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Abstract

Figure-to-Text (F2T) tasks aim to convert struc-
tured figure information into natural language
text, serving as a bridge between visual per-
ception and language understanding. How-
ever, existing evaluation methods remain lim-
ited: 1) Reference-based methods can only cap-
ture shallow semantic similarities and rely on
costly labeled reference text; 2) Reference-free
methods depend on multimodal large language
models, which suffer from low efficiency and
instruction sensitivity; 3) Existing methods pro-
vide only sample-level evaluations, lacking in-
terpretability and alignment with expert-level
multi-dimensional evaluation criteria. Accord-
ingly, we propose F2TEval, a five-dimensional
reference-free evaluation method aligned with
expert criteria, covering faithfulness, complete-
ness, conciseness, logicality, and analysis, to
support fine-grained evaluation. We design a
lightweight mixture-of-experts model that in-
corporates independent scoring heads and ap-
plies the Hilbert-Schmidt Independence Crite-
rion to optimize the disentanglement of scor-
ing representations across dimensions. Further-
more, we construct F2TBenchmark, a human-
annotated benchmark dataset covering 21 chart
types and 35 application domains, to support re-
search on F2T evaluation. Experimental results
demonstrate our model’s superior performance
and efficiency, outperforming Gemini-2.0 and
Claude-3.5 with only 0.9B parameters.

1 Introduction

Figures serve as a crucial mode of information rep-
resentation in various domains, such as academic
papers, and business analysis, etc (Masry et al.,
2022, 2024). Figure-to-Text (F2T) tasks aim to con-
vert key visual information from figures into mean-
ingful textual illustration, improving content ac-
cessibility and understanding (Lin et al., 2014; Kr-
ishna et al., 2017; Xia et al., 2024). This enhances
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Figure 1: The comparison of F2T evaluation methods.
A. Reference-based. B. Reference-free. C. Our method.

information retrieval in data-intensive fields and
supports access for visually impaired users (Hsu
et al., 2021; Wang et al., 2025). Due to the inherent
ambiguity and semantic compression of figures, the
generated texts often suffer from the issues of fac-
tual inaccuracies, incomplete coverage, and weak
logical reasoning (Yu et al., 2023; Davis, 2023),
thus requiring automated quality evaluation meth-
ods. Effective evaluation of F2T quality is critical
for the advancement of this task.

Current F2T evaluation methods can be catego-
rized as reference-based and reference-free meth-
ods (see Figure 1). Reference-based methods
rely on golden reference summaries and evalu-
ate the quality by calculating the similarity be-
tween the generated text and the reference text, e.g.,
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),
and CIDEr (Vedantam et al., 2015). However, con-
structing high-quality and diverse reference texts
is costly, especially in professional fields such as
scientific research. On the other hand, reference-
free methods (Goyal et al., 2022; Liu et al., 2023a)
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Figure 2: An example to compare Reference-based and Reference-free methods against human evaluation.

typically leverage multimodal large language mod-
els (MLLMs) (Li et al., 2023; Huang and Zhang,
2024) and employ evaluation prompts to generate
scores, offering greater flexibility. However, these
methods are challenged by the following factors: 1)
Model performance is sensitive to prompts (Errica
et al., 2024). Different model versions or parame-
ter configurations may result in inconsistent eval-
uation results (Stureborg et al., 2024). 2) High-
performance MLLMs are often closed-source and
rely on remote API calls, which are slow and ex-
pensive, making it difficult to support efficient eval-
uation of large-scale tasks (Irugalbandara et al.,
2024; Oketch et al., 2025). Furthermore, existing
evaluation approaches (Vedantam et al., 2015; Xia
et al., 2024) for F2T tasks predominantly rely on
a “sample-level overall score”, which fails to incor-
porate multi-dimensional and fine-grained analysis.
This limitation reduces the interpretability of model
performance and hinders alignment with human ex-
pert evaluation criteria (Liu et al., 2023b). The gap
between existing methods and human evaluation is
shown in Figure 2.

Accordingly, we propose a multi-dimensional
F2T evaluation method, F2TEval, which is aligned
to human expert criteria, aiming to achieve fine-
grained, interpretable, and efficient evaluation.
Specifically, we design five dimensions of fine-
grained evaluation criteria, including Faithfulness,
Completeness, Conciseness, Logicality, and Anal-
ysis, to enhance evaluation interpretability and
human-alignment. F2TEval is an open-source,
lightweight reference-free evaluation model that

can be deployed on a single GPU and supports fast
scoring. Considering a multi-dimensional scoring
scheme may lead to gradient interference in the
training process, we design a Mixture of Experts
(MoE) structure. By introducing the mechanisms
of nonlinear decoupling and Hilbert-Schmidt Inde-
pendence Criterion (HSIC), we perform dimension
mapping in the matrix space, enabling each dimen-
sion to be scored by an independent module, thus
improving the independence and generalization be-
tween dimensions. We also construct a human-
labeled F2T evaluation dataset (F2TBenchmark) to
facilitate efficient model training and performance
benchmarking.

The contributions of this paper are as follows1:
(1) We develop the F2TBenchmark dataset upon
12 F2T data sources, covering 21 chart types and
35 domains. The dataset includes figure summary
texts with different qualities that are generated by
10 major MLLMs. Each data instance is manually
annotated with scores across five evaluation dimen-
sions and subsequently verified by human experts,
resulting in high-quality training data and reliable
evaluation benchmarks. (2) The proposed evalua-
tion method, F2TEval, is a lightweight, reference-
free multi-dimensional evaluation model with an
MoE architecture, enabling independent scoring
of each evaluation dimension. By enhancing the
optimization of the shared expert of MoE with a
novel HSIC mechanism, F2TEval exceeds existing
baseline methods with significant margins across
the five evaluation dimensions. It also takes advan-

1https://github.com/yuetanbupt/F2TEval
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tage of efficiency, measured by the parameter size
and running time.

2 Related works

Reference-based evaluation methods, e.g., BLEU,
ROUGE, CIDEr, and BERTScore (Zhang et al.,
2019), are often used in F2T tasks, measuring the
quality by comparing the similarity between gen-
erated text and reference text. These methods are
simple to implement, applicable to a variety of text
generation scenarios (Yue et al., 2025a), delivering
great reproducibility and comparability. However,
such methods strongly rely on high-quality refer-
ence texts (Gigant et al., 2024), which are usually
labeled by professionals, leading to high cost (Yue
et al., 2021). Furthermore, these methods are gener-
ally based on shallow similarity computation, mak-
ing it difficult to recognize factual errors, logical
gaps, and missing reasoning (Zhang et al., 2019;
Fabbri et al., 2021).

With MLLMs (Yue et al., 2023; Anthropic,
2024b; Zhang et al., 2025; Team, 2025), reference-
free methods have been advanced. They are usu-
ally based on pre-trained models, and provide
scores or textual explanations with tailored instruc-
tions (Goyal et al., 2022; Liu et al., 2023a). Some
studies designed scoring templates in combination
with context (Zhang et al., 2024) to enhance ro-
bustness and used lightweight MLLMs (Yue et al.,
2022; Wang et al., 2022; Touvron et al., 2023; Zhao
et al., 2023) to reduce deployment cost. However,
these methods are still sensitive to input instruc-
tions and samples, making them difficult to be sta-
bly applied to large-scale evaluation tasks. More-
over, the performance of small models is unsatis-
fying, while high-performance large models with
closed sources suffer from high costs and unstable
model versions (Irugalbandara et al., 2024).

Most existing methods provide only sample-
level overall scores (Hessel et al., 2021; Xia et al.,
2024), lacking fine-grained evaluation across key
dimensions such as content quality, logical struc-
ture, conciseness, and analytical depth, which lim-
its interpretability (Yue et al., 2024). Moreover,
a clear gap exists between these methods and ex-
pert human evaluation, as they fail to align with
task-specific contexts and cognitive processes, re-
stricting their use in high-precision, safe, and con-
trollable generative modeling. Consequently, devel-
oping an automatic evaluation approach that is effi-
cient, robust, fine-grained, and cognitively aligned

with human judgment has become a critical chal-
lenge in current F2T evaluation research.

3 Methodology

F2TEval is a multi-dimensional F2T evaluation
model. It is built upon an MoE architecture (see
Figure 3), providing a fine-grained, interpretable,
and human-aligned scoring scheme across five di-
mensions: Faithfulness, Completeness, Concise-
ness, Logicality, and Analysis. It consists of two
technical components: 1) dimension-specific ex-
perts that are trained independently for each scoring
dimension; 2) a shared expert with jointly trained
multi-head outputs, optimized with HSIC to pro-
mote disentangled representation learning. The
motivation for incorporating the two types of ex-
perts is that the dimension-specific experts aim to
learn cross-modal semantic associations indepen-
dently for each evaluation dimension. However, it
is difficult for dimension-specific experts to capture
sample-level generalized features to calibrate the
overall scores across dimensions. Thus, the shared
expert will correct the five-dimensional scores by
re-weighting. Given the challenge of the MLLM in
distinguishing dimension-specific semantics under
shared representations, HSIC aims to encourage
independence across scoring heads and reduce fea-
ture redundancy.

3.1 Dimension-specific experts
Each expert f spe

d is trained independently for a par-
ticular evaluation dimension d ∈ D and kept frozen
during the final joint training. It is composed of a
pre-trained CLIP encoder and a lightweight projec-
tion layer followed by a scoring function. The input
consists of an image I , contextual text T (caption
and context information), and a generated summary
S. The expert outputs a predicted score ŷspe

d .
I , T , and S are encoded into dense feature vec-

tors using the encoder (E(·)) of CLIP: vimg =
Eimage(I),vtext = Etext(T ),vsummary = Etext(S),
where vimg,vsummary,vtext ∈ RF . F denotes the
embedding dimension of CLIP. The image and
text embeddings are concatenated ([·; ·]) and passed
through a task-specific projector (D(·), a projec-
tor (MLP) layer) to obtain a joint representation
zit = D(vit), where vit = [vimg;vtext], zit ∈
RF ,vit ∈ R2F . Then, the similarity which mea-
sures cross-modal alignment is given by

ŷ
spe
d = w · zit · vsummary

∥zit∥2 · ∥vsummary∥2
+ b, (1)
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Figure 3: The proposed F2TEval model. The left side shows the dimension-specific expert module and the first
training stage, and the right side shows the shared expert module and the second training stage. y denotes prediction.

where w, b are learnable parameters.
Each expert is trained using a combination of

Mean Squared Error (MSE) and negative alignment
correlation function to ensure both accurate and
rank-consistent predictions. Given a batch of N
samples with ground truth scores yi and predicted
scores ŷi, the loss terms are defined as:

LMSE =
1

N

N∑

i=1

(ŷi − yi)
2,

Lali = −
∑N

i=1(ŷi − ¯̂y)(yi − ȳ)√∑N
i=1(ŷi − ¯̂y)2 ·

√∑N
i=1(yi − ȳ)2

,

Ldim = LMSE + λali · Lali,

(2)

where ȳ and ¯̂y are the mean values of ground truth
and predicted scores in the batch. λali is a hyperpa-
rameter balancing the two loss terms.

3.2 Shared expert and HSIC optimization
We also introduce a shared expert to jointly learn
generalized scoring patterns across all five evalua-
tion dimensions. Unlike dimension-specific experts
that focus on independently modeling each evalua-
tion aspect, the shared expert is trained end-to-end,
with shared image and text representations and a
multi-head output layer. This design provides flexi-
bility, enables cross-dimensional knowledge trans-
fer, and supports the MoE structure. The shared
expert consists of a single CLIP encoder followed
by five independent MLP heads {hd}d∈D. Each
head contains a two-layer feed-forward network
with non-linearity.

First, we extract representations from the im-
age, context, and summary using the CLIP en-
coder, and then concatenate the representations:
vits = [Ei(I);Et(T );Et(S)], where vits ∈ R3F .
Each dimension d has a dedicated head hd com-
posed of two linear layers:

ŷshared
d = W

(d)
2 · ReLU(W

(d)
1 · vits + b

(d)
1 ) + b

(d)
2 , (3)

where W
(d)
1 ∈ Rn×3F and b

(d)
1 ∈ Rn are the

weights and bias of the first linear layer for di-
mension d; W(d)

2 ∈ R1×n and b
(d)
2 ∈ R are the

weights and bias of the second layer; n is the hid-
den dimension of the head; ŷshared

d is the scalar
prediction score for dimension d.

To ensure that each scoring head focuses on
learning distinct semantic signals, HSIC is intro-
duced as an optimizer on the first-layer weights
W

(d)
1 . This encourages representations across di-

mensions to be statistically independent, reducing
redundancy (see explanations in Appendix A). For
Heads i and j, W(i)

1 and W
(j)
1 are the respective

weight matrices. The radial basis function (RBF)
kernel Gram matrices are defined as:

Kpq = exp

(
−∥W(i)

1 [p]−W
(i)
1 [q]∥2

2σ2

)
,

Lpq = exp

(
−∥W(j)

1 [p]−W
(j)
1 [q]∥2

2σ2

)
,

(4)

where p, q index the rows of the weight matrix,
and σ is a kernel bandwidth hyperparameter. The
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Figure 4: The examples and statistics of figure types in the F2TBenchmark dataset.

centering matrix H ∈ Rn×n is given by: H =
In− 1

n · ene⊤n , where In is the n-dimensional iden-
tity matrix; en ∈ Rn is a column vector with all el-
ements equal to 1. This centering operation ensures
that the kernel matrices are zero-mean in feature
space. The HSIC value is then given by:

HSIC
(
W

(i)
1 ,W

(j)
1

)
=

1

(n− 1)2
tr(KHLH)

=
1

(n− 1)2

[
n∑

p,q=1

KpqLpq −
2

n

n∑

p,q,r=1

KprLqr

+
1

n2

n∑

p,q,r,s=1

KprLqs

]
,

(5)

W
(i)
1 ,W

(j)
1 ∈ Rn×3F are the first-layer weight

matrices of the i-th and j-th scoring heads; n is the
number of rows (hidden units); d is the dimension-
ality of each weight vector; p, q, r, s ∈ {1, . . . , n}
are indices over the rows of W(i)

1 and W
(j)
1 ; tr(·)

denotes the the trace of a matrix.
The final loss is given by Lshare = LMSE(ŷ, y) +

λhsic · LHSIC, where λhsic is a hyperparameter. The
HSIC loss is the sum over all unordered head pairs:

LHSIC =

D∑

i=1

D∑

j=i+1

HSIC(W(i)
1 ,W

(j)
1 ), (6)

where D is the number of evaluation dimensions,
and W

(i)
1 denotes the first-layer weight matrix of

the i-th scoring head.
To enable gradient-based optimization, the HSIC

loss is differentiable with respect to W
(i)
1 . We

compute the gradient of Kpq with respect to each

weight vector W(i)
1 [p]. For the RBF kernel, this

partial derivative is given by:

∂Kpq

∂W
(i)
1 [p]

= − 1

σ2
Kpq ·

(
W

(i)
1 [p]−W

(i)
1 [q]

)
.

(7)
Combining the full HSIC formula, we obtain:

∂ HSIC

∂W
(i)
1 [p]

=

n∑

q=1

∂ HSIC
∂ Kpq

· ∂ Kpq

∂W
(i)
1 [p]

+

n∑

q=1

∂ HSIC
∂ Kqp

· ∂ Kqp

∂W
(i)
1 [p]

= − 2

(n− 1)2σ2

n∑

q=1

(HLH)pq ·Kpq ·
(
W

(i)
1 [p]−W

(i)
1 [q]

)
.

(8)
This gradient enables end-to-end optimization of
the HSIC loss via backpropagation. Unlike tradi-
tional orthogonality- or covariance-based regular-
ization that assumes linear independence, HSIC
measures statistical dependence in a reproduc-
ing kernel Hilbert space, capturing nonlinear and
higher-order correlations between representations.
The derived gradient encourages the entire weight
matrix W

(i)
1 to reduce its dependency on other

heads’ W(j)
1 , thereby promoting inter-head func-

tional diversity. This leads each scoring head to
encode a distinct semantic subspace, enhancing
disentanglement across evaluation dimensions.

3.3 Dynamic weight scoring
Each dimension’s final score is computed as a
combination of dimension-specific experts and the
shared expert predictions through:

ŷd = σ(wd) · ŷshared
d + (1− σ(wd)) · ŷspe

d , (9)

where wd is a learnable gating parameter and σ(·)
denotes the sigmoid function.
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Dataset Task

ChartQA (Masry et al., 2022) Figure QA
Chart-to-text (Kantharaj et al., 2022) Figure Sum.
ChartLlama (Han et al., 2023) Figure QA
UniChart (Masry et al., 2023) Figure Sum.
ChartSumm (Rahman et al., 2023) Figure Sum.
ChartBench (Xu et al., 2023) Figure QA
StructChart (Xia et al., 2023) Figure Sum.
ChartX (Xia et al., 2024) Figure Des.
MMC (Liu et al., 2024) Figure QA
ChartCheck (Akhtar et al., 2024) Figure Cap.
ChartXiv (Wang et al., 2024) Figure QA
AnaFig (Yue et al., 2025b) SFA

Table 1: Overview of the sampled datasets. Sum. =
Summarization. Des.=Description. Cap.=Caption. SFA
= Scientific Figure Analysis.

4 F2TBenchmark dataset

We construct a large-scale dataset, F2TBenchmark,
containing human-annotated data across diverse
domains, figure types, and F2T tasks.

4.1 Collection

To ensure broad coverage of task types and con-
tent styles, as shown in Table 1, we sample data
from 12 publicly available F2T datasets, including
ChartQA, Chart-to-Text, ChartSumm, and AnaFig,
etc. These datasets cover figure question answer-
ing (QA), captioning, summarization, description,
and scientific reasoning tasks, providing diverse fig-
ure structures and domain contexts. Unlike single-
task datasets, their combination enables a unified
evaluation benchmark reflecting real-world figure
diversity across academic and applied scenarios.
Samples from different F2T datasets are shown in
Figure A.1 in Appendix B. F2TBenchmark cov-
ers 21 mainstream figure types (e.g., line, bar, pie,
etc.), 12 scientific domains (e.g. Physics, Finance,
Social Sciences, etc.), and 35 sub-domains (e.g.
Condensed Matter Physics, Particle Physics, Me-
chanics, etc). The statistics of figure types and
domain distributions are shown in Figures 4 and 5.

4.2 Generation

For generation diversity, we employ 10 multimodal
large language models (MLLMs) to generate fig-
ure summaries. The selected models include both
open-source models (Qwen-VL-2B (Team, 2025),
InterVL2.5-8B (Chen et al., 2024), MiniCPM-
V2.5 (Yao et al., 2024), Phi-3-Vision (Abdin et al.,
2024), ) and proprietary models (GPT-4o (Hurst
et al., 2024), Claude-3.5-haiku (Anthropic, 2024b),
Gemini-1.5-flash (Team et al., 2024), Qwen-VL-

Figure 5: Statistics of figure domains.

Max (Bai et al., 2023), GPT-4o-mini (OpenAI,
2024), Claude-3-haiku (Anthropic, 2024a)), cov-
ering a wide parameter range from lightweight
to large-scale. This design captures variations
in lexical style, factual grounding, and reasoning
depth across different model families, enriching the
dataset for robust evaluation.

4.3 Annotation

Each generated figure summary in F2TBenchmark
is manually annotated by 8 trained human annota-
tors across five evaluation dimensions: Faithful-
ness: The summary accurately reflects the figure
content; Completeness: All key information and
trends are included; Conciseness: Redundant or
irrelevant details are avoided; Logicality: The sum-
mary is coherent and align with common sense and
domain knowledge; Analysis: The summary of-
fers clear and insightful data interpretation. Each
dimension is scored on a 3-point scale: 0-poor, 1-
acceptable, and 2-perfect. Detailed scoring criteria
for each dimension are introduced in Figure 6.

The annotation process follows a standardized
pipeline to ensure quality and consistency (Pear-
son coefficient = 0.91): 1) Training: Annotators
undergo the annotation session with examples and
discussions to understand all five dimensions and
scoring guidelines. 2) Tool: A custom web-based
annotation tool presents annotators with the figure,
descriptive text (caption and context), and gener-
ated summaries. Scores are entered dimension-
by-dimension. (Details in Figure A.2) 3) Quality
Control: Each summary is annotated by at least two
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Figure 6: Five-Dimensional Scoring Criteria.

annotators. Disagreements are resolved by a senior
annotator via adjudication. Inconsistently scored
items are flagged for re-evaluation. 4) Scoring Ag-
gregation: Final dimension scores are obtained by
majority voting.

5 Experimental setup

We compare our F2TEval with mainstream baseline
methods, including: Reference-based methods:
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),
BERTScore (Zhang et al., 2019), CIDEr (Vedan-
tam et al., 2015). Reference-free methods: CLIP-
Score (Hessel et al., 2021), Qwen2-VL (Team,
2025), DeepSeek-VL2 (Wu et al., 2024), Kimi-
VL-A3B (Team et al., 2025), Claude-3 (Anthropic,
2024a), Claude-3.5, Gemini-1.5 (Team et al., 2024),

PC(↑) SC(↑) MAE(↓) MSE(↓)

Reference-based Methods

BLEU 0.2589 0.2858 0.5271 0.3584
ROUGE1 0.3599 0.3455 0.2583 0.1016
ROUGE2 0.3158 0.3298 0.4306 0.2504
ROUGEL 0.3407 0.3484 0.3512 0.1704
BERTScore 0.1939 0.2117 0.3707 0.2054
CIDEr 0.0888 0.1617 0.5392 0.3939

Reference-free Methods

CLIPScore 0.2939 0.2963 0.5601 0.4011
Qwen2-VL-2B 0.0975 0.0651 0.4035 0.2507
Qwen2-VL-7B 0.1801 0.1689 0.4015 0.2448
DS-VL2-Tiny 0.0752 0.0712 0.3819 0.2384
DS-VL2-Small 0.2125 0.2019 0.3516 0.2298
Kimi-VL-A3B 0.3173 0.3089 0.3389 0.2036
Claude-3 0.2371 0.2207 0.3053 0.1484
Gemini-1.5 0.4015 0.3674 0.3051 0.1792
Claude-3.5 0.4934 0.4593 0.3405 0.1829
Gemini-2 0.5901 0.5797 0.2623 0.1292
ChartX 0.5965 0.5898 0.2338 0.1053

F2TEval 0.7481 0.7286 0.1681 0.0434

Table 2: Main results of reference-based and reference-
free methods. DS=DeepSeek.

Gemini-2, ChartX (Xia et al., 2024).
We use 6 CLIP ViT-B/32 as the backbone

(1 shared expert and 5 dimension-specific ex-
perts). The training is conducted with: optimizer =
AdamW; learning rate = 1×10−4; batch size (N) =
16; λhsic = 0.1; λali = 0.1. F = 512, D = 5. (See
Appendix C for detailed settings of the baseline
models and F2TEval.)

Four widely adopted metrics are used: (1) Pear-
son Correlation (PC) to measure linear agreement
between automatic scores and human annotations;
(2) Spearman Correlation (SC) to assess their
ranking consistency; (3) Mean Absolute Error
(MAE) for average prediction error; and (4) Mean
Squared Error (MSE) to penalize larger devia-
tions. See details in Appendix D.

6 Results

Table 2 shows the evaluation accuracy superior-
ity of F2TEval over baselines. Among reference-
based methods, ROUGE1 achieves the highest PC
(0.3599), while all methods perform poorly. This
suggests that these approaches are insufficient to
capture the semantic and factual correctness of F2T
summaries, especially in scientific or multi-modal
contexts. For reference-free methods, Gemini-2
and ChartX show strong results, with 0.5901 and
0.5965 PC, respectively. Our method F2TEval
achieves the best performance across all metrics,
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Model Faithfulness Completeness Conciseness Logicality Analysis Overall

PC(↑) SC(↑) PC(↑) SC(↑) PC(↑) SC(↑) PC(↑) SC(↑) PC(↑) SC(↑) PC(↑) SC(↑)

Open-Source Models

Qwen2-VL-2B 0.0339 0.0359 0.2051 0.1917 -0.0141 -0.0227 0.0616 0.0547 0.1192 0.0982 0.0975 0.0651
DS-VL2-Tiny 0.1889 0.1897 0.1329 0.1299 0.0862 0.0684 0.1166 0.1088 0.1453 0.1618 0.0752 0.0712
Qwen2-VL-7B 0.0681 0.0765 0.1871 0.1833 0.0741 0.0869 0.1789 0.1721 -0.0171 -0.0501 0.1801 0.1689
DS-VL2-Small 0.1242 0.1351 0.1981 0.1947 0.1342 0.1105 0.2226 0.2081 0.3138 0.3123 0.2125 0.2019
Kimi-VL-A3B 0.2336 0.2195 0.3074 0.2977 0.2249 0.2309 0.3884 0.3791 0.3504 0.3464 0.3173 0.3089

Proprietary Models

Claude-3 0.1747 0.1721 0.1384 0.1266 0.1092 0.1102 0.1551 0.1402 0.2336 0.2239 0.2371 0.2207
Gemini-1.5 0.2897 0.2704 0.3875 0.3697 0.1641 0.1718 0.3189 0.2917 0.3251 0.3068 0.4015 0.3674
Claude-3.5 0.4271 0.4131 0.4333 0.4281 0.2402 0.1906 0.4418 0.4119 0.4558 0.4297 0.4934 0.4593
Gemini-2.0 0.3719 0.3725 0.5594 0.5419 0.3904 0.3632 0.5397 0.5011 0.5339 0.5214 0.5901 0.5797
ChartX 0.5322 0.5175 0.5541 0.5416 0.3274 0.3159 0.5089 0.4835 0.5774 0.5626 0.5965 0.5898

F2TEval (Ours) 0.7306 0.7209 0.6794 0.6661 0.5763 0.5687 0.6626 0.6194 0.7136 0.7063 0.7481 0.7286

Table 3: Breakdown results on five evaluation dimensions and overall score.

PC(↑) SC(↑) MAE(↓) MSE(↓)

CLIP (w/o SFT) 0.2939 0.2963 0.5601 0.4011
w/o five-dim. expert 0.4536 0.4028 0.3211 0.2261
w/o share expert 0.6828 0.6368 0.3198 0.2087
F2TEval 0.7481 0.7286 0.1681 0.0434

Table 4: Ablation study results.

with a PC of 0.7481 and MSE of only 0.0434. This
clearly shows that our multi-dimensional scoring
architecture with MoE and HSIC optimization can
effectively align human preferences. In particular,
F2TEval with only 0.9B parameters outperforms
leading proprietary MLLMs like Gemini-2.

6.1 Breakdown analysis of five dimensions

We report the evaluation results on each of the five
human-aligned dimensions in Table 3. F2TEval
consistently outperforms all baselines with a large
margin across all five dimensions. In Faithfulness,
which is arguably the most critical criterion for
factual correctness, F2TEval achieves 0.7306 PC,
nearly 20% higher than the best-performing ChartX
(0.5322). In Completeness, F2TEval achieves
0.6794 PC, again surpassing all competitors. In
Conciseness, F2TEval achieves the highest scores
of 0.5763 in PC and 0.5687 in SC. In Logicality
and Analysis, which evaluate Logical coherence
and depth of analysis, respectively, F2TEval also
consistently leads all baselines.

6.2 Ablation study

The ablation analysis results are shown in Table 4.
The very weak performance of CLIP (w/o SFT)
shows that pre-trained embeddings alone cannot

Figure 7: The semantic disentanglement of HSIC.

align with humans effectively for figure summariza-
tion evaluation. w/o five-dim. expert relies solely
on the shared expert for scoring. Performance
drops significantly across all metrics (0.4536 PC),
suggesting that dimension-specific modeling is es-
sential for capturing fine-grained semantics and
enhancing interpretability. w/o share expert uses
only the five dimension-specific experts. This vari-
ant performs better (0.6828 PC), but still underper-
forms compared to the full model, showing that the
shared expert provides complementary global rep-
resentations and learning capacity. Figure 7 shows
the semantic disentanglement effect of HSIC, indi-
cating that representation disentanglement is cru-
cial for ensuring modular and non-redundant learn-
ing across evaluation dimensions.
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Model PC(↑) SC(↑) MAE(↓) MSE(↓)

Qwen2-VL-2B 0.0975 0.0651 0.4035 0.2507
∆ ↑0.1276 ↑0.1807 ↓0.0680 ↓0.0502
Qwen2 (SFT) 0.2251 0.2458 0.3355 0.2005

DS-VL2-Small 0.2125 0.2019 0.3516 0.2298
∆ ↑0.0706 ↑0.0494 ↓0.0101 ↑0.0003
DS-VL2 (SFT) 0.2831 0.2513 0.3415 0.2301

Kimi-VL-A3B 0.3173 0.3089 0.3389 0.2036
∆ ↑0.0639 ↑0.0337 ↓0.0247 ↓0.0121
Kimi (SFT) 0.3812 0.3426 0.3142 0.1915

CLIP 0.2939 0.2963 0.5601 0.4011
∆1 ↑0.1279 ↑0.0928 ↓0.2075 ↓0.1650
CLIP (SFT) 0.4218 0.3891 0.3526 0.2361
∆2 ↑0.4542 ↑0.4323 ↓0.3920 ↓0.3577
F2TEval (Ours) 0.7481 0.7286 0.1681 0.0434

Table 5: Performance of only supervised fine-tuning
(SFT) on MLLMs. DS = DeepSeek. ∆1=CLIP (SFT)
vs CLIP. ∆2=F2TEval vs CLIP.

6.3 Effectiveness of supervised fine-tuning

To examine whether supervised fine-tuning (SFT)
alone on MLLMs is sufficient for effective eval-
uation, we compare F2TEval with three strong
MLLMs, including Qwen2-VL-2B, DeepSeek-
VL2-Small, and Kimi-VL-A3B. Each of the mod-
els is fine-tuned on the same training set, with-
out incorporating any multi-dimensional structure,
modular scoring heads, or HSIC optimization.

Table 5 shows that all SFT-only models fall
significantly behind our F2TEval across all met-
rics. Kimi-VL-A3B, the best-performing among
the three, only achieves 0.3812 PC and 0.3426 SC.
This is nearly half of the correlation achieved by
our method. These results indicate that parame-
ter scaling and supervised loss alone cannot align
human evaluation in F2T evaluation tasks.

6.4 Efficiency analysis

We also evaluate F2TEval in terms of parameter
size and running time on the test set in Table 6.
Since reference-based methods are not capable of
multi-dimensional evaluation and have poor perfor-
mance, we focus on reference-free method com-
parisons. F2TEval delivers the highest overall per-
formance while remaining the most lightweight
and efficient among the compared methods. It con-
tains only 0.9B total parameters, with only 0.3B
activated per dimension. It completes evaluation
in just 31 seconds, which is over 50× faster than
the second-best ChartX. Despite its compact size,
it surpasses all baselines in both PC and SC. The
effectiveness and efficiency of F2TEval make it

Model TP(AP) RT(s) PC(↑) SC(↑)

DS-VL2-Small 16B (3B) 1896 0.2125 0.2019
Kimi-VL-A3B 16B (3B) 2125 0.3173 0.3089
Gemini-1.5 Closed 1359 0.4015 0.3674
Claude-3.5 Closed 1928 0.4934 0.4593
Gemini-2 Closed 1437 0.5901 0.5797
ChartX Closed 1845 0.5965 0.5898
F2TEval (Ours) 0.9B (0.3B) 31 0.7481 0.7286

Table 6: Comparison of model efficiency and per-
formance. DS = DeepSeek. TP=Total Parameters,
AP=Activation Parameters. Closed=Closed-Source Pro-
prietary Model. RT=Running Time (NVIDIA H800
GPU for open-source models and API for closed-source
models).

well-suited for real-world applications.

7 Conclusion

In this work, we propose F2TEval and
F2TBenchmark, a lightweight and interpretable
evaluation model and a benchmark dataset for F2T
evaluation. By aligning with human evaluation
criteria, we introduce five-dimensional scoring
criteria and design an MoE architecture with
HSIC-based independence optimization to ensure
dimensions are decoupled. Extensive experiments
demonstrate that F2TEval not only outperforms
existing reference-based and reference-free meth-
ods in effectiveness, but also achieves superior
efficiency with significantly lower cost.

Limitations

The current F2TEval model is designed only for
F2T evaluation tasks. In future work, we plan to
extend our method to more complex multimodal
evaluation tasks, such as multimodal multi-turn di-
alogue and multimodal chain-of-thought (MCoT)
quality evaluation. These tasks require advanced vi-
sual perception across multiple steps and long-text
logical reasoning, which may exceed the capabil-
ities of the current CLIP-based backbone. To ad-
dress this, larger backbone models will be needed
to enhance fundamental understanding, combined
with multi-task training and reinforcement learning
to improve generalization. However, these improve-
ments may lose efficiency in exchange for better
performance.
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A Theoretical Derivation of the HSIC

A.1 Hilbert–Schmidt Independence Criterion

The Hilbert–Schmidt Independence Criterion
(HSIC) is a kernel-based statistical dependence
measure that quantifies the association between
two random variables x ∈ X and y ∈ Y by com-
puting the Hilbert–Schmidt norm of their cross-
covariance operator in a reproducing kernel Hilbert
space (RKHS).

Let Hk and Hℓ be RKHSs endowed with
positive-definite kernels k : X × X → R and
ℓ : Y × Y → R, and associated feature maps
ϕ(x) ∈ Hk, ψ(y) ∈ Hℓ. The cross-covariance
operator Cxy : Hℓ → Hk is defined as:

Cxy = E(x,y) [(ϕ(x)− µx)⊗ (ψ(y)− µy)] ,
(10)

where µx = Ex[ϕ(x)], µy = Ey[ψ(y)], and ⊗ de-
notes the tensor product. The HSIC is then defined
as the squared Hilbert–Schmidt norm of this opera-
tor:

HSIC(Pxy; k, ℓ) = ∥Cxy∥2HS. (11)

Expanding the Hilbert–Schmidt norm, the HSIC
can be expressed in terms of expectations over ker-
nel evaluations:

HSIC(Pxy; k, ℓ) = Ex,x′,y,y′
[
k(x, x′) · ℓ(y, y′)

]

+ Ex,x′
[
k(x, x′)

]
· Ey,y′

[
ℓ(y, y′)

]

− 2Ex,y

[
Ex′k(x, x′) · Ey′ℓ(y, y

′)
]
.

(12)
This formulation reflects how far the joint distri-

bution Pxy deviates from the product of marginals
Px ⊗ Py in RKHS. Under characteristic kernels,
HSIC(Pxy) = 0 if and only if x ⊥ y, making
HSIC a powerful measure of independence that
captures both linear and nonlinear dependencies.

A.2 Empirical Estimators of HSIC

Given a sample set {(xp, yp)}np=1, the empirical
estimation of HSIC is constructed via kernel Gram
matrices:

Kpq = k(xp, xq), Lpq = ℓ(yp, yq),K, L ∈ Rn×n.
(13)

The centering matrix is defined as:

H = In − 1

n
1n1

⊤
n , (14)

where 1n ∈ Rn is the all-ones column vector. Ap-
plying this centering operation to the kernel matri-
ces yields the empirical estimator of HSIC (Gretton

et al., 2005):

ĤSIC =
1

(n− 1)2
tr(KHLH). (15)

This trace-based form computes the matrix inner
product between the double-centered Gram ma-
trices, and supports efficient implementation in
gradient-based learning frameworks.

A.3 Expanded Form of HSIC Estimator
The trace expression can be equivalently expanded
into a fully element-wise form. By unfolding the
centering matrix and applying the trace identity, we
obtain:

tr(KHLH) =
n∑

p,q

KpqLpq −
2

n

n∑

p,q,r

KprLqr

+
1

n2

n∑

p,q,r,s

KprLqs.

(16)

Hence, the empirical HSIC becomes:

ĤSIC =
1

(n− 1)2

[
n∑

p,q

KpqLpq −
2

n

n∑

p,q,r

KprLqr

+
1

n2

n∑

p,q,r,s

KprLqs

]
.

(17)
This decomposition reveals three interpretable

terms: the joint similarity, the cross-covariance
correction, and the global mean adjustment. Each
summation term enumerates over independent in-
dex variables.

A.4 Application in Multi-Head Scoring
Networks

In our model, each evaluation dimension is repre-
sented by an independent scoring head, whose first-
layer weight matrix is denoted W

(i)
1 ∈ Rn×3F . For

each head i, an radial basis function (RBF) kernel
matrix is constructed over the rows of the weight
matrix:

Kpq = exp

(
−∥W(i)

1 [p]−W
(i)
1 [q]∥2

2σ2

)
(18)

Lpq = exp

(
−∥W(j)

1 [p]−W
(j)
1 [q]∥2

2σ2

)
(19)

The total HSIC loss is computed by summing
across all unordered pairs of heads:

LHSIC =
D∑

i=1

D∑

j=i+1

ĤSIC
(
W

(i)
1 ,W

(j)
1

)
, (20)
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Figure A.1: Samples from F2T datasets.

where D is the number of scoring heads. This regu-
larization encourages each scoring head to develop
a semantically distinct representation by penaliz-
ing statistical dependence between their kernel-
induced embeddings. Compared to conventional
orthogonality or covariance constraints, HSIC cap-
tures both linear and nonlinear relationships via
kernel embeddings, providing a more flexible and
theoretically grounded mechanism for inter-head
disentanglement.

B Details of dataset annotation

Samples from different F2T datasets are shown in
Figure A.1. F2TBenchmark is annotated by a team
of 8 trained annotators, all with backgrounds in
data science, linguistics, or scientific writing, en-
suring familiarity with figure interpretation and text
quality assessment. All annotators hold undergrad-
uate and master’s degrees from top-tier universities,

and while being native Chinese speakers, they pos-
sess excellent proficiency in English, enabling them
to accurately evaluate F2T generation in bilingual
contexts. As shown in Fig. A.2, to facilitate effi-
cient and consistent annotation, we develop a cus-
tom web-based annotation interface that presents
annotators with the figure, caption, contextual text,
and the generated summary in an integrated lay-
out. The tool enables annotators to assign scores
for each of the five evaluation dimensions through
a structured and user-friendly interface. It sup-
ports standardized input, clear visualization, and
real-time JSON export, effectively streamlining the
annotation workflow and reducing cognitive load.
To maintain annotation quality, annotators followed
strict and detailed scoring criteria (Figure 6), with
proofreading to align understanding across tasks.
The average hourly payment for each annotator is
150 CNY, exceeding the local minimum wage and
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Figure A.2: The custom web-based annotation interface.

ensuring fair compensation for expert-level anno-
tation work. All data sources used for annotation
are publicly available and comply with relevant us-
age policies and privacy regulations. The resulting
F2TBenchmark dataset and code will be released
under the MIT license to support academic research
in multimodal evaluation.

C Baseline and setup

C.1 Reference-based methods

BLEU (Bilingual Evaluation Understudy) (Pap-
ineni et al., 2002) is a precision-oriented metric
that measures the n-gram overlap between gener-
ated texts and reference texts. The BLEU score is
computed as:

BLEU = BP · exp
(

N∑

n=1

wn log pn

)
(21)

Here, pn denotes the modified precision for n-
grams of size n, wn is the weight assigned to
the n-gram (typically wn = 1/N ), and BP is the
brevity penalty to penalize short generated texts.

The brevity penalty is defined as:

BP =

{
1 if c > r

exp(1− r
c ) if c ≤ r

(22)

where c is the length of the generated sentence and
r is the effective reference length, often chosen as
the closest in length to c.

ROUGE (Recall-Oriented Understudy for Gist-
ing Evaluation) (Lin, 2004) is a family of recall-
based metrics that measure the overlap between the
generated texts and reference summaries. ROUGE-
N computes the recall of n-grams:

ROUGE-N =

∑
g min

(
c(g), r∗(g)

)
∑

g r
∗(g)

. (23)

g denotes an n-gram; c(g) is the number of times
g occurs in the generated text C; CountS(g) is the
occurrence count of g in a reference summary S;
and r∗(g) = maxS∈{Ref} CountS(g) is the aggre-
gated reference count across multiple references.

ROUGE-L focuses on the longest common sub-
sequence (LCS) between the generated text and
reference. It is defined as:

ROUGE-L =
(1 + β2) ·RLCS · PLCS

RLCS + β2 · PLCS
(24)
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Here, RLCS = LCS(C,R)/len(R) is the recall,
PLCS = LCS(C,R)/len(C) is the precision, and
β is a parameter that balances the relative impor-
tance of recall and precision. C and R denote the
generated texts and reference texts respectively.

BERTScore (Zhang et al., 2019) evaluates the
semantic similarity between generated texts and
reference texts using contextual embeddings from
pretrained BERT models. The precision-oriented
version is defined as:

BERTScore =
1

|C|
∑

c∈C
max
r∈R

cos_sim(Ec, Er),

(25)
where C and R are the sets of tokens in the gener-
ated texts and reference texts, respectively. Ec and
Er denote the contextual embeddings of tokens c
and r, and cos_sim(·, ·) represents the cosine sim-
ilarity function. A symmetrical version averages
both precision and recall directions, yielding an F1
score.

CIDEr (Consensus-based Image Description
Evaluation) (Vedantam et al., 2015) is designed
to evaluate the consensus between a generated text
and a set of references using TF-IDF-weighted n-
grams. The CIDEr score for n-grams of order n is
computed as:

CIDErn(c, S) =
1

|S|
∑

s∈S

gn(c) · gn(s)
∥gn(c)∥ · ∥gn(s)∥

.

(26)
The final CIDEr score is obtained by averaging

across multiple n-gram orders:

CIDEr(c, S) =
4∑

n=1

wn · CIDErn(c, S). (27)

In these equations, c is the generated summary, S
is the set of reference summaries, gn(·) represents
the TF-IDF vector for n-grams of order n, wn is
the weight assigned to each n-gram order (usually
uniform), and ∥ · ∥ denotes the Euclidean norm.
These metrics offer complementary perspectives
on summary quality, encompassing surface overlap,
syntactic structure, and semantic alignment.

C.2 Reference-free Methods

CLIPScore (Hessel et al., 2021) is a reference-free
metric that evaluates the alignment between gen-
erated texts and images by computing the cosine
similarity between their CLIP embeddings.

Qwen2-VL (Team, 2025) is an advanced vision-
language model that introduces a Naive Dynamic
Resolution mechanism, enabling dynamic process-
ing of images with varying resolutions into visual
tokens. This approach enhances the model’s effi-
ciency and accuracy in visual representation.
DeepSeek-VL2 (Wu et al., 2024) is a Mixture-of-
Experts vision-language model that excels in tasks
such as visual question answering, optical charac-
ter recognition, and document understanding. It
achieves state-of-the-art performance with efficient
parameter utilization.
Kimi-VL-A3B (Team et al., 2025) is an open-
source Mixture-of-Experts vision-language model
designed for advanced multimodal reasoning and
long-context understanding. It activates only 2.8B
activation parameters in its language decoder, bal-
ancing performance and computational efficiency.
Claude-3-Haiku (Anthropic, 2024a) is An-
thropic’s fastest and most compact model in the
Claude 3 family, optimized for near-instant respon-
siveness.
Claude-3.5-Haiku (Anthropic, 2024b) combines
rapid response times with improved reasoning ca-
pabilities. It surpasses previous models on various
intelligence benchmarks, making it ideal for tasks
that require both speed and intelligence.
Gemini-1.5-Flash (Team et al., 2024) is a
lightweight multimodal model developed by
Google, designed for high-volume, low-latency
tasks. It balances speed, performance, and afford-
ability, making it suitable for applications like sum-
marization and multimodal processing.
Gemini-2.0-Flash (Team et al., 2024) offers en-
hanced performance and speed. It supports multi-
modal inputs and outputs, including text, images,
and audio, and is built to power agentic experiences
with low latency and high throughput.
ChartX (Xia et al., 2024) proposes a reference-
free evaluation method based on GPT-4o, which
can achieve a single-dimension 1-5 rating score for
chart summarization.

C.3 Setup details
To ensure a fair and reproducible evaluation,
we adopt distinct setups for reference-based and
reference-free baselines.

For reference-based baselines (BLEU (Papineni
et al., 2002), ROUGE (Lin, 2004), CIDEr (Vedan-
tam et al., 2015), BERTScore (Zhang et al., 2019)),
we use the standard evaluation toolkit with default
configurations. For reference-free methods, we
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distinguish between open-source and proprietary
models. Open-source models are evaluated locally
using public checkpoints, while proprietary mod-
els are accessed through official APIs. Scores are
extracted through prompt-based responses. The
details are as follows:
Open-source models: For Qwen2-VL2,
DeepSeek-VL23, and Kimi-VL-A3B4, we
utilize HuggingFace and corresponding model
checkpoints and experiments are conducted
on NVIDIA H800 GPU. All outputs are post-
processed to extract numerical scores aligned
with our evaluation criteria. Fine-tuned models
are retrained on task-specific data following their
respective original settings.
Proprietary models: For Claude, Gemini and
related variants, all evaluations are conducted
through official API calls with default model pa-
rameters, using consistent instruction templates
across models (we use the five-dimensional scor-
ing criteria as the instruction, shown in Figure 6).
Since ChartX is based on the GPT-4o model, we
use the official GPT-4o API and ChartX default
settings and improvements5.
F2TEval settings: For our F2TEval model, all
experiments are conducted on NVIDIA H800 GPU.
The experimental settings are shown in Table 7.

Name Variable Value

Shared expert count - 1
Dimension-specific experts - 5

Optimizer - AdamW
Learning rate η 1× 10−4

Batch size N 16
Random seed s 42

HSIC regularization coefficient λhsic 0.1
Alignment loss coefficient λali 0.1

Feature dimension F 512
Evaluation dimensions D 5

Hidden dimension of the head n 512

Table 7: Hyper-parameter statistics for F2TEval.

D Evaluation Metrics

D.1 Pearson Correlation

Pearson correlation coefficient evaluates the lin-
ear relationship between predicted scores ŷ =
[ŷ1, . . . , ŷN ] and ground-truth scores y =

2https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct
3https://huggingface.co/deepseek-ai/deepseek-vl2-small
4https://huggingface.co/moonshotai/Kimi-VL-A3B-

Instruct
5https://github.com/Alpha-Innovator/ChartVLM

[y1, . . . , yN ]. It is defined as:

r =

∑N
i=1(ŷi − ¯̂y)(yi − ȳ)√∑N

i=1(ŷi − ¯̂y)2 ·
√∑N

i=1(yi − ȳ)2
(28)

where ¯̂y and ȳ denote the sample means of the
predicted and ground-truth scores, respectively. A
higher r indicates stronger linear agreement.

D.2 Spearman Correlation
Spearman correlation assesses the rank-order cor-
relation between ŷ and y, capturing monotonic
relationships irrespective of scale. It is computed
as:

ρ = 1− 6
∑N

i=1 d
2
i

N(N2 − 1)
(29)

where di = rank(ŷi)− rank(yi) is the difference in
ranks of the predicted and true scores for the i-th
instance, and N is the number of samples. A value
of ρ close to 1 indicates strong rank consistency.

D.3 Mean Absolute Error (MAE)
Mean Absolute Error (MAE) measures the aver-
age absolute deviation between predicted scores
and ground truth labels. It reflects the average
magnitude of prediction errors, regardless of their
direction:

MAE =
1

N

N∑

i=1

|ŷi − yi| (30)

where N is the number of samples, ŷi denotes the
predicted score for the i-th sample, and yi denotes
the corresponding ground truth score. A lower
MAE indicates better overall prediction accuracy
in terms of absolute deviation.

D.4 Mean Squared Error (MSE)
Mean Squared Error (MSE) computes the average
of squared differences between predicted and true
scores, placing greater emphasis on larger errors:

MSE =
1

N

N∑

i=1

(ŷi − yi)
2 (31)

Here, N is the number of evaluation samples, ŷi is
the predicted score, and yi is the true score. Com-
pared to MAE, MSE penalizes large deviations
more severely due to the squared term, making it
more sensitive to outliers in prediction error.
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