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Abstract

Large Language Models (LLMs) have the ten-
dency to hallucinate, i.e., to sporadically gen-
erate false or fabricated information. This
presents a major challenge, as hallucinations
often appear highly convincing and users gen-
erally lack the tools to detect them. Uncertainty
quantification (UQ) provides a framework for
assessing the reliability of model outputs, aid-
ing in the identification of potential hallucina-
tions. In this work, we introduce pre-trained
UQ heads: supervised auxiliary modules for
LLMs that substantially enhance their ability to
capture uncertainty compared to unsupervised
UQ methods. Their strong performance stems
from the transformer architecture in their de-
sign, in the form of informative features derived
from LLM attention maps and logits. Our ex-
periments show that these heads are highly ro-
bust and achieve state-of-the-art performance in
claim-level hallucination detection across both
in-domain and out-of-domain prompts. More-
over, these modules demonstrate strong gener-
alization to languages they were not explicitly
trained on. We pre-train a collection of UQ
heads for popular LLM series, including Mis-
tral, Llama, and Gemma. We publicly release
both the code and the pre-trained heads.1

1 Introduction

Uncertainty quantification (UQ) (Gal and Ghahra-
mani, 2016; Baan et al., 2023; Geng et al., 2024;
Zhang et al., 2024a) has become an increasingly im-
portant topic in natural language processing (NLP),

♢ Equal contribution
1http://uncertainty-head.nlpresearch.group

particularly for addressing challenges with hallu-
cinations (Huang et al., 2025) and low-quality out-
puts of large language models (LLMs) (Malinin
and Gales, 2021; Kuhn et al., 2023; Fadeeva et al.,
2024). UQ offers the potential to improve the safety
and reliability of LLM-based applications by flag-
ging highly uncertain generations. Such genera-
tions could be discarded or marked as untrustwor-
thy, thus reducing the risk of misleading informa-
tion reaching users (Zhang et al., 2024a,b; Huang
et al., 2024). Contrary to other methods for detect-
ing hallucinations that rely on external knowledge
bases or additional LLMs (Ji et al., 2023; Min et al.,
2023; Chen et al., 2023), UQ methods assume that
LLMs naturally encode information about their
own limitations, and this self-knowledge can be
efficiently accessed.

There are many existing UQ techniques for well-
defined tasks such as classification and regression
(Zhang et al., 2019; He et al., 2020; Xin et al.,
2021; Wang et al., 2022; Vazhentsev et al., 2023a;
He et al., 2024a). However, applying UQ to text
generation has unique challenges, including (i) po-
tentially multiple correct answers with different
surface forms (Kuhn et al., 2023), (ii) the need to
aggregate uncertainties across multiple condition-
ally dependent predictions (Zhang et al., 2023),
(iii) generated tokens not contributing to uncer-
tainty equally (Duan et al., 2024), and (iv) some
sources of uncertainty being irrelevant for hallu-
cination detection (Fadeeva et al., 2024). These
challenges hinder the performance of classical un-
supervised UQ techniques, as they are difficult to
address explicitly within a single method. Recently,
researchers have proposed learning the aforemen-
tioned intricacies from the annotated data and de-
veloped supervised methods for UQ and hallucina-
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Figure 1: The architecture of uncertainty quantification heads. The example represents a text generated using an
LLM, containing the hallucination 20 Grammy Awards highlighted in red.

tion detection (Azaria and Mitchell, 2023; Li et al.,
2024; He et al., 2024b; Chuang et al., 2024).

We continue this line of work by introducing pre-
trained UQ heads: supervised auxiliary modules
for LLMs that substantially enhance their ability
to capture uncertainty compared to unsupervised
UQ methods (Figure 1). Their strong performance
stems from the transformer architecture, in deriv-
ing informative features from LLM attention maps
and logits. These heads do not require re-training
of the entire LLM and do not alter its outputs. In
addition to their high performance, these modules
maintain a relatively small memory and computa-
tional footprint, ensuring practical usability.

Our experiments show that the proposed uncer-
tainty heads are highly robust and achieve state-
of-the-art performance in claim-level hallucination
detection across both in-domain and out-of-domain
prompts, outperforming other supervised and un-
supervised techniques. Moreover, these modules
demonstrate strong generalization to languages
they were not explicitly trained on.

Training UQ heads requires annotated hallucina-
tions in LLM outputs. To construct training data,
we created an automatic annotation pipeline, which
allowed us to scale experiments and to pre-train UQ
heads for various LLMs. We release a collection
of pre-trained UQ heads for popular open-source
instruction-following LLMs, including the Llama
series (Grattafiori et al., 2024), Gemma 2 (Team
et al., 2023), and Mistral (Jiang et al., 2023). The

contributions of this work are as follows:
• We design a pre-trained uncertainty quantifi-

cation head: a supplementary module for an
LLM that yields substantially better perfor-
mance at claim-level hallucination detection
than classical unsupervised UQ methods and
state-of-the-art supervised techniques.

• We conduct an extensive empirical investiga-
tion and find that uncertainty heads show good
generalization across various domains and lan-
guages. We perform a comprehensive ablation
study that compares various feature sets ar-
chitectures, and approaches to training data
generation.

• We build and release a collection of pre-
trained UQ heads for popular series of open-
source instruction-tuned LLMs. These mod-
ules could be seamlessly integrated into text
generation code and be used as off-the-shelf
hallucination detection tools.

2 Related Work

Unsupervised UQ methods for LLMs can be
broadly categorized into five groups: information-
based approaches (Kuhn et al., 2023; Farquhar
et al., 2024), density-based scores (Vazhentsev
et al., 2022, 2023b; Ren et al., 2023), self-
consistency methods (Manakul et al., 2023; Lin
et al., 2024; Zhang et al., 2024a; Qiu and Miikku-
lainen, 2024), methods grounded in mechanistic
analysis of LLMs (Yüksekgönül et al., 2024; Qiu

35702



and Miikkulainen, 2024), and verbalized (reflex-
ive) strategies (Kadavath et al., 2022; Tian et al.,
2023). Although all of them have demonstrated
potential, their effectiveness in hallucination detec-
tion remains limited (Vashurin et al., 2025).

Supervised UQ methods leverage the internal
states of LLMs as features for predicting hallu-
cinations (Azaria and Mitchell, 2023; Slobodkin
et al., 2023; Su et al., 2024; CH-Wang et al., 2024;
He et al., 2024b; Chuang et al., 2024; Vazhentsev
et al., 2025b,a). These recently-developed methods
achieve substantial performance gains over unsu-
pervised approaches, especially for in-domain data.

Azaria and Mitchell (2023) proposed one of the
first methods of this kind called SAPLMA, where
they trained a perceptron with layer activations
as features to detect when a LLM “agrees” with
false statements. Slobodkin et al. (2023) trained
a linear model on hidden states to detect question
“answerability”, effectively identifying unanswer-
able questions that typically lead to hallucinations.
CH-Wang et al. (2024) extend this approach to
span-level hallucination detection, using manually
annotated hallucinations. He et al. (2024b) experi-
ment with activation maps, token ranks, and proba-
bilities from unembedding matrices across layers.
Chuang et al. (2024) introduce a feature set derived
from LLM attention maps.

Limitations of previous methods. Azaria and
Mitchell (2023); Slobodkin et al. (2023); Su et al.
(2024) focused on sequence-level methods and are
not able to detect fragment-level hallucinations.
Many models, including Slobodkin et al. (2023);
Azaria and Mitchell (2023); Chuang et al. (2024);
Su et al. (2024) used non-contextualized architec-
tures such as simple linear probes or multi-layer
perceptron. Although He et al. (2024b) integrated a
linear model with an attention mechanism and CH-
Wang et al. (2024) used a contextualized model
combining convolutions, ResNet, and GRU, these
architectures are considered outdated and exhibit
limitations in quality and computational efficiency.
The features of the majority of models included
only hidden states (Azaria and Mitchell, 2023; Slo-
bodkin et al., 2023; CH-Wang et al., 2024; Su et al.,
2024), which limits their generalization. Only He
et al. (2024b) and Chuang et al. (2024) performed
more elaborate feature engineering. Finally, syn-
thetic data that is leveraged through enforced de-
coding is used in some work (Azaria and Mitchell,
2023; Slobodkin et al., 2023). Compared to the

native outputs generated by LLMs, such data may
introduce additional biases and adversely affect the
performance of hallucination detectors.

In contrast to most prior work, we focus on build-
ing UQ heads specifically for detecting hallucina-
tions at the fragmet level, i.e., individual atomic
claims. Our approach leverages the strengths of
previous methods while addressing their key lim-
itations: (i) instead of outdated architectures, we
build our solution on the transformer architecture;
(ii) we investigate the importance of various fea-
ture sets for hallucination detection, finding that the
most informative features are derived from atten-
tion maps of LLMs; and (iii) we build an automatic
pipeline to generate training data using native LLM
responses. This pipeline allows us to build training
data at a larger scale and pre-train UQ heads for a
range of popular LLMs.

3 Uncertainty Quantification Head

Consider the LLM P (ti | x, t<i) with L layers
receiving a prompt x of length n and generating
tokens t = {t1, t2, ..., tT }. We also have a set of
atomic claims C = {c1, c2, ..., cK}, each represent-
ing a mapping to a subset of tokens in the output.
Atomic claims, for example, can be extracted by
another lightweight model. In this work, we for-
malize the claim-level uncertainty quantification
task as building a function U(ci|x, t) ∈ [0, 1] that
determines whether the claim ci ∈ C is a hallucina-
tion. A large value of U(ci|x, t) indicates a higher
likelihood that the claim ci is a hallucination.

3.1 Background on Features for UQ and
Hallucination Detection

Hidden states h(t) extracted from LLM layers
during the generation of a token t have been shown
to serve as strong indicators of hallucinations in
several studies (Azaria and Mitchell, 2023; CH-
Wang et al., 2024).

Fhs(t) = h(t) (1)

Lookback Lens (Chuang et al., 2024) derives
features from the LLM’s attention maps. The key
idea is that when the model attends to the prompt, it
attempts to solve the task, whereas attending to gen-
erated tokens causes it to disregard the prompt, in-
creasing the likelihood of hallucination. They sug-
gest using the so-called lookback ratio – the ratio
of aggregated attention to tokens of the prompt and
the generated tokens. Consider each layer of the
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LLM contains Q attention heads, q is an index of a
head, and αql

ij represents the softmax-weighted at-

tention score from token ti to token tj . A
q,l
context(ti)

and Aq,l
gen(ti) are the average attention weights to

the input x and to the previously generated output
t<i, respectively:

Aq,l
context(ti) =

1

|x|

|x|∑

j=1

αql
ij ,

Aq,l
gen(ti) =

1

i− 1− |x|
i−1∑

j=|x|+1

αql
ij .

Then the lookback ratio of the model head q and
the layer l for the token ti is defined as follows:

LRq,l(ti) =
Aq,l

context(ti)

Aq,l
context(ti) +Aq,l

gen(ti)
,

FLBLens(ti) = {LRq,l(ti)}Q,L
q,l . (2)

Factoscope (Min et al., 2023) in addition to model
activations, uses a set of features that leverage to-
ken probabilities, the similarity of token embed-
dings across layers, and the evolution of token
ranks across layers. Commonly, given a token ti
at the position i, the LLM outputs hidden states
{hl(ti)}Ll=1, where the final hidden state hL(ti) is
passed through the unembedding matrix E to pre-
dict token logits. Factoscope applies E to each
LLM layer, obtaining a set of token logits on a spe-
cific layer l: zli = E (hl(ti)) . Then, it extracts the
logits of the top-m tokens from each layer l:

Ftop-tokens(ti) =
{
zli(t) | t ∈ topm(zli)

}L

l=1
. (3)

To analyze token evolution across layers, Fac-
toscope computes the cosine similarities between
embeddings of top tokens from adjacent layers ob-
tained by applying the unembedding matrix:

Sl(ti) = { cos(Ew1 , Ew2) |
w1 ∈ topm(zli), w2 ∈ topm(zl+1

i )}

Ftokens-sim(ti) = {Sl(ti)}L−1
l=1 . (4)

Finally, Factoscope tracks token rank evolution
across layers: Rl(ti) = rank[ti, zli], where rank
indicates the position of ti in the descending order
of zli values (top-ranked token receives 1). The
ranks are further normalized to the range [0, 1]:

Frank(ti) = {Rl(ti)
−1}Ll=1. (5)

3.2 Features for Pre-trained UQ Heads
We experimented with all the aforementioned types
of features and their combinations. However, we
found that all of them exhibited various limitations.
Hidden states encode a lot of domain-specific in-
formation, increasing the risk of overfitting. Fac-
toscope features incur substantial computational
overhead while offering limited additional infor-
mation beyond what is captured by hidden states.
Attention features are quite powerful, but the ag-
gregation suggested in Lookback Lens results in
the loss of valuable information. Moreover, they
underperform without the addition of logits or prob-
abilities. Therefore, for our pre-trained UQ heads,
we use two groups of features.
Attention maps of the LLM. Mechanistic analysis
of attention weights reveals that attention patterns
often reflect the model’s behavior under uncertainty
(Yüksekgönül et al., 2024). Moreover, attention en-
codes the conditional dependency between the gen-
eration steps (Zhang et al., 2023). For each token,
we obtain the attention maps to k previous tokens
from each attention head and layer and flatten them
into a single feature vector without aggregation:

Fatt(ti) = {αql
i,i−j}

k,Q,L
j,q,l . (6)

When (i− j) is negative, we pad the feature vector
with zero placeholders. While considering many
previous tokens might explode the feature space
size, we empirically found that the optimal value
of k is typically very small: 1 ≤ k ≤ 5 (see Fig-
ure 5). As a contextualized architecture, the trans-
former can automatically extract meaningful pat-
terns across the entire generated sequence without
requiring explicit features from previous tokens.
Probability distribution of the LLM might be
misleading, but it still conveys useful information
about the model’s conditional confidence at the cur-
rent generation step. This group of features consists
of logarithms of the top-m token probabilities:

Fprob(ti) = { logP (t | x, t<i) |
t ∈ topm(P (· | x, t<i))}.

(7)

Features from both groups are concatenated into a
token-level vector: F (t) = Fatt(t) ◦ Fprob(t).

3.3 Architecture of UQ Heads
The architecture of the UQ head is depicted in Fig-
ure 1. To ensure flexibility and expressive capac-
ity, we build it on top of a transformer backbone.
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It consists of a feature size reduction network, a
multi-layer transformer encoder, and a two-layer
classification neural network. For each component,
we use GELU activation functions and dropout reg-
ularization.

Consider that for a prompt x, a LLM generates
a text y that includes an atomic claim c. The uncer-
tainty score of a claim uc is defined as:

uc = P
(
“c is a hallucination” | x, t

)
.

Below is the step-by-step algorithm for obtaining
the uncertainty score. For simplicity, we describe
the process for a single claim c.
Token-level feature extraction. For each token t
in the sequence y, we compute a token-level feature
vector F (t), and the extracted feature vectors are
then passed through a fully connected (FC) projec-
tion layer, FCproj, to match the hidden dimension
of the transformer encoder:

f̃t = FCproj (F (t)) .

Claim-specific contextualization. We use a trans-
former encoder to obtain the contextualized repre-
sentation of the claim. To focus the model on the
specific claim c, for each token t ∈ c, we augment
its projected feature vector with a single, trainable
claim-marking embedding E:

f̃t,c = f̃t + E · 1(t ∈ c),

where 1(·) is an indicator function.
Transformer encoding. The contextualized fea-
ture sequence, denoted as F̃c = {f̃t,c}t∈x◦y, is
processed by a transformer encoder, producing a
sequence of contextualized hidden states Hc =
{ht,c}t∈x◦y:

Hc = Transformer(F̃c).

Pooling and representation. To derive a single
representative vector for the claim c, we perform
masked average pooling over the transformer’s out-
put. We average only the contextualized token rep-
resentations ht,c ∈ Hc corresponding to the tokens
within the claim:

hc =
1

|c|
∑

t∈c
ht,c.

Classification. Finally, the claim representa-
tion vector hc is passed through a two-layer

classification network regularized with dropout,
MLPclassifier, followed by a sigmoid activation that
produces the uncertainty score uc:

uc = σ
(
MLPclassifier(hc)

)
.

Training loss. Consider that we have a dataset D =
{(x,y, c, v)}, where for each claim c in answer y
for the prompt x, we have an annotation of its
ground-truth veracity v. The UQ head is trained
using a binary cross-entropy loss function:

L = −E(x,y,c,v)∼D
[
v log uc+(1−v) log

(
1−uc

)]
.

When we train heads, we freeze the “body” of the
LLM, so that its generations stay exactly the same.

4 Pipeline for Training Data Generation

The training data generation pipeline is presented
in Figure 4 in Appendix A. It starts with prompting
the LLM to produce responses for a list of ques-
tions such as Write a biography of person X or
Write the history of the city Y . We select relatively
famous named entities so the task is not very hard
for the model based on its parametric knowledge,
while at the same time, it is not trivial, so outputs
contain a substantial number of hallucinated claims.
We also do not use synthetically-generated hallu-
cinations, as they introduce a bias between what
the model actually generates vs. the synthetic data.
The prompts for other domains can be found in
Table 6 in Appendix B.

We split the obtained responses into atomic
claims using GPT-4o based on the prompts from
(Fadeeva et al., 2024; Vashurin et al., 2025). Each
claim is then automatically classified by GPT-4o
as supported, unsupported, or unknown. The last
category is intended for general claims, for which
estimating the veracity is meaningless. To ensure
high annotation quality, the claim labeling process
is two-staged: first, we ask the model to provide an
elaborated answer via chain-of-thought; then, we
ask it to summarize its answer into one word. As
shown in Table 4 in Appendix A, the performance
of such annotation using GPT-4o is high (around
90%, with the exception of German, where it is
slightly lower at 83%). This performance could
likely be further improved by using more advanced
LLMs or by employing model ensembles.

The pipeline enables the cost-effective construc-
tion of large datasets annotated with claim-level
hallucinations across various LLMs. The cost of
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annotating responses from a single LLM on the
training biographies dataset, consisting of 3,300
prompts, was approximately $100. Statistics about
the training dataset, as well as the accuracy of LLM
responses, are presented in Table 5.

5 Experiments

5.1 Experimental Setup

Evaluation datasets. We constructed eight test
sets of English questions designed to prompt LLMs
to generate text across various domains: person
biographies, cities, movies, inventions, books, art-
works, landmarks, and events. Each test set con-
tains 100 questions, generated by prompting GPT-
4o and Claude-3-Opus to output 100 famous do-
main items, e.g., 100 famous landmarks. Examples
of the prompts are presented in Appendix B.1.2

The labels for the test sets are obtained using the
same annotation pipeline as for the training data.

To assess the cross-lingual generalizability of
pre-trained UQ modules, we conducted evaluations
on Russian and Chinese prompts from Vashurin
et al. (2025), and additionally created a similar test
set with German prompts. Test sets for each lan-
guage consist of 100 biography-related questions.
The data statistics are presented in Table 6.

Metrics. In the main experiments, we measured
the claim-level performance of detecting invalid
claims. For this purpose, we used PR-AUC, where
“unsupported” claims represent the positive class.

Models. We conducted our primary experiments
with Mistral 7b Instruct v0.2 (Jiang et al., 2023)
and Gemma 2 9b Instruct (Team et al., 2023).

Training procedure and hyper-parameter opti-
mization. We trained the uncertainty heads us-
ing Adam with a linear learning rate decay and
warmup. We selected the values of the hyper-
parameters on the validation set of the biographies
dataset using the claim-level PR-AUC metric and
the Bayesian optimization algorithm available in
the W&B framework. We observed that among
important hyper-parameters are the weight of in-
stances with positive labels, the number of epochs,
and the learning rate. The best values of hyper-
parameters for each of the tested models are pre-
sented in Table 14 in Appendix F.

Baselines. We compare our method to several un-
supervised baselines: Maximum Claim Probability

2All data used for training and testing is available at
https://huggingface.co/llm-uncertainty-head

(an adaptation of Maximum Sequence Probabil-
ity for claims), Mean Token Entropy, Perplexity,
Claim Conditioned Probability (CCP) (Fadeeva
et al., 2024), and Attention Score (Qiu and Mi-
ikkulainen, 2024). Furthermore, we evaluated
our UQ heads against supervised methods, includ-
ing SAPLMA, Factoscope, and Lookback Lens.
SAPLMA predicts token-level uncertainties using
a 3-layer perceptron, and the mean uncertainty is
calculated over claim-related tokens during infer-
ence. We adapt Lookback Lens and Factoscope to
the claim level. Lookback Lens uses a Logistic Re-
gression model trained on lookback ratios. Our im-
plementation of Factoscope uses our transformer-
based architecture and the feature set that includes
hidden states, top token embeddings with similar-
ities, and token ranks. The values of the hyperpa-
rameters for the baselines selected after tuning are
given in Appendix F.

5.2 Results
Main results. Table 1 shows the performance
of the unsupervised UQ techniques and the super-
vised detectors trained on persons’ biographies for
claim-level hallucination detection with Mistral 7B
Instruct v0.2. To evaluate supervised methods, the
domain biographies represents the in-domain test
set and all other domains (Cities, Movies, Inven-
tions, Books, Artworks, Landmarks, and Events)
represent out-of-domain (OOD) test sets. Note that
in this evaluation, both the questions and the LLM’s
responses across all domains are in English.

Among the unsupervised techniques, uncertainty
scores based on CCP yield the best performance,
confidently outperforming other methods on bi-
ographies, cities, artworks, and landmarks.

Supervised UQ methods greatly outperform
unsupervised techniques on the in-domain test set.
Moreover, remarkably, all considered supervised
methods demonstrate substantial generalization
and the ability to perform well beyond the training
domain of people’s biographies.

Our UQ head (UHead) demonstrates the best
results in both in-domain and out-of-domain
evaluations. For in-domain evaluation, UHead
outperforms the best unsupervised method CCP
by 16% (absolute) in terms of PR-AUC. The gap
is also large for out-of-domain evaluation, e.g.,
for books, UHead outperforms CCP by 23%, for
movies and events by 20%, for artworks by 18%.
Table 9 in Appendix E also shows that UHead pre-
trained on biographies generalizes to question an-
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Method
Test Sets Biographies

(in domain) Cities Movies Inventions Books Artworks Landmarks Events

Random .291 ± .014 .205 ± .013 .099 ± .008 .163 ± .012 .110 ± .010 .264 ± .014 .117 ± .010 .113 ± .009

MCP .412 ± .020 .310 ± .023 .205 ± .020 .319 ± .024 .145 ± .014 .317 ± .017 .135 ± .012 .141 ± .017

Perplexity .361 ± .018 .231 ± .017 .170 ± .016 .232 ± .019 .138 ± .014 .335 ± .018 .128 ± .011 .123 ± .013

Max Token Entropy .416 ± .019 .289 ± .022 .241 ± .025 .381 ± .031 .171 ± .019 .321 ± .015 .141 ± .017 .161 ± .019

Attention Score .333 ± .019 .279 ± .018 .114 ± .011 .211 ± .017 .114 ± .011 .202 ± .010 .125 ± .011 .132 ± .012

CCP .496 ± .019 .368 ± .025 .267 ± .027 .380 ± .028 .167 ± .018 .382 ± .022 .196 ± .019 .171 ± .018

SAPLMA .536 ± .021 .435 ± .027 .269 ± .030 .350 ± .025 .292 ± .029 .534 ± .020 .350 ± .030 .235 ± .025

Factoscope .611 ± .021 .468 ± .029 .344 ± .028 .424 ± .029 .315 ± .030 .485 ± .019 .279 ± .026 .265 ± .025

Lookback Lens .557 ± .021 .449 ± .025 .254 ± .025 .391 ± .027 .259 ± .028 .464 ± .021 .257 ± .025 .295 ± .030

UHead (Ours) .660 ± .020 .487 ± .028 .466 ± .036 .485 ± .027 .395 ± .033 .561 ± .020 .340 ± .024 .369 ± .030

Table 1: PR-AUC for various UQ methods for hallucination detection of the Mistral 7B Instruct v0.2 model on
English datasets. Biographies represent the in-domain dataset for supervised UQ methods. The standard deviation
is estimated using the bootstrap method.

Method
Language English

(in domain) Russian Chinese German

Random .133 ± .010 .337 ± .012 .226 ± .012 .152 ± .010

MCP .180 ± .017 .433 ± .016 .307 ± .017 .203 ± .016

Perplexity .136 ± .012 .395 ± .015 .287 ± .016 .149 ± .009

Max Token Entropy .202 ± .020 .437 ± .014 .444 ± .021 .217 ± .017

Attention Score .146 ± .018 .446 ± .026 .230 ± .017 .229 ± .023

CCP .307 ± .024 .493 ± .014 .439 ± .023 .306 ± .024

SAPLMA .342 ± .023 .514 ± .019 .331 ± .019 .391 ± .023

Factoscope .354 ± .026 .532 ± .018 .350 ± .023 .380 ± .023

Lookback Lens .359 ± .025 .576 ± .016 .479 ± .024 .390 ± .023

UHead (Ours) .457 ± .026 .581 ± .017 .556 ± .023 .455 ± .025

Table 2: PR-AUC of UQ methods on various languages
using the Gemma 2 9b Instruct model. Supervised de-
tectors were trained on English-only biographies data.
The standard deviation is estimated using bootstrap.

Method
Test Set Biographies (dev)

UHead (only hidden states) .582
UHead (att. + probs. + hs.) .589
UHead (Factoscope) .588
UHead (LookBack Lens) .609
UHead (att.) .617
UHead (att. + probs.) (ours) .642

Table 3: PR-AUC scores for UQ heads trained with var-
ious feature sets on the Mistral 7B Instruct v0.2 model.
Performance was evaluated using the validation set of
the biographies domain after hyperparameter tuning.

swering on the TruthfulQA and SciQ datasets(Lin
et al., 2022), outperforming unsupervised base-
lines.

When evaluated alongside supervised meth-
ods, UHead surpasses the closest competitor,
Factoscope, by 5% for the in-domain evaluation. In
OOD evaluation, it confidently outperforms other
supervised methods across all domains, except for
landmarks, where it is slightly below the closest
competitor by 1%.

Analyzing other supervised methods, the second-
best scores are usually demonstrated by Factoscope.
We assume that the underperformance of the base-

line based on the Factoscope features compared to
UHead lies in the use of layer activations, which
limits its generalization. Another module that relies
on hidden states is SAPLMA. In addition to the fea-
ture limitations, it also has architectural limitations,
which further hurt its performance. For landmarks,
SAPLMA shows good results, but for other test
sets, it stays behind Factoscope and UHead. Com-
pared to UHead, it lags by 12% on in-domain evalu-
ation and up to 20% on OOD evaluation. Lookback
Lens also usually falls behind UHead and Facto-
scope; we believe that its main problem is its weak
linear architecture.

The similar evaluation for Llama-3.1 (Table 13
in Appendix E) shows a similar pattern; UHead
outperforms all other supervised and unsupervised
baselines in the majority of domains. Only for
inventions and events, UHead slightly falls behind
Factoscope and Lookback Lens.

Cross-lingual generalization. Table 2 presents
the cross-lingual results for Gemma 2 9b Instruct.
In this experiment, we train UQ modules on the
English person’s biographies as in the previous
experiment, but we evaluate the performance on
other languages. Surprisingly, UHead achieves
strong cross-lingual generalization. For all OOD
languages, UHead achieves substantial improve-
ments over the best unsupervised methods. For
Chinese, UHead is better than MTE by 10%; for
Russian, it is better than CCP by 9%; and for Ger-
man by 13%. Notably, other supervised methods
also demonstrate some level of generalization, but
in most cases, they have substantially worse perfor-
mance. Overall, these results show that UQ heads,
even if they are pre-trained on English data, can
serve as effective off-the-shelf hallucination detec-
tors for LLM outputs in other languages.
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Figure 2: (a) The distribution of correlations between
attention on the i− 1-th token and presence of the i-th
token in hallucinated claim. (b) The maximum absolute
correlation across heads and layers for the same phe-
nomenon. All scores were computed using the Mistral
model and the biographies dataset.

Analysis of feature sets. Table 3 presents the com-
parison of various feature sets in combination with
the UHead architecture on the in-domain validation
set. For each feature set, we perform an extensive
hyper-parameter value search in the same way as
for the main results. We can see that all feature sets
that leverage hidden states fall substantially behind
attention-based features. The analysis of the val-
idation loss dynamics shows that this is probably
due to quick overfitting. Models that leverage hid-
den states start overfitting after 1–3 epochs, while
models that leverage attention might not overfit
even after 10 epochs. We also note that Lookback
Lens features combined with the UHead architec-
ture provide strong performance. However, simple
attention maps without feature engineering used
in UHead yield even better results. Finally, with-
out probability-based features, UHead loses around
2.5% PR-AUC, which marks their importance.

Analysis of attention-based features. We exam-
ined attention patterns that may serve as indicators
of hallucinations in generated tokens. Figure 2a
shows the correlation between the presence of hal-
lucinations and attention weights from the gen-
erated token to the immediately preceding token
across various attention heads. While most heads
show negligible correlation, a subset of heads ex-
hibits moderate positive or negative associations.

Figure 2b further highlights that this correlation
is strongest for the token immediately preceding
the generated one. Thus, a small subset of atten-
tion heads encodes informative signals related to
hallucinations and reflects distinct model behavior
under uncertainty during generation.

These findings are also confirmed by Figures 5
and 6 in Appendix D. Figure 6 illustrates that atten-
tion weights from individual middle layers could
serve as relatively strong hallucination detectors.
Figure 5 shows that optimal performance is ob-
tained by UHead when using attention weights
from only 1–5 preceding tokens.

Since only a small subset of attention heads typ-
ically correlates with presence hallucinations, we
explore whether the feature set for UHead can be re-
duced. Table 8 in Appendix D reports PR-AUC re-
sults on the evaluation subset when training UHead
using only the top-N (layer, head) pairs, ranked by
their absolute correlation with the training labels.
The results indicate that the feature set can be re-
duced by roughly eightfold (to 128 heads) without
a significant drop in performance. However, fur-
ther reductions in the number of (layer, head) pairs
result in a noticeable decline in performance.

Analysis of detector architectures. Table 10 in
Appendix E reports the performance of detectors
with various architectures trained on our best fea-
ture set, consisting of attention maps and top token
probabilities. We compare the transformer-based
architecture used in UHead against simpler alter-
natives: MLP and a linear model. Although both
simpler models yield notable improvements over
the best unsupervised baselines, UHead based on
transformer achieves the highest performance.

Introducing more diverse training data for
UHead. Table 12 in Appendix E presents the re-
sults when we train uncertainty heads on biogra-
phies plus the data from all domains except one,
which is used for OOD evaluation. In this scenario,
uncertainty heads get access to bigger and more
diverse training data. As we can see, expanding the
dataset provides slight improvements for certain
domains. These results indicate that expanding the
training data and enhancing its diversity could fur-
ther increase the UQ performance, particularly in
the OOD setting.

Using “non-native” training data. We also an-
alyzed the possibility of using the training data
generated for one LLM for training a detector
for another LLM. We take the annotated dataset
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from transformers import AutoModelForCausalLM ,
AutoTokenizer

from luh import AutoUncertaintyHead ,
CausalLMWithUncertainty

llm = AutoModelForCausalLM.from_pretrained(
model_name)

tokenizer = AutoTokenizer.from_pretrained(
model_name)

uhead = AutoUncertaintyHead.from_pretrained(
uhead_name , base_model=llm)

llm_adapter = CausalLMWithUncertainty(llm , uhead ,
tokenizer=tokenizer)

# tokenize text and prepare inputs ...
output = llm_adapter.generate(inputs)

Figure 3: Code example for using uncertainty heads.

generated by Mistral and performed inference of
Gemma 2 via forced decoding to generate features.
Table 11 in Appendix E compares the results of
hallucination detectors for Gemma 2 trained using
“native” and “non-native” data. We can see that
“non-native” data still yields better results than un-
supervised methods, but substantially decreases the
performance of the hallucination detector due to
distribution shift. Therefore, for each new LLM,
we recommend generating a new training dataset.
Computational efficiency. We evaluated the com-
putational overhead of various UQ methods. To
ensure a fair comparison, we focused only on the
time required to generate texts and to compute un-
certainty scores, excluding the time spent on claim
extraction. Claim extraction could be performed by
a small model specifically fine-tuned for this task,
and its overhead is negligible compared to LLM
inference. Table 7 summarizes the results and pro-
vides the memory footprint of methods. MCP and
Perplexity incur no additional overhead, serving as
baselines for comparison. Our UHead introduces
only 5% overhead, which is even better than the
best unsupervised method CCP (8.6%). UHead
also has a minimal GPU memory footprint (40
MB). Thus, UHead is a very lightweight addition
to multi-billion-parameter LLMs and is practical
for real-world deployment.

6 Collection of Pre-trained Uncertainty
Heads for Popular LLMs

We pre-trained a collection of UQ heads for a
range of popular 7B–9B LLMs, including Mis-
tral, LLaMA series, and Gemma 2. In addition to
model-level UQ, we release token-level UQ heads
that can provide uncertainty scores directly for
tokens without explicit claim annotation, which
enables broader applicability. Our UQ heads are
designed for use as an off-the-shelf tool for confi-

dence estimation in LLMs. They could be loaded
from the hub using a procedure similar to the
from_pretrained API in the HuggingFace trans-
formers library and integrated into the LLM gener-
ation procedure with an adapter. A code example
is provided in Figure 3. Thus, UQ heads could
be integrated into third-party code with minimal
modifications and could be used as a plug-and-play
solution for researchers and practitioners. Exam-
ples of UQ head predictions are in Appendix G.

7 Conclusion and Future Work

We presented pre-trained UQ heads – supplemen-
tary supervised modules for LLMs that help to
capture their uncertainty much more effectively
than unsupervised UQ methods. We demonstrated
that they are quite robust and deliver state-of-the-
art results for both in-domain and out-of-domain
prompts. They also show remarkable generaliza-
tion to other languages. Inspired by their good per-
formance, we pre-trained a collection of UQ heads
for a series of popular LLMs, including Mistral,
Gemma 2, and LLama series. We release the code
and the pre-trained uncertainty heads so they could
be used as off-the-shelf hallucination detectors for
other researchers and practitioners. In future work,
we plan to scale up the training data and explore
the limits of the supervised approach to UQ.

Limitations

Uncertainty heads cannot solve the problem when
LLMs are trained to provide misinformation. In
this situation, models are confident in their decep-
tive answers. Uncertainty heads cannot provide
ideal annotation of hallucinations, as some LLMs
do not have enough capacity to provide information
about what they know and what they do not know.
While we see generalization in uncertainty heads,
we should acknowledge that, as with any other su-
pervised method, they work best for “in-domain”
data and “in-domain” tasks. Further investigation is
needed to assess their transferability to other tasks,
such as machine translation and summarization.
The bias present in LLMs could also be transferred
into uncertainty heads.

Ethical Considerations

In our work, we considered open-weight LLMs and
datasets not aimed at harmful content. However,
LLMs may generate potentially damaging texts for
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various groups of people. Uncertainty quantifica-
tion techniques can help create a more reliable use
of neural networks.

Despite our proposed method demonstrating siz-
able performance improvements, it can still mistak-
enly highlight correctly generated text with high
uncertainty in some cases. Thus, as with other
uncertainty quantification methods, it is an imper-
fect technology and users should be aware of the
limitations of this technology.

We release our source code under the MIT li-
cense for broader adoption. We used writing assis-
tants to ensure grammatical correctness throughout
the text.
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A Training Data Generation Pipeline
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Figure 4: The training data generation pipeline.

Language Acc. # claims
% of
false

claims

English 0.97 97 16.5%
Russian 0.89 275 15.6%
Chinese 0.91 100 35.0%
German 0.83 98 19.4%

Table 4: Performance of GPT-4o annotation pipeline against manual annotation for Mistral-7B-v0.1 model (unsup-
ported claims represent a positive class).
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B Dataset Details

B.1 Dataset Construction

We used few-shot learning to better guide the LLM to generate the items for the desired domain. The
structure of the prompts looks as follows:

Continue the list of 100 most famous {domain items}:

1. <domain-item-1 >

2. <domain-item-2 >

3. <domain-item-3 >

Example for the “cities” domain:

Continue the list of 100 most famous cities:

1. Paris , France

2. Amsterdam , Netherlands

3. Osaka , Japan

For claim extraction and their annotation, we use GPT-4o with prompts from (Fadeeva et al., 2024).
Overall expenses for LLM API calls are approximately $4000.

B.2 Dataset Statistics

Model Dataset # of texts # of claims Claim accuracy, %

Mistral 7b Instruct v0.2 biographies 3,300 68,241 73.7
multi-domain 700 14,554 86.0

Gemma 2 9b Instruct biographies 3,300 83,716 88.6

Table 5: Statistics about the training datasets used in our experiments.

Split # of prompts ChatGPT prompt used to generate questions Testing prompt # of claims Claim accuracy, %
Mistral Gemma Mistral Gemma

persons 100 Tell me a list of 100 most famous persons. Tell me a bio of a <person> 2,234 2,857 72.9 87.4
cities 100 Tell me a list of 100 most famous cities. Tell me a history of a <city> 2,128 2,684 79.8 87.1
movies 100 Tell me a list of 100 most famous movies. Tell me about the movie <movie> and its cast. 2,568 3,121 89.7 94.8
inventions 100 Tell me a list of 100 most important inventions. Tell me about the invention of <invention> and its inventor. 2,269 2,626 84.3 92.1
books 100 Tell me a list of 100 most famous books. Tell me about the book <book> and its author. 2,530 3,070 89.9 95.9
artworks 100 Tell me a list of 100 most famous artworks. Tell me about the artwork <artwork> and its artist. 2,464 2,873 75.9 85.1
landmarks 100 Tell me a list of 100 most famous landmarks. Tell me about the landmark <landmark>. 2,365 2,566 88.5 93.7
events 100 Tell me a list of 100 most significant historical events. Tell me about <event> event. 2,294 2,665 88.9 94.8

Russian 100 — Расскажибиографию <person> — 3,572 — 66.7
Chinese 100 — 介绍一下<person> — 2,248 — 77.8
German 100 — Erzhlen Sie mir eine Biografie von <person> — 2,815 — 85.1

Table 6: The statistics of the multi-domain test dataset and number of claims generated my Mistral 7B Instruct v0.2
and Gemma 2 9b Instruct models.
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C Hardware and Computational Efficiency

All experiments were conducted on 8 NVIDIA RTX 5880 Ada GPUs. On average, training a single model
with hyperparameter search takes around 150 GPU hours.

Method Computational Overhead GPU Memory Footprint

MCP 0.0 % -
Perplexity 0.0 % -
Max Token Entropy 0.2 % -
CCP 8.6 % 1,546 MB
SAPLMA 4.7 % 4 MB
Factoscope 6.1 % 32 MB
Lookback Lens 5.5 % <1 MB

UHead (only hidden states) 8.7 % 73 MB
UHead (att. + prob. + hs.) 9.9 % 82 MB
UHead (Ours) 4.9 % 40 MB

Table 7: Computational overhead of UQ methods evaluated with the Mistral 7B Instruct v0.2 model. Overhead is
measured relative to the fastest method, MCP. For CCP, the size of the auxiliary NLI model is reported. The results
were obtained using a multi-domain dataset containing 800 texts and a total of 18,852 claims.
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D Analysis of Attention-Based Features

2 4 6 8 10
Attention window size

0.59

0.60

0.61

0.62

PR
-A

UC

PR-AUC with different attention windows

Figure 5: PR-AUC for different attention window sizes using UHead for the Mistral 7B Instruct v0.2 model.
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Figure 6: PR-AUC as a function of layer number used for attention features in UHead for the Mistral 7B Instruct
v0.2 model. Highlighted points mark layers with highest PR-AUC (layers 14, 18 and 20).

Method
Test Set Biographies (dev)

UHead, all 1024 heads .641
UHead, 512 heads .631
UHead, 256 heads .638
UHead, 128 heads .646
UHead, 64 heads .632
UHead, 32 heads .614
UHead, 16 heads .597
UHead, 8 heads .585
UHead, 4 heads .492
UHead, 2 heads .404
UHead, 1 head .375

Table 8: PR-AUC scores on the biographies development set when training UHead using only the top-N (layer,
head) pairs ranked by their absolute correlation with training labels. Reducing the number of heads by about
eightfold (from 1024 to 128) maintains performance, while further reductions lead to performance degradation.
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E Additional Experimental Results

Method SciQ TruthfulQA MedQUAD

MCP .259 .405 .561
Perplexity .242 .408 .549
Max Token Entropy .273 .379 .551
CCP .314 .386 .554
UHead .359 .420 .555

Table 9: PR-AUC for various UQ methods on QA datasets. The results show generalization of UHead trained on
biographies to the QA task.

Architecture PR-AUC

Linear .556
MLP .626
Transformer (UHead, ours) .642

Table 10: PR-AUC for different UQ head architectures for the Mistral 7B Instruct v0.2 model on the dev set of
biographies dataset. The hyperparameters of all detectors are optimized. The results demonstrate the superiority of
the transformer architecture.

Method PR-AUC

MCP .180
CCP .307
UHead trained on native dataset (Gemma) .461
UHead trained on non-native dataset (Mistral) .435

Table 11: PR-AUC of the hallucination detector for Gemma 2 trained on the “native” data (generated by Gemma 2)
in comparison to training on “non-native” data (generated by Mistral). PR-AUC is reported on the test set of English
biographies dataset. The results show that using “non-native” training data substantially reduces the performance.

Method
Test Sets Cities Movies Inventions Books Artworks Landmarks Events

UHead, bio .487 .466 .485 .395 .561 .340 .369
UHead, bio + all - 1 .489 .479 .482 .404 .572 .338 .387

Table 12: Introducing more diverse training data. UHead results are shown for two scenarios: when the UQ head is
trained solely on the English biographies dataset, and when it is trained on the biographies dataset along with all
other domains, excluding the test domain. Adding more data slightly improves the performance in the OOD setting.

Method
Test Sets Biographies

(in domain) Cities Movies Inventions Books Artworks Landmarks Events

Random .212 ± .012 .207 ± .011 .077 ± .010 .156 ± .011 .080 ± .008 .189 ± .010 .130 ± .010 .092 ± .008
MCP .354 ± .018 .322 ± .015 .135 ± .009 .254 ± .020 .156 ± .023 .308 ± .017 .185 ± .017 .123 ± .014
Perplexity .319 ± .016 .269 ± .014 .126 ± .008 .224 ± .016 .115 ± .013 .330 ± .019 .155 ± .013 .102 ± .010
Max Token Entropy .378 ± .020 .326 ± .015 .182 ± .010 .295 ± .024 .146 ± .019 .368 ± .019 .185 ± .017 .129 ± .014
CCP .429 ± .018 .440 ± .022 .159 ± .020 .317 ± .022 .128 ± .018 .384 ± .011 .220 ± .022 .140 ± .017

SAPLMA .494 ± .024 .387 ± .020 .211 ± .027 .292 ± .022 .181 ± .025 .364 ± .011 .234 ± .020 .139 ± .014
Factoscope .499 ± .025 .423 ± .021 .249 ± .026 .393 ± .025 .192 ± .023 .382 ± .021 .273 ± .025 .150 ± .016
Lookback lens .459 ± .022 .441 ± .021 .214 ± .025 .333 ± .020 .199 ± .022 .355 ± .022 .296 ± .023 .177 ± .019
UHead (Ours) .553 ± .021 .523 ± .017 .302 ± .008 .379 ± .025 .242 ± .032 .471 ± .024 .319 ± .025 .163 ± .017

Table 13: Performance comparison of the UQ head using the Llama 3.1 8b Instruct model against various UQ
baselines.
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F Hyperparameters

Method Model Learning Rate Num. Epochs Att. Window Size

SAPLMA
Gemma 2 9b Instruct 1e-4 10 –
Mistral 7b Instruct v0.2 1e-4 10 –
Llama 3.1 8B Instruct 1e-4 10 –

Lookback Lens
Gemma 2 9b Instruct 1e-2 13 –
Mistral 7b Instruct v0.2 1e-2 13 –
Llama 3.1 8B Instruct 1e-2 13 –

UHead (Factoscope)
Gemma 2 9b Instruct 2e-4 3 –
Mistral 7b Instruct v0.2 2e-4 5 –
Llama 3.1 8B Instruct 5e-5 5 –

UHead
Gemma 2 9b Instruct 2e-4 6 2
Mistral 7b Instruct v0.2 2e-4 7 2
Llama 3.1 8B Instruct 1e-4 6 5

Table 14: Optimal key hyperparameters for each method and LLM.

For each tested model, we selected hyperparameters by optimizing the PR-AUC metric on the validation
set of the “biographies” dataset. In training, we optimized the learning rate, warmup ratio, number of
epochs, and the weight of positive examples in the cross-entropy loss. For the model architecture, we
optimized the number of uncertainty layers, the number of heads, and the intermediate dimension. For
feature extraction, we optimized the number of layers used to obtain hidden states, token probabilities, and
attention weights, as well as the number of preceding tokens considered for attention. The optimal key
hyperparameters are summarized in Table 14, the full hyperparameter set is available in the repository.3

The hyperparameter grid is the following:

Weight of the positive class: {1, 3, 4, 5}
Learning rate: {1e-5, 3e-5, 5e-5, 1e-4, 2e-4, 5e-4, 1e-2};
Num. of epochs: {n ∈ N | 2 ≤ n ≤ 15};
Warmup: {0., 0.05, 0.1};
Attention window size: {1, 2, 3, 4, 5, 7, 10};
Dropout rate: {0., 0.05, 0.1, 0.2};
Weight decay: {0, 1e-2, 1e-1};
(For UHead) Number of Layers: {1, 2};
(For UHead) Attention head dimension: {128, 256, 512, 768, 1024};
(For UHead) Number of attention heads: {8, 16}.

3http://uncertainty-head.nlpresearch.group
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G Examples of Hallucinations and UQ Head Predictions

Tell me a bio of Eugene Levy.

Eugene Levy (born December 17, 1946) is a Canadian actor ✓ , comedian ✓ , and writer. He was born in Hamilton, Ontario ✓ , and grew up in the
nearby town of Mimico ✓ . Levy began his career in the 1970s as a member of the Second City comedy troupe ✓ in Toronto ✓ . He went on to appear in
numerous television shows ✓ and films ✓ , often in collaborations with his Second City colleagues.
One of Levy’s most famous roles was as Jim Ignatowski on the Canadian television series "SCTV". He also appeared in the American version of the show,
"SCTV Network 90" ✓ , which aired from 1992 to 1993.
Levy gained international recognition for his role as Jerry Gergich on the American sitcom "The Larry Sanders Show". He has also had recurring roles on shows
such as "American Dad!" ✓ and "Schitt’s Creek."
On the big screen, Levy has appeared in numerous films,

Figure 7: Mistral’s response to the question “Tell me a bio of Eugene Levy” and UHead predictions. Claim-relevant
phrases are highlighted only when the model shows high confidence (green, uncertainty < 0.2) or high uncertainty
(red, uncertainty ≥ 0.6). Medium-uncertainty phrases (0.2–0.6) are left unmarked. Ticks (✓) indicate confidence
matches ground-truth label; crosses (x) indicate mismatch.

Tell me a bio of Christopher Wren.

Christopher Wren ( September 20, 1632 - February 25, 1723 x ) was an English architect ✓ , mathematician ✓ , astronomer ✓ , and scientist, widely
considered to be the most influential English architect of his time ✓ . He is best known as the principal designer of the restoration of St. Paul’s Cathedral in
London after the Great Fire of London ✓ in 1666 ✓ .
Wren was born on September 20, 1632 x , in Wiltshire ✓ , England ✓ . He was educated at Westminster School ✓ and then at Wadham College, Oxford,
where he studied mathematics ✓ and astronomy. In 1650, he was appointed a professor of astronomy ✓ at Gresham College in London.
In 1661, Wren was appointed Surveyor of the Works to King Charles II ✓ , a position he held until his death in 1723. In this role, he was responsible for the
design and construction of numerous buildings in London ✓ , including the Sheldonian Theatre in Oxford ✓ , the Royal Observatory at Greenwich, and the
new buildings for the Houses of Parliament ✓ .

Figure 8: Mistral’s response to the question “Tell me a bio of Christopher Wren” and UHead prediction. Claim-
relevant phrases are highlighted only when the model shows high confidence (green, uncertainty < 0.2) or high
uncertainty (red, uncertainty ≥ 0.6). Medium-uncertainty phrases (0.2–0.6) are left unmarked. Ticks (✓) indicate
confidence matches ground-truth label; crosses (x) indicate mismatch.

Tell me a bio of Dennis Wilson.

Dennis Wilson ( December 4, 1944 ✓ - December 24, 1983 x ) was an American musician ✓ , singer ✓ , and songwriter ✓ , best known as a
member of the Beach Boys ✓ , one of the most successful ✓ and most influential bands ✓ in the history of popular music. He was the elder brother
of Brian Wilson ✓ and Carl Wilson ✓ , and the band’s original drummer x .
Dennis was born in Hawthorne, California, and grew up in a musical family ✓ . He began playing drums at an early age ✓ and joined his brothers Brian and
Carl in their band, the Pendeltonians, which later became the Beach Boys x . Dennis was the group’s original lead singer ✓ .
In the late 1960s, as Brian Wilson’s role in the band shifted ✓ , Dennis took on more responsibilities as a singer and songwriter. He wrote or
co-wrote several Beach Boys classics ✓ .

Figure 9: Mistral’s response to the question “Tell me a bio of Dennis Wilson” and UHead predictions. Claim-relevant
phrases are highlighted only when the model shows high confidence (green, uncertainty < 0.2) or high uncertainty
(red, uncertainty ≥ 0.6). Medium-uncertainty phrases (0.2–0.6) are left unmarked. Ticks (✓) indicate confidence
matches ground-truth label; crosses (x) indicate mismatch.
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