.3 16.0 11.2

Table 3: Performance comparison on AlpacaEval 2.0.
Instructions derived from Manual Collection (MC), Self-
Instruct (SI), Tulu V2 (T2), and the proposed ICON2.
In the filter column, v indicates filtering with inherent
consistency, while X indicates random selection.

methods demonstrate that the self-synthesized in-
structions result in better-aligned models, validat-
ing the quality of these instructions. This improve-
ment may be attributed to two key factors: 1)
eliminating seed data dependency by leveraging
pre-query templates to generate diverse instruc-
tions, and 2) generating high-quality instructions
that scale with LLM advancements. Moreover, fil-
tering instructions based on inherent consistency
improves model performance, demonstrating the
effectiveness of our method.

4.5 Cost Analysis

Our method introduces slight computational over-
head in preference data construction. While each
Transformer layer in LLMs has O(n?d+nd?) com-
plexity, ICON? introduces only an additional O(nd)
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GPU Hours (h)

Method Cost ($)
Response Preference
Sampling-Ranking 123.8 7.2 269.9
Self-Rewarding 123.8 15.6 287.2
Self-Refine 75.4 26.3 209.5
Icon? 61.6 10.8 149.1

Table 4: Comparison of computational costs across
methods on Llama3-8B. IcCON? reduces GPU hours and
cost by optimizing response generation and preference
annotation, achieving better alignment with lower over-
head compared to conventional approaches.

computational overhead through simple vector op-
erations on the representations from specific layers.
As shown in Table 4, ICON? significantly reduces
GPU hours by eliminating the need for generating
multiple responses. And the preference annotation
stage, consisting of efficient direction extraction
(requiring only 2.2 GPU hours) and consistency
calculation (8.6 GPU hours for 100k representa-
tions), contributes to a significantly more efficient
preference data construction process. The approach
not only achieves better alignment but also main-
tains lower computational costs compared to con-
ventional methods.

4.6 The Impact of Hyperparameters on
Model Performance

To demonstrate hyperparameter impact, we cre-
ated a preference dataset from 20k instructions,
varying layer ranges (top: [2, 12], middle: [10, 20],
bottom: [20, 30]) and control coefficient ~,., and
optimized Llama3-8B. We also present the mean
reward score (RS) of responses across all settings.
Figure 4 shows the LC on Alpacaeval 2.0 and RS.
Based on these results, we derive an efficient hy-
perparameter tuning method that requires only a
small number of responses for each setting to ob-
tain the optimal hyperparameters, without the need
for DPO. More details can be found in Appendix J.

4.6.1 Impact of Controlled Layers

Early layers of neural networks struggle to cap-
ture full input text representation, while deeper lay-
ers are more task-specific. Studies suggest middle
layers excel at capturing concept-related informa-
tion (Zou et al., 2023; Liu et al., 2023). Modifying
these layers introduces meaningful preference vari-
ations without significantly impacting output qual-
ity, making them ideal for preference dataset con-
struction. This phenomenon is observed across all
v, in both positive and negative control, highlight-

- »
17.5% Positive 17.5% Negative

ore

Reward Sc
LC(%)

7% 03 103 05
Control Coefficient
=== Top (LC)

@z Top (RS)

Control Cocfficient
Bottom (LC)
B8 Bottom (RS)

—— Middle (LC) —_-
BN Middle (RS)

Figure 4: Performance comparison of different con-
trolled layers and -y, on Alpacaeval 2.0. Different colors
of lines represent different layer intervals, where the
middle layer always achieves the best alignment effect.

ing their utility in preference optimization. Fur-
thermore, responses generated using the middle
layer achieved the highest reward values, reinforc-
ing these findings. Therefore, only a small number
of responses are needed to determine the selected
number of layers via RS.

4.6.2 Impact of .

v, controls preference steering strength. Larger
7. doesn’t guarantee better results due to added
noise, while smaller 7. may be insufficient. Opti-
mal . is smaller for negative control, indicating
greater model sensitivity. Positive control has a
larger impact on the final result, emphasizing the
importance of positive response quality. The im-
pact of v, shows similar trends across different
layer intervals. The tuning of ~y. can also be done
using RS without DPO and selection results using
RS are consistent with the experimental results.

5 Conclusion

In conclusion, we present ICON2, a novel frame-
work that addresses the challenges of costly and
labor-intensive preference dataset construction
for LLMs. By leveraging the inherent regula-
tion of LLMs’ representation space, ICON? effi-
ciently encodes human preferences and filters self-
synthesized instructions, enabling precise genera-
tion of response pairs through bidirectional inher-
ent control. Experimental results demonstrate that
IcoN? significantly improves alignment and effi-
ciency, as evidenced by higher win rates on bench-
marks like AlpacaEval 2.0 and Arena-Hard, while
substantially reducing computational costs. This
approach offers a promising direction for more ef-
fective and tailored preference dataset construction
in LLMs. Furthermore, we present an efficient hy-
perparameter tuning method, making our approach
easily scalable for preference data synthesis.
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Limitations

Validation in Online DPO Settings: While
IcoN? demonstrates efficacy in offline alignment
scenarios, its adaptability remains unverified un-
der online Direct Preference Optimization (DPO)
frameworks (Rafailov et al., 2024) where prefer-
ence data dynamically evolves with model updates.
This gap limits our understanding of the method’s
robustness in online alignment paradigms that re-
quire continuous coordination between preference
synthesis and optimization.

Multi-Turn Dialogue Generalization: Our ap-
proach currently focuses on single-turn interac-
tions, leaving the extension to multi-turn conversa-
tional alignment unexplored. Human preferences
in extended dialogues often involve complex de-
pendencies on discourse history, turn-level con-
sistency, and cumulative satisfaction (Cui et al.,
2023). Adapting ICON?’s inherent control mecha-
nisms for such scenarios would require innovations
in temporal preference modeling and history-aware
representation steering.

Ethical Considerations

While IcON? reduces reliance on human annota-
tion and enhances alignment efficiency, its self-
synthetic paradigm introduces potential ethical
risks. The automated generation of preference
data may propagate subtle biases inherited from the
base LLM’s training corpus or amplify safety risks
through uncontrolled preference directions (Wei-
dinger et al., 2021). For instance, steering re-
sponses via unsupervised representation vectors
could inadvertently prioritize harmful but superfi-
cially plausible outputs without explicit safety fil-
tering (Perez et al., 2023). Furthermore, the lack of
human oversight in instruction synthesis raises con-
cerns about fairness and representation diversity,
particularly for culturally sensitive or marginalized
topics (Blodgett et al., 2020). Future work should
integrate human-in-the-loop verification mecha-
nisms and develop interpretable metrics for audit-
ing preference directionality (Schramowski et al.,
2023).
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A Implementation Details

A.1 SFT hyperparameters

Our supervised fine-tuning (SFT) process follows
a uniform setup, trained for 1 epoch on the Ultra-
Chat 200K multi-turn conversation dataset. Input
sequences are tokenized using model-specific tem-
plates and truncated to 8,192 tokens to balance
long-context capabilities and computational con-
straints. Distributed training is conducted across
8 GPUs using DeepSpeed ZeRO-2, with a global
batch size of 128 (2 samples per GPU, 8 gradi-
ent accumulation steps) and bf16 mixed precision.
The optimization protocol includes cosine learn-
ing rate scheduling (peak 2e-5, 10% warmup),
Flash Attention-2 for long-sequence acceleration,
and parallel data loading with 64 workers. All
experiments are performed on 8 NVIDIA H100
GPUs (80GB VRAM), enabling memory-efficient
full-parameter optimization through hardware-
accelerated mixed-precision training.

A.2 DPO hyperparameters

Our direct preference optimization (DPO) pro-
cess uses a uniform setup, trained for 1 epoch
on preference-based alignment datasets. Inputs
are tokenized with model-specific templates and
truncated to 8,192 tokens to balance long-context
handling and computational limits. Training is dis-
tributed across 8 GPUs using DeepSpeed ZeRO-
3, with a global batch size of 128 (1 sample per
GPU, 16 gradient steps) and bf16 mixed precision.
The optimization protocol includes cosine learn-
ing rate scheduling (peak 5.0e-7, 10% warmup),
Flash Attention-2 for long sequences, and parallel
data loading with 64 workers. A preference opti-
mization beta of 0.1 controls alignment strength.
Experiments run on 8 NVIDIA H100 GPUs (80GB
VRAM), enabling memory-efficient full-parameter
optimization through hardware-accelerated mixed
precision.

B Experimental Details

B.1 Baselines

For Self-Rewarding, we used an SFT model to em-
ploy Consitual AI’s pairwise comparison prompt
for judging preferences (Bai et al., 2022). Prefer-
ence is measured by comparing the logprob value
of the token output. For Self-Refine, we first sam-
pled three responses, then use a refine prompt to ob-
tain a better response as the chosen response, while
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randomly selecting one from the original responses
as the rejected response. The specific method is ref-
erenced from Kim et al. (2024); Dong et al. (2024).
For Sampling-Ranking, we randomly generated
five responses, then used ArmoRM-Llama3-8B-
v0.1 as the reward model to score the responses.

The RLHFlow/ArmoRM-Llama3-8B-v0.1>
model we use employs 19 criteria for compre-
hensive response evaluation across different
dimensions. These criteria are:

¢ helpsteer-helpfulness,

* helpsteer-correctness,

* helpsteer-coherence,

* helpsteer-complexity,

¢ helpsteer-verbosity,

* ultrafeedback-overall_score,

e ultrafeedback-instruction_following,

e yltrafeedback-truthfulness,

e ultrafeedback-honesty,

e ultrafeedback-helpfulness,

* beavertails-is_safe,

* prometheus-score,

e argilla-overall_quality,

e argilla-judge_1lm,

e code-complexity,

e code-style,

e code-explanation,

e code-instruction-following,

e code-readability.

Subsequently, a Mixture of Experts (MoE)-like
architecture identifies the most relevant dimensions
to the instruction, weighting the scores of different
dimensions to obtain an overall score reflecting the
quality of the response.

B.2 Decoding Hyperparameters

For the AlpacaEval 2 (Li et al., 2023) evaluation,
we use a sampling-based decoding approach to gen-
erate responses. Specifically, we employ vllm for
inference, setting the temperature to 0.7, repetition
penalty to 1.05 and the maximum tokens to 2048
for both the Qwen2-Base and Llama3-Base config-
urations. All other parameters adhere to the default
settings in vllm. As for MT-Bench (Zheng et al.,
2023), we adhere to the official decoding setup,
which specifies varying sampling temperatures tai-
lored to distinct categories.

2https ://huggingface.co/RLHFlow/
ArmoRM-L1ama3-8B-v@.1

B.3 API Usage

For GPT-4 Turbo, we all use the Ilatest
turbo-2024-04-09 API on Azure OpenAl
Service https://leaAPIUsagern.microsoft.
com/en-us/azure/ai-services/openai/
concepts/models#gpt-4-turbo.

B.4 Evaluation Datasets

AlpacaEval 2.0 includes 805 user prompts and uti-
lizes pair-wise comparison with LLM-as-a-Judge.
Specifically, the win rate against the baseline GPT-
4 Turbo model is determined based on GPT-4 Turbo
evaluation. Arena-Hard includes 500 more chal-
lenging user queries, employing GPT-4-Turbo to
judge the model responses against GPT-4. MT-
Bench features 80 multi-turn questions spanning
various domains, with GPT-4-Turbo scoring the
model responses out of 10.

For instruction-following ability evaluation, Ta-
ble 5 presents the detailed information for three
alignment benchmarks we use, including AlpacaE-
val 2.0, Arena-Hard and MT-Bench.

C Evaluation on Models with Varying
Sizes

To further assess the generalization performance of
our proposed method, we performed experiments
on two additional model scales: Qwen2.5 3B (36
layers, with layers 12-24 designated for control)
and Qwen2.5 14B (48 layers, with layers 16-32
designated for control). An initial dataset of 30,000
instructions was generated, from which 10,000 in-
structions were selected for fine-tuning based on an
inherent consistency filtering criterion. Our method
was compared against three baseline approaches:
Sampling Ranking, Self Reward, and Self Refine.
The results are presented in Table 6.

D Data Leakage Analysis

To ensure the robustness and reliability of our eval-
uation, we perform a comprehensive analysis to
detect potential data leakage between our training
datasets and test sets.

N-gram Based Analysis: We begin by con-
ducting an n-gram overlap analysis to identify
any shared patterns between the training and test
datasets. Specifically, we compare the n-grams
extracted from our training datasets, which com-
prise Supervised Fine-Tuning (SFT) data, synthetic
preference data, and UltraFeedback reference data,

3962


https://huggingface.co/RLHFlow/ArmoRM-Llama3-8B-v0.1
https://huggingface.co/RLHFlow/ArmoRM-Llama3-8B-v0.1
https://leaAPI Usagern.microsoft.com/en-us/azure/ai-services/openai/concepts/models#gpt-4-turbo
https://leaAPI Usagern.microsoft.com/en-us/azure/ai-services/openai/concepts/models#gpt-4-turbo
https://leaAPI Usagern.microsoft.com/en-us/azure/ai-services/openai/concepts/models#gpt-4-turbo

# Instances Baseline Model Judge Model Scoring Type
AlpacaEval 2.0 805 GPT-4 Turbo  GPT-4 Turbo Pairwise comparison
Arena-Hard 500 GPT-4-0314  GPT-4 Turbo Pairwise comparison
MT-Bench 80 - GPT-4 Turbo Single-answer grading
Table 5: Details for three alignment benchmarks.
B Model Model
Writing 3H+General Writing 3H+General
(33Henera\ Z:neral
Humanities Roleplay SFT Humanities Roleplay SFT
STEM Reasoning STEM Reasoning

012 3 456 789

Extraction Math

Coding

(a) LLama3-Base

0123 45/6789

Extraction Math

Coding

(b) Qwen2-Base

Figure 5: MT-Bench scores on different instruction types.

Qwen2.5 3B LC WR Qwen2514B LC WR
Sampling Ranking 10.19 7.02 Sampling Ranking 20.87 16.40
Self Reward 10.43  7.33  Self Reward 21.86 17.52
Self Refine 11.06 7.58 Self Refine 2230 17.95
Ours 11.43 795 Ours 22.61 18.32

Table 6: Comparative performance evaluation on
Qwen2.5 3B and Qwen2.5 14B models. LC and WR rep-
resent evaluation metrics. The first and fourth columns
list the methods evaluated.

Data AlpacaEval 2.0 Arena-Hard MT-Bench
UltraChat 0.00373 0.01200 0.01250
UltraFeedback 0.00248 0.00600 0.01250
Icon? 0.00373 0.01000 0.01250

Table 7: The proportions of dataset leakage, quantified
through n-gram based analysis, reveal the extent of over-
lap between training and test datasets across various
benchmarks.

with those from the test sets. An n-gram is defined
as a contiguous sequence of n tokens. Following
the methodology proposed by Liang et al. (2022),
we set n = 13 to balance sensitivity and computa-
tional efficiency.

Embedding Based Analysis: To further vali-
date the absence of data leakage, we employ an

Data AlpacaEval 2.0 Arena-Hard MT-Bench
UltraChat 4.5% 2.0% 1.6%
UltraFeedback 5.3% 1.8% 1.5%
Icon? 3.2% 2.1% 1.7%

Table 8: The proportions of dataset leakage, quantified
through embedding-based analysis, reveal the extent of
overlap between training and test datasets across various
benchmarks.

embedding-based contamination check, as recom-
mended by Yang et al. (2023). This approach lever-
ages semantic similarity to detect potential over-
laps that may not be captured by n-gram analysis
alone. Specifically, we utilize the GPT-4-Turbo
API to compute the contamination percentage (%)
of the test sets, using UltraFeedback results as a
reference.

Results: The results of the contamination analy-
sis are presented in Tables 7 and 8, which summa-
rize the overlap percentages for different datasets
across various test benchmarks.
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E Contrastive System Prompts

Positive Prompt for General Criteria

You are a good, respectful and honest as-
sistant. Your responses should be help-
ful, meaningful, truthful, harmless, safe,
ethical, socially unbiased, positive, in-
teresting, well-founded, agreeable, spe-
cific, reasonable, and role consistent. If
a question does not make any sense, or
is not factually coherent, explain why in-
stead of answering something not correct.
Please do not share false information un-
der any circumstances.

Negative Prompt for General Criteria

You are a bad, disrespectful and dishon-
est assistant. Your responses might be
useless, meaningless, untruthful, harm-
ful, dangerous, unethical, socially biased,
negative, boring, fabricated, offensive,
vague, unreasonable, or role inconsistent.
If a question does not make any sense,
or is not factually coherent, still answer
the question and share false information
when necessary.

\

Positive Prompt for helpfulness Criteria
You are a helpful assistant.

Negative Prompt for helpfulness Criteria
You are a helpless assistant.

Positive Prompt for honesty Criteria
You are an honest assistant.

Negative Prompt for honesty Criteria
You are a dishonest assistant.

Positive Prompt for harmlessness Criteria
You are a harmless assistant.

Negative Prompt for harmlessness Criteria
You are a harmful assistant.

F More detailed results on MT-Bench

The detailed results on MT-Bench with different
instruction types are shown in Figure 5.

G Sensitivity Analysis of Representation
Vectors to Feature Dataset Dsey;

To assess the robustness of our representation ex-
traction process with respect to the choice of the
feature dataset, Dreyr, Wwe conducted a sensitivity

analysis. This exploration focused on how varia-
tions in both the size and the source (type) of Dreyt
affect the resulting representation vectors and their
downstream utility.

First, we examined the impact of these variations
on the directional consistency of the extracted vec-
tors. For analyzing sensitivity to dataset size, we
used the Alpaca dataset, comparing vectors derived
from the full dataset (Alpaca Full) with those from
smaller random samples of 1k instances (Alpaca
1k) and 10k instances (Alpaca 10k). To assess sen-
sitivity to dataset type, we compared vectors from
Alpaca Full with those derived from the ShareGPT
and UltraChat datasets. In all cases, representa-
tion vectors obtained from the Alpaca Full dataset
served as the baseline. We computed the mean,
maximum, and minimum cosine similarities across
all controlled layers between vectors from the test
datasets and the baseline, as shown in Table 9.

Comparison Pair Mean Max Min

Alpaca Full / Alpaca 1k  0.9987 0.9993 0.9981
Alpaca Full / Alpaca 10k 0.9996 0.9998 0.9993
Alpaca Full / ShareGPT 0.9998 0.9999 0.9996
Alpaca Full / UltraChat  0.9998 0.9999 0.9997

Table 9: Cosine similarity metrics (mean, maximum,
minimum) for extracted representation vectors, compar-
ing different feature datasets (Dreq) against the Alpaca
Full baseline across controlled layers.

As evident from Table 9, the cosine similari-
ties are consistently very high (mean values all
exceeding 0.998). This strong alignment persists
even when using a significantly reduced dataset
like Alpaca 1k or when employing entirely differ-
ent datasets such as ShareGPT or UltraChat. These
results suggest a high degree of directional stability
for the extracted vectors, implying that the underly-
ing representation for the target criterion is robust
to these variations in Dyeyt.

To further probe the statistical significance of any
differences, we performed dimension-wise Mann-
Whitney U tests. For each dimension of the repre-
sentation vectors, we tested the null hypothesis that
its distribution of values (across the controlled lay-
ers) is the same when derived from a test dataset as
when derived from Alpaca Full. Table 10 reports
the minimum p-value obtained across all dimen-
sions for each dataset comparison, using a signifi-
cance level of o = 0.05.

All minimum p-values presented in Table 10
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Comparison Pair Min p-value
Alpaca Full / Alpaca 1k 0.174
Alpaca Full / Alpaca 10k 0.243
Alpaca Full / ShareGPT 0.256
Alpaca Full / UltraChat 0.251

Table 10: Minimum p-values from dimension-wise
Mann-Whitney U tests, comparing vector distributions
from different feature datasets (Dseot) against the Alpaca
Full baseline.

are substantially greater than the 0.05 significance
level. Consequently, we fail to reject the null hy-
pothesis for any dimension in any comparison. This
suggests that the observed variations in Dgey¢ do
not cause statistically significant changes to the
distributions of the individual dimensions of the
extracted representation vectors.

Finally, we assessed the practical impact of these
representational variations on a downstream task.
We synthesized preference datasets, each contain-
ing 20,000 entries, using direction vectors extracted
from both Alpaca 1k and Alpaca Full, while keep-
ing all other hyperparameters consistent. The
performance of models trained on these datasets
was then evaluated using Alpaca Eval2 (Length-
Controlled Win Rate - LC, and Overall Win Rate -
WR). The results are shown in Table 11.

Dreq for Vector Extraction LC  WR

Alpaca Full 18.01 13.29
Alpaca 1k 17.88 13.22

Table 11: Alpaca Eval2 performance (LC and WR
scores) for models aligned using preference data syn-
thesized with direction vectors from different sizes of
Dfeat~

The downstream performance results in Table 11
further reinforce the notion of robustness. The
differences in Alpaca Eval2 scores are minimal
when using vectors derived from the significantly
smaller Alpaca 1k dataset compared to those from
the full Alpaca dataset. This indicates that the
vector extraction process is stable in terms of its
practical application for model alignment.

In conclusion, these analyses—encompassing
vector similarity, statistical tests on vector
dimensions, and downstream task perfor-
mance—collectively demonstrate that the proposed
method for extracting representation vectors is

highly robust to variations in both the size and the
type of the feature dataset Dg.,;. The extracted
directions representing the target criterion show
remarkable consistency, which translates to stable
performance in practical applications.

H Algorithms

This section provides detailed pseudocode for the
three algorithms corresponding to the main steps of
our proposed method: Linear Representation Fea-
ture Extraction (Algorithm 1), Selective Instruction
Generation via Inherent Consistency (Algorithm 2),
Preference Response Generation via Inherent Con-
trol (Algorithm 3).

Each algorithm is presented below, along with
a brief explanation of its correspondence to the
respective step.

I Detailed Comparison: Inherent Control
vs. Direct Prompting

Further justification is warranted for the Inherent
Control (IC) method, particularly concerning its
comparative advantages over generating preference
pairs using distinct positive and negative system
prompts—a technique referred to herein as Direct
Prompting (DP). While both IC and DP may ex-
hibit similar computational costs by generating
two responses each, their implications for response
quality and model alignment differ. This appendix
demonstrates the advantages of IC by addressing
three key aspects: susceptibility to reward hacking,
empirical performance, and controllability.

I.1 Reward Hacking

The use of distinct system prompts in DP (e.g.,
"You are a helpful assistant" for chosen responses
versus "You are an unhelpful assistant" for rejected
responses) can introduce systemic biases into re-
sponse patterns, even if the prompts themselves are
not part of the training data. Models may learn
to generate responses with superficial differences
(e.g., variations in tone, length, or keyword usage)
that correlate with these prompts, rather than re-
flecting genuine distinctions in quality or utility.
For instance, responses generated with a "helpful”
prompt might exhibit an overabundance of polite
phrases (e.g., "I'm happy to help!"), whereas those
generated with an "unhelpful" prompt might be
unduly terse or negative.

Consequently, alignment algorithms such as Di-
rect Preference Optimization (DPO) may inadver-
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Algorithm 1 Linear Representation Feature Extraction

Input: Dataset Dy, Criteria set C, Number of layers N

Output: Direction vectors {u.}.cc
1: for all criterion ¢ € C do

2. Initialize positive and negative prompts P, P.-
3 for all instruction d; € Drey do
4 {hﬁj} N+ LLM(P} & d)) > Extract positive hidden states
5: {hic_}{\; | < LLM(P; @ d;) > Extract negative hidden states
6: for all layer [ € [1, N] do
7 vﬁ» o hi: — hic_ > Compute layer-wise contrastive vector
8 end for ’ ’
9: end for
10: for all layer [ € [1, N| do
11: VL[Vl ... ’VllDfem\,c] > Aggregate contrastive vectors
12: u! « PCA(V)) > Extract principal direction
13: end for
14: u, « {ul 3, > Collect layer-wise directions

15: end for
16: return {u.}.cc

tently optimize for these superficial features instead
of learning nuanced human preferences (Cao et al.,
2021; Skalse et al., 2022; Wen et al., 2024). This
can lead to reward hacking—wherein the model
exploits proxies for quality rather than actual qual-
ity—potentially resulting in failed preference opti-
mization and degraded model performance.

Furthermore, it is not only explicit system
prompts but also other generation parameters, such
as temperature and various sampling strategies, that
can introduce superficial characteristics in outputs,
thereby creating vulnerabilities for reward hack-
ing. It is for this reason that common practice in
collecting preference data often involves generat-
ing multiple responses from the same model under
identical system prompts and generation param-
eters (Ouyang et al., 2022; Rafailov et al., 2024;
Cui et al., 2023), relying on subsequent methods to
discern preferable responses.

I.2 Experimental Evaluation

To empirically investigate the occurrence of re-
ward hacking and its impact on model performance,
experiments were conducted comparing models
trained using Inherent Control (IC) against those
trained using Direct Prompting (DP) with opposing
system prompts. For clarity in this experimental
context, Direct Prompting using opposing system
prompts is denoted as SP.

A common indicator of reward hacking during

Reinforcement Learning from Human Feedback
(RLHF) or DPO training is the rapid convergence
of reward accuracy (or preference accuracy) to-
wards 100%. This phenomenon often suggests
that the model has identified unintended shortcuts
or superficial cues to maximize the reward met-
ric, rather than genuinely aligning with the desired
complex behaviors. Thus, monitoring reward accu-
racy serves as a valuable diagnostic for detecting
potential reward hacking.

Table 12 presents the evolution of Reward Accu-
racy for Llama3 and Qwen2 models during DPO
training.

50 100 150 300 600

Qwen2 IC 0.54 0.71 0.76 0.81 0.85
Qwen2 SP 0.83 0.97 0.99 0.99 0.99
Llama3 IC 0.56 0.68 0.75 0.83 0.86
Llama3 SP 0.87 0.98 0.99 0.99 0.99

Setting

Table 12: Reward Accuracy progression during DPO
training for Llama3 and Qwen2 models. Comparison
between Inherent Control (IC) and Direct Prompting via
opposing System Prompts (SP). Values indicate reward
accuracy at various training checkpoints.

The experimental results in Table 12 show that
employing opposing system prompts (SP) causes
Reward Accuracy to rapidly approach 100% during
DPO training. This behavior is characteristic of re-
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Algorithm 2 Instruction Filtering via Inherent Consistency

Input: Raw instruction set Dy, Direction vectors {u.}.cc, Threshold 0

Output: Filtered instruction set Dgy,
1: Initialize Dgy; < 0
2: for all instruction d; € D,,y do
3 {h}NV, «+ LLM(d;)

for all criterion ¢ € C do

end for
consistency; «— maxcec consistency; .
if consistency, > 60 then
Diit < Dsie U {d; }
10: end if
11: end for
12: return Dy

R R AR

consistency, . < meanpool({hﬁT ul )

> Extract instruction representations
> Calculate criterion-specific consistency
> Select highest consistency score

> Add high-quality instruction

Algorithm 3 Preference Response Generation via Inherent Control

Input: Instruction d, Direction vectors {u.}.cc, Control layers L., Positive steering strength ., Nega-

tive steering strength v

Output: Chosen response 3", Rejected response i~

1: Initialize y* < 0,y < 0

2: fort =1toT do

3 Z; < LLM(d,yZ,)

4 Zio— {Zi+7F-ul|leL)
5: y;” + TokenGeneration(Z )
6: end for

7: fort =1to T do

8 Z; <+ LLM(d, y;t)

9 Zyc+{zj+r; ub|le L)
10: y; + TokenGeneration(Z )
11: end for

12: return y+, y—

> Get current token representations
> Apply positive steering
> Generate aligned token

> Get current token representations
> Apply negative steering
> Generate misaligned token

ward hacking, where the model easily distinguishes
responses based on superficial cues induced by the
contrasting prompts.

Furthermore, Table 13 compares the downstream
performance of models trained with IC and SP
using scores from Alpaca Eval2.

Models trained using the SP method significantly
underperformed those trained with IC on the Al-
paca Eval2 benchmark (Table 13). The SP models
yielded results comparable only to the SFT base-
line, failing to show meaningful improvement from
preference alignment. These findings empirically
highlight the suboptimality of the SP approach for
achieving robust performance gains.

Llama3 Qwen2
Model LC WR LC WR
SFT 559 3.11 995 4.53

IC 16.07 10.12 17.24 11.74
Sp 590 3.60 9.75 5.84

Table 13: Performance comparison on Alpaca Eval2
for Llama3 and Qwen2 models. Models include the
Supervised Fine-Tuning (SFT) baseline, training with
Inherent Control (IC), and training with Direct Prompt-
ing via opposing System Prompts (SP). LC denotes
Length-Controlled Win Rate; WR denotes overall Win
Rate.
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L3 Controllability

A core advantage of the Inherent Control method
lies in its enhanced controllability over the gen-
eration of preference pairs. Unlike methods that
depend significantly on the stochasticity of sam-
pling or less direct means of influence (such as
system prompts that may have broad and unpre-
dictable effects), IC provides a mechanism to more
deliberately and granularly manipulate the specific
representational differences that distinguish cho-
sen from rejected responses. This level of fine-
grained control over response differentiation is less
attainable with approaches reliant on external ma-
nipulations or broad signals like opposing system
prompts. This targeted control can also contribute
to greater efficiency and precision in constructing
preference datasets with desired characteristics.

J Efficient Hyperparameter Selection
without DPO

Traditional hyperparameter optimization can be
computationally intensive, often requiring multiple
rounds of model fine-tuning. This appendix details
a more efficient alternative that leverages a small
amount of synthetic data and a reward model to
select optimal hyperparameters without any fine-
tuning. This approach significantly reduces the
computational cost while providing robust hyper-
parameter choices. The primary aim here is to illus-
trate the impact of hyperparameters on final results
and offer insights into model interpretability.

For the 20k instructions synthesized
using varying - values, we employed
RLHFlow/ArmoRM-L1lama3-8B-v0. 1 as  the
reward model to score all generated data.

J.1 Selection of Positive Control

For positive control, a higher mean reward gener-
ally indicates superior quality in the model’s output.
We calculated the mean rewards for different pos-
itive v values, as shown in Table 14. Based on
these results, v = 0.1 was selected, as it yielded
the highest mean reward.

J.2  Selection of Negative Control

For negative control, evaluating solely the mean
reward is insufficient. It is crucial to statistically de-
termine the proportion of responses in negative con-
trol that exhibit lower rewards compared to those
in positive control. This proportion should ideally
be high. Table 15 presents this proportion when the

Positive Control (y) Reward Score Negative Control () Reward Score

0.01 17.435 -0.01 17.229
0.03 17.483 -0.03 17.188
0.05 17.511 -0.05 17.162
0.1 17.624 -0.1 16.213
0.3 17.021 -0.3 15.210
0.5 16.742 -0.5 14.445

Table 14: Mean reward scores for varying positive and
negative control v values using 20k synthesized instruc-
tions.

positive control + is fixed at 0.1, and the negative
control vy varies.

Negative Control () Proportion

-0.01 0.872
-0.03 0.898
-0.05 0.935
-0.1 0.948
-0.3 0.992
-0.5 0.998

Table 15: Proportion of responses where positive reward
(with v = 0.1) exceeds negative reward for varying
negative control vy values.

Typically, this proportion should exceed 0.9.
Concurrently, a smaller reward gap is preferred
to ensure a more stable model training process. An
excessively large reward gap might render the dis-
tinction between chosen and rejected responses triv-
ial, thereby impeding the model’s ability to learn
subtle preference nuances and potentially leading
to reward hacking. Consequently, we selected the
negative control ~y that yielded the highest average
reward (from Table 14, negative control column)
for which the proportion (from Table 15) surpassed
0.9. This led to the selection of v = —0.05.

J.3 Cost Reduction via Sub-sampling

To further curtail the cost associated with hyper-
parameter selection, we investigated the efficacy
of using a smaller subset of data. We randomly
selected 100 samples from the 20,000 synthesized
instructions and recorded the corresponding mean
rewards and their proportions. This sub-sampling
process was repeated 100 times to ascertain the
variance of these mean rewards and proportions.
The aggregated results (mean/standard deviation)
are displayed in Tables 16 and 17.

Despite slight variations in reward values, the
analysis demonstrates that optimal hyperparame-
ters can be effectively identified using only 100
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Positive Control (y) Mean/Std Negative Control (y) Mean/Std
0.01 17.432/0.023 -0.01 17.220/0.022
0.03 17.485/0.034 -0.03 17.184/0.041
0.05 17.539/0.038 -0.05 17.165/0.044
0.1 17.674/0.042 -0.1 16.213/0.076
0.3 16.996/0.060 -0.3 15.210/0.103
0.5 16.708/0.081 -0.5 14.445/0.142

Table 16: Mean rewards and standard deviations
(Mean/Std) from 100 repetitions of sub-sampling 100
samples for varying v values.

Negative Control (y) Mean/Std

-0.01 0.872/0.0013
-0.03 0.899/0.0013
-0.05 0.932/0.0011
-0.1 0.949/0.0013
-0.3 0.990/0.0014
-0.5 0.995/0.0008

Table 17: Mean proportions and standard deviations
(Mean/Std) from 100 repetitions of sub-sampling 100
samples, where positive reward (with v = 0.1) exceeds
negative reward.

samples. This entire experimental procedure, en-
compassing data synthesis and reward score calcu-
lation, required less than 1 GPU Hour, highlighting
it as a remarkably efficient and effective solution
for hyperparameter selection.

J.4 Robustness of Selected Hyperparameters

To ascertain the robustness of the selected hyper-
parameters ('Ypositive = 0.1, Ynegative = —0.05),
we evaluated their performance across six distinct
tasks: ARC, HellaSwag, TruthfulQA, MMLU,
Winogrande, and GSM8k. The average scores for
these tasks are presented in Table 18.

Positive Control () Reward Score Negative Control (y) Reward Score

0.01 75.232 -0.01 75.435
0.03 75.875 -0.03 76.302
0.05 76.238 -0.05 76.945
0.1 76.945 -0.1 74.786
0.3 75.428 -0.3 71.495
0.5 73.235 -0.5 68.775

Table 18: Average scores across six benchmark tasks
for different + values, demonstrating hyperparameter
robustness.

The results presented in Table 18 affirm the ro-
bustness of the selected hyperparameters across
diverse tasks. Notably, the combination of positive
control v = 0.1 and negative control v = —0.05
(highlighted implicitly by their individual perfor-
mance peaks or desired balance) demonstrates

strong performance, thereby illustrating the gen-
eral applicability of this hyperparameter selection
methodology.
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