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Abstract

Language models such as GPT and Llama have
shown remarkable ability on diverse natural lan-
guage tasks, yet their performance on complex
table tasks (e.g., NL-to-Code, data cleaning,
etc.) continues to be suboptimal. To improve
their performance, task-specific fine-tuning is
often needed, which, however, require expen-
sive human labeling and is prone to over-fitting.

In this work, we propose TABLE-SPECIALIST,
a self-trained fine-tuning paradigm specifically
designed for table tasks. Our insight is that
for each table task, there often exist two dual
versions of the same task, one generative
and one classification in nature. Leveraging
their duality, we propose a Generator-Validator
paradigm to iteratively generate-then-validate
training data from language models, to fine-
tune stronger TABLE-SPECIALIST models that
can specialize in a given task, without using
manually-labeled data.

Extensive evaluations of TABLE-SPECIALIST
on Llama, GPT-3.5 and GPT-4 suggest that
our TABLE-SPECIALIST has (1) strong perfor-
mance on diverse tasks over vanilla language-
models – for example, TABLE-SPECIALIST
fine-tuned on GPT-3.5 not only outperforms
vanilla GPT-3.5, but can often surpass GPT-4
level quality, (2) lower cost to deploy, because
when TABLE-SPECIALIST fine-tuned on GPT-
3.5 achieve GPT-4 level quality, it becomes
possible to deploy smaller models with lower
latency/cost at comparable quality, and (3) bet-
ter generalizability when evaluated across mul-
tiple benchmarks, since TABLE-SPECIALIST is
fine-tuned on a broad range of training data sys-
tematically generated from diverse real tables.

Our code is available at � microsoft/Table-
Specialist. Specialist models fine-tuned using
TABLE-SPECIALIST have been integrated into
Microsoft Excel for use cases such as auto-
mated data cleaning.

*Email: jjxing@umich.edu, work done at Microsoft
†Correspondence to: yeyehe@microsoft.com.

1 Introduction

Language models, such as GPT (Brown et al.,
2020) and Llama (Touvron et al., 2023), have
shown remarkable abilities to perform diverse nat-
ural language tasks with strong generalizability.

However, when it comes to complex “table
tasks”, such as data transformation (He et al., 2018;
Harris and Gulwani, 2011), data cleaning (Rahm
et al., 2000; Wang and He, 2019; Chen et al., 2025),
column type annotation (Korini and Bizer, 2023;
Hulsebos et al., 2019), where the central object of
interest is a structured table (as opposed to natu-
ral language text), even the latest language mod-
els can struggle to perform well (Li et al., 2024b;
Zhang et al., 2024b; Tian et al., 2024), likely be-
cause language models are pre-trained predomi-
nately on one-dimensional text, whereas tables are
two-dimensional objects (Li et al., 2024b; Sui et al.,
2024; Tian et al., 2024; Xing et al., 2025).

Prior approaches: Fine-tuning for table tasks.
To improve the performance of language models on
table tasks, different fine-tuning techniques have
been used, which we summarize as follows:

Dataset-specific fine-tuning. A straightforward
approach is what we call “dataset-specific fine-
tuning”. Given a particular table-task T (say data-
transformation), we start from a base model M
such as GPT or Llama, and use the training split of
a labeled dataset D to fine-tune M , which can often
lead to significant gains on the (highly-similar) test-
split of D, which is a common approach used in
many benchmarks for table-tasks (Yu et al., 2018;
Zhong et al., 2017; Das et al.; em-; Zhang et al.,
2024c; Pasupat and Liang, 2015).

However, as one may expect, language models
fine-tuned on the training-split of one dataset D
often do not generalize well to another dataset D′

for the same task type T . For instance, we find
that the models fine-tuned for NL-to-SQL using
the Wiki-SQL (Zhong et al., 2017) dataset does
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not generalize to different NL-2-SQL datasets like
Spider (Yu et al., 2018) or BIRD (Li et al., 2024a).
Because the relatively narrow nature of one specific
dataset, often manually labeled at a small scale, can
lead to poor “generalizability” when using “dataset-
specific fine-tuning” 1.

Table-Generalist fine-tuning. A second class of
table fine-tuning techniques are inspired by general-
purpose chat models like ChatGPT and Llama-
Chat, which are fine-tuned from base models (GPT
and Llama, respectively) (Ouyang et al., 2022;
Wang et al., 2022b; cha) for instruction-following,
with great generalizability to handle diverse human
instructions, which we term “Chat-Generalist”.

Inspired by the success of “Chat-Generalist”,
“Table-Generalist” models like Table-GPT (Li et al.,
2024b) and Table-Llama (Zhang et al., 2024b) are
developed, which are fine-tuned similarly to Chat-
GPT by pooling diverse table-tasks as training
data for multi-task table fine-tuning. The resulting
“Table-Generalist” models can handle diverse table-
tasks, with better performance on a wide range of
table tasks than the vanilla GPT/Llama, including
on new and unseen table-tasks held out during fine-
tuning (Li et al., 2024b; Zhang et al., 2024b).

However, as one may expect, their cross-task
generality comes at a cost of performance, as
there is often a performance gap between “dataset-
specific fine-tuning” and Table-Generalists (Li
et al., 2024b; Zhang et al., 2024b).

TABLE-SPECIALIST: a new approach to ta-
ble fine-tuning. In this work, we develop a new
fine-tuning approach for table-tasks that aims to
close the performance gap, which we call “TABLE-
SPECIALIST”. In this approach, each TABLE-
SPECIALIST model is fine-tuned by design to fo-
cus on one specific type of table task T (e.g., one
model for data transformation, one model for error
detection, one model for NL-to-SQL, etc.), which
is unlike Table-Generalists (Table-GPT and Table-
Llama) that can handle all types of table tasks.

Importantly, by being specialized in one task T ,
TABLE-SPECIALIST can be (1) made much more
performant than Table-Generalists, while (2) still
generalize to new and unseen datasets of the same
task T (unlike “dataset-specific fine-tuning”).

1While “over-fitting” is a well-known topic (Srivastava
et al., 2014; Zhang et al., 2018) especially for small models,
our experience reported in more detail in (Xing et al., 2024)
shows that over-fitting can still happen on table tasks, even
when fine-tuned large language models have a large capacity
that are supposed to be robust to over-fitting).

At a high level, our TABLE-SPECIALIST ex-
ploits a duality of table tasks, where a “generative
table-task” has a counterpart that is a “classifica-
tion table-task”, and vice versa, forming two dual
versions of the same task. Correspondingly, we
propose a “Generator-Validator” framework that
can iteratively fine-tune a generative model and a
classification model for the dual versions of the
task, using training data automatically “generated-
then-validated” by the two models, leveraging
unique characteristics of tables (e.g., permutation-
invariance and execution-invariance).

While dual-learning and dual-tasks is studied for
machine-translation tasks (e.g., translating from
language A to B, and from B to A) (Wang et al.,
2019; Sennrich and Zhang, 2019), they remain
largely unexplored in the context of tables (Sec-
tion 2). In our work, we introduce novel dual-
learning techniques specifically designed for table-
tasks, leveraging the unique two-dimensional struc-
ture of tables, which are much more generalizable
than “dataset-specific fine-tuning”, and much more
performant than “Table-Generalist” (Section 3).

Key benefits of TABLE-SPECIALIST. To bet-
ter illustrate the benefits of TABLE-SPECIALIST,
in Figure 1 we highlight our results on two table-
tasks, NL-to-R and NL-to-Scala (which are similar
to NL-to-SQL but translate natural language ques-
tions to R and Spark-Scala instead). In both fig-
ures, we can see that vanilla GPT-4 produces higher
quality than vanilla GPT-3.5, but has 2-3x higher
latency (and also higher financial cost to deploy).
The proposed TABLE-SPECIALIST fine-tuned on
GPT-3.5 and GPT-4 show strong quality gains over
vanilla GPT-3.5 and GPT-4, respectively, without
using any training data from the training-split of
any benchmarks.

More importantly, we can see that in both cases,
TABLE-SPECIALIST-GPT-3.5 can match or exceed
the quality achieved by vanilla GPT-4. Further-
more, because these TABLE-SPECIALIST-GPT-
3.5 are fine-tuned on GPT-3.5, they have simi-
lar latency as vanilla GPT-3.5 (shown on x-axis).
What this means is that for these table-tasks, we
can deploy smaller specialized models (TABLE-
SPECIALIST-GPT-3.5) over larger general models
(vanilla GPT-4), with comparable quality, but at
significantly lower latency and costs.

Key benefits of our proposed approach include:

• Strong performance. TABLE-SPECIALIST out-
performs vanilla language models, as well as
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(a) NL-to-R (b) NL-to-Scala

Figure 1: “TABLE-SPECIALIST fine-tuning”: Quality vs. latency comparison on two sample table-tasks: (a)
NL-to-R; (b) NL-to-Scala. In both cases, TABLE-SPECIALIST-GPT-3.5 significantly outperforms vanilla GPT-3.5,
and even vanilla GPT-4 (shown on y-axis), making it possible to deploy TABLE-SPECIALIST-GPT-3.5 over vanilla
GPT-4, at much lower latency and costs (x-axis).

Table-Generalist models.
• Lower cost. Because TABLE-SPECIALIST

achieves GPT-4 quality using fine-tuned GPT-
3.5 models, it is substantially cheaper to deploy.

• Better generalizability. TABLE-SPECIALIST re-
liably generalizes to new and unseen datasets for
the same task and is benchmark-agnostic.

• Labeling-free. Because the TABLE-SPECIALIST

leverages language-models and “Generator-
Validator” to automatically produce training data
for fine-tuning, it is easier to scale to new table-
tasks without expensive human labeling.

2 Related work

Language models for table tasks. Many tasks
studied in the literature center around tables, which
are increasingly important (e.g., in database and
spreadsheet copilot/assistant scenarios). We study
a sample of common table tasks in this work, and
refer readers to surveys like (Dong et al., 2022;
Dong and Wang, 2024; Xing et al., 2025) for a
more comprehensive review of table tasks.

Language models, such as GPT and Llama, are
capable of performing not only natural language
tasks, but also table tasks (Narayan et al., 2022;
Fernandez et al., 2023). However, language mod-
els still struggle with complex table tasks (Li et al.,
2024b; Zhang et al., 2024b; Sui et al., 2024). This
can be attributed to factors such as large table
context (Sui et al., 2024; Tian et al., 2024), two-
dimensional reasoning (Li et al., 2024b; Sui et al.,
2024, 2023), etc., which leads to the need for fine-
tuning, as discussed in the introduction.

Train language models using synthetic data.
In this work, we fine-tune models for individual ta-

ble tasks, using synthetic training data “generated-
then-validated” by language models from diverse
real tables, which is inspired by the success of
using synthetic data to train state-of-the-art small
language models (Li et al., 2023; Adler et al., 2024;
Mukherjee et al., 2023) and text-embedding mod-
els (Wang et al., 2023), that are also trained using
synthetic data generated by language models. In
TABLE-SPECIALIST, we leverage the duality of
table tasks and other unique characteristics of ta-
bles (e.g., permutation-invariance, and execution-
invariance), which are all specific to table tasks.

Validation in table-tasks vs. NLP reason-
ing tasks. In our Generator-Validator fine-tuning
process, we validate table training data based
on result consistency (leveraging permutation-
invariance and execution-invariance). Our ap-
proach is similar in spirit to consistency-based ver-
ification methods, such as “self-consistency” and
“tree-of-thoughts” (Wang et al., 2022a; Yao et al.,
2024; Weng et al., 2022), but is tailored to tables.

Dual learning. Dual learning is a concept in ma-
chine learning where two related tasks are learned
together via mutual reinforcement, and are used
in machine translation (where the dual tasks are
translating from language A to B and from B to
A) (He et al., 2016; Wang et al., 2019; Sennrich
and Zhang, 2019). The “duality of table tasks” we
study is similar in spirit, but we develop techniques
that take advantage of the unique characteristics
of two-dimensional tables, which have not been
previously explored.
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Figure 2: Example tasks: Error-detection, NL-to-SQL

Classification table-tasks
• Error detection (multi-class): check if any cell in a table column is erroneous
• Schema matching (binary): check if a pair of columns in two tables are related
• Entity matching (binary): check if two rows refer to the same entity
• Column type annotation (multi-class): determine the type of a column from a list
• Table fact verification (binary): check if a statement about a table is true or not

. . .
Generative table-tasks

• NL-to-Code (SQL, R, Pandas, . . . ): translate natural-language questions to exe-
cutable code on a table

• Data transformation by-example (SQL, R, Pandas, . . . ): generate code for data
transformation, based on given input/output examples

• Table question answering: answer a natural language question based on a table
• Data imputation: fill in missing values in a table, based on table context
• Table summarization: summarize a table using natural language

. . .

Table 1: List of table-tasks: classification and generative

3 Table-Specialist: Method

Preliminary: Generative & classification tasks.
Many table tasks have been studied in the literature.
Table 1 shows a list of common examples.

Some of these tasks can be “classification” in
nature, where the output has to come from a pre-
defined set of options. Examples of classifica-
tion table tasks include Error detection (checking
whether any cell in a table may be an error) (Chu
et al., 2016; Wang and He, 2019; Heidari et al.,
2019), Schema matching (checking whether two
table columns match) (Rahm and Bernstein, 2001;
Madhavan et al., 2001; Koutras et al., 2021), etc.

Note that table tasks may also be “generative”
in nature, where new output needs to be generated.
The examples here include NL-to-Code (generat-
ing code that can be executed on a table for a given
natural language question) (Zhao et al., 2024; Lip-
man et al., 2024; Zhong et al., 2017), where the
generated code can be in a target DSL such as SQL,
R, Pandas, and Scala, etc.

Following prior work (Li et al., 2024b; Zhang
et al., 2024b), to use language models to solve table
tasks, we represent each instance of a table task as
an “(instruction, table, completion)” triple:

Definition 1. [Table tasks]. An instance of a
table task, denoted by t, is defined as a triplet
t = (I,R,C), where I is the natural language
instruction to describe the task, R is the input table
on which the task is performed, C is the expected

completion by following the instruction I and per-
forming the task on table R. 2

We give concrete examples of table tasks below.

Example 1. [Table tasks]. Figure 2 (a) shows an
instance of the Error detection task, which is a
classification task that identifies values in a table
column that may be erroneous. Figure 2(b) shows
an example generative table task, NL-to-SQL. 2

Goal: specialist models that can generalize.
Recall that a key motivation of this work is the ob-
servation that fine-tuning on the training-split of a
narrow benchmark dataset D (often manually la-
beled on a small scale) usually leads to over-fitting
even on large language models. We would like to
build “specialist models” that specialize in a given
type of table task T (say NL-to-Code or Error detec-
tion), that crucially generalize to new and unseen
dataset of the task T .

Given the promise of language models in gen-
erating synthetic data, to train small and special-
ized language models (e.g., code, and embedding
models) (Wang et al., 2023; Li et al., 2023; Adler
et al., 2024), we explore a similar direction to train
table-specialist models using large amounts of syn-
thetically generated training data (beyond the scale
possible with manual labeling), for generalizability.

Challenge: validate training data. An obvious
challenge is that vanilla language models, denoted
by M , do not always generate high-quality training
data for task T , because the task may be unfamiliar
to language models, or the DSL (e.g., R or Scala in
NL-2-R and NL-2-Scala) may be less familiar, etc.

Training data directly generated by vanilla lan-
guage models are often far from perfect, which call
for ways to “validate” synthetic training data auto-
matically generated by language models, before it
can be reliably used to fine-tune specialist models.

Our approach: validate training data using
“task duality”. To systematically validate training
data, we observe that there is a natural “duality”
in table tasks. Specifically, for each classification
table task TC , we can construct a “dual” generative
task TG, and vice versa, defined as follows:

Definition 2. [Task duality]. Let TG be a gener-
ative table task and TG(R) be an instance of the
task TG instantiated with a table R. Similarly, let
TC be a classification table task, and TC(f(R))
be an instance of the task TC , instantiated with
table f(R), where f is a deterministic transforma-
tion function applied to R. Let M be an oracle
model that produces ground truth completions for
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Figure 3: Architecture of TABLE-SPECIALIST using “Generator-Validator” fine-tuning for a given task type T
(Error detection in this example). (1) A real table R is sampled from a corpus of diverse tables; (2) Table R is used
to instantiate an instance of the generative table task TG(R) (left box); (3) A “Generator model” MG (initially a
vanilla language-model) is used to generate completion for TG(R), in this case a possible typo error “Missisipi”; (4)
The completion “Missisipi” is inserted into R, and used to instantiate a classification-version of the Error detection
task TC (right box), which is validated by a “Validator model” for the classification task MC (initially also a vanilla
language-model). If MC consistently produces “Missisipi” for TC , then “Missisipi” is considered validated (i.e.,
likely a real error); (5-6) Validated training data is then used to re-train the Generator MG and Validator MC , for
more effective Generator and Validator models. We iteratively fine-tune MG and MC , by repeating steps (1)-(6) .

Figure 4: Two example NL-to-Code tasks that translate natural-language questions to code: (a, b) dual versions
of the NL-to-Scala task; (c, d) dual versions of the NL-to-SQL task. “Execution-invariance”: observe that in (a)
NL-to-Scala, and (c) NL-to-SQL, given the same question, the generated Scala and SQL code should generate
identical results when executed on the same input table.

any task. The generative task TG is said to be a
dual task of TC , if for any table R, we always have
M(TG(R)) ≡ M(TC(f(R))), using some fixed
transformation f .2 2

Intuitively, a task TG is the dual of TC , if for
any table R, M(TG(R)) and M(TC(f(R))) are
expected to produce the same output. We illustrate
duality and its construction f in more detail in the
following.

Example 2. [Task duality]. Error detection is a
multi-class classification task TC , to predict if any
value in a given table column is an error, as shown
on the right of Figure 3. We can construct its gen-
erative dual, TG, shown on the left, which simply
asks a model to “generate” a realist error in a table
column R.

To see why TC and TG are dual tasks, let TG(R)
be an instance of the generative Error detection

2Duality in the other direction can be defined similarly.

task instantiated using a table R, like shown in
the left-box of Figure 3. Let c = M(TG(R)) be
its completion, in this example c =“Missisipi”,
a realistic typo error. Let f(R) = insert(c,R)
be a transformation that inserts c into R (creat-
ing the column on the right that contains the typo
“Missisipi”). Now for task TC(f(R)) (identifying
errors in f(R)), we expect the same c =“Missisipi”

to always be returned by an oracle model M , en-
suring M(TG(R)) ≡ M(TC(f(R))), or the two
tasks always produce the same output, as shown in
the dashed boxes, making the two tasks dual. 2

Generator-Validator fine-tuning. Given that
two dual tasks are expected to always produce the
same output for the same table R (Definition 2),
we leverage this duality to automatically “generate-
then-validate” training data for fine-tuning.

We give an overview of our “Generator-
Validator” fine-tuning, illustrated in Figure 3.
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Figure 5: Validation by permutation invariance: we
permute rows/columns (note that rows are ordered dif-
ferently in the examples), and repeatedly invoke MC to
check whether a consistent completion (the typo “Mis-
sisipi”) is produced across all permutations.

Given a target classification task TC that we want
to fine-tune3, we first construct its dual genera-
tive task TG (and vice versa), shown as two boxes
in the figure. We then iteratively fine-tune: (1) a
“Generator model”, MG, for the generative table
task TG, and (2) a “Validator model”, MC , for the
classification table-task TC in the middle.

In Figure 3, in each iteration, we would first 1
sample a real table R from a large corpus to 2
instantiate a task TG(R), and then 3 invoke MG

(initially a vanilla language model) to generate a
completion c = MG(TG(R)), which we know is
also the expected completion for the corresponding
classification task TC , given the task-duality, which
can then be used to “train” the classification model
MC . However, since such training data are not
always correct, we 4 invoke MC (initially also a
vanilla language model) to systematically “validate”
training data. The resulting validated training data
that can then be used to 5 fine-tune MC for TC ,
and 6 fine-tune MG for TG, to create increasingly
more capable “specialist models”, MC and MG,
than vanilla language models.

The validation step in 4 is key to the itera-
tive fine-tuning, where we leverage table-specific
properties, such as “permutation-invariance” and
“execution-invariance”, which we explain below.

Proposition 1. [Permutation-invariance]. Given
a task T on a table R, let R′ be any permuted
version of R, whose rows and columns may be

3Our fine-tuning process for generative table-tasks follows
the same process, thanks to the symmetry due to duality.

reordered. Permutation-invariance states that be-
cause the permuted R′ does not change the seman-
tics of the original table R, we should always have
T (R) ≡ T (R′).4 2

We use an example task to illustrate how the
property is used in our iterative fine-tuning.

Example 3. [Permutation invariance]. We revisit
Figure 3 to explain permutation-invariance in Error
detection. First, both the Generator and Validator
models, MG and MC , are initialized as a vanilla
language model M . In each fine-tuning iteration,
we sample a batch of k real tables (e.g., 3000),
where each real table R can instantiate a generative
task tG = TG(R), by adding table R (e.g., a table
with “states”) into task template TG, as shown on
the left of Figure 3.

Invoking MG on each tG creates an actual com-
pletion, c = MG(tG), shown in the lower half
of the box (in this case, a realistic typo error
“Missisipi” that may occur in R). This completion
c is then used to construct a classification-version
of Error detection tC , where we perform the trans-
formation f (Definition 2) by inserting the gener-
ated error “Missisipi” into the original column R,
to create the input table for tC shown on the right.

Using “permutation invariance” (Property 1), we
then perform repeated permutation of the table in
each task tC , creating many variants t′C shown in
Figure 5 (note that the rows inside each task are
ordered differently). We then invoke MC on each
t′C , and we expect the completion c (“Missisipi”)
to be consistently produced if c is an actual error5.

If a pair (tC , c) can be consistently validated
using MC with permutation, the corresponding
(tG, c) and (tC , c) pass our validation and are added
to the respective training sets of MG and MC for
this training iteration (we sample and validate us-
ing up to k real tables in an iteration). We then
fine-tune MG and MC on the validated training
data, and the iterative fine-tuning is repeated for a
few iterations (up to 3), with the resulting models
returned as our specialist models. 2

Note that as we sample diverse real tables R to
construct tC and tG for training (instead of using a
small labeled dataset), the resulting models are less

4With the exception of tasks that specifically depend on
row and column orders, such as “removing the second row”,
which however are uncommon (e.g., not seen in Table 1).

5This assumes no additional error is present in the original
table – if the original table has other error, then the completion
of t′C would not be consistently c (“Missisipi”), and we will
also not validate this (tC , c) pair for downstream training.
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likely to “over-fit”, and can probably generalize
well.

For a subset of generative table tasks (the lower
half of Table 1), such as code-generation (e.g., NL-
to-Code and Data-transformations), in addition to
using the model-based validation ( 4 in Figure 3),
we can also leverage a unique property of code
execution on tables for validation, which we call
“execution-invariance” described below.

Proposition 2. [Execution invariance]. Given a
task T specified on a table R, let cL be the gener-
ated code in a language L that can be executed on
R to correctly solve T , and cL

′
be the generated

code in a different language L′ that can also solve
T . Let RS ⊆ R be a table with a subset of rows of
R, then for any RS , we have cL(RS) ≡ cL

′
(RS),

which means that the execution of cL and cL
′

on
any RS ⊆ R should always produce identical re-
sults. 2

We use NL-to-Code as an example, with Fig-
ure 4 showing two generative NL-to-Code tasks
on tables, NL-to-Scala and NL-to-SQL, and their
respective classification duals.

Example 4. [Execution invariance]. Figure 4(a)
and (c) show two generative NL-to-Code tasks, NL-
to-Scala and NL-to-SQL, respectively. Given the
same question (e.g., “which team has the highest

goal”), the generated Scala and SQL code shown
at the bottom of the boxes, should always produce
the same results when executed on the same table
R (or its subset RS), shown in the figure. 2

Execution-invariance applies to other generative
tasks involving code, such as Data-transformation,
as we will see in the experiments.

Additional details. Details of our fine-tuning,
such as pseudo-code, data generation strategy
(e.g., using curriculum-based “textbook-like gen-
eration” (Abdin et al., 2024; Li et al., 2023)), and
a discussion on “things that did not work”, can be
found in Appendix A.

4 Experiments

We perform extensive experiments, using GPT-3.5,
GPT-4, and Llama-3.1-8B as base models. Our
code is available at � microsoft/Table-Specialist.

4.1 Experiment Setup

Table tasks and benchmarks. For a comprehen-
sive evaluation, we use three sets of three genera-
tive tasks, NL-to-Code (generating SQL, R, Scala),

Table-task group Evaluation
metric

Task
category Dataset Size

NL-to-Code
(NL-to-SQL, NL-to-R,

NL-to-Scala)

Execution
Accuracy

easy

WikiSQL 1000
Spider 1198
BIRD 356

WikiTQ 1000
Text2Analysis 271

Table-QA Accuracy easy
FinQA 1000

TableBench 424
WikiTQ 1000

Data transformation
(generating SQL, R, Pandas)

Execution
Accuracy

hard
TDE 570

Transform-text 335

Schema matching F1 easy
DeepM 42

WikiData 24
HXD 468

Error detection F1 hard
Spreadsheet-Tables 1126
Relational-Tables 1081

Table 2: Table task and benchmark data for evaluation

Data-transformation (generating SQL, R, Pandas)
and Table-QA; as well two classification tasks, Er-
ror detection and Schema matching, for a total of
9 table tasks. Each task is extensively evaluated
using 2-5 benchmarks from the literature, as shown
in Table 2, for a total of 29 evaluated benchmarks
(each benchmark corresponds to a row in our main
result in Table 3 and Table 4).

Methods Compared. We compare the following:

• Vanilla base models: GPT-3.56, GPT-47, and
Llama-3.1-8b.

• Specialist Fine-Tuning: TABLE-SPECIALIST :
Our proposed method, fine-tuned on GPT-
3.5, GPT-4, and Llama-3.1-8b, respectively;
FT-no-validation: TABLE-SPECIALIST fine-
tuned model without the validation step, to iso-
late its impact.

• Generalist Fine-Tuning: Table-GPT (Li et al.,
2024b) 8; TableLlama (Zhang et al., 2024b) 9.

We use Lora fine-tuning (Hu et al., 2021), with
learning-rate multiplier of 0.5, and a batch size
that is 1% of training-data-size (to ensure that each
epoch has 100 steps), which is consistent across all
methods.

4.2 Main Results
Fine-tuning on GPT-3.5, GPT-4 and Llama-3.1-8B.
Table 3 shows detailed comparisons on all table
tasks and benchmarks between each vanilla base
model, and its corresponding TABLE-SPECIALIST

model.
It can be seen that, for all generative and classifi-

cation table tasks, TABLE-SPECIALIST improves
6We use GPT-3.5-turbo-1106
7We use GPT-4-0613
8Retrained using (Li et al., 2024c)
9Retrained using (Zhang et al., 2024a)
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Task Type Task Dataset

Specialist Fine-tuning
(GPT-3.5)

Specialist Fine-tuning
(GPT-4)

Specialist Fine-tuning
(Llama3.1-8B)

Vanilla
TABLE

SPECIALIST
Vanilla

TABLE

SPECIALIST
Vanilla

TABLE

SPECIALIST

Classification

Schema Matching

DeepM 0.984 1 1 1 0.857 1
WikiData 0.913 0.918 0.952 0.952 0.912 0.766

HXD 0.878 0.897 0.924 0.935 0.749 0.852
Average 0.925 0.938 0.959 0.965 0.839 0.873

Error Detection
Spreadsheet-Tables 0.136 0.207 0.403 0.458 0.071 0.136
Relational-Tables 0.340 0.457 0.465 0.529 0.108 0.161

Average 0.238 0.332 0.434 0.494 0.090 0.148

Generative

NL-to-SQL

WikiSQL 0.823 0.855 0.869 0.874 0.525 0.816
WikiTQ 0.421 0.513 0.559 0.597 0.300 0.449

Text2Analysis 0.498 0.517 0.581 0.572 0.273 0.465
Spider 0.650 0.684 0.694 0.704 0.670 0.690
BIRD 0.452 0.514 0.528 0.556 0.388 0.438

Average 0.569 0.616 0.647 0.661 0.431 0.572

NL-to-R

WikiSQL 0.567 0.776 ∗ 0.759 0.827 0.331 0.409
WikiTQ 0.209 0.404 0.416 0.550 0.138 0.257

Text2Analysis 0.227 0.358 0.382 0.446 0.103 0.199
Spider 0.530 0.565 ∗ 0.563 0.605 0.503 0.536
BIRD 0.317 0.404 0.430 0.475 0.225 0.261

Average 0.370 0.502 0.510 0.582 0.260 0.333

NL-to-Scala

WikiSQL 0.510 0.794 ∗ 0.745 0.815 0.359 0.728
WikiTQ 0.109 0.426 ∗ 0.198 0.476 0.043 0.188

Text2Analysis 0.236 0.373 ∗ 0.258 0.373 0.129 0.214
Spider 0.308 0.504 ∗ 0.294 0.466 0.249 0.356
BIRD 0.188 0.360 ∗ 0.189 0.407 0.100 0.228

Average 0.270 0.491 ∗ 0.337 0.507 0.176 0.343

Data-transformation
(Pandas)

TDE 0.293 0.346 0.418 0.456 0.137 0.161
Transform-Text 0.227 0.230 0.297 0.296 0.090 0.122

Average 0.260 0.300 0.357 0.376 0.113 0.142

Data-transformation
(R)

TDE 0.200 0.235 0.305 0.318 0.063 0.105
Transform-Text 0.164 0.215 0.222 0.218 0.051 0.075

Average 0.182 0.225 0.264 0.268 0.057 0.090

Data-transformation
(SQL)

TDE 0.144 0.168 0.194 0.202 0.051 0.089
Transform-Text 0.128 0.172 0.216 0.227 0.063 0.066

Average 0.136 0.170 0.205 0.214 0.057 0.078

Table 3: Quality comparisons, between Vanilla models (GPT-3.5, GPT-4, Llama3.1-8B), and fine-tuned models. We
use bold to indicate better performance after TABLE-SPECIALIST fine-tuning, and we use ∗ to indicate fine-tuned
GPT-3.5 models that can outperform vanilla GPT-4.

Dataset

Specialist Fine-tuning
(GPT-3.5)

Specialist Fine-tuning
(Llama3.1-8B)

Vanilla
TABLE

SPECIALIST
Vanilla

TABLE

SPECIALIST

FinQA 0.222 0.261 0.066 0.145
TableBench 0.322 0.336 0.277 0.261

WikiTQ 0.546 0.579 0.465 0.486
Average 0.364 0.392 0.270 0.296

Table 4: Quality comparisons between vanilla models,
and fine-tuned TABLE-SPECIALIST models, on more
open-ended generative task (Table-QA).

its base models (e.g., TABLE-SPECIALIST-GPT-
3.5 improves over GPT-3.5 on all benchmarks, and
even surpassing vanilla GPT-4 on 7 benchmarks).
Importantly, since we do not use the training split of
any benchmark data during fine-tuning, it demon-
strates that the fine-tuned models are capable of
generalizing to multiple unseen benchmarks, as
discussed in the introduction.

Task TABLE

SPECIALIST

Generalist Fine-tuning
TableLlama TableGPT

Schema Matching 0.938 0.918 0.896
Error Detection 0.332 0.227 0.222

NL-to-SQL 0.616 0.576 0.570
NL-to-R 0.502 0.373 0.370

NL-to-Scala 0.491 0.279 0.304
Data-transformation (Pandas) 0.300 0.241 0.253

Data-transformation (R) 0.225 0.191 0.158
Data-transformation (SQL) 0.170 0.146 0.137

Table 5: Comparisons between TABLE-SPECIALIST
and Table-Generalists (fine-tuned on GPT-3.5)

Additionally, Table 4 shows that even on more
open-ended generative tasks such as Table-QA, by
pairing it with related generative tasks such as NL-
to-code, TABLE-SPECIALIST can still operate and
improve the seemingly open-ended tasks.

Table-Specialist vs. Table-Generalist. Table 5 il-
lustrates a comparison on all table tasks between
TABLE-SPECIALIST and Generalist Fine-Tuning
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Figure 6: Quality of TABLE-SPECIALIST by Iteration

models (shown at the task level, in the interest
of space). TABLE-SPECIALIST substantially out-
performs both generalist models (TableLlama and
TableGPT) on all tasks, showing the benefit of spe-
cialization over generalist models.

Iterative fine-tuning. Figure 6 shows an analysis
of TABLE-SPECIALIST by fine-tuning iterations.
The x-axis here represents fine-tuned iterations,
where “V1”, “V2” represent models from the first
and second iteration, etc., and “V0” represents the
base model. As we can see, TABLE-SPECIALIST

demonstrates a consistent quality improvement
in consecutive iterations (trending upward as we
move to the right), matching or surpassing GPT-4-
level quality in some cases. In comparison, FT-no-
validation is substantially less effective.

Ablation NL-to-Scala NL-to-R NL-to-SQL

TABLE-SPECIALIST-GPT-3.5 0.466 0.496 0.594

No-validation 0.421 0.417 0.591
No-execution-validation 0.457 0.489 0.595

No-Permutation 0.410 0.495 0.598

(Vanilla GPT-3.5) 0.270 0.370 0.569

Table 6: Ablation: (1) No validation, (2) No row/col-
umn permutation in validation, (3) No execution-based
validation (use language-models as validator only).

Ablation Studies. Table 6 shows the impact of
different validation strategies. We can see that
not using validation at all creates clear drops in
quality. Not using execution-invariance (Prop-
erty 2) and permutation-invariance (Property 1)
also leads to noticeable degradations, especially
on low-resource tasks (e.g., Scala and R).

Additional experiments. We present additional
experimental results, such as cost analysis and sen-
sitivity analysis, in Appendix B.

5 Conclusions and Future Work

In this work, we develop a new fine-tuning ap-
proach TABLE-SPECIALIST specifically designed
for table tasks. We show that it can fine-tune small
models specialized for individual table tasks while
still being performant and generalizable. Future
directions include testing the method on additional
base models and tasks beyond table tasks.
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Limitations

Tasks not best suited for TABLE-SPECIALIST. We
want to point out that not all table-tasks are well
suited for the proposed approach. For example,
this approach is not directly applicable to tasks that
do not have precise “ground-truth”, such as table
summarization (Hancock et al., 2019; Zhang et al.,
2020; Chen et al., 2013), as the lack of ground-truth
makes it hard to perform validation easily.

There are also tasks that naturally come with am-
ple training data, for which our approach would
not be needed. For example, the task of Data-
imputation (Mayfield et al., 2010; Biessmann et al.,
2019) predicts the value for a missing cell in a ta-
ble, where training data can be easily obtained (by
masking out random cells in real tables, and use
their ground-truth values for training). For such
tasks, it would not be necessary to use Generator-
Validator for fine-tuning.

Nevertheless, Generator-Validator fine-tuning in
TABLE-SPECIALIST applies to a broad range of
tasks with precise ground-truth that traditionally
require careful manual-labeling, such as Error de-
tection, Schema matching, NL-to-Code, and Data-
transformations, as well as more open-ended tasks
such as Table-QA, like we show in our experiments
(Table 3 and Table 4).
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A Details on Generator-Validator
Finetuning

A.1 TABLE-SPECIALIST: Classification Task
Many table tasks studied in the literature are
classification in nature, which can be binary-
classifications (e.g., Schema matching, Entity-
matching, Table-fact-verification), or multi-class
classification (e.g., Error detection, Column-type-
annotation, etc.).

Given a target classification table-task TC that
we want to fine-tune, and its dual generative table-
task TG that we can construct, in this section, we
describe how the Generator-Validator framework
can fine-tune for TC .

Algorithm 1: Generator-Validator fine-tuning
Input: A corpus of real table R, a vanilla language-model

M , a generative table-task TG, a corresponding classifi-
cation table-task TC

Output: Fine-tuned specialist model MG for task TG, and
MC for task TC

1: MG ← M // initialize the generative model MG as

vanilla M

2: MC ← M // initialize the classification model MC

as vanilla M

3: for i in 1 to k iterations do
4: TrainG ← {} // initialize the validated training

set for TG

5: TrainC ← {} // initialize the validated training

set for TC

6: for j in 1 to step-size do
7: Sample R ∈ R // sample a real table

8: Instantiate tG ← TG(R) // instantiate a

generative task tG using R

9: c ← MG(tG) // invoke MG to compute the

completion c for tG

10: Construct tC ← TC(R, c) // construct a classification

task tC with R, c

// check c is a valid completion of tG, by calling

Validate()

11: if Validate(MC , tC , c) then
12: TrainG ← TrainG∪ (tG, c) // add the validated

(tG, c) into TrainG

13: TrainC ← TrainC ∪ (tC , c) // add the validated

(tC , c) into TrainC

14: Fine-tune MG using TrainG // fine-tune MG using

validated training data

15: Fine-tune MC using TrainC// fine-tune MC using

validated training data

return MG,MC // return fine-tuned models MG,MC

Algorithm 1 shows the general steps of the
Generator-Validator approach. We start by initial-
izing both the generative model MG for the gen-
erative task TG, and the classification model MC

for the classification task TC , as a vanilla language
model M (Line 1-2). We then start our iterative
fine-tuning (Line 3), by first initializing training set
for TG and TC as empty sets (Line 4-5). In each

fine-tuning iteration, we iteratively perform step-
size number of sampled steps (Line 6), where each
time, we sample a real table R from the corpus
(Line 7), which we use to instantiate an instance
of the generative task tG = TG(R) (Line 8). We
then invoke MG on tG, to produce a completion
c (Line 9). We use c and R to construct a corre-
sponding classification task tC (Line 10). At this
point, we perform the crucial validation step by call-
ing the Validate() subroutine (Line 11, which calls
Algorithm 2 and will be explained next). Once
the validation passes, we add (tG, c) and (tC , c)
as validated training examples for TG and TC , re-
spectively, because by duality c will be a correct
completion for both tG and tC (Line 12-13). After
performing step-size number of samples, the val-
idated training data will be used to fine-tune MG

and MC (Line 14-15), to conclude one iteration
of the fine-tuning process. We repeat k such itera-
tions, and return the resulting MG and MC as our
TABLE-SPECIALIST models.

Algorithm 2: Validate(MC , tC , c): validate for
classification tasks

Input: A classification model MC , an instance of classifica-
tion task tC , and its expected output c

Output: True or False // validate whether c is the correct

completion for tC

1: R← tC .R // get the table R used in task tC

2: for i in 1 to N do
3: t′C ← TC(R

′) // instantiate a new TC task, using

the permuted R′

4: c′ ← MC(t
′
C) // get completion c′ for t′C, using

classification model MC

5: if (c′ ̸= c) then
6: return False // Not-validated: unsure if c is

correct completion for tC

return True // Validated: c is likely the correct

completion for tC

Algorithm 2 shows the validation subroutine
(Line 11 of Algorithm 1), which is necessary for
the following reason. Recall that c = MG(tG) is a
completion generated by invoking MG on task tG,
which we expect to also be the completion of the
corresponding dual task tC (by task-duality in Def-
inition 2), such that we can use (tC , c) as training
data to train model MC for our target classification
task TC . However, MG is often not perfect in many
table-tasks as we discussed, so that c = MG(tG)
may not be the correct completion for tG, and thus
also not the correct completion for tC , in which
case (tC , c) pairs should not be used for training.
We therefore use the subroutine in Algorithm 2 for
this validation.
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A.2 TABLE-SPECIALIST: Generative Tasks

In this section, we describe how Generator-
Validator fine-tuning can be applied to generative
table-tasks (the lower half of Table 1), such as NL-
to-Code and Data-transformation, etc. Figure 4
shows two generative NL-to-Code tasks on tables,
NL-to-Scala and NL-to-SQL, and their respective
classification duals.

Our fine-tuning process for generative table-
tasks uses the same Generator-Validator approach
in Algorithm 1, thanks to the the symmetry be-
tween generative/classification tasks in our setup.

As additional opportunities, we observe that
for a subset of generative table-tasks, such as
code-generation (e.g., NL-to-Code and Data-
transformations), where the target code can be
in languages such as SQL, R, Scala, Pandas, in
addition to using the model-based validation in
Line 11 of Algorithm 1 (which invokes Algo-
rithm 2), we can also leverage a unique property of
executing code on tables for validation that we call
“execution-invariance” described in Proposition 2.

The execution-invariance property provides us
with an alternative to model-based validation (Al-
gorithm 2), by using execution-based validation,
which we explain in Algorithm 3 below.

Algorithm 3: Validate(ML
G,M

L′
G , tG): for code

generative tasks
Input: A generative model ML

G for generating code in a
target language L, another generative model ML′

G for
generating code in a second language L′, an instance of
classification task tG

Output: True or False
1: R← tG.R // get the table R used in task tG

2: cL ← ML
G(tG) // generate target code cL in language

L

3: cL
′ ←ML′

G (tG) // generate target code cL
′
in language

L′

4: for i in 1 to N do
5: RS ← Sample(R) // sample rows in table R

6: r ← Execute(cL, RS) // execute cL on table RS to

get r

7: r′ ← Execute(cL
′
, RS) // execute cL

′
on table RS

to get r′

8: if (r ̸= r′) then
9: return False // Not-validated: unsure if cL is

correct completion for tG

return True // Validated: cL is likely a correct

completion for tG

In Algorithm 3, we are given a generative model
ML

G that can generate code on tasks tG in a target
language L (e.g., NL-to-Scala). We use a second
model ML′

G that generates code for the same task

tG but in a different language L′ (e.g., NL-to-SQL),
to validate code generated by ML

G .
We start by assigning R as the table used in tG,

then invoke ML
G and ML′

G (both are initially vanilla
language models), to generate code cL and cL

′
re-

spectively. Then in N iterations, we repeatedly
sample rows to generate RS ⊆ R, and execute cL

and cL
′

on RS , to produce results r and r′, respec-
tively. If in any iteration we have (r ̸= r′), then
by execution-invariance we know that cL and cL

′

are not semantically equivalent, and at least one
of the two is incorrect, which is why we return
“False” to signify that cL cannot be validated so
that it will not be used in training later. Otherwise,
if we cannot find contradictions in N iterations,
we consider (tG, cL) a valid training example and
return “True” for this data point to fine-tune ML

G .
Note that (tG, cL

′
) is also a valid training exam-

ple, so that we can fine-tune ML′
G for a different

language L′ in parallel.
We illustrate Algorithm 3 using NL-to-Code as

an example.

Example 5. Consider the task of NL-to-Scala, or
generating Scala code that can run on Spark, as
shown in Figure 4(a). Like in Figure 3, as pre-
processing steps, we would first sample a real table
R, and then ask language-models to brainstorm
a question relevant to table R, e.g., “which team

has the highest goal” for the table in the figure,
to create a generative task tG. The classification
version of the task is shown in Figure 4(b), which
asks a model to predict whether a code snippet can
execute to answer a given natural-language ques-
tion. With these two tasks, we can already perform
Generator-Validator fine-tuning using Algorithm 1
and 2.

Leveraging execution-invariance, we can per-
form a different type of validation, that invokes
Algorithm 3 (in place of Algorithm 2). Specifically,
when validating training data (Line 11 of Algo-
rithm 1), we invoke Algorithm 3, where we use the
same task, but require code to be generated in a
different language – Figure 4(c) shows an NL-to-
SQL task that directly corresponds to Figure 4(a)
but requires generated code to be in SQL.

Let ML
G be the NL-to-Scala model that we itera-

tively fine-tune, and ML′
G be a NL-to-SQL model

(which can be a vanilla language-model, or an-
other model that we also iteratively fine-tune in
lockstep), we can then proceed to invoke Algo-
rithm 3. We first generate code in both Scala and
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SQL for the same question, like shown in the bot-
tom of Figure 4(a) and (c), and then execute both
Scale and SQL repeatedly on sub-samples RS ⊆ R,
to compare their execution results. If we cannot
find contradictions in any iteration, we consider
(tG, c

L) and (tG, c
L′
) validated, which we can use

to iterative fine-tune ML
G and ML′

G . (This in effect
changes the right-half of the architecture in Fig-
ure 3, by replacing the mode-based validation, into
an execution-based validation). 2

Note that the execution-based validation applies
to other generative tasks involving code, such
as Data-transformation by-example, or generating
code to perform transformations specified by in-
put/output examples, using a target language (e.g.,
SQL, R, Scala, etc.).

A.3 “Textbook-like” generation
There are additional details in our initial data gen-
eration process, where we use a curriculum-guided
process to direct language-models to compose text-
book constructs so that they can generate diverse
questions of varying levels of difficulty that are
relevant to a given table R that we will explain
below (Abdin et al., 2024; Li et al., 2023).

Recall that for generative tasks such as NL-to-
Code and Data-transformations, there is an initial
preprocessing step in which we need to generate
a reasonable “task” t for a sampled table R ∈ C,
so that the the question t can then become part of
the instruction and used as training data to fine-
tune language models (e.g., for NL-2-Code, this t
would be a natural language question that needs to
be answered based on the content of R, for Data-
transformation, this t would be a ground-truth trans-
formation that we want models to predict based on
input/output examples).

While language-models can by themselves gen-
erate reasonable tasks t given a table R, we find
benefit in guiding language-models towards con-
structing diverse t by composing basic building-
blocks from programming language “textbooks”.

For example, for NL-2-Code, we find it bene-
ficial to decompose the question-generation task,
into an explicit list of requirements based on atomic
SQL constructs, such as where, group-by, order-by,
etc., using database textbooks (Ramakrishnan and
Gehrke, 2002), and then ask language-models to
brain-storm a question using a given table R, based
on the constraints, like below:

• *THREE (3)* of filtering predicate(s) in

WHERE clause

• *TWO (2)* GROUP BY clause, with aggrega-
tion function

• *ONE (1)* ORDER BY command

• ...

Note that the numbers 3/2/1 shown above are ex-
amples, which are randomly sampled from a range
of [0, k], and dynamically inserted into the prompt
when generating a question q on a table R. This
produces diverse questions with varying degrees of
difficulty, that can be answered using SQL or other-
wise. (In comparison, if language models are asked
to generate questions unconstrained, they tend to
produce similar questions on different tables that
are less diverse, which we find to be less effective
as training data).

Similarly, for Data-transformation, we decom-
pose the task of generating reasonable transfor-
mations that can be performed on a given ta-
ble R, also into a list of atomic building blocks,
using basic Python constructs, such as string-
transformation (split, concatenate, sub-string, etc.),
number transformation, array transformations, etc.,
using Python textbooks (Lutz, 2001). We sample
requirements from the list, in order for language-
models to generate diverse transformation exam-
ples that can be used as training data.

Details of the prompts used in generating task
t for NL-2-Code and Data-transformation, can be
found in our technical report (Xing et al., 2024).

A.4 Things we tried but were not effective
In addition to what is reported, we also tried many
things that did not turn out to be effective, which
we will report below.

Since it is standard to use confidence scores as
soft-labels in self-supervised and semi-supervised
learning (He et al., 2019; Zhu and Goldberg,
2022; Xie et al., 2020), in TABLE-SPECIALIST

we also tried to extract confidence scores of train-
ing examples from language-models during the
generation process. For example, we used log-
probabilities (llm) as well as verbalization tech-
niques (Sui et al., 2024; Tian et al., 2023) to extract
confidence from language-models, which we use to
find confident training examples in the self-training
/ iterative fine-tuning process, which however was
not always beneficial.

During the data validation process, we produce
lots of negative (invalidated) examples, in addition
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to positive (validated) examples. In one variant of
our fine-tuning, we try to use both positive (val-
idated) and negative (invalidated) examples (e.g.,
using a format suggested in (Wang et al., 2024)), to
prefix positive and negative examples with leading
special-tokens, such as [POS] and [NEG], respec-
tively, which was not helpful in our experiments.

Since some of the table-tasks we test are pretty
challenging (e.g., Data-transformations, which
requires trial-and-test, and reflect on previous
mistakes), we also tried agentic self-reflection
style fine-tuning using trajectories, by allowing
language-models to make multiple attempts in gen-
erating transformation-programs, each looking at
the output from previous attempts to reflect on pre-
vious errors (e.g., compilation errors in previous
execution, or output from a previous execution does
not match the intended output), similar to (Shinn
et al., 2024) in NLP tasks. While it provides modest
benefit in terms of overall success rate for challeng-
ing tasks like Data-transformation, it substantially
increases the latency for training data generation,
and complicates the overall architecture, which we
decided not to include in the end.

B Additional Experiments

B.1 Latency and Cost Comparisons
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Figure 7: Average Latency for TABLE-SPECIALIST
(fine-tuned on GPT-3.5) and vanilla GPT-4

In Figure 7, we compare the average latency of
TABLE-SPECIALIST models (fine-tuned on GPT-
3.5) and GPT-4, on various task, averaged over
all benchmark test cases. Because the fine-tuned
TABLE-SPECIALIST models are smaller, on aver-
age they are 3.42 times faster than vanilla GPT-4
(while still having comparable quality). Figure 1
shows another analysis for NL-to-Code tasks, with
similar latency reductions. Since serving online
queries and ensuring interactivity is key in many
user-facing workloads, this highlights a crucial ben-
efit of TABLE-SPECIALIST as it allows us to em-
ploy smaller models to reduce latency significantly.
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Figure 8: Total Cost Analysis: TABLE-SPECIALIST v.s.
GPT-4

In Figure 8, we compare the cost10 of fine-tuning
and serving TABLE-SPECIALIST using GPT-3.5,
vs. serving directly using vanilla GPT-4, on two
table tasks (results for other tasks are similar).

The detailed unit price is listed in Table 7. We
estimate the cost per API call using the average
number of prompt and completion tokens for each
tasks, as listed in Table 8.

Table 7: The Unit Price for Inference and Training, Per
1K Tokens, for Vanilla GPT-3.5, GPT-4, and Fine-tuned
GPT-3.5. As of July 2, 2024 (ope)

Model Input Output Training
GPT-3.5 0.001 0.002 0.008
FT(GPT-3.5) 0.003 0.006 N.A.
GPT-4 0.03 0.06 N.A.

Table 8: Average Number of Prompt and Completion
Tokens, and Average Latency for TABLE-SPECIALIST
and GPT-4

Task Average # of Tokens Average Latency (s)
Prompt Completion TABLE-SPECIALIST GPT-4

NS 969 38 0.891 2.436
R2RP 678 92 1.408 7.098

ED 701 10 0.723 1.433
SM 1168 206 2.427 9.569

We can see in Figure 8 that TABLE-SPECIALIST-
GPT-3.5 has to pay an upfront cost of fine-tuning,
which is why it starts with a non-zero cost (on
y-axis) to serve the first query (on x-axis). This
however, is amortized over future queries, and
takes less than 5000 queries (for Schema match-
ing) or 10000 queries (for Data-transformation)
for TABLE-SPECIALIST to break even with using
vanilla GPT-4 directly. We argue that the cost sav-
ing in the long run, together with significant latency
reductions, makes TABLE-SPECIALIST a viable op-
tion, especially in user-facing online settings.

10We use the published pricing (pri) to calculate the cost of
fine-tuning and inference.
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Table 9: Ablation study: No “textbook-like” constrained task generation.

Ablation NL-to-SQL NL-to-R NL-to-Scala Transform-Pandas Transform-R Transform-Scala

TABLE-SPECIALIST 0.609 0.498 0.510 0.267 0.222 0.133
NoTextBook 0.601 0.497 0.501 0.257 0.200 0.135

B.2 Sensitivity Analysis

We perform various types of sensitivity analysis in
TABLE-SPECIALIST.
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Figure 9: Sensitivity analysis

Vary the Amount of Training Data. Figure 9a
shows TABLE-SPECIALIST quality, when we vary
the amount of training data produced by the Gen-
erator from 100% to 50%, 25% and 12.5% of the
original data (x-axis). We can see that increasing
the amount of training data generally has a positive
effect on result quality.

Vary Prompt Templates. To test the robustness
of TABLE-SPECIALIST, we vary our prompt tem-
plates used in each task, by giving our original
prompt to ChatGPT and asking it to paraphrase
into five different prompts, for the NL-to-SQL and
NL-to-Scala tasks. Figure 9b shows that using vari-
ants of the prompt (abbreviated as VP in the figure),
lead to comparable quality.

Vary the Base Model for Fine-Tuning. We test
two alternatives of iterative fine-tuning, where in
each iteration, we initialize the base model either
as the vanilla model (e.g., GPT-3.5), or the model
from the last iteration (continuous fine-tune). Fig-
ure 10 shows that using vanilla GPT as the base
models are consistently better than using the check-
point from the last iteration (continuous fine-tune),
for both NL-to-SQL and NL-to-Scala.
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Figure 10: Vary Base Model

No “textbook-like” Constrained Task Genera-
tion. We removed the “textbook” constrained task
generation for the two generative tasks, and re-
port resulting quality in Table 9. We observe that
having textbook-like curriculum-guided data gen-
eration improves the diversity of training data, and
generally has a positive effect on the final model
quality.
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