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Abstract

This work investigates capturing and modeling
disagreement in Semantic Textual Similarity
(STS), where sentence pairs are assigned ordi-
nal similarity labels (0–5). Conventional STS
systems average multiple annotator scores and
focus on a single numeric estimate, overlook-
ing label dispersion. By leveraging the dis-
aggregated SemEval-2015 dataset (Soft-STS-
15), this paper proposes and compares two
disagreement-aware strategies that treat STS
as an ordinal distribution prediction problem: a
lightweight truncated Gaussian head for stan-
dard regression models, and a cross-encoder
trained with a distance-aware objective, refined
with temperature scaling. Results show im-
proved performance in distance-based metrics,
with the calibrated soft-label model proving
best overall and notably more accurate on the
most ambiguous pairs. This demonstrates that
modeling disagreement benefits both calibra-
tion and ranking accuracy, highlighting the
value of retaining and modeling full annota-
tion distributions rather than collapsing them
to a single mean label.

1 Introduction

Semantic Textual Similarity (STS) (Cer et al.,
2017) is a core task in Natural Language Process-
ing, used in applications such as question answer-
ing, information retrieval (Reimers et al., 2016),
retrieval-augmented generation (RAG) (Lewis
et al., 2020), or text de-duplication. Typically, an-
notators score sentence pairs on a six-point scale,
but benchmark evaluations (e.g., STS-B) average
these multiple labels into one mean value. This
consolidation overlooks inherent label dispersion
and incentivizes models to ignore the uncertainty
crucial for practical settings (Basile, 2021). Real-
world uses, however, rarely treat similarity as a
strict binary decision; in fact, crowd and expert an-
notations often disagree around moderate similarity

levels, suggesting systematic rather than random
disagreement (Knupleš et al., 2023).

In this work, we investigate the benefits of mod-
eling the full distribution of annotator labels. To
this end, we structure our investigation around a
logical progression: First, we ask whether captur-
ing this distribution improves model calibration
to human judgments, especially when respecting
the empirical ordinal distances in the STS scale
(RQ1). Recognizing that many downstream tasks
still require scalar scores, we then examine whether
this improved calibration comes at the cost of
standard STS utility metrics like correlation or
RMSE (RQ2). Finally, we explore the trade-offs
between training with a soft-label objective versus
applying purely post-hoc calibration to a standard
regression-trained model (RQ3). To answer these
questions, our experiments 1 compare a baseline
cross-encoder (fine-tuned on STS-B) against two
training paradigms (hard vs. soft-label learning).

Evaluations on both scalar and distributional met-
rics show that modeling the full annotator distri-
bution significantly reduces calibration error to hu-
man label variation while simultaneously improv-
ing traditional metrics like rank correlation and
accuracy on the central tendency (RMSE).

2 Related Work

Our work sits at the intersection of Semantic Tex-
tual Similarity (STS) and the growing field of
Learning with Disagreements (LeWiDi).

Learning with Disagreements. There is a grow-
ing recognition in NLP that disagreement among
annotators is often not noise, but a signal re-
flecting inherent ambiguity or subjectivity (Basile,
2021; Uma et al., 2020). This trend is captured
by the “Learning-With-Disagreements” (LeWiDi)
paradigm, which advocates for modeling the full

1Code & data: https://github.com/ale0xb/sts_
beyond_averages

35540

mailto:al.benito@lsi.uned.es
https://github.com/ale0xb/sts_beyond_averages
https://github.com/ale0xb/sts_beyond_averages


distribution of human annotations rather than col-
lapsing them to a single ground truth. This perspec-
tive is crucial for tasks involving ordinal scales,
where recent analysis shows that mid-scale aver-
ages often conflate distinct, systematic patterns of
human judgment (Knupleš et al., 2023).

Disagreement and Uncertainty in STS. While
STS benchmarks typically rely on averaged
scores (Cer et al., 2017), the importance of un-
certainty and calibration in this regression setting
is gaining attention: For example, recently Wang
et al. (2022) focused on quantifying the calibration
of pre-trained models for text regression.

More directly related to our study, Wang et al.
(2023) analyzed collective human opinions in STS,
introducing a large-scale Chinese dataset with dis-
aggregated labels. They demonstrated that current
models trained on averaged labels often fail to cap-
ture the variance caused by human disagreement.
Our work builds on this foundation by focusing
specifically on ordinal calibration using the En-
glish Soft-STS-15 dataset. To this end, we intro-
duce a distance-aware strategy that incorporates
empirically-derived perceptual distances into both
the training objective (OLL) and the post-hoc cali-
bration process. To the best of our knowledge, ours
is the first approach to test this approach on the
STS task.

3 Data

We use the original dataset collected via Amazon
Mechanical Turk for SemEval-2015 (Agirre et al.,
2015). The dataset comprises 8,387 sentence pairs
annotated for semantic equivalence from various
sources, which reduced to 7,890 pairs after exclud-
ing control questions. The data was retrieved from
the original website of the SemEval STS tasks 2.
To our knowledge, this represents the only publicly
available disaggregated version of data collected
across the SemEval tasks conducted from 2012 to
2016. In this paper we refer to this dataset simply
as “Soft-STS-15”.

3.1 Modeling Disagreement
To quantify the level of disagreement for each
sentence pair while respecting the ordinal nature
of the STS scale, we utilize Krippendorff’s al-
pha (α) (Krippendorff, 2011). This metric mea-
sures agreement relative to what would be ex-

2http://ixa2.si.ehu.es/stswiki/images/2/21/
STS2015-en-rawdata-scripts.zip

pected by chance, allowing us to distinguish sys-
tematic disagreement from random noise. Specif-
ically, we compute Krippendorff’s (Krippendorff,
2011) per-item agreement score, αi, for each item
i ∈ {1, . . . , N} in the Soft-STS-15 dataset. This
score provides finer-grained insight into items that
may exhibit higher or lower levels of coder dis-
agreement which is the basis of our study. This
metric leverages the globally computed distance
matrix D (Equation 4) and the global expected
(random chance) coincidence matrix E, derived
from the marginal frequencies nv across all items:
Let Ejk be the entry in E for the label pair (lj , lk).
The global expected disagreement rate, d̄E , is cal-
culated as the average distance expected by chance:

d̄E =

∑
j,k EjkDjk∑

j,k Ejk
, (1)

assuming
∑

j,k Ejk > 0. For each individual item
i, we compute its specific observed coincidence
matrix Oi, where (Oi)jk represents the observed
frequency of the label pair (lj , lk) among coders
for that item, normalized by the number of pairable
ratings for item i. The observed disagreement rate
for item i, d̄O,i, measures the actual average dis-
tance between the labels assigned by annotators for
that item:

d̄O,i =

∑
j,k(Oi)jkDjk∑

j,k(Oi)jk
, (2)

assuming
∑

j,k(Oi)jk > 0. The per-item alpha
agreement score, αi, compares the item’s observed
disagreement rate to the global expected disagree-
ment rate:

αi = 1− d̄O,i

d̄E
, (3)

provided d̄E is non-zero. An αi close to 1 indi-
cates that the observed disagreement for item i
is much lower than expected by chance globally,
while lower or negative values suggest higher-than-
expected disagreement for that specific item.

We leverage a ground distance matrix D ∈
RV×V , derived empirically using Krippendorff’s
alpha framework with an ordinal level of measure-
ment. Specifically, let nk be the marginal frequency
(total count) of label lk observed in the full reliabil-
ity dataset used for Krippendorff’s analysis. The
distance dij between labels li and lj (assuming
i ≤ j without loss of generality due to symmetry)
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is calculated as:

dij =

(
j∑

k=i

nk −
ni + nj

2

)2

(4)

From these distances, we empirically construct
the distance matrix D using the cumulative fre-
quency of intervening labels as:

D =
(
d(Ci, Cj)

)
(i,j)∈J1,6K2 (5)

where C = (C1 . . . C6) correspond to the STS an-
notation labels {0, 1, . . . 5}. A depiction of matrix
D is shown in Figure 1.

3.2 Data Splits
Following a similar approach to (Leonardelli et al.,
2021), we split the data into three different lev-
els of per-item agreement (terciles) holding low,
moderate, and high agreement pairs, respectively.
The data is further split by majority label (i.e.
the mode of the human annotations) to obtain a
7 × 3 {0, 1, . . . 5,∅} × {T1, T2, T3} grid (ma-
jority label × tercile) 3. A contingency table of
the resulting 21 strata can be consulted in Ap-
pendix B. Finally, we partition the 7 890 pairs into
a 60:20:20 split (4 734/1 578/1 578 items) strati-
fied over the Cartesian product of majority labels
(MODE ∈ {−1, 0, . . . , 5}) and disagreement ter-
cile (q ∈ {1, 2, 3}). Stratification guarantees that
even rare slices such as ⟨5,T1⟩ are represented in
every partition, preventing skew towards majoritar-
ian labels in the evaluation sets and enabling fair
slice-wise calibration analysis.

4 Training

To measure the effects of soft label learning,
we fine-tuned multiple RoBERTa-large cross-
encoders using the sentence-transformers li-
brary (Reimers and Gurevych, 2019). We se-
lected this architecture as the basis for our ex-
periments because it represents a strong, state-
of-the-art approach for STS; specifically, it is
utilized by the top-performing models in the
sentence-transformers library, ensuring a com-
parison against standard best practices. Using this
architecture, we compare two learning approaches:

Soft-label learning. The cross-encoder is fine-
tuned on disaggregated labels from STS-15 by uti-
lizing a modified version of the cross-entropy loss,

3We use ∅ to denote the category of items without a mode.

known as the ordinal log-loss (OLL) (Castagnos
et al., 2022). This particular loss function was se-
lected due to its demonstrated effectiveness in the
original study on ordinal text classification tasks
akin to STS, outperforming other established alter-
natives such as EMD, CORAL, or Cross-Entropy
(Uma et al., 2020). Future studies will explore
the impact of alternative loss functions within our
framework.

LOLL-α(P, y) = −
N∑

i=1

log(1− pi) d(y, i)
α (6)

In our experiments, we use Krippendorff’s distance
matrix from Equation 5. To avoid contamination
during training, we build the distance matrix D
on the label distribution of the training and devel-
opment sets of subsection 3.2. In our tests, we
found setting the hyperparameter α = 1.5 yielded
the best results, in line with previous findings by
Castagnos et al. (2022).

Hard label learning. In a hard learning configu-
ration, we train the system to regress the mean of
annotation scores in STS-15 employing a binary
cross-entropy (BCE) loss.

For both objectives, we keep the encoder back-
bone, optimiser, and schedule identical so that the
only experimental variable is the treatment of la-
bel uncertainty. All cross-encoders are initialized
from the public checkpoint of roberta-large4

and optimised with AdamW (η = 1 × 10−5, and
weight-decay 0.01). Training proceeds for four
epochs with mini-batches of 64 examples, a lin-
ear warm-up of ten percent of the total steps, and
no gradient clipping. We apply early stopping by
monitoring either δ-EMD on the development split
for the soft objective or Pearson correlation of the
mean score for the regression objective every 80
update steps; training is halted after three consecu-
tive non-improving checkpoints. All experiments
are repeated with five reproducible seeds and re-
sults are averaged. Runs were executed on a single
NVIDIA 4090 RTX GPU taking approximately 2
hours to complete.

5 Evaluation

The trained cross-encoders are both evaluated on a
regression and a soft scenario. Regression on STS
datasets (Soft-STS-15 and STS-B) is measured us-
ing Spearman´s rank correlation, which should be

4https://huggingface.co/FacebookAI/
roberta-large

35542

https://huggingface.co/FacebookAI/roberta-large
https://huggingface.co/FacebookAI/roberta-large


the preferred metric (Reimers et al., 2016). The av-
erage prediction error in the regression task is cap-
tured by the root mean squared error (RMSE). For
soft evaluation, we rely on a metric aimed at ordi-
nal quantification, Earth-Mover’s Distance (EMD),
following recommendations by Sakai (2021). In-
tuitively, EMD measures the minimum "work" re-
quired to transform the predicted probability distri-
bution into the gold distribution, where the cost of
moving probability mass depends on the distance
between the ordinal bins. Below, EMD is defined:

Let y, p̂∈∆K−1 be the gold and predicted distri-
butions on the ordinal label set L = {0, . . . ,K−1}
and ∆=(∆jk) the Krippendorff disagreement ma-
trix introduced in subsection 3.1. We define EMD
as:

EMD∆(y, p̂) = min
T∈RK×K

≥0

∑

j,k

∆jk Tjk

subject to T1 = y, T⊤1 = p̂ (7)

EMD quantifies the minimum transport cost
needed to move the probability mass of p̂ onto
y when moving one unit of mass from bin j to k
costs ∆jk. As we note in Figure 1, the percep-
tual distance between categories is not uniform
across the STS ordinal levels of the scale. There-
fore, we incorporate this notion into the EMD
metric by using Krippendorff’s distance matrix to
compute the transport costs between ordinal labels
(i.e., ∆ij = Dij). Subsequently, we refer to this
distance-aware EMD as δ-EMD.

Because we evaluate soft-label models with hard
(scalar) metrics and hard-label models with soft
(distributional) metrics, we require bidirectional
mappings—one that transforms ordinal probability
vectors into single regression scores, and another
that converts scalar predictions back into ordinal
distributions. Both procedures are explained here-
after.

Regression → Ordinal To transform a point es-
timate m̂ ∈ [0, 1] from the regression head into a
probability distribution over the six ordinal bins we
place a truncated Gaussian kernel centred at the
rescaled location m̂(K − 1) ∈ [0, 5]:

TNk(m̂, σ) =
exp
(
− (k−m̂(K−1))2

2σ2

)
∑5

j=0 exp
(
− (j−m̂(K−1))2

2σ2

)

To provide a realistic reconstruction of the orig-
inal variance, instead of a single global band-
width we learn a separate variance σ(u,q) for every

mode–tercile, effectively calibrating the output dis-
tribution to human uncertainty. Each σ(u,q) is cho-
sen to minimise the distance-aware Earth–Mover
loss on the development data:

σ⋆
(u,q) = argmin

σ>0
δ-EMD

(
TN(m̂, σ),ydev

)
.

At inference time the slice-specific σ⋆
(u,q) is applied

to the item, producing a calibrated yet computation-
ally light uncertainty head that requires no addi-
tional gradient updates. The resulting distributions
capture the dispersion observed among annotators
and therefore provide a faithful, slice-aware ap-
proximation of label uncertainty.

Ordinal → Regression We enable the inverse
operation for the soft-trained models when a single
point estimate is required in the evaluation (i.e.,
for Spearman/RMSE). To do this, we convert the
probability vector p̂ = (p̂0, . . . , p̂5) predicted by
the soft model into a scalar by taking its expected
label and normalising to the unit interval:

ŝsoft =

∑5
k=0 p̂k k

5
.

Temperature scaling of the soft model Al-
though the OLL objective learns a full distribution,
the raw logits are still mis-calibrated (Zhang et al.,
2021). We therefore apply slice-wise temperature
scaling that is aware of the ordinal distances.
For every slice (u, q) we find T ⋆

(u,q) that minimises
distance-aware Earth-Mover distance on the devel-
opment set:

T ⋆
(u,q) = argmin

T>0
δ−EMD

(
softmax

(
z/T

)
,ydev

)

where z are the pre-softmax logits. At inference
we divide the logits by the stored T ⋆

(u,q), produc-
ing calibrated probabilities without modifying the
encoder weights.

For every model: 1. baseline STS-B
RoBERTa-large, 2. the hard-label variant, and 3.
the soft-label variants, we evaluate regression and
soft performance on the mode × tercile grid as fol-
lows: first, for each (mode, tercile) cell we compute
the metric averaged over all items in that cell. Sec-
ond, within each tercile we macro-average these
cell scores across modes, yielding one value per
tercile. Finally, we take the mean of the three ter-
cile scores to obtain the overall result reported in
Table 1. Additionally, we also report traditional
Spearman correlation scores (ρ) on the test por-
tions of Soft-STS-15 and STS-Benchmark. Results
are collected in Table 1.
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System
δ-EMD ↓ RMSE ↓ Spearman ρ (%) ↑

T1 T2 T3 Avg. T1 T2 T3 Avg. STS-B S-STS-15

Baseline 0.0493 0.0280 0.0233 0.0335 0.1364 0.1047 0.1182 0.1197 91.44 92.17
Hard 0.0481 0.0264 0.0188 0.0311 0.1328 0.1032 0.1073 0.1144 89.68 94.25
Soft 0.0564 0.0246 0.0216 0.0342 0.1345 0.1041 0.1162 0.1183 88.70 93.77
Soft-Cal 0.0486 0.0223 0.0178 0.0296 0.1123 0.1084 0.1219 0.1142 89.14 95.12

Table 1: Performance on Soft-STS-15 by disagreement tercile. Columns 2–5 report distance-aware calibration error
(δ-EMD); columns 6–9 show root mean square error on the mean label; columns 10–11 list rank correlation on
STS-B and Soft-STS-15. Soft-Cal, i.e. soft-label training plus δ-aware temperature scaling, yields the best overall
calibration and the lowest average RMSE, while the hard model remains strongest on the clearer slices (T2–T3
RMSE).

6 Results

We analyze the results presented in Table 1 in re-
lation to our research questions, contrasting dis-
tance–aware EMD (calibration) and RMSE (accu-
racy) across disagreement terciles.

RQ1: Calibration. We first asked whether mod-
eling the full distribution improves distance-aware
ordinal calibration (δ-EMD). We observe signifi-
cant improvements using both proposed strategies:
The regression-trained HARD model, enhanced
with a simple slice-aware truncated Gaussian head,
reduces the calibration error of the STS-B base-
line by ∼ 7% (0.0311 vs 0.0335). This demon-
strates the effectiveness of this computationally
light, post-hoc approach which requires no retrain-
ing. Furthermore, the Soft-Cal model achieves the
best global calibration (0.0296), lowering δ-EMD
by 12 % relative to the baseline, confirming that
the combination of OLL training and δ-aware tem-
perature scaling yields the highest alignment with
human judgments, with T2 showing the highest
gains (0.0223).

RQ2: Utility Cost. We then examined whether
this improved calibration comes at the cost of stan-
dard utility metrics. Both Soft-Cal and HARD im-
prove significantly over the baseline on Soft-STS-
15 Spearman ρ (95.12% and 94.25% respectively,
vs 92.17%). Interestingly, this ranking advantage is
inverted on the pre-filtered, high-agreement STS-B
dataset, with the baseline model obtaining the best
result (91.44%), indicating that rankings on curated
benchmarks can overestimate a model’s robustness
by not testing its ability to handle real-world ambi-
guity.

RQ3: Training Strategies and Trade-offs. Fi-
nally, we explore the trade-offs between our two

proposed strategies (Soft-Cal vs. Hard). A key
finding is the strength of the proposed truncated
Gaussian head for reconstructing human label vari-
ation in the Soft-STS-15 dataset. First, the HARD

model notably outperforms the uncalibrated Soft
model (0.0311 vs 0.0342 δ-EMD), highlighting
that this simple strategy can indeed be more effec-
tive than a naive soft-training approach. Second, a
clear trade-off emerges. While the Soft-Cal model
is better calibrated on clearer data (T2 and T3), the
Hard model is more accurate in its point predic-
tions on these same slices (e.g., 0.1073 vs. 0.1219
RMSE on T3). Conversely, on the most ambiguous
pairs (T1), the Soft-Cal model is substantially more
accurate (0.1123 RMSE), which contributes to its
superior overall ranking performance.

7 Conclusion

In this paper, we revisited STS from the perspective
of the LeWiDi paradigm, confirming that modeling
the full distribution of human annotations signifi-
cantly improves model calibration. We introduced
two effective strategies—a lightweight Truncated
Gaussian (TG) head for regression models, and a
distance-aware objective (OLL) with temperature
scaling—for capturing disagreement in both regres-
sion and soft-trained models, and compared them
to a strong baseline trained on the high-agreement
STS-B dataset. Results show that both approaches
outperform this baseline on several metrics. Futher-
more, while the raw model trained on the soft labels
did not show significant gains over the Hard model,
temperature scaling (Soft-Cal) did improve calibra-
tion to human uncertainty, making it the best per-
former overall. Despite these promising findings,
future work should test if this calibration benefits
downstream tasks like NLI or IR.
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Limitations

We acknowledge several limitations in our study.
First, although the LeWiDi literature offers numer-
ous distribution-aware objectives, we explore only
ordinal log-loss and a single post-hoc, δ-aware
temperature-scaling scheme; a broader sweep, in-
cluding other loss functions tested by Castag-
nos et al. (2022) or Uma et al. (2020) could
yield different results. Furthermore, every experi-
ment fine-tunes the same ROBERTA-LARGE cross-
encoder; architectural sensitivity to dual encoders
or instruction-tuned backbones remains to be ver-
ified. Second, our study is conducted solely on
the Soft-STS-15 dataset, as it is the only publicly
available English STS benchmark with the neces-
sary disaggregated multi-annotator scores. While
we prioritize grounding our analysis in authen-
tic human disagreement, the generalizability of
our findings is constrained by this single dataset.
We strongly encourage the release of more dis-
aggregated datasets to advance research in this
area. Finally, our slice-wise calibration method
learns specific temperatures for each (mode, tercile)
slice. This approach assumes that slice member-
ship—which depends on human disagreement lev-
els—is known at test time. In practical deploy-
ments, this metadata is unavailable for new, unla-
beled data. However, several practical strategies
can address this limitation: (1) Slice Prediction:
Training a lightweight auxiliary classifier to pre-
dict the disagreement level (tercile) of a new sen-
tence pair; (2) Ensemble-based Estimation: Us-
ing model ensembles to dynamically estimate un-
certainty as a proxy for disagreement; or (3) Global
Fallback: Applying a single, globally-trained tem-
perature optimized across the entire development
set.
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A Figures

Figure 1: Normalized Krippendorff disagreement ma-
trix D (Djk ∈ [0, 1]). Brighter cells indicate higher
perceptual distance, i.e. rarer coder confusions for a
given pair. Notice the short distances between adjacent
pairs (∼ 0.03) except for the 0-1 pair (0.10).

B Contingency Table

Mode Per-item Agreement (αi) Tercile Row Σ

T1 T2 T3

∅ 605 (7.67%) 583 (7.39%) 0 (0.00%) 1 188 (15.06%)
0 712 (9.02%) 357 (4.52%) 1 585 (20.09%) 2 654 (33.64%)
1 583 (7.39%) 353 (4.47%) 162 (2.05%) 1 098 (13.92%)
2 258 (3.27%) 174 (2.21%) 69 (0.87%) 501 (6.35%)
3 309 (3.92%) 458 (5.80%) 88 (1.12%) 855 (10.84%)
4 165 (2.09%) 556 (7.05%) 172 (2.18%) 893 (11.32%)
5 69 (0.87%) 251 (3.18%) 381 (4.83%) 701 (8.88%)

Col Σ 2 701 (34.23%) 2 732 (34.63%) 2 457 (31.14%) 7 890 (100%)

Table 2: Contingency table of sentence pairs by ma-
jority label (mode) and agreement tercile. Counts are
accompanied by the percentage of the entire dataset
(N=7890).
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