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Abstract

Finding the right north-star metrics is highly
critical for advancing mathematical reason-
ing capabilities of foundation models, espe-
cially given that existing evaluations are ei-
ther too easy or only focusing on getting
correct short answers. To address these is-
sues, we present IMO-Bench, a suite of ad-
vanced reasoning benchmarks that specifically
targets the level of the International Math-
ematical Olympiad (IMO), the most presti-
gious venue for young mathematicians. IMO-
AnswerBench first tests models on 400 diverse
Olympiad problems with verifiable short an-
swers. IMO-ProofBench is the next-level eval-
uation for proof-writing capabilities, which in-
cludes both basic and advanced IMO problems
as well as detailed grading guidelines to fa-
cilitate automatic grading. These benchmarks
played a crucial role in our historic achieve-
ment of the gold-level performance at IMO
2025 with Gemini Deep Think (Luong and
Lockhart, 2025). Our model achieved 80.0%
on IMO-AnswerBench and 65.7% on the ad-
vanced IMO-ProofBench, surpassing the best
non-Gemini models by large margins of 6.9%
and 42.4% respectively. We also showed that
autograders built with Gemini reasoning cor-
relate well with human evaluations and con-
struct IMO-GradingBench, with 1000 human
gradings on proofs, to enable further progress
in automatic evaluation of long-form answers.
We hope that IMO-Bench will help the com-
munity towards advancing robust mathemati-
cal reasoning and release it at https://github.
com/google-deepmind/superhuman/imobench.

1 Introduction

The field of artificial intelligence, particularly large
language or foundation models, has demonstrated
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Figure 1: IMO-ProofBench, abenchmark in IMO-Bench,
for measuring proof-writing capabilities. We demon-
strated high correlations between human and automatic

evaluations on a variety of public models, including our
IMO-gold model. See §3 and §5.3 for more details.

remarkable progress in mathematical reasoning
capabilities. Many popular benchmarks such as
GSMSK (Cobbe et al., 2021), Hendrycks” MATH
(Hendrycks et al., 2021), and the recently popu-
lar AIME (for American Invitational Mathematics
Examination) have approached saturation, limit-
ing their usefulness in differentiating model per-
formances. The problems in these datasets often
rely on a limited set of techniques and do not al-
ways require the deep, multi-step reasoning needed
to truly evaluate Al mathematical reasoning. In-
deed, relying on final answer matching, even in
recent benchmarks such as FrontierMath (Glazer
etal., 2024) and Humanity’s Last Exam (Phan et al.,
2025), is not entirely reliable. It could lead to Al
systems that are good at guessing answers but do
not exhibit robust reasoning skills.

To address these shortcomings, we propose IMO-
Bench, a suite of benchmarks that focus on robust
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Benchmark Size Task
IMO-AnswerBench 400 Get the right answer
IMO-ProofBench 60 Write a rigorous proof
IMO-GradingBench 1000  Grade a proof

Table 1: Benchmarks in the IMO-Bench suite.

reasoning at the level of the International Mathe-
matical Olympiad (IMO), the world’s most cele-
brated arena for young mathematicians. The IMO
is selected due to its notoriously difficult problems,
which require not only rigorous multi-step reason-
ing but also a high degree of novelty, going beyond
the simple application of known formulas. Such
characteristics make IMO an excellent testbed for
assessing reasoning capability. IMO-Bench cov-
ers three different tasks as summarized in Table 1
and all problems were vetted by a panel of IMO
medalists' and mathematicians.

The first benchmark, IMO-AnswerBench, con-
sists of 400 problems with verifiable answers care-
fully chosen from from past Olympiad competi-
tions and then altered by experts to avoid memo-
rization. Problems were chosen from a variety of
topics whose solutions require different problem
solving techniques to ensure a diverse represen-
tation of topics, ideas, and domain knowledge as
illustrated in Figure 2.

The second benchmark, IMO-ProofBench, con-
sists of 60 problems of varying difficulty levels,
similar to those found at the IMO. While some
problems have short answers, all require models
to generate complete proofs. The benchmark is
divided into two subsets, basic and advanced, each
with 30 problems. While the basic set covers dif-
ficulty levels from pre-IMO up to IMO-Medium,
problems in the advanced set are up to IMO-hard
level and comprises of 5 complete IMO sets, 3 of
which are novel. We designed this benchmark to
shift the community’s focus from final answers to
the proofs themselves, enabling a more rigorous
assessment of Al reasoning processes. To ensure
consistent evaluation, we include detailed grading
schemes suitable for both human experts and au-
tomated systems. Figure 1 provides an early look
into the potential of automatic graders for proofs.

These two benchmarks played a crucial role in
the development of our Gemini Deep Think, lead-
ing to the historic achievement of the gold-level
performance at IMO 2025 (Luong and Lockhart,

!Together, they won 10 gold and 5 silver IMO medals.

2025). Our IMO-gold model achieved an accuracy
of 80.0% on IMO-AnswerBench by automatic eval-
uation, surpassing the best non-Gemini model and
the best open-weight model by a large margin of
6.9% and 19.2% respectively. The advanced IMO-
ProofBench is much more challenging. Our IMO-
gold scored 65.7%, whereas the best non-Gemini
and the best open-weight models performed poorly
with only 23.3% and 7.1% accuracy according to
human evaluations. Furthermore, we demonstrate
that automated graders for both answers and proofs,
built upon Gemini 2.5 Pro, achieve high correlation
with expert human evaluations.

Last but not least, we introduce IMO-
GradingBench, a benchmark of 1000 solutions to
problems in the advanced IMO-ProofBench, to-
gether with grades from human experts. This re-
source is designed to foster progress in the auto-
matic evaluation of long-form answers. We re-
lease? IMO-Bench to the community and hope that
it will spur further research towards advancing ro-
bust mathematical reasoning.

2 IMO-AnswerBench

2.1 Problem Selection

400 math problems were handpicked from vari-
ous national, regional and international Olympiad
contests, spanning across four categories (Algebra,
Combinatorics, Geometry, and Number Theory).
For each category, the benchmark contains 100
problems across four levels of difficulty: pre-IMO
(middle school or pre-Math Olympiad problems),
IMO-Easy (equivalent to Problem 1 or Problem
4 at the IMO), IMO-Medium (equivalent to Prob-
lem 2 or Problem 5 at the IMO) and IMO-Hard
(equivalent to Problem 3 or Problem 6 at the IMO
or post-Math Olympiad problems). The difficulty
breakdown for each category is listed in Table 2.

Category Pre-IMO IMO-Easy IMO-Medium IMO-Hard
Algebra 11 46 32 11
Combinatorics 4 19 31 46
Geometry 13 44 32 11
Number Theory 2 20 31 47

Table 2: Difficulty breakdown for IMO-AnswerBench.

Problems with short answers were chosen so the
correctness of a model’s output can be quickly and
reliably determined. Given the proof-heavy nature
of many math Olympiad problems, we perform an

2https: //github.com/google-deepmind/
superhuman/imobench
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Figure 2: Topic distribution by category in IMO-AnswerBench. Number Theory and Combinatorics have the most
topics which reflect the broad knowledge required to solve these problems while Geometry is mostly skewed towards
angle and sidelength computation problems due to the nature of the short answer benchmark.

additional reformulation step for certain examples.
This adjustment ensures that each problem yields
a clear and nontrivial short answer, thereby reduc-
ing ambiguity during solving and verification and
confirming that models utilize nontrivial reasoning.
We detail specific examples in A.4.

2.2 Problem Robustification

To avoid data memorization, an additional step
of problem modification is done via paraphrasing,
changing the name of objects in the problem (such
as changing point names for geometry problems),
reformulating, modifying numerical values and/or
adding distractors to the problem. This process is
done either manually or automatically using lan-
guage models. We highlight some examples in
Table 8 and detail below.

One example is an algebra problem from Austria
Math Olympiad 2017. The problem is modified by
making the substitution x = a+b—c, y = b+c—a,
and z = ¢+ a — b for positive real numbers x, y, z
with a, b, and c being the lengths of the sides of
some triangle to obtain the modified problem in

the Robustified column. This modification uses the
knowledge that a, b, and c are lengths of a triangle
if and only if they satisfy the triangle inequalities
a+b>c,a+c>bandb+c > a.

Another example is a combinatorics problem
from USA TST 2005. From the original statement,
the problem is modified using several techniques
such as modifying numerical values (by assigning
a specific value to the variable n so that it is harder
to guess the pattern), adding distractors (by intro-
ducing a function or variables that are not relevant
to the problem), and adding a layer of challenge
that could confuse the models.

Experts also reformulated original problems into
equivalent ones with completely different expres-
sions. One such example is the Czech-Slovak Math
Olympiad 2017 problem, where we obtain a ro-
bustified problem by transforming the governing
equation and changing the objective from finding
all possible values of k to finding all even integers
d such that the number of solutions is even.
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2.3 Answer autograder

Even for the problems with short answers, auto-
matic answer verification presents a few substantial
challenges. The difficulty arises from two main
issues: (1) ensuring that model outputs adhere to
a parsable format and (2) evaluating semantically
equivalent but syntactically different expressions.’
To circumvent this issue, benchmarks such as Fron-
tierMath (Glazer et al., 2024) select problems with
only numerical answers or mathematical objects
that can be expressed as SymPy objects. However,
this approach narrows the scope of evaluable prob-
lems and reduces robustness of the benchmark to
minor formatting or syntax errors.

To address these limitations, we incorporate an
approach of prompting a large language model
as an automated verifier for the model answers
on IMO-AnswerBench. We name this language
model component as AnswerAutoGrader. The An-
swerAutoGrader is built by prompting the public
Gemini 2.5 Pro model to extract the final answer
from the generated solution and assess its correct-
ness against the ground truth (See A.5 for the full
prompt). This method allows much more flexi-
bility in acceptable answer formats and improves
the overall robustness of our benchmark. As we
demonstrate in Section 5.1, AnswerAutoGrader’s
performance is nearly identical to that of human
evaluators, validating its use for future public usage
and also for reporting the results in this work.

3 Going Beyond Short Answers with
IMO-ProofBench

While the final answer accuracy provided by IMO-
AnswerBench offers a valuable metric for measur-
ing mathematical abilities, it is insufficient for a
comprehensive assessment of mathematical rea-
soning. A final answer can be correct while the
full solution contains flawed reasoning. Further-
more, many IMO-level competition problems do
not come with a final short answer. Even in cases
where a short answer exists, guessing the correct
short answer is often significantly easier than rigor-
ously deriving the solution.

IMO-ProofBench is designed to evaluate the abil-
ity of AI models to construct comprehensive and
valid mathematical arguments. This benchmark
consists of 60 proof-based problems, curated to

3For example, given the ground truth answer " (—o0, —4)U
(—4, 00)", the answer "all real numbers except -4" should also
be graded as correct.

mirror the kinds of problems found in the IMO.
While some problems may have concise numeri-
cal answers, models are only given credit if they
produce correct and relevant reasoning steps. This
benchmark is essential for assessing an AI’s under-
lying reasoning process, its ability to apply math-
ematical principles, and its capacity to formulate
coherent and logical arguments.

3.1 Benchmark setup

The benchmark is divided into two subsets: a basic
set covering pre-IMO to IMO-Medium difficulty
levels, and an advanced set featuring novel, highly
challenging problems simulating complete IMO
examinations, up to IMO-Hard level.

The basic problem set primarily consists of
rephrased versions of existing problems. Since
standard IMO problems may be too challenging for
most of current models, the basic set is designed to
assess models in their early stages of development.
Sufficiently strong performance on the basic set
would justify progression to the advanced set.

The advanced problem set features 30 problems
in the style and difficulty of the IMO. The collec-
tion includes 18 novel problems crafted by IMO
medalists, alongside 12 problems from recent top-
tier competitions: 6 robustified from IMO 2024 and
6 directly from USAMO 2025. Table 10 provides
examples of such robustified problems.

IMO-ProofBench uses an evaluation framework
designed for both simplicity and precision. We
provide a primary grading guideline with four rat-
ings (Correct, Almost, Partial, Incorrect) as de-
tailed in Table 3. While this rubric offers a clear
and consistent baseline, we do not restrict our ex-
pert evaluators to these four values. To allow for
more nuanced assessments, human experts are em-
powered to use their own judgments to assign any
integer score from O to 7 for each problem.

Category IMO Points Solution quality

Correct 7 Fully correct, rigorous, and complete
Almost 6 Almost correct, minor errors

Partial 1 Mostly incorrect, some relevant results
Incorrect 0 Completely incorrect or irrelevant.

Table 3: Our simplified IMO ratings.

3.2 Proof Autograder

While human expert evaluation remains the gold
standard for mathematical proofs, its cost and time
intensity limit scalable research. To address this,
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we built ProofAutoGrader, an automatic grader for
IMO-ProofBench. The autograder leverages Gem-
ini 2.5 Pro, providing it with a prompt containing
the problem statement, the candidate solution, a
reference solution, and specific grading guidelines
(see Appendix B.5).

Automatic evaluation for informal proofs is a
highly intricate task, and current systems are not
yet a perfect substitute for human experts-a key dis-
tinction from AnswerAutoGrader, whose purpose
is primarily format matching. For this reason, all
primary results in this paper are based on expert
human evaluation to ensure all results are abso-
lutely correct. Nevertheless, as we demonstrate
in Section 5.3, we prove our autograder can be a
reasonable proxy, establishing it as a reasonable
tool for the community to assess future models on
IMO-ProofBench.

4 IMO-GradingBench

While IMO-ProofBench evaluates proof-writing
abilities, it is equally important to assess models
in terms of their ability to evaluate the correctness
of given solutions. This capability is crucial for
developing reliable automated grading systems and
improving general mathematical reasoning. This is
the focus of IMO-GradingBench.

Grade: Bl Incorrect Partial Almost mmm Correct

Hard 38.1% 7.3%

Medium 40.1% 23.8%

Difficulty

Easy LA 61.8%

°\o-

0 20% 40% 60% 80% 100%

Percentage of Total Responses (%)

Figure 3: Grade distribution for solutions in IMO-
GradingBench by difficulty levels IMO-Hard, IMO-
Medium, IMO-Easy).

As part of our IMO effort (Luong and Lock-
hart, 2025), we have benchmarked extensively
many internal models on the advanced set of
IMO-ProofBench using human evaluations, which
has been tremendously instrumental for our rapid
progress leading up to IMO 2025. These human
gradings later have led to the creation of IMO-
GradingBench with 1000 examples, each contain-
ing a problem statement, a proposed solution, and

its human-assigned grade (on a 0—7 scale). To re-
duce noise from fine-grained scoring, we frame the
evaluation as a four-way classification by mapping
the given IMO points to the labels (Correct, Almost,
Partial, Incorrect) as detailed in Table 3.

To ensure a robust evaluation, the dataset has
been balanced with a roughly equal number of ex-
amples per category. Figure 3 illustrates that when
problems are grouped by their IMO difficulties, a
clear trend emerges. The proportion of correct and
almost solutions decreases as the intended difficulty
moves from IMO-easy to IMO-hard, while the pro-
portion of incorrect and partial solutions increases.
This confirms that the grading distribution of IMO-
GradingBench aligns with its assigned difficulty
levels. See further discussions in Section C.1.

5 Results

We evaluate IMO-Bench on a wide variety of pub-
licly available models: Claude Opus 4 (20250514),
Claude Sonnet 4 (Anthropic, 2025), DeepSeek
V3 (DeepSeek, 2025b), DeepSeek R1 (DeepSeek,
2025a), Kimi-K2-Instruct (Moonshot Al, 2025),
Qwen3-235B (A22B-Instruct-2507- tput) (Qwen
Team, 2025), 03 (2025-04-16), o4-mini (high
reasoning) (OpenAl, 2025b), GPT-5 (2025-08-
07) (OpenAl, 2025a), Gemini 2.5 Pro (Google
DeepMind, 2025), Gemini 2.5 Deep Think (Deep
Think team, 2025), Gemini Deep Think (/MO
Gold) (Luong and Lockhart, 2025), Gemini 2.5
Pro with (Huang & Yang, 2025) (Huang and Yang,
2025), Grok 4 (0709) (xAl, 2025).

Note that since Gemini 2.5 Pro with (Huang &
Yang, 2025) is an agentic framework rather than a
single model call, Appendix B.3 contains further
details on its implementation.

5.1 IMO-AnswerBench with
AnswerAutoGrader

Results for IMO-AnswerBench are in Table 4. Ac-
curacy was determined by AnswerAutoGrader,
which extracts the final answer from the model re-
sponse and assesses its semantic equivalence to the
ground truth. Our Gemini Deep Think (/MO Gold)
model achieved an overall accuracy of 80.0%, sur-
passing the best non-Gemini model (Grok 4) by
6.9% and the best open-weight model (DeepSeek
R1) by 19.2%. Latest models such as Kimi-K2-
Instruct and GPT-5 are still struggling with overall
accuracy of only 45.8% and 65.6% respectively.
Across the four categories of Algebra, Combi-
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Model ‘ Query date | Algebra Combinatorics Geometry Number Theory | Overall
Claude Opus 4 2025-08-04 | 19.4% 20.0% 23.3% 26.6% 22.3%
Claude Sonnet 4 2025-08-06 | 20.6% 17.8% 26.0% 27.6% 23.0%
DeepSeek V3 2025-09-17 | 39.0% 26.0% 35.0% 48.0% 37.0%
Kimi-K2-Instruct 2025-09-17 | 45.6% 31.1% 49.3% 56.9% 45.8%
Qwen3-235B 2025-08-20 | 57.6% 37.5% 57.6% 62.3% 53.8%
DeepSeek R1 2025-09-17 | 65.0% 40.0% 73.0% 65.0% 60.8%
03 2025-08-04 | 62.8% 43.0% 70.6% 68.0% 61.1%
GPT-5 2025-09-17 | 69.9% 46.4% 74.8% 71.2% 65.6%
o4-mini (high reasoning) 2025-08-04 | 71.3% 46.6% 78.4% 75.3% 67.9%
Gemini 2.5 Pro 2025-08-04 | 73.4% 48.0% 74.3% 77.1% 68.2%
Gemini 2.5 Deep Think 2025-08-20 | 78.0% 49.0% 83.0% 77.0% 71.8%
Grok 4 2025-08-06 | 75.5% 55.9% 80.1% 80.9 % 73.1%
Gemini Deep Think (IMO Gold) | 2025-09-17 | 85.0% 69.0% 88.0% 78.0% 80.0%

Table 4: Model accuracy on IMO-AnswerBench. Results are averaged over 8 runs, except for Gemini 2.5 Deep
Think and Gemini Deep Think (/MO Gold) (single run). An evaluation of Grok 4 (heavy) on 2025-08-13 using
multiple paid accounts was aborted due to significant instability (only 117/400 responses were received despite
multiple, hour-long attempts), and thus its results are not reported.

AnswerAutoGrader

0 1
Human 0 | 274 (99.6%) 1 (0.4%)
Grade 1 8 (1.5%) 517 (98.5%)

Table 5: Confusion matrix for the AnswerAutoGrader
predictions against human grades for answers to IMO-
AnswerBench. The solutions were generated by Gemini
2.5 Pro and 03. Absolute counts are shown, with row-
wise percentages in parentheses.

natorics, Geometry, and Number Theory, models
generally perform the worst in Combinatorics, po-
tentially highlighting difficulties with advanced ab-
stract reasoning. We also analyze the performances
of models on the original problems, before robus-
tification, summarized in Appendix Table 9. As
anticipated, we find robustification leads to a con-
sistent drop in performance across all models.

Lastly, we validate the reliability of AnswerAuto-
Grader by comparing it with expert human labels.
As reported in Table 5, the autograder shows nearly
perfect performance, achieving overall accuracy of
98.9% on the positive (correct) class.

5.2 IMO-ProofBench with Expert Evaluations

Model outputs on IMO-ProofBench were graded
by human experts according to the guidelines de-
scribed in Section B.2. Table 6 presents the results
of this evaluation. Performance on the basic IMO-
ProofBench varies significantly; while most mod-
els score below 60%, Gemini Deep Think /MO
Gold) achieves a high score of 89.0%. The perfor-

mances of other frontier models such as Qwen3-
235B (33.3%) and GPT-5 (59.0%) show that there
is still considerable room for improvements.

The advanced IMO-ProofBench proves to be
a more significant challenge that all non-Gemini
models score below 25%. Our Gemini Deep Think
(IMO Gold) model achieved a score of 65.7% ac-
cording to human evaluations, surpassing the best
non-Gemini model (Grok 4 (heavy)) by a large mar-
gin of 42.4%. This represents a substantial leap in
capability, but its distance from a perfect score indi-
cates that even the strongest models have room for
growth in sophisticated mathematical reasoning.

A breakdown of the advanced IMO-ProofBench
reveals a significant performance disparity across
problem types, suggesting potential overfitting in
certain models. This trend is most evident with
Grok 4 (heavy), which scores 76.2% on USAMO
2025 but only 11.1% on novel problems. Other
models, including 03 (52.4% vs. 15.1%) and Gem-
ini 2.5 Pro with (Huang & Yang, 2025) (52.4% vs.
17.5%), exhibit a similar, pronounced gap.

In contrast, Gemini Deep Think (/MO Gold)
scored 69.0% on the USAMO and 61.1% on the
novel sets, indicating that our model is more gen-
eral (Deep Think team, 2025) and does not overfit
to a particular math dataset. The low performances
of latest frontier models such as GPT-5 and Grok
4 (heavy) on the advanced IMO-ProofBench un-
derscore the difficulty of advanced mathematical
reasoning and highlight the importance of rigor-
ously checking the full details of model outputs for
a complete understanding of their abilities.
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‘ Query date ‘

IMO-ProofBench ‘ Advanced IMO-ProofBench Breakdown

Model
\ Basic | Advanced | Novel | IMO 20247 | USAMO 2025

Number of Problems \ | 30 | 30 | 18 | 6 \ 6
Claude Opus 4 2025-08-04 | 11.9% | 2.9% 0.0% 2.4% 11.9%
DeepSeck V3 2025-09-16 | 18.6% | 4.3% 6.3% 2.4% 0.0%
Kimi-K2-Instruct 2025-08-21 | 19.5% | 7.1% 4.0% 2.4% 21.4%
Claude Sonnet 4 2025-09-17 | 27.1%% | 4.8%% | 6.4%% 2.4% 2.4%
DeepSeek R1 2025-09-16 | 29.0% | 3.8% 6.4% 0.0% 0.0%
Qwen3-235B 2025-08-21 | 333% | 5.2% 7.1% 0.0% 4.8%
od-mini (high reasoning) 2025-08-04 | 37.6% | 11.4% 8.7% 7.1% 23.8%
Grok 4 2025-08-20 | 46.7% | 18.6% 17.5% 16.7% 23.8%
03 2025-08-04 | 54.8% | 20.5% 15.1% 4.8% 52.4%
Gemini 2.5 Pro 2025-08-04 | 55.2% | 17.6% 15.9% 7.1% 33.3%
GPT-5 2025-09-18 | 59.0% | 20.0% 15.9% 33.3% 19.0%
Grok 4 (heavy) 2025-07-12 | NA? 233%% | 11.1%% 7.1% 76.2%
Gemini 2.5 Pro with (Huang & Yang, 2025) | 2025-07-14 | 69.5% | 24.8% 17.5% 19.1% 52.4%
Gemini 2.5 Deep Think 2025-08-20 | 83.8% | 37.6% 31.7% 40.5% 52.4%
Gemini Deep Think (IMO Gold) 2025-08-02 | 89.0% | 65.7% | 61.1% 76.2% 69.0%

Table 6: Expert evaluation results on the Basic and Advanced subsets of IMO-ProofBench. Scores are presented as a
percentage of the total possible points for the problems in each respective subset, with each problem graded from
0-7 (as described in Section B.2). The Advanced IMO-ProofBench is further broken down by problem source.
tRobustified IMO 2024 problem set, see Section 3. *An attempt to query Grok 4 (heavy) on 2025-08-13 was unsuccessful due to
model instability (only 5 of 30 problems responded with 3 attempts). $*Scores indicate that there were k problems that were
treated as incorrect (a score of 0) because of query failures (for at least 3 times).

5.3 Autograder for IMO-ProofBench

To assess the feasibility of using automatic graders
for proofs, we apply ProofAutoGrader to the 14
public models (Table 6), previously graded by hu-
man experts on IMO-ProofBench. Figure 1 shows
that the average grades from our automatic grader
highly correlate with human grades, yielding high
Pearson correlation coefficients of 0.96 and 0.93
on both basic and advanced problems respectively.

Advanced IMO-ProofBench (internal models)

90 Pearsonr = 0.87
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Figure 4: Correlation between ProofAutoGrader and
human experts on the advanced IMO-ProofBench, evalu-
ated over 170 internal models on our IMO-gold journey.

In addition, we also visualized, in Figure 4, the
performance of ProofAutoGrader on 170 internal
systems, developed as part of our IMO effort (Lu-
ong and Lockhart, 2025). On this larger pool, our
automatic grader achieved a lower, but still reason-
able Pearson correlation coefficient of 0.87.

Human vs. ProofAutoGrader Grades
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Figure 5: Per-solution confusion matrix for ProofAu-
toGrader vs. human expert grades, over 840 solutions
generated by 14 public models (see Table 6).

To better understand the grading agreement, we
visualize, in Figure 5, the confusion matrix of all
human and automatic gradings on the 14 public
models (for a total of 840 model solutions). We
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observed that most common misclassifications hap-
pened between the Incorrect and Partial classes.

Detailed analysis in appendix B.6 further reveals
that ProofAutoGrader occasionally still has weak-
nesses such as failures to identify high-level logical
errors or being overly punitive for unconventional
yet correct solutions. Therefore, while we hope
that ProofAutoGrader can serve as a valuable tool
for the community to evaluate models on IMO-
ProofBench, we recommend couple its results with
oversight and review from human.

5.4 IMO-GradingBench

The IMO-GradingBench measures the ability of
models in assessing the quality of a proof when
provided with only problem statements and model-
generated solutions, without any reference solu-
tions or specific grading guidelines. We measure
model performances under two metrics:

1. Accuracy — human gradings on a 7-point scale
are first converted to 4 categories (Correct, Al-
most, Partial, Incorrect) corresponding to 4
buckets (7, 6-4, 3-1, 0). The categorized hu-
man gradings are then compared with model-
predicted categories.

2. Mean Absolute Error (MAE) — model-
predicted categories are converted from (Cor-
rect, Almost, Partial, Incorrect) to IMO scores
(7, 6, 1, 0) according to Table 3. We then com-
pare with human grading ground truths on a
7-point scale.

Model ‘ Accuracy T ‘ MAE |
Gemini 2.5 Pro 44.3% 30.2%
o4-mini (high reasoning) 47.3% 25.2%
Gemini 2.5 Deep Think 52.5% 20.5%
03 54.0% 20.2%
Gemini Deep Think (IMO Gold) 50.2% 18.4%

Table 7: IMO-GradingBench results: MAE calculated
using simplified grades. Both model and human grades
are mapped to categories (C, A, P, I) per Table 3, then
to scores 7, 6, 1, 0. Avg. of 4 runs (Gemini 2.5 Deep
Think and Gemini Deep Think (/MO Gold): 1 run).

Results for IMO-GradingBench are summarized
in Table 7. In terms of accuracies, 03 achieved the
highest performance of 54.0%. The low accuracies
highlight the fact that this benchmark is quite chal-
lenging in predicting precise categories. The MAE
(lower is better) accounts for the fact that different

categories are closer semantically, e.g., Correct vs.
Almost and Partial vs. Incorrect. On this metric,
Gemini Deep Think (/MO Gold) achieved the best
MAE score of 18.4%, indicating that there is still
significant room for improvement®.

Comparison with ProofAutoGrader — model
performances on IMO-GradingBench are notably
worse than what might be expected from the strong
performance of ProofAutoGrader, in terms of Pear-
son correlation coefficients as reported in Sec-
tion 5.3. This discrepancy stems from two key
methodological distinctions.

1. First, ProofAutoGrader performance was mea-
sured on scores aggregated over 30 problems,
which smooths out noise from individual grad-
ing variations, unlike the per-instance evalua-
tion of IMO-GradingBench.

2. Second, the IMO-GradingBench evalua-
tion provides models with minimal con-
text—only the problem and the proposed so-
lution; whereas for ProofAutoGrader on IMO-
ProofBench, we additionally provide both ref-
erence solutions and grading guidelines.

These distinctions explain why IMO-
GradingBench with per-instance, minimal-context
evaluation is a challenging benchmark; whereas
aggregated assessments by ProofAutoGrader on
IMO-ProofBench can still yield robust model
rankings.

6 Related Work

In recent years, harder reasoning math bench-
marks have been proposed as performance on ex-
isting benchmarks becomes saturated. For exam-
ple, Olympiad Bench (He et al., 2024) and Omni-
MATH (Gao et al., 2024) contain questions at the
Olympiad level across diverse domains, while Hu-
manity’s Last Exam (HLE) (Phan et al., 2025)
evaluates knowledge across many domains. Other
benchmarks include Brainteaser (Han et al., 2025),
which consists of long-form brainteaser puzzles,
and Frontier Math (Glazer et al., 2024), which
contains hard math questions and a hidden eval-
uation set. MiniF2F (Zheng et al., 2021) provides
a benchmark for evaluating formal proofs around
Olympiad-level difficulty. Reward Bench (Lam-
bert et al., 2024) provides a benchmark to evalu-

“Because of our simplified gradings (7, 6, 1, 0), the best
possible grader will achieve a golden MAE of 3.9% on IMO-
GradingBench, instead of 0%.
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ate reward models. HARDMath (Fan et al., 2024)
presents a challenging math benchmark containing
applied mathematics problems that require analyti-
cal approximation techniques. The AlphaGeometry
papers (Trinh et al., 2024; Chervonyi et al., 2025)
provide benchmarks of 80 IMO and IMO Short-
list Euclidean geometry problems from 2000 to
2024, written in a domain-specific language. In
contrast, IMO-Bench provides a suite for evaluat-
ing advanced mathematical reasoning with short
answer matching and rigorous proof evaluation in
natural language across a wide variety of Math
Olympiad areas.

As performance on math benchmarks continues
to improve, robustness benchmarks have been in-
troduced to evaluate potential overfitting and obtain
better estimates of models’ true reasoning capabil-
ities. These benchmarks have shown that simply
perturbing benchmark questions is enough to sig-
nificantly hurt performance compared to the orig-
inal problems. SVAMP (Patel et al., 2021) gener-
ated a perturbed benchmark for word math prob-
lems, whereas Lila (Mishra et al., 2022) contained
perturbations across a diverse range of reasoning
questions. The functional variant of the MATH
benchmark (Srivastava et al., 2024) demonstrated
large performance drops across models when vary-
ing existing problems. Putnam-AXIOM (Gu-
lati et al., 2024) similarly shows that perturbing
Putnam questions causes a significant drop in
model performance. MATH-Perturb (Huang et al.,
2025) also adds simple perturbations to math ques-
tions (Hendrycks et al., 2021), and shows model
performance drops, raising concerns about memo-
rization. Lightman et al. (2024) propose an alter-
native strategy to improve model robustness by su-
pervising the reasoning process from start to finish,
rather than solely on the final outcome. This ap-
proach led to improved performance on the MATH
dataset. IMO-Bench contributes to robust mathe-
matical reasoning with already modified questions
in IMO-AnswerBench, rigorous proof requirements
in IMO-ProofBench, and the task of proof grading
in IMO-GradingBench.

7 Conclusion

This paper introduced IMO-Bench, a comprehen-
sive suite of benchmarks for robust evaluation
of mathematical reasoning capabilities, includ-
ing IMO-AnswerBench for short answer matching,
IMO-ProofBench for full proof correctness, and

IMO-GradingBench for proof verification. The re-
sults demonstrated that frontier models struggle on
IMO-Bench problems and that getting the short an-
swers right does not necessarily equate to correct
mathematical reasoning for most models.

Furthermore, we have developed and validated
automated graders for both answers and proofs.
Our AnswerAutoGrader achieves near-human ac-
curacy (98.9%) , while ProofAutoGrader shows a
strong correlation with expert human scores. These
tools along with IMO-GradingBench provide a scal-
able and reliable method for the community to eval-
uate future models, even as human expertise re-
mains the gold standard for high-stakes evaluation.

By releasing IMO-Bench to the research com-
munity, we aim to shift the community’s focus
from mere answer-getting to the development of
deep, verifiable, and robust reasoning processes.
We hope this suite will serve as a valuable tool to
measure and drive progress toward more advanced
and reliable artificial intelligence.
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Limitations

Our work has two primary limitations: evaluation cost and the risk of data contamination.

Evaluation Cost. While our automatic grader, ProofAutoGrader, correlates strongly with human scores,
it is not a perfect substitute and can introduce noise. Consequently, definitive assessments still require
verification by human experts, who are both costly and difficult to source.

Future Data Contamination. The second limitation is the risk of long-term data contamination. As
IMO-Bench is publicly released, its problems and solutions will likely be scraped and absorbed into future
training datasets. This threatens the integrity of the benchmark, as models may achieve high scores by
memorizing answers rather than demonstrating genuine reasoning. Preventing this form of benchmark

decay remains a significant, field-wide challenge.

A IMO-AnswerBench

A.1 Examples

We show examples of IMO-AnswerBench in Table 8.

Subj.  Source Original Robustified
A Austria Determine the maximum M of x+vy+ z where  Let a, b, c be lengths of the sides of some triangle of positive
MO 2017  x,y and z are positive real numbers with area, satisfying
16zyz = (z +y)(z + 2) a®b® =2(a+b—c)(b+c—a)(ct+a—b).
Find the maximum value for a + b + c.
C USA TST Let n be an integer greater than 1. For a posi- For a positive integer m, let Sy, = {1,2,...,25m}. Sup-
2005 tive integer m, let Sy, = {1,2,...,mn}. Sup- pose that there existsa  50-element  set 7" such that:
. \ﬁ/_/
pose that there exists a 2n-element set 7" such Modify numerical value
that (a) each element of 7" is an m-element . .
subset of Syy; (b) each pair of elements of T 1. Each element of 7" is an m-element subset of S, ;
shares at most one common element; and (¢) 2. Each pair of elements of T shares at most one common
each element of S, is contained in exactly element;
two elements of 7'. Determine the maximum
possible value of m in terms of n. 3. Each element of S, is contained in exactly two ele-
ments of 7.
Let P be a set of 50 random integers. Suppose we define
a function f(x) = 2® + 2z + 1. Determine the maximum
Add distractors
possible value of m.
G USA TST Let ABC be a triangle with incenter /. Let Let XY Z be a triangle with incenter J. Let segment X .J
2024 segment A/ intersect the incircle of triangle meets the incircle of triangle XY Z at point /. Suppose
ABC atpoint D. Suppose that line BD is per- that the angle created by line Y K and line X Z is 90°. Let
pendicular to line AC. Let P be a point such R be a point such that /Y RX = ZRXJ = 90°. Point S
that ZBPA = ZPAI = 90°. Point @ lies lies on segment Y K such that the circumcircle of triangle
on segment BD such that the circumcircle of XY is tangent to line YJ. Point T’ lies on line R.S such
triangle ABQ is tangent to line BI. Point X that ZJXT = £TXZ. Let 7y be the value of ZXTR in
lies on line PQ such that ZIAX = ZXAC. terms of degree, compute b
Prove that ZAX P = 45°. 3
compute instead prove
N Czech- Let k& # 0 be an integer and suppose that there  Find all even integers d such that the number of ordered
Slovak the number of ordered pairs (z, y) of integers  integer pairs (z,y) satisfying
Math satisfying )
Olympiad , , (z+2y—d) =ay
2 _ . —_—
2017 _Z ry +2y substitute = < 2 + v, y < k —y, d < 2k
r+y

is odd. Find all possible values of k.

is even.

Table 8: Examples in the IMO-AnswerBench, per category (Algebra, Combinatorics, Geometry, Number Theory).
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A.2 Subject Distribution and Robustification Examples of IMO-AnswerBench

At the IMO, the problems are typically classified into four main categories: Algebra, Combinatorics,
Geometry and Number Theory. Therefore, we also structure our IMO-AnswerBench in accordance to
these four categories as well, where each category has exactly 100 problems.

Algebra is one of the core competencies for Math Olympiad students and appears at all levels of
competitions. Distinct from previous benchmarks (Hendrycks et al., 2021), IMO-Bench puts more
emphasis on Math Olympiad topics, including inequalities, polynomials (including polynomial equations
and factorization), functional equations, sequence problems and advanced topics such as Algebraic
Number Theory.

Combinatorics problems, despite requiring seemingly basic insights, are notoriously challenging.
Successfully solving them serves as a strong indicator of a model’s reasoning capabilities. The combi-
natorics set of this benchmark contains problems covering Graph Theory, Enumerative Combinatorics
(combinatorial counting problems), Extremal Combinatorics, Existence Combinatorics (problems ask-
ing the existence of certain combinatorial objects), Additive Combinatorics, Set Combinatorics, Tiling,
Combinatorial Geometry, Operations (problems involving operations, often requiring finding invariant or
monovariant properties), and Game Theory.

Geometry problems at the IMO are well-known for their visual elegance. While there are several
existing geometry benchmarks (Hendrycks et al., 2021), they do not cover Math Olympiad level problems.
To address this discrepancy, IMO-Bench contains geometry problems with short answers spanning subcat-
egories such as angle and sidelength computation, locus problems, and proof-based geometry problems,
as well as unconventional categories such as 3D geometry and combinatorial geometry. Additionally, we
would like to note that most Math Olympiad level geometry problems are proof-based, and so designing a
Math Olympiad level short-answer benchmark for geometry is highly non-trivial.

Number Theory problems typically consist of problems involving objects and properties derived from
integers and arithmetic functions, spanning various topics such as Diophantine equations, divisibility
problems, polynomials, sequence problems, functional equation problems on the set of integer, existence
problems, problems involving arithmetic functions (such as divisor functions, fractional functions), set
problems, number theoretic game problems and straategies such as modular analysis, divisor analysis and
base representation problems.

These problems serve as a good representation of Math Olympiad problems at various levels and across
different national, regional and international contests, as well as the topics covered in these contests. A
strong model performance would suggest a high competence level as well as a good knowledge coverage
since certain problems can only be solved with a particular problem solving strategy, without which the
model would struggle to provide a rigorous with the correct answer.

A.3 Effects of robustification

To examine the effect of robustification for IMO-AnswerBench, we also evaluate on the original, unmodi-
fied problems and present the results in Table 9. The models perform significantly better on the original
problems, where the gap could be as high as 11.2% for o4-mini (high reasoning). This indicates that our
robustification effort does create a significant challenge for the models.

A.4 Towards Consistent Problem Statements and Answer Evaluation

Another common issue with language models solving complex Math Olympiad problems is that these
models often misinterpret the statement of such problems, or the problem formulation leads the models to
produce unintended outputs. Thus, we employ several additional strategies on top of robustification to
ensure that the models can interpret the problems properly as follows.

* Instead of asking for a series of numbers satisfying certain conditions (which is hard to verify), we
instead reformulate the problem so that its answer is a unique number that is the sum or some other
non-trivial function of many inputs.

* Simplifying the answer as much as possible to avoid confusion.
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Model Algebra Combinatorics Geometry Number Theory ‘ Overall accuracy

Grok 4 (Original) 78.8% 61.8% 81.4% 78.3% 75.0% (+1.9
Grok 4 (Robustified) 75.5% 55.9% 80.1% 80.9% 73.1%
Gemini 2.5 Pro (Original) 77.8% 53.0% 77.4% 78.8% 71.7% +35)
Gemini 2.5 Pro (Robustified) 73.4% 48.0% 74.2% 77.1% 68.2%
04-mini (high reasoning) (Original) 75.1% 52.9% 82.5% 75.1% 71.4% (+35)
o4-mini (high reasoning) (Robustified) | 71.2% 46.6% 78.4% 75.3% 67.9%
03(Original) 67.4% 46.8% 74.1% 67.5% 63.9% (+2.8)
03 (Robustified) 62.8% 43.0% 70.6% 68.0% 61.1%
Claude Sonnet 4 (Original) 28.2% 15.5% 27.6% 27.6% 24.8% (+13)
Claude Sonnet 4 (Robustified) 20.6% 17.8% 26.0% 27.6% 23.0%

Table 9: Comparison between IMO-AnswerBench results (Robustified) and results for IMO-AnswerBench before
robustification (Original). Results are averaged over 8 samples.

* Being more specific with the problem statement to excuse possible issues with special characters,
such as angle degrees in geometry problems.

* Avoiding questions with binary answers (yes/no), such as existence questions (which are extremely
common in Math Olympiad contests), as they can be guessed without solving the problem or proving
the result rigorously. Instead, we will reformulate the problem in such a way that it would produce a
non-trivial answer.

A.4.1 Ensuring unique non-trivial answer

Example 1 In this example, instead of asking the model to characterize all such numbers m, we ask the
model to compute a certain expression, which results in 1012, a value that the model is unlikely to guess
by mere chance.

Original problem: "For a positive integer m, let a1, ag, . . ., amyq satisfy 3¢ < a; < 3*! for each i.
Find the maximum and minimum possible values of

Apay — 1
> Hyfay- (1)

a
1<z<m+1y#z  ©

Original answer: “maximum of 0 and minimum of 0 if m is odd, and maximum of 1 and minimum of
1 if m is even.*

Modified problem: “For a positive integer m, let a1, as, . . ., an1 satisfy 3¥ < a; < 3+! for each i.
Let

A= XTI @

1<e<m+1 y#x

Find $°29%° A2 »
Modified answer: “1012”

Example 2 In this example, instead of asking the model to characterize all solution tuples, which can be
hard to evaluate in the natural language form, we ask the models to compute the sum of the elements.

Original problem: “Let a1, aq, . . ., azges be positive integers such that for each positive integer m,
1
2025 n+l
- N
> daj | —1
j=1
is an integer. Find all possible (a1, ag, . .., a2025).”
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Original answer: “(ai,...,a2025) = (1,k,... k) withk =24+ 3 + - -- + 2025 = 2051324”
Modified problem: “Let a1, aq, .. ., asgos be positive integers such that for each positive integer m,

1
2025 n+l

> jaj| -1
j=1

is an integer. Find all possible values of a; + ag + - - - + a2925.”
Modified answer: “4151879777”

Example 3 In this example, instead of asking the model to characterize all such numbers m, we ask the
models to count the number of such numbers in a certain range, which results in 1009, a value that the
model is unlikely to guess by mere chance.

Original problem: “Find all positive integers m > 2 that satisfy the following condition: For any m

distinct positive integers (n1, . .., ny,), at least one of the following two conditions holds: ny + ...+ ny,
is a multiple of m, or there exists a permutation (&, ..., ky,) such that k; +2ky +. . . +mk,, is a multiple
of m.”’

Original answer: “All powers of 2 and all odd numbers”

Modified problem: “Find the number of all positive integers 2 < m < 2000 that satisfy the following
condition: For any m distinct positive integers (n1, ..., n,, ), at least one of the following two conditions
holds: n1 + ...+ nyy, is a multiple of m, or there exists a permutation (k1, . .., ky,) such that k; + 2ko +
... + mk,, is a multiple of m.”

Modified answer: “1009”

A.4.2 Answer simplification

Example In the example below the original answer mixes notations and adds a potentially confusing
quantifier, so we simplify it.

Original Problem: “Let P be a function from the set of integers to itself such that for all integers h, m,
PPHm? (4 — 1) = mP(m — 1) + hP(h — 1) + (h +m — 1). Find all possible functions P.”

Original answer: “P = —lor P(x) =z + 1 forallx € Z.”

Modified/simplified answer: “P(x) = —1, P(z) = x + 17

A.4.3 Handling geometric quantities

Example For geometry, if the model is asked to find an angle, we make sure to include “in degrees” in
the problem statement. This prevents problems mixing radians and degrees and model misinterpretations
of special characters marking degrees such as “"0” or “* {\ circ}”.

A.44 Reformulating questions with binary answers

Example Below is an interesting example where the problem is very difficult but the answer is a binary
yes/no, which can be guessed without solving the problem. Therefore, instead of asking the model to
show existence, we ask the model to find the smallest positive integer to satisfy such a property, which

retains the difficulty level while preventing the model from guessing the answer.
(a+b)(b+c)(ct+a)+a+b+c

Original problem: “Is there a positive integer n such that he

many integer triples (a, b, ¢)?”
Original answer: “It exists”

Modified problem: “Find the smallest positive integer n such that there exists infinitely many triple
) (b+c)(c+a)+a+b+c n’
4abc -

= n for infinitely

(a, b, c) of distinct positive integers such that (atb
Modified answer: “3”

A.5 Query prompt for AnswerAutoGrader
The following prompt was used to query the AnswerAutoGrader for IMO-AnswerBench

# System Role: Deterministic Mathematical Autograder
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You are a precise, automated grading system. Your sole function is to
determine if the final answer provided in the Model Solution is mathematically
equivalent to the Golden Answer. You must NOT grade the reasoning or steps,
only the final result.

# 1. Grading Guidelines (Equivalence Rules)

Equivalence is mandatory for a correct grade. You must rigorously verify if
the answers represent the exact same mathematical value or expression, even
if the format differs.

* *%*Algebraic Equivalence:** e.g., ‘n(n+1)/2‘ is equivalent to ‘n*2/2 + n/2°¢.
You must verify the algebra.
* **Numerical Equivalence:** e.g., ‘1/2‘ is equivalent to ‘0.5¢; ‘sqrt(2)/2¢

is equivalent to ‘1/sqrt(2)°.

* *xSet/List Equivalence:** Unless specified as an ordered tuple/vector, the
order of elements does not matter (e.g., {1, 2} is equivalent to {2, 1}).

* *%Partial Credit:** No partial credit is allowed. If the answer is
incomplete or partially incorrect, it is incorrect.

* **No Answers:** If no clear, unambiguous final answer can be extracted, the
solution must be graded as incorrect.

# 3. Output Protocol (Strict Compliance Required)

You must execute the task using a two-part structure. Failure to follow this
structure will result in task failure.

*%xPart 1: Analysis (Chain-of-Thought)**

You MUST perform your analysis within <thinking></thinking> tags. Make your
thinking concise. This section details your reasoning process and must follow
these steps sequentially:

1. **Golden Answer:** State the Golden Answer.

2. xxExtracted Model Answer:x* State the extracted answer based on the
Extraction Protocol. If none found, state "No clear final answer found.”

3. **Equivalence Analysis:** Compare the two answers using the Grading
Guidelines. Detail the steps taken to verify mathematical equivalence
(e.g., simplification, algebraic manipulation). You must actively try to
prove they are the same before concluding they are different.

4. **xConclusion:** State the final determination ("Correct” or "Incorrect”).

*%*Part 2: Final Grade**
Immediately following the closing </thinking> tag, output **ONLY** the final
grade.

* If Correct: \boxed{Correct}
* If Incorrect: \boxed{Incorrect}

*%*CRITICAL CONSTRAINT: Do not add any text, explanations, or formatting
outside the <thinking> tags or the final \boxed{} output.#**

Output exmaple:

<thinking>

1. **Golden Answer:xx (—oo, —4) U (—4,00)

2. *xExtracted Model Answer:** () (the empty set)
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3. **Equivalence Analysis:*=*

The Golden Answer is a non-empty set of real numbers. The Model
Answer is the empty set. These two sets are not equivalent. The
empty set contains no elements, while the Golden Answer contains an
infinite number of elements.

4. *xxConclusion:**x Incorrect

</thinking>
\boxed{Incorrect}

# 4. Input Data
Here is the problem, model solution, and golden answer to grade:

Problem: {Problem_Statement}
Model Solution: {Model_Solution}
Golden Answer: {Golden_Answer}

B IMO-ProofBench

B.1 Examples
We show robustified examples of IMO-ProofBench in Table 10.

B.2 Proof Evaluation Guidelines for IMO-ProofBench

In a proof-based problem, the desired conclusion usually is either already given ("Prove that ...") or easy
to guess ("Determine with proof whether ..."). Evaluating a solution consists of verifying that each logical
step leading to the conclusion is valid. However, grading informal® proofs contains inherently subjective
elements, such as deciding whether a particular claim is justified in sufficient detail. Thus, unlike for
short answers, which are either correct or incorrect, it is more appropriate to evaluate proofs on a higher
resolution scale, where subjective elements matter less. Additionally, a solution may make partial progress
by proving some but not all of the steps of a full solution. It is important to capture this during evaluation.

Traditionally, proof-based Math Olympiad competitions, such as the IMO, score solutions on a 7-point
scale. For each problem, a grading rubric outlines how many points are to be awarded for certain partial
results. The great majority of solutions receive a polarizing score: either 5-7 points for being essentially
correct, or 0-2 points if the problem remains unsolved, generally dictated by specific criteria in the rubric.
Although problems often admit multiple solutions, it is rare for a solution to be so novel that it falls
completely outside of the rubric (which usually covers the 1-2 most common solution approaches). Thus,
despite some elements of subjectivity as mentioned above, scores are typically quite consistent across
graders. For further insight into how Math Olympiad grading works, refer to Chen (2023).

B.3 Details of Gemini 2.5 Pro with (Huang & Yang, 2025)

We use the exact agentic framework proposed in (Huang and Yang, 2025), which has been open sourced at
https://github.com/lyang36/IM025 and also contains exact hyperparameters in its binary flags. We
used the same thinking budget (32K tokens) per model call as mentioned in the paper.

Given an initial solution, a single pipeline consists of repeated iterations (at most 30) of “self-verification’
and “bug-fixing” on it. Specifically, if the current solution passes self-verification a fixed number (5) of
times, then the solution is returned, but if at any time self-verification does not pass, then the model is
instructed to observe any mistakes (“bugs”) and fix them, and restart the self-verification process.

Note that if a consecutive number (10) of verifications fail, then the pipeline exits without a solution.
This entire pipeline will be run in parallel multiple times (100) as well, until there is at least one solution
returned from any run. Theoretically the model could fail to find any solution after all parallel runs, which
occurred for two IMO-ProofBench (Advanced) problems.

b}

8i.e. written in natural language, as opposed to a formal language such as LEAN.
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Source Original Robustified
IMO ’24 P1 Determine all real numbers « such that, for  For a real number r, let A(r) denote the frac-
every positive integer n, the integer tional part of 2r in its decimal representation.
For a real number r and a positive integer n,
la] + [2a] + -+ + [na] define B(n,r) as
is a multiple of n. (Note that | z| denotes the n
greatest integer less than or equal to z. For B(n,r) = Z A(kr).
example, |—7] = —4 and |2] = [2.9] = k=1
2) Find all positive real numbers r such that
n(n+1)r — B(n,r) is a multiple of n for all
positive integers n.
IMO ’24 P2 Determine all pairs (a, b) of positive integers  For given positive integers x and y, we define
for which there exist positive integers g and  a sequence (ay,),>1 Where a,, is equal to
N such that
n—1
ged(a™ +b,b" +a) =g ged (m" +y, (y— ) (Z Yy - 1))
i=0
i > N. . . .
holds for all integers n > N. (Note tl,la_t for all n € N. Find all pairs (z, y) of positive
ged(z, y) denotes the greatest common divi- . _
. integers such that the limit of the sequence
sor of integers x and y.) .
(an) exists.
IMO ’24 P5 Turbo the snail plays a game on a board with  On a table of size 3002 x 3001, a stone is

2024 rows and 2023 columns. There are hid-
den monsters in 2022 of the cells. Initially,
Turbo does not know where any of the mon-
sters are, but he knows that there is exactly
one monster in each row except the first row
and the last row, and that each column con-
tains at most one monster.

Turbo makes a series of attempts to go from
the first row to the last row. On each attempt,
he chooses to start on any cell in the first
row, then repeatedly moves to an adjacent
cell sharing a common side. (He is allowed
to return to a previously visited cell.) If he
reaches a cell with a monster, his attempt
ends and he is transported back to the first
row to start a new attempt. The monsters do
not move, and Turbo remembers whether or
not each cell he has visited contains a mon-
ster. If he reaches any cell in the last row, his
attempt ends and the game is over.
Determine the minimum value of n for which
Turbo has a strategy that guarantees reaching
the last row on the n-th attempt or earlier,
regardless of the locations of the monsters.

placed on the leftmost cell of the first row.
James and Peter play a game on this table.
Peter selects 3000 cells, under the rule that
he must choose one from each row except the
first and last rows (i.e., the 1st and 3002th
row), and there must be at most one selected
cell in each column. James knows this rule
too, but he doesn’t know which cells Peter
selected. The goal of James is to move the
stone to the last row, avoiding the cells se-
lected by Peter. The stone can only move to
adjacent cells on the table. If the stone en-
ters a cell selected by Peter, James receives a
penalty of 1 point, and the stone returns to its
initial position (i.e., the leftmost cell). Find
the smallest positive integer n such that there
exists a method for James to achieve his goal
before receiving a penalty of n points.

Table 10: Examples of robustified problems, based on the IMO 2024 competition, for IMO-ProofBench.

B.4 Common Model Mistakes

Here we list some common mistakes the models were making according to the graders.
B.4.1 Polynomial Assumption
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Problem

Model Solution

PB-Basic-004: We want to find all strictly increasing
functions R — R such that:

1. g is surjective.

2. g(g(z)) = g(x) + 20z, Vz € R.

First, let us restate the problem clearly:

We want to find all strictly increasing functions g : R — R such that: 1) g is
surjective, 2) g(g(z)) = g(z) + 20z, for all z € R.

1. Guess and check for linearity

A common approach for such functional equations is to hypothesize that g
might be linear (i.e., of the form g(x) = ax + b). Let us try this:

Assume g(z) = ax + b, where a,b € R.

Compute g(g(z)):

9(g9(2)) = g(ax + b) = a(ax +b) + b= a’z + ab+b.

According to the functional equation, we need: g(g(z)) = g(z) + 20z.
Hence, a®x + ab + b = (ax + b) + 202 = azx + 20z + b.

Matching coefficients:

« Coefficient of x: a® = a + 20. * Constant term: ab 4+ b = b.

From the constant term ab + b = b, we can factor out b: b(a + 1) = b = either
b=0ora+1=1.

If a + 1 = 1, then a = 0, but that would force g(x) = b, a constant function,
which cannot be strictly increasing nor surjective over all R. Hence, that is not
a valid solution.

Therefore, we must have b = 0. Now the equation a
itasa? —a—20=0.

Factor or use the quadratic formula: (a — 5)(a +4) = 0.

This gives a = 5 or a = —4.

2. Strictly increasing and surjective requirement

Since g must be strictly increasing:

 If a = -4, then g would be strictly decreasing, which is not allowed. * Hence a
must be positive, namely a = 5.

So the only candidate under our linear assumption is g(z) = 5z.

Check surjectivity: The map z — 5z is surjective, since for any y € R, we can
choose x = y/5 to get 5z = y. It is also strictly increasing because 5 > 0.

3. Verification in the original equation

Finally, verify g(x) = 5z satisfies g(g(x)) = g(x) + 20z:

* g(g(z)) = g(bz) = 5(5x) = 25z. * g(z) 4+ 20z = 5z + 20z = 25z.

These match, so g(z) = Sz indeed satisfies both the functional equation and
the given conditions.

Conclusion

Therefore, the only strictly increasing surjective function g : R — R satisfying

9(9(x)) = g(x) + 20z is g(z) = 5.

2 = a+ 20 remains. Rewrite

PB-Basic-005: Let P be a polynomial with real
coefficients whose leading coefficient is 1. Sup-
pose that for all nonzero real numbers z, we have

_ P(@+l/2)+P(z—1/x)
P(z)+ P(1/z) = %
all possibilities for P.

. Determine

We consider polynomials of degree 2 and 4. For degree 2, we found P(x) = 2
is a solution. For degree 4, we found P(z) = z* + bx? + cz + 6. We found
¢ = 0. So P(z) = 2* + ba® + 6 is a solution for any real number b. We
verified that P(2) = 2% and P(z) = x* + bxz? + 6 satisfy the given condition.
We showed that polynomials of odd degree are not solutions, and polynomials
of degree 0 and 1 are not solutions. We need to show that there are no other
solutions. Assume degree of P is n. If n is odd, we showed no solution. So n
must be even. Let n = 2k. We have shown that for n = 2, P(z) = 22 and for
n =4, P(z) = 2* + bz + 6.

Final Answer: The final answer is P(z) =
6 for some real number b.

2?or P(z) = z* + ba? +

Table 11: Examples of common mistakes that the models made for IMO-ProofBench.

1. g is surjective.

2. g(9(x)) = g(x) + 20z, Vx € R.

PB-Basic-004: We want to find all strictly increasing functions R — R such that:

A common mistake that language models typically make while solving problems is assuming strong
assumptions on the problem without a legitimate or substantial justification for the assumptions. An
instance of this behavior is the functional equation problem PB-Basic-004 as shown in Table 11. The
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proof of 03 on this problem begins by considering the linear cases.

"We wish to find all strictly increasing and surjective functions g : R — R satisfying

g9(g(x)) = g(z) + 20z for all z € R.

A natural first step is to check if a linear function works. Suppose

g(x)=ax+b

After figuring out @ = 5 and b = 0, the model claims that it found the unique solution, even though the
only cases it checked were when g is linear.

Thus, the unique solution is g(z) = 5z."

While the final answer is indeed correct, which a typical short answer benchmark would consider
correct, the proof is not rigorous and would get little to no points in a proof-based competition such as the
IMO.

B.4.2 Final Answer Guessing

PB-Basic-005: Let P be a polynomial with real coefficients whose leading coefficient is 1. Suppose

P(z+1/z)+P(x—1/x)
2

that for all nonzero real numbers x, we have P(z) + P(1/x) = . Determine all

possibilities for P.

In addition, there are the examples where models try to guess the final answer by inspecting the cases
when the variables are small. They do not try to actually prove why the guessed answer is correct. In the
example problem PB-Basic-005, the model does case work with degree n = 2 and degree n = 4 and
guesses the answer is P(z) = 22 and P(x) = 2* + a2? + b without showing these are correct answers
(in fact, the correct answer should have been P(x) = a(z* + 6) 4 bx?) nor that these are all the answers.
That being said, the models often can get a lot of correct answers by simply guessing rather than carrying
out elaborate derivations to arrive at the correct answer. For more information, we refer the readers to the
full example in Table 11.

B.4.3 Commonly Missed Easy Problems

Among many problems that models were not able to solve, we present here the following two pre-IMO
difficulty problems from ProofBench-basic.

PB-Basic-008, (Modified) All-Russia MO 2004: Let a, b, c be positive reals such thata+b+c =1,
prove that \/a + Vb + /¢ > 3v/3(ab + be + ca).

This problem is a standard symmetric homogeneous inequality in three variables, whose equality
condition is a = b = c¢. This is one of the easiest type of inequalities one could encounter in a high school
level math competition. However, not a single model we tested got even a partial score on this one.

PB-Basic-016, (Modified) USAMO 1994 Problem 2: 101 stones are arranged in a circle, numbered
1 through 101 in order (so that stone 1 is next to stone 101). Each stone is painted either red, white, or
blue. Initially, stone 101 is the only blue stone. Among the remaining stones, even-numbered stones
are red, and odd-numbered stones are white. We perform a sequence of modifications to the coloring,
where in each step, we may choose a stone and repaint it a different color, as long as we ensure that
no two adjacent stones are ever the same color. Prove that it is not possible to eventually reach a state
where again stone 101 is the only blue stone, but among the remaining stones, all even-numbered
stones are white and all odd-numbered stones are red.

This is a standard, easy combinatorics problem that uses the invariance principle. One is required to
test various quantities related to the problem, and find an invariant quantity to solve the problem. In this
case, the difference between the number of blue followed by white and the number of white followed by
blue is invariant. However, no model found any invariant that is related to the problem.

B.5 Query prompt for ProofAutoGrader
The following prompt was used to query ProofAutoGrader for IMO-ProofBench
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You are an expert grader for the International Mathematics Olympiad (IMO).
Your task is to evaluate a proposed solution strictly and rigorously. Keep
in mind the standards at the IMO are extremely high: only arguments that are
logically sound, complete, and precise should be rewarded.

#i# General Scoring Rubric
Scores are assigned on a 0-7 scale. The general guidelines are:

* *%7 Points (Correct):** The solution is complete, correct, and fully
rigorous. If the submission contains incorrect attempts or lines of
reasoning but ultimately presents a complete and correct solution, it
should still be awarded full points; the presence of earlier, discarded
work does not detract from the final correct proof.

* *%6 Points (Almost Correct):** The solution is almost correct with a sound
core argument, but contains minor errors in calculation or small gaps in
logic. Missing proofs for major components, unjustified claims, or sketchy
arguments are **notxx eligible for 6 points.

* *%x1 Point (Partial Progress):** The solution demonstrates substantial
progress explicitly mentioned in the grading guidelines. Initial
observations, reformulating the problem without making substantive headway,
or proving partial results not mentioned in the grading guidelines are
generally **not** eligible for this score.

* *x@ Points (Incorrect):** The solution doesn’t make substantial progress
that is a key step in the full solution or is fundamentally flawed. All
partial progress without key results or lacking rigor also fall in this
category.

### Input Data and Interpretation
You are provided with the following:

1. **Problem Statement:** The IMO problem.

2. **Ground Truth Solution:** A reference solution. Assume this solution is
correct. It demonstrates one valid approach.

3. *xSpecific Grading Guidelines:** Criteria for awarding credit for this
specific problem. These guidelines take precedence over the General Scoring
Rubric, especially for partial credit.

4. **xProposed Solution:** The student submission.

### Evaluation Process
You must follow this structured process:

1. **xAnalyze References:** Meticulously read and understand the problem and
Ground Truth Solution check the Specific Grading Guidelines. Identify the
key steps for a complete solution and the criteria for partial credit.

2. *xStep-by-Step Verification:*x Verify the logical validity and rigor of
every step. Identify all flaws, gaps, assumptions, and errors. #**Make
sure you fully understand every piece of logic behind each step of the
proposed solution, you must be careful for solutions that ’pretend’ to be
correct. **

3. **Assess Progress:*x Determine the extent of non-trivial progress made.

4. x*Score Determination:** Compare the findings against the Specific Grading
Guidelines and the General Rubric to determine the final score.

### Output Requirements
You must provide your final score in the format <points>N out of 7</points>.
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Ensure the ‘<points>¢ block is used #**only once**, as your answer will be
parsed based on the first <points> </points> block that appears in your whole
response.

*%*PROBLEM STATEMENT*#*
{problem_statement}

**GROUND-TRUTH SOLUTION**
{solution}

**SPECIFIC GRADING GUIDELINES#**
{guidelines}

**PROPOSED SOLUTION**
{student_answer}

Present your detailed thought process and formal justification based on the
scoring rubric and grading guidelines, and finally present your final score
in the format below.

[Select one of the following options]

<points>7 out of 7</points>
<points>6 out of 7</points>
<points>1 out of 7</points>
<points>@ out of 7</points>

B.6 Limitations of ProofAutoGrader

Despite a high correlation with human grades, ProofAutoGrader still has several systematic errors and
limitations, including a general tendency to overestimate scores, occasional failure to identify high-level
logical errors, and being prone to be overly punitive for minor formatting issues or unconventional yet
correct solutions. We demontrate specific examples of these behavior in Table 12.

In PB-Basic 002, the model solution makes a logical error by asserting 2(4+/zxyzt) > xyzt directly
fromz +y+ 2+t >4Yryzt and 2(x + y + z + t) > zyzt. This comes from an incorrect assumption
thatif A > Band A > C, then B > C. Such "specious" errors, while seemingly plausible and easy to
overlook without a deep understanding of the problem, are critical and can invalidate an entire solution.
ProofAutoGrader often fails to identify such deceptive logical inconsistencies.

In PB-Basic 027, the model produces a novel solution entirely different from the established ground truth
and grading guidelines. The solution was largely correct, but its *’Key Lemma’ omits a critical condition
that the segment P() must have a fixed slope. While the lemma is false as stated, supplying this condition
makes its proof an immediate consequence of homothety. Since the rest of the solution is complete,
the human grader awarded it 6 out of 7 points. However, because the lemma is technically incorrect,
ProofAutoGrader marks the entire solution as wrong. This case demonstrates that ProofAutoGrader
struggles to identify partial progress in solutions not anticipated by the grading guidelines, leading to
overly punitive assessments for minor issues.

C IMO-GradingBench

C.1 Grade distribution for IMO-GradingBench

This section presents the human-assigned grade distribution for the IMO-GradingBench benchmark. As
shown in Figure 6, the aggregate count of correct versus incorrect grades across the entire dataset is
balanced.

However, the distribution of grades (correct, almost, partial, incorrect) is not uniform on a per-problem
basis. This variance is expected as it reflects the natural distribution of scores that proof- evaluation
models will encounter in grading solutions, as problems inherently differ in difficulty.
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Problem

Model Solution and Grade

PB-Basic 002:

Show that 22 + y2 + 22 + % >
zyzt for any positive real num-
bers x,y, z,t that satisfy 2(z +
y+z+1t) > zyzt.

Model Solution: Of course. This is a great problem that elegantly combines a given condition with
a target inequality. The key is to use the given condition to constrain the value of the product zyzt.
Here is the step-by-step proof.

**Step 1: Use the given condition and the AM-GM inequality to find a bound for the product
Tyt F*

We are given two pieces of information for positive real numbers z,y, z,¢: 1. The condition:
2(z +y + 2 +t) > xyzt 2. The inequality to prove: 22 + 32 + 22 + 2 > ayzt

Let’s start with the Arithmetic Mean-Geometric Mean (AM-GM) inequality for the four numbers

T,y,z,t:
r+y+z+t

: > Jxyat

Multiplying both sides by 4, we get:
z+y+z+t> 4wyt
Now, we can substitute this result into the given condition 2(x 4+ y + z + t) > zyzt:
2(4/ayaD) > wyst

8/xyzt > xyat
()

Human Grade: 0 out of 7

Autograder Verdict: ### Step-by-Step Verification

1. **Step 1: Bounding the product ‘xyzt‘** * The student starts with the given condition: 2(z +
y+ z +t) > zyzt. * They correctly apply the AM-GM inequality to z,y, z,t: z +y + 2+t >
4Y/xyzt. * Substituting this into the given condition yields 2(4+/zyzt) > zyzt, which simplifies
to 8 Yxyzt > xyzt.

(.)

The solution is complete, correct, and fully rigorous. It meets all the criteria for a perfect score
according to the General Scoring Rubric. It does not contain any errors, minor or otherwise. The
method is different from the provided ground truth solution (it’s a direct proof rather than a proof
by contradiction), but it is equally valid and elegant.

<points>7 out of 7</points>

PB-Basic 027:

Given an acute triangle ABC, let
D and E be the feet of the alti-
tudes from B to AC and C to
AB, respectively. Let F; and
FE5 be the reflections of E with
respect to AC' and BC, respec-
tively. If X (not equal to C) is
an intersection point of the cir-
cumcircle of ACE E5 and AC,
and O is the circumcenter of
ACE) Es, prove that X O is per-
pendicular to DE.

Model Solution: Let H be the orthocenter of triangle ABC'. Let H, and Hy, be the reflections of H
about AC and BC, respectively; then H,, Hy, lie on the circumcircle (ABC'). Note that reflecting
the line C'H about AC gives the line C'H,, hence E} lies on C'H,; similarly Es lies on C Hy,.

Key lemma (fixed tangent direction):

Letl = AC, r1 = CH,, ro = CHy. For any circle w through C' intersecting [, 1, 79 again at
X, P, Q) respectively, the angle between the tangent to w at X and X C'is constant (independent of
the chosen P € 71 and @) € r9). Indeed, in the cyclic quadrilateral X PC'Q we have:

* LXCP = /(l,r1) and ZXCQ = Z(l,72), both constants;
* LXPC = £ZXQC (equal angles subtending chord X C);

* hence 2/XPC + ZXCP + £ZXCQ = 180°,s0 ZXPC = 90° — (£L(I,r1) + £(l,72))/2
is constant;

* by the tangent—chord theorem, this ZX PC equals the angle between the tangent at X and
XC.

..
Human Grade: 6 out of 7

Autograder Verdict:

(..

### Assessment and Score Determination

The solution’s overall structure is elegant, but it hinges entirely on a "Key Lemma" which is false
and whose proof is invalid. The argument is fundamentally flawed.

<points>0 out of 7</points>

Table 12: Examples of failure cases of ProofAutoGrader.
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Grade
B Incorrect

PB-Advanced-025

PB-Advanced-014 Partial
PB-Advanced-019 Almost
B Correct

PB-Advanced-028
PB-Advanced-004
PB-Advanced-007

PB-Advanced-001

PB-Advanced-026
PB-Advanced-012

PB-Advanced-017
PB-Advanced-027
PB-Advanced-008
PB-Advanced-013

PB-Advanced-022

PB-Advanced-016

PB-Advanced-029
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Figure 6: Grade distribution across examples in IMO-GradingBench

C.2 Query Prompt
This section details the prompts used for the three evaluation settings in IMO-GradingBench. A common
definition of the scoring criteria is used across all settings, inserted into the prompts as indicated by
{SCORING_CRITERIA}.
C.3 Grader Prompt
The following prompt was used for the vanilla setting:
Carefully analyze the given problem statement and the proposed solution, and then write out
your analysis regarding the correctness of the proposed solution.
After the analysis, you must provide a score based on the following criteria:
* incorrect: The solution is completely incorrect or irrelevant.
* partial: The solution is partially correct but has significant errors or omissions.

¢ almost: The solution is almost correct but contains minor errors or inaccuracies.
* correct: The solution is fully correct and complete.

The very last part of your response must be only one of the following words: incorrect, partial,
almost, or correct.
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Problem: {problem} Solution:{solution}

C.4 Label extraction prompt

The following prompt was used to extract the label from model response for IMO-GradingBench. Note
that in the majority of cases, the last word of the model (grader) response is one of incorrect, partial,
almost, or correct. As a result, we first use python to extract the model grades. We only use prompting to
extract the model grades when the last word in the model response is empty or is some different words.

## Instructions for Extracting Final Scores

**0bjective:** Given an response of an evaluation prompt, extract the final
score presented within the response and format it specifically.

**Process: **

1. **Analyze the response:** Scan the response to identify the final score
provided by the evaluator.

2. **Extract and format the final answer:** Present the extracted score on a
new line, preceded exactly by "Final answer: "

**Formatting Rules:#**

* **Evaluation Categories:** The expected output must be one of the following
categories: ‘correct‘, ‘partial‘, ‘almost‘, ‘incorrect‘, or ‘not found‘.

* *xScore Identification:** The extraction is based on identifying the keyword
used by the evaluator to summarize their conclusion. The criteria associated
with these keywords are:

* **incorrect:** The evaluator concluded that the solution is completely
incorrect or irrelevant.

* *%partial:** The evaluator concluded that the solution is partially
correct but has significant errors or omissions.

* *%xalmost:** The evaluator concluded that the solution is almost correct
but contains minor errors or inaccuracies.

* *xcorrect:** The evaluator concluded that the solution is fully correct
and complete.

* **not_found:** The evaluation response does not clearly contain one of
the four explicit scores listed above.

* *xExtraction:** Determine the provided score from the response and extract

the category (‘correct‘, ‘partial‘, ‘almost‘, or ‘incorrect‘). 1If a
score cannot be reliably identified within the text, the output must be
‘not_found‘.

**Note:** No additional markings or explanations are needed beyond "Final
answer: " and the extracted answer.

Below is the response:

{Model Response}
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