Dialect-SQL: An Adaptive Framework for Bridging the Dialect Gap in
Text-to-SQL

Jie Shi!, Xi Cao?, Bo Xu**, Jiaqing Liang?, Yanghua Xiao', Jia Chen!,
Peng Wang', Wei Wang'*
!Shanghai Key Laboratory of Data Science,
College of Computer Science and Artificial Intelligence, Fudan University
2School of Data Science, Fudan University
3School of Computer Science and Technology, Donghua University
{jshi22,22307140119}@m. fudan.edu.cn, xubo@dhu.edu.cn, weiwangl1@fudan.edu.cn

Abstract

Text-to-SQL is the task of translating natural
language questions into SQL queries based on
relational databases. Different databases imple-
ment their own SQL dialects, leading to vari-
ations in syntax. As a result, SQL queries de-
signed for one database may not execute prop-
erly in another, creating a dialect gap. Exist-
ing Text-to-SQL research primarily focuses on
specific database systems, limiting adaptabil-
ity to different dialects. This paper proposes
a novel adaptive framework called Dialect-
SQL, which employs Object Relational Map-
ping (ORM) code as an intermediate language
to bridge this gap. Given a question, we guide
Large Language Models (LLMs) to first gen-
erate ORM code, which is then parsed into
SQL queries targeted for specific databases.
However, there is a lack of high-quality Text-
to-Code datasets that enable LLMs to effec-
tively generate ORM code. To address this
issue, we propose a bootstrapping approach to
synthesize ORM code, where verified ORM
code is iteratively integrated into a demonstra-
tion pool that serves as in-context examples
for ORM code generation. Our experiments
demonstrate that Dialect-SQL significantly en-
hances dialect adaptability, outperforming tra-
ditional methods that generate SQL queries
directly. Our code and data are released at
https://github.com/jieshi1@/orm-sql.

1 Introduction

Given a relational database, Text-to-SQL is the
task of translating a natural language question into
a SQL query which answers the question (Hong
et al.,, 2024). Relational database systems each
implement their own SQL dialects, which differ
significantly in syntax and built-in functions. As a
result, SQL statements can vary across databases
even for the same query, creating a dialect gap.
An illustrative example is provided in Figure 1.

*Corresponding authors.

Question: What is the postal street address for the school
with the 6th highest Math average? Indicate the school's
name.
SQLite:
SELECT T2.MailStreet, T2.School
FROM satscores AS T1 INNER JOIN schools AS T2
ON Tl.cds = T2.CDSCode
ORDER BY T1.AvgScrMath DESC
[LIMIT 5, 1]
PostgreSQL:
SELECT schools."Street", schools."School"
FROM schools JOIN satscores
ON satscores.cds = schools."CDSCode"
ORDER BY satscores."AvgScrMath" DESC
[LIMIT 1 OFFSET 5]
SQL Server:
—SELECT anon_1.[Street], anon_1.[School] ——
FROM (
SELECT
schools.[Street] AS [Street],
schools.[School] AS [School],
ROW_NUMBER() OVER (
ORDER BY satscores.[AvgScrMath] DESC
) AS mssql_rn
FROM schools JOIN satscores
ON satscores.cds = schools.[CDSCode]
) AS anon_1
“—WHERE mssql_rn > 5 AND mssql_rn <= 1 + 5——

Identifier Format [J Row Selection

Figure 1: An example highlighting the dialect gap be-
tween databases. The same query varies significantly
in identifier format and row selection methods across
different databases.

In addition to subtle differences in SQL syntax—
such as identifier formatting, where SQLite omits
double quotes, PostgreSQL uses double quotes for
case-sensitive identifiers, and SQL Server employs
square brackets—different databases also have vary-
ing methods for retrieving the sixth row. For in-
stance, SQLite uses LIMIT 5, 1, PostgreSQL
utilizes LIMIT 1 OFFSET 5, while SQL Server
requires a nested query.

Among these dialects, SQLite stands out as a
lightweight and easily deployable database, which
serves as the foundation for widely used public
datasets such as WikiSQL (Zhong et al., 2017),
Spider (Yu et al., 2018), its variants (Gan et al.,

3605

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 3605-3620
November 4-9, 2025 ©2025 Association for Computational Linguistics

https://github.com/jieshi10/orm-sql

Dialect-Specific Text-to-SQL

Question
Schema ‘& LB ol

Question

BLLM Qe
'
BLLM SQL,,

Dialect-Adaptive Text-to-SQL

[BLLM HORM Code

Question

Schema

Figure 2: Comparing dialect-specific Text-to-SQL (top)
with our dialect-adaptive framework (bottom). Stan-
dard dialect-specific Text-to-SQL method is designed
for a single database system, whereas the proposed
method leverages ORM code as an intermediate lan-
guage for multiple database systems.

2021b; Deng et al., 2021; Gan et al., 2021a), and
BIRD (Li et al., 2023c). As a result, much of the
Text-to-SQL research (Luo et al., 2024; Shen et al.,
2024) has focused exclusively on SQLite. This nar-
row focus on SQLite has led to a significant gap in
dialect adaptability, limiting the effectiveness of
existing methods when applied to other databases.
For instance, when Llama-3.1 with 70B parameters
generates SQL queries for PostgreSQL, it experi-
ences a significant accuracy drop of 38.59% (Sec-
tion 4.3) on the BIRD dataset. This underscores
the limitations of available LL.Ms in generalizing
across different database dialects.

To address the dialect gap in Text-to-SQL, we
propose a Text-to-Code paradigm that uses Object
Relational Mapping (ORM) code as an intermedi-
ate language across diverse databases. As shown
in Figure 2, we instruct the LLM to generate ORM
code, which is then parsed into SQL tailored for
specific databases. This approach draws inspiration
from the prevalent use of ORM frameworks in web
development, such as SQLAIchemy for Python,!
EF Core for C#,2 and Hibernate or JPA for Java,’
which allow developers to avoid the complexities
of adapting SQL queries when switching between
databases. For Text-to-SQL, using ORM code as an
intermediate language abstracts the differences in
SQL dialects, ensuring a precise and lossless trans-

"https://www.sqlalchemy.org/

thtps ://learn.microsoft.com/en-us/ef/core/

3https ://docs.spring.io/spring-framework/
reference/data-access/orm/introduction.html

lation into database-specific SQL queries. This
enables the LLM to concentrate on generating a
unified ORM representation without needing to
consider the intricate details of each dialect.

Nonetheless, the Text-to-Code paradigm also
faces its own challenges. Given the lack of
high-quality Text-to-Code datasets and the time-
consuming nature of manually curating them, we
introduce an adaptive framework called Dialect-
SQL as an implementation of the Text-to-Code
paradigm. Dialect-SQL consists of two stages.
In the offline stage, it employs a bootstrapping
method that starts with only five seed examples and
iteratively generates harder question-ORM code
pairs verified through execution feedback, thereby
automatically constructing a demonstration pool.
In the online stage, Dialect-SQL prompts the LLM
to generate ORM code using examples from the
demonstration pool, and the ORM code is then
parsed into SQL queries tailored for specific di-
alects.

The contributions are summarized as follows:

* We propose using ORM code to bridge the
dialect gap in Text-to-SQL. To the best of
our knowledge, we are the first to introduce
a paradigm that adapts to different databases
without the need for targeted training.

* We propose a controllable bootstrapping
method that automatically generates accurate
data covering diverse difficulty levels, effec-
tively addressing the scarcity of Text-to-Code
datasets.

* We conduct extensive experiments using pub-
licly available dataset across five different
databases, demonstrating that Dialect-SQL
improves dialect adaptability compared with
direct SQL generation.

2 Overview

This section provides an overview of the proposed
Dialect-SQL framework. We begin by formulating
the Text-to-SQL task, outlining its definition, in-
put, and output in Section 2.1. Next, Section 2.2
explores the prompt representation used to guide
the LLM for ORM code generation. Finally, we
briefly introduce the architecture of Dialect-SQL
in Section 2.3.

3606

https://www.sqlalchemy.org/
https://learn.microsoft.com/en-us/ef/core/
https://docs.spring.io/spring-framework/reference/data-access/orm/introduction.html
https://docs.spring.io/spring-framework/reference/data-access/orm/introduction.html

2.1 Task Formulation

The input of the Text-to-SQL task consists of a
natural language question ¢ and a database schema
S = {s1, -+ ,sn}, where s; represents the i-th
table and N indicates the total number of tables
in the database. For each table s;, its collection
of columns is denoted by C; = {c¢; 1, - ,cin,},
where ¢; ; is the j-th column and NV; is the number
of columns in table s;. The output of the Text-to-
SQL task is a SQL query ¢ that corresponds to the
question q.

Existing research primarily focuses on utilizing
LLMs to directly generate dialect-specific SQL
queries. In contrast, this paper proposes the Text-to-
Code paradigm, which involves generating dialect-
agnostic code using LLMs. The code can then be
parsed and transformed into the target database’s
SQL queries, effectively addressing the challenge
of LLMs’ unfamiliarity with various SQL dialects.

2.2 Prompt Representation

The proposed code-style prompt representation for-
mat is shown in Figure 3. It can be divided into
three key parts: schema class definitions, and in-
context demonstrations, followed by the question.

Schema Class Definitions. The database schema
S is provided in this part. Each table s; is repre-
sented as a class, with the column collection C; cor-
responding to the attribute collection of that class,
facilitating a more object-oriented understanding
of the data model.

In-Context Demonstrations. This part presents
examples of ORM code syntax and structure rel-
evant to the task, consisting of several question-
ORM code pairs. These demonstrations serve as
references for the LLM, illustrating how similar
questions have been approached and solved.

Question. This part contains the natural language
question ¢ that the LLM needs to translate into a
code snippet.

It is important to note that while the schema class
definitions can be obtained through rule-based map-
ping for the Text-to-Code paradigm, the examples
in the in-context demonstrations cannot be easily
derived by parsing SQL to ORM code. To address
this issue, this paper proposes Dialect-SQL, where
high-quality demonstrations are synthesized by the
LLM.

Complete the following code in Python:

* T python
from sqlalchemy import *

class comments(Base): Schema Class Definitions
__tablename__ = 'comments'
Id: Mapped[int] = \
mapped_column('Id', primary_key=True)
PostId: Mapped[Optional[int]] = \
mapped_column('PostId’,
ForeignKey(' posts™. Id "))
Score: Mapped[Optional[int]] = \
mapped_column('Score")

In-Context Demonstrations
Here are some examples for reference:
Question: Among the universities...
stmt = select(
func.count(university.id)

).join(

country, country.id == university.country_id
) -where(

country.country_name == 'Australia’,

Question: Among the users who...
{{Your Code Here}}

Question

Figure 3: The proposed code-style, database-agnostic
prompt representation format.

2.3 Framework

Dialect-SQL is an adaptive framework designed to
facilitate the conversion of natural language ques-
tions into ORM code snippets, ultimately translat-
ing them into dialect-specific SQL queries. The
framework is shown in Figure 4. We begin with the
offline stage, referred to as bootstrapping ORM
code synthesis, in Section 3.1, which presents
a novel approach for generating a high-quality
demonstration pool. Following that, Section 3.2
introduces the online stage, known as dialect-
adaptive SQL generation, where ORM code snip-
pets are produced based on the demonstration pool
and parsed into SQL queries for specific databases.

3 Method
3.1 Bootstrapping ORM Code Synthesis

The publicly available datasets contain only the
gold SQL query y corresponding to each question
q, lacking the associated ORM code snippet . Cur-
rently, there is no method to convert SQL queries
into ORM code, resulting in a scarcity of func-
tionally equivalent SQL queries and ORM code
snippets. To address this challenge, we propose the
bootstrapping ORM code synthesis, which aims to
generate high-quality ORM code for the data in
the training set, thereby creating the demonstration

3607

Offline Stage: Bootstrapping ORM Code Synthesis
Training Set Dyyqin

Seed Dgeeq Initialize

4 Demo. Pool Dy,

Schema § ’ Pop Retrieve,
Question q Generate &
Parse
Gold SQL y Push

SQL 9

Question q

ORM Code ¥

©@Add

GgVerify

i

Online Stage: Dialect-Adaptive SQL Generation

Schema S :
Question q - QRetrieve Exam ple Set D,
Deml D, pool Retrieve, Generate & Parse

,,

'ﬁ Generate

SQL l
‘ SQL L:l@

BParse@

ORM Code y

Regenerate

Figure 4: The proposed Dialect-SQL framework. Dialect-SQL consists of two stages: bootstrapping ORM code
synthesis (top) serves as the offline stage, and dialect-adaptive SQL generation (bottom) functions as the online

stage.

Algorithm 1: Bootstrapping algorithm.

Input: Training set Dyqin, seed Dgeed-
Output: Demonstration pool Dy
1 Dpool < Dgeeds
2 repeat
3 AD + 0;
/* Iterate through schema &, question
q, and gold SQL y in the training

set. */
4 foreach (S, q,y) € Diin do
5 Generate ORM code snippet y and
SQL query ¢ based on S, ¢, and
DpoolQ
6 if ¢ is equivalent to y then
7 AD + ADU{(q,9)};
8 Dhrain < Dhrain — {(87 q, y)}’
9 end
10 end

1 Dpool — Dpo(ﬂ UAD;
12 until stopping criteria;
13 return Dyoo1;

pool Dpoot = {(qt, g]t)}t]\il, where ¢; represents
the ¢-th question in the demonstration pool, g, de-
notes the t-th code snippet, and M is the size of
the demonstration pool.

From a higher-level perspective, the idea is to
gradually add verified question-ORM code pairs to
the demonstration pool, allowing the verified pairs
to continually improve the capacity of the LLM to
generate more difficult examples. As a controllable
iterative framework, the proposed method is out-
lined in Algorithm 1. Initially, the demonstration

pool D,oo1 contains five manually crafted seed ex-
amples Dgeeq (line 1), as detailed in Appendix A.
During the iterative process (lines 2-12), correct
examples are progressively incorporated into the
demonstration pool Dy

At each iteration, we first initialize a temporary
pool AD to store new examples generated during
that iteration (line 3). Then, we iterate over all
triplets in the training set Dy, (lines 4-10). Refer
to Appendix B for further discussion on data syn-
thesis methods when the training set is unavailable.
For each triplet, which consists of a schema S, a
question ¢, and a gold SQL query y, our method
produces an ORM code snippet ¢ and a correspond-
ing SQL query ¢ based on S, ¢, and the demonstra-
tion pool Dpy (line 5). We will elaborate on the
generation process for both the ORM code snippet
y and the SQL query ¥ in Section 3.2. By executing
the SQL query g, we can verify whether the query
results match those of the gold SQL y (line 6). If
the generated query results are consistent with the
gold SQL results, the generated ORM code snip-
pet i is deemed correct, and the question-ORM
code pair (g, §) is added to the temporary pool AD
(line 7). At the end of the iteration, the tempo-
rary pool AD is merged into the demonstration
pool Dyo1 to enrich the sample repository (line 11).
The introduction of the temporary pool enhances
efficiency and improves resource utilization, as it
allows us to process multiple training examples in
parallel without the need for synchronization for
timely updates of the demonstration pool. This de-
sign choice makes the entire bootstrapping process
more scalable and practical for large-scale datasets.

3608

3.2 Dialect-Adaptive SQL Generation

In the online stage, our method generates an ORM
code snippet ¢ based on the question ¢, schema S,
and demonstration pool Dp,e1. The code snippet y
is then converted into SQL ¢ for the target database.

Our method first employs an embedding-based
retriever to retrieve top-K relevant examples
(question-ORM code pairs) from the demonstra-
tion pool, where K is a predefined constant. The
retriever encodes the input question ¢ and the ques-
tions {qt}i\i | from the demonstration pool into em-
bedding vectors E, and {E,, }i\il Then, a set of K
most similar examples D, = {(q;, g{)}fi 1 € Dpool
is retrieved based on the cosine similarity between
the question embeddings E, and {E, }i\i |- These
examples provide syntax and structural references
for the LLM.

Subsequently, the question ¢, along with the
schema class definitions derived from the schema
S, and the retrieved example set D, are fed into the
LLM. The LLM then generates the corresponding
ORM code snippet 3. Given the strong expressive
power of code and the fact that the generation of
code snippet g is conditioned on the example set
D,, the LLM generates the corresponding code
snippet ¢ in a constrained manner:

§ = argmax prm (y'[S, Dy, q).- (1)
)

Finally, the code interpreter is responsible for
converting the generated ORM code snippet into
an executable SQL query ¢ for the target database.
If the ORM code snippet i generated by the LLM
cannot be converted into SQL due to syntax errors
or other issues, our method will attempt to regener-
ate the code snippet ¢ for at most L times, where
L is a predefined constant.

Considering that research indicates LLMs gener-
ally perform better with high-resource languages
compared to their low-resource counterparts (Cas-
sano et al., 2024; Orlanski et al., 2023), utilizing
a high-resource language is more effective than
creating a new language from scratch. Given that
much existing research on code generation focuses
on Python (Roziere et al., 2024; Nijkamp et al.,
2023), we have selected Python as our intermediate
language. To ensure full compatibility with SQL
standards, we implement our framework based
on SQLAlchemy, an open-source ORM frame-
work from the software engineering community.
SQLAIchemy can accurately convert Python ORM
code into functionally equivalent SQL queries

Train Pool Dev.
Spider 8,659 7,930 1,034
BIRD 9,428 8,248 1,534

Table 1: Dataset statistics showing the sizes of training
set, demonstration pool, and development set.

based on the database dialect. The demonstration
in Figure 3 illustrates that the generated ORM code
snippet should store the query represented in the
code in the stmt variable for subsequent conver-
sion into a SQL query. Further discussion on the
selection of ORM frameworks is provided in Ap-
pendix C.

4 Experiments

All experiments are conducted on a server equipped
with 1TB of RAM and 8 NVIDIA A100 GPUs
(80GB each). Refer to Appendix D for experiment
settings such as models, metrics, and implementa-
tion details.

4.1 Datasets

To demonstrate the effectiveness of our method, we
evaluate its performance on two well-established
benchmarks: Spider (Yu et al., 2018) and BIRD (Li
et al., 2023c). The original benchmarks utilize
the SQLite database.* We have adapted the BIRD
dataset for use with four additional databases: Post-
greSQL,5 SQL Server,® Oracle,” and MySQL.8
The results are reported for the development set of
each benchmark.

We use the bootstrapping ORM code synthesis
introduced in Section 3.1 to create a demonstra-
tion pool for each dataset. Our approach involves
generating ORM code snippets for each question
in the training sets. The statistics for the resulting
datasets are summarized in Table 1. It is impor-
tant to note that not all questions in the training
sets have corresponding ORM code snippets when
bootstrapping stops.

4.2 Baseline

We compare the proposed Dialect-SQL with a stan-
dard Text-to-SQL method, referred to as Direct-
SQL. To ensure a fair comparison, Direct-SQL also
employs a regeneration framework similar to that of

4https://www.sqlite.org/index.html
5https://www.postgresql.org/
6https://www.microsoft.com/en—us/sql-server/
sql-server-2022
"https://www.oracle.com/database/
8https://www.mysql.com/

3609

https://www.sqlite.org/index.html
https://www.postgresql.org/
https://www.microsoft.com/en-us/sql-server/sql-server-2022
https://www.microsoft.com/en-us/sql-server/sql-server-2022
https://www.oracle.com/database/
https://www.mysql.com/

501
‘i\i
;» 40 1
g
3 30 SQLite
g PostgreSQL
% 20 1 SQL Server
5 104 Oracle
MySQL
0 =
Direct-SQL Dialect-SQL
Direct-SQL Dialect-SQL
(w/o Regeneration) (w/o Regeneration)
(a) Llama-3.1-70B-Instruct
65
S 604
>
2
5 55
S
<
£ 50-
5
Q
5 45
40 -
Direct-SQL Dialect-SQL

Direct-SQL
(w/o Regeneration)

Dialect-SQL
(w/o Regeneration)

(c) gpt-40-2024-11-20

60

g
§ 50
5
E
= 40 1
.2
5
3
<
H 30 4
Direct-SQL Dialect-SQL
Direct-SQL Dialect-SQL
(w/o Regeneration) (w/o Regeneration)
(b) DeepSeek-R1-Distill-Qwen-32B

~ 60 A
s
2
g
8 501
Q
<
=
2
§ 40
»
<5

30 -

Direct-SQL Dialect-SQL
Direct-SQL Dialect-SQL

(w/o Regeneration) (w/o Regeneration)

(d) claude-3-7-sonnet-20250219

Figure 5: Performance of different methods on BIRD adapted to various databases.

Dialect-SQL, with the key difference being that the
LLM generates dialect-specific SQL directly. The
prompt details can be found in Appendix E. Direct-
SQL leverages feedback from the database; if the
SQL generated by the LLM cannot be executed, it
attempts to regenerate the query. Direct-SQL uti-
lizes dialect-specific in-context demonstrations to
ensure that the generated SQL queries align with
the respective database systems. For SQLite, it em-
ploys examples retrieved from the original BIRD
training set. For other databases, Direct-SQL ob-
tains dialect-specific examples by converting ORM
code snippets from the demonstration pool into the
appropriate SQL dialect.

It is important to note that the experimental re-
sults for Direct-SQL are obtained under ideal con-
ditions. Preliminary experiments in Appendix F in-
dicate that Direct-SQL is influenced by in-context
demonstrations, and in real-world applications, it
may lack sufficient question-SQL pairs specific to
certain databases. Consequently, the performance
of Direct-SQL in practical environments is likely
to be suboptimal. So, the fair comparison should
also be attributed to the introduction and use of
Dialect-SQL.

4.3 Main Results

Dialect Adaptability. Figure 5 illustrates the
accuracy of different methods across various
databases.

The performance varies across different
databases. The results from Direct-SQL indicate
that LLMs are more proficient at generating SQL
queries for SQLite. In contrast, they struggle with
SQL queries on PostgreSQL and Oracle; the EX
of Direct-SQL using DeepSeek-R1-Distill-Qwen-
32B drops by 4.70% on PostgreSQL compared to
its performance on SQLite. This discrepancy may
be attributed to the fact that many studies have
been conducted using SQLite, resulting in a larger
volume of data for this database, which enhances
performance.

The proposed Dialect-SQL demonstrates excel-
lent dialect adaptability. Compared to SQLite,
Dialect-SQL shows an average EX drop of only
1.53% on PostgreSQL and 2.12% on SQL Server.
This indicates that using ORM code as a unified
intermediate language effectively addresses the di-
alect gap. For an illustrative example of how ORM
code bridges this gap, please refer to the case study
in Appendix H.1.

3610

Spider BIRD
Method (%) EX EM VES EX VES
Llama-3.1-70B-Instruct
Direct-SQL 71.3 42.5 76.29 48.96 50.86
w/o Regeneration 75.2 41.8 74.23 47.85 49.74
Dialect-SQL 79.8 34.7 79.10 53.32 53.88
w/o Regeneration 71.5 32.8 76.68 51.89 52.82
DeepSeek-R1-Distill-Qwen-32B
Direct-SQL 82.5 61.4 82.78 55.61 57.16
w/o Regeneration 81.8 61.1 82.13 52.61 54.02
Dialect-SQL 83.0 33.7 82.44 56.84 57.44
w/o Regeneration 80.4 33.0 79.82 52.54 53.30

Table 2: Performance of different paradigms on SQLite. (Bold: the best within each LLM. Underlined: the second

best within each LLM.)

Effectiveness of Text-to-Code. As shown in Ta-
ble 2, the performance of LLMs using the proposed
Text-to-Code paradigm surpasses that of standard
SQL generation. Specifically, when leveraging
Llama-3.1-70B-Instruct, the proposed Dialect-SQL
demonstrates a 2.5% improvement in the EX metric
on the Spider dataset compared to Direct-SQL, and
a 4.36% improvement on the BIRD dataset. The
proposed Dialect-SQL employs a strategy of gener-
ating ORM code first and then parsing it into SQL
queries. Although ORM code is introduced as an
intermediate language for the Text-to-SQL task, the
performance loss during the parsing process is min-
imized through the use of the code interpreter. The
results indicate that LLLMs are more proficient at
generating ORM code based on user requirements.

4.4 Ablation Study

Effectiveness of Regeneration. As shown in
Table 2, both Direct-SQL and Dialect-SQL ex-
hibit a performance decline without regenera-
tion. Specifically, when utilizing Llama-3.1-70B-
Instruct, Dialect-SQL experiences a 2.3% drop in
EX on the Spider dataset, while Direct-SQL shows
a 2.1% decrease. This suggests that even when
relying solely on external feedback regarding the
executability of queries, LLMs still possess the
potential to generate valid and correct queries.

Effectiveness of Bootstrapping. Figure 6 illus-
trates the proportion of ORM code snippets cor-
rectly generated from the training set after various
iterations of the bootstrapping algorithm. After
the first iteration, examples generated solely from
five manually crafted seed examples are classified
as easy examples, constituting 71% of the total
training set. Subsequent iterations produce hard ex-
amples, which account for 15% of the total after the
fifth iteration. Notably, the number of correctly syn-

o o0
(=} W
1 1

N
W
1

Percentage (%)

1 2 3 4 5
Iteration

Figure 6: Percentage of successfully converted training
examples after each iteration during bootstrapping.

Method (%) Easy Hard EX
Dialect-SQL 84 16 53.32
w/o Hard 100 0 51.43

Table 3: Effectiveness of hard examples. Easy examples
are generated solely based on the seed examples, while
hard examples are generated with bootstrapping. The
distributions of in-context demonstrations and EX are
shown.

thesized examples shows an overall upward trend,
demonstrating that the bootstrapping algorithm ef-
fectively leverages previously synthesized exam-
ples to build a diverse demonstration pool. Using
this demonstration pool, we further evaluate the im-
pact of easy and hard examples on the performance
of Dialect-SQL on the development set. As shown
in Table 3, 16% of the in-context demonstrations
used by Dialect-SQL for generating ORM code
come from hard examples, resulting in a 1.89%
increase in EX, thereby validating the effectiveness
of hard examples.

4.5 Analysis

Effect of Number of Demonstrations. Figure 7a
illustrates the relationship between EX and the
number of demonstrations (K). It shows that as
K increases, the accuracy of Dialect-SQL gradu-
ally improves, although the change is not signif-
icant. Notably, Dialect-SQL consistently outper-
forms Direct-SQL, demonstrating the robustness

3611

W
o
(=}

[\S]

W

g 52.5 1 204
2 50.0 —

é l i 1.5
2 475] l_ 2

8 @ Direct-SQL 5 1.0
§ 45.01 I Direct-SQL (w/o Regeneration)

& 4254 Dialect-SQL 0.5 1

I Dialect-SQL (w/o Regeneration)

0.0 -
4 8 16 4 8 16

Number of Demonstrations Number of Demonstrations

(a) Accuracy (b) Efficiency

Figure 7: Performance with respect to the number of demonstrations (K) on BIRD utilizing Llama-3.1-70B-Instruct.

Method (%) SQLite PostgreSQL SQL Server Oracle MySQL Avg.
Direct-SQLsqLit + Transpiler 59.32 52.80 51.43 52.80 5241 53.75
Direct-SQLposigresqL + Transpiler 57.17 51.04 55.61 57.17 57.95 55.79
Direct-SQLsqL server + Transpiler 57.63 56.39 58.02 55.87 59.06 57.39
Direct-SQLoracle + Transpiler 56.84 57.56 46.87 57.82 57.30 55.28
Direct-SQLwmysqL + Transpiler 57.04 54.89 56.39 54.43 57.69 56.09
" Direct-SQL " 775932 " 5104 7 58.02 ~ ~ 57.82° 5769 | 56.78
Dialect-SQL 63.30 61.34 59.78 61.15 60.10 61.13

Table 4: Execution accuracy (EX) of gpt-40-2024-11-20 on BIRD. “Direct-SQLqyce + Transpiler” involves using
Direct-SQL to generate SQL queries in a source dialect, which are subsequently translated to the target dialect via a
transpiler. (Bold: the best. Underlined: the second best.)

and reliability of the proposed approach, and sug-
gesting that performance remains stable regardless
of the hyperparameter K.

Figure 7b depicts the average latency in seconds
for each sample relative to K. The results indi-
cate that as K increases, the latency for different
methods rises significantly. Without regeneration,
Direct-SQL consistently exhibits a shorter delay
than Dialect-SQL, primarily because Dialect-SQL
consumes more tokens. Specifically, Dialect-SQL
(w/o regeneration) consumes 57% more tokens per
sample on average. However, with the introduc-
tion of regeneration, starting from K = 8, Dialect-
SQL’s latency becomes shorter than that of Direct-
SQL. This suggests that Dialect-SQL is more likely
to terminate the generation process early, leading
to improved performance by finding the executable
code more quickly.

Comparison with Transpilation. We investi-
gate whether automatically transpiling SQL queries
from a familiar source dialect to an unfamiliar tar-
get dialect can effectively bridge the dialect gap
and improve adaptability. For each source dialect,
we use Direct-SQL to generate SQL queries, which
are then transpiled to all other target dialects using

SQLGIot.” As shown in Table 4, using a transpiler
can indeed provide some benefit. For instance,
when PostgreSQL is the target dialect, generating
SQL queries in Oracle and then transpiling them
to PostgreSQL results in a 57.56% EX. This is a
notable improvement over the 51.04% EX achieved
when Direct-SQL generates PostgreSQL natively.
This suggests that by leveraging its proficiency in
certain dialects, transpilation can help the LLM
overcome its weaknesses in others. However, the
results also reveal critical limitations of this ap-
proach. First, the average EX across all transpila-
tion pairs ranges from 53.75% to 57.39%, which is
only a marginal improvement over the direct gen-
eration baseline (56.78%). Second, the optimal
source dialect varies per target. For example, tran-
spiling from Oracle works well for PostgreSQL
(57.56% EX), but transpiling from SQL Server is
best for MySQL (59.06% EX). This lack of a single,
universally effective source dialect makes the tran-
spilation approach less practical for real-world de-
ployment, as it requires prior knowledge of which
source dialect works best for each target.

Error Analysis on Training Set. We examine
59 failure instances from the BIRD training set,

*https://sqlglot.com/sqlglot.html#transpile

3612

https://sqlglot.com/sqlglot.html#transpile

Incorrect Gold SQL
Incorrect Evidence

Incorrect Join Condition
Incorrect Col./Exp. in Select
Incorrect Where Condition
Function Error

LLM Response Format Error
Schema Linking Error

Misc.

0 10 20
Percentage (%)

Figure 8: Error analysis on the training set of BIRD.

which contains 9,428 data samples. Notably, 87%
of the data can be successfully converted to ORM
code (Table 1), demonstrating the overall efficacy
of our method. For the 5% of cases that cannot be
successfully converted, we conduct a detailed error
analysis, summarized in Figure 8. This analysis
reveals that 34% of the errors stem from issues with
incorrect gold SQL and incorrect evidence, in-
dicating that some failures are due to inaccuracies
in the human annotated data. Additionally, 24% of
the errors are related to incorrect join conditions,
primarily occurring in multi-table joins. 17% of
the errors involve incorrect column/expression
in select, with some errors arising from complex
calculation expressions and others due to discrepan-
cies in column order compared to the annotations.
Refer to Appendix H.2 for detailed failure cases.

5 Related Work

LLM-based Text-to-SQL. The advent of LLMs
has transformed the NLP landscape (Brown et al.,
2020; Ouyang et al., 2022), prompting the adap-
tation of LLMs for Text-to-SQL tasks (Li et al.,
2024a). Research in this area can be categorized
into two primary lines of work. The first focuses on
prompting-based techniques (Kojima et al., 2022;
Wei et al., 2022), which aim to design sophisticated
pipelines (Gao et al., 2024; Shi et al., 2025) or fa-
cilitate autonomous task decomposition (Pourreza
and Rafiei, 2023; Wang et al., 2025). The second
line emphasizes enhancing smaller LLMs through
model training with extensive synthesized SQL-
specific data (Li et al., 2024b; Yang et al., 2024).
However, these approaches primarily target specific
database systems and often lack dialect adaptabil-
ity. Recent work (Pourreza et al., 2024) attempts to
address this gap by training specialized models for
specific SQL dialects, but still requires retraining
for new dialects, limiting adaptability.

Intermediate Languages. The use of interme-
diate languages is a consistent strategy in Text-
to-SQL for simplifying natural language transla-
tion into SQL (Dong and Lapata, 2018; Li et al.,
2023a). This approach breaks the problem into
two steps: converting the natural language to an
intermediate form, and then transforming that form
into a final SQL query. Previous work on inter-
mediate languages falls into two main categories.
The first uses SQL-derived languages, such as Nat-
SQL (Gan et al., 2021c; Pourreza and Rafiei, 2023)
and SemQL (Guo et al., 2019), which are simpli-
fied versions of SQL designed to ease the conver-
sion from natural language. The second category
employs programming language APIs, like Pandas-
like code (Qu et al., 2024, 2025), as a step-by-step
reasoning trajectory to mitigate hallucinations. Un-
like these methods, our approach introduces ORM
code primarily to address the dialect gap by decou-
pling query logic from specific SQL syntax.

6 Conclusions

In this paper, we address the challenges of translat-
ing natural language into SQL queries across vari-
ous database systems, highlighting the limitations
of existing research that often targets specific SQL
dialects. We introduce a novel approach, Dialect-
SQL, which utilizes ORM code as an intermediate
language to bridge the gap between different SQL
dialects. Dialect-SQL demonstrates impressive di-
alect adaptability, with only a 1.53% drop in EX on
PostgreSQL and 2.12% on SQL Server compared
to SQLite. These findings underscore the potential
of our proposed method to enhance the adaptability
of LLMs across different SQL dialects.

Limitations

This study has several limitations. First, the ef-
fectiveness of Dialect-SQL is validated only on
SQLite, PostgreSQL, SQL Server, and other re-
lational databases, indicating a need for further
adaptation to additional database systems to assess
its broader applicability. Second, our experiments
are conducted solely on a limited number of LLMs
due to cost considerations, which restricts our find-
ings to these models and leaves the exploration
of a wider range of LLMs with varying param-
eter sizes for future research. Finally, while we
utilize Python, there is potential to explore sev-
eral other high-resource languages as intermediate
languages for Text-to-SQL, which could further

3613

improve ORM code generation across diverse pro-
gramming environments.

Acknowledgments

This work is supported by the Chinese NSF Ma-
jor Research Plan (N0.92270121) and the Funda-
mental Research Funds for the Central Universities
2232023D-19.

References

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. Preprint, arXiv:2005.14165.

Federico Cassano, John Gouwar, Francesca Lucchetti,
Claire Schlesinger, Anders Freeman, Carolyn Jane
Anderson, Molly Q Feldman, Michael Greenberg,
Abhinav Jangda, and Arjun Guha. 2024. Knowledge
transfer from high-resource to low-resource program-
ming languages for code llms. Proc. ACM Program.
Lang., 8(OOPSLA?2).

DeepSeek-Al. 2025. Deepseek-rl: Incentivizing rea-
soning capability in llms via reinforcement learning.
Preprint, arXiv:2501.12948.

Xiang Deng, Ahmed Hassan Awadallah, Christopher
Meek, Oleksandr Polozov, Huan Sun, and Matthew
Richardson. 2021. Structure-grounded pretraining
for text-to-SQL. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 1337-1350, Online. As-
sociation for Computational Linguistics.

Li Dong and Mirella Lapata. 2018. Coarse-to-fine de-
coding for neural semantic parsing. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 731-742, Melbourne, Australia. Association
for Computational Linguistics.

Yujian Gan, Xinyun Chen, Qiuping Huang, Matthew
Purver, John R. Woodward, Jinxia Xie, and Peng-
sheng Huang. 2021a. Towards robustness of text-
to-SQL models against synonym substitution. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 2505—
2515, Online. Association for Computational Lin-
guistics.

Yujian Gan, Xinyun Chen, and Matthew Purver. 2021b.
Exploring underexplored limitations of cross-domain
text-to-SQL generalization. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 8926-8931, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Yujian Gan, Xinyun Chen, Jinxia Xie, Matthew Purver,
John R. Woodward, John Drake, and Qiaofu Zhang.
2021c. Natural SQL: Making SQL easier to infer
from natural language specifications. In Findings
of the Association for Computational Linguistics:
EMNLP 2021, pages 2030-2042, Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2024.
Text-to-sql empowered by large language models:
A benchmark evaluation. Proc. VLDB Endow.,
17(5):1132-1145.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-
Guang Lou, Ting Liu, and Dongmei Zhang. 2019. To-
wards complex text-to-SQL in cross-domain database
with intermediate representation. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4524—4535, Florence,
Italy. Association for Computational Linguistics.

Zijin Hong, Zheng Yuan, Hao Chen, Qinggang Zhang,
Feiran Huang, and Xiao Huang. 2024. Knowledge-
to-SQL: Enhancing SQL generation with data expert
LLM. In Findings of the Association for Computa-
tional Linguistics: ACL 2024, pages 10997-11008,
Bangkok, Thailand. Association for Computational
Linguistics.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large
language models are zero-shot reasoners. In Pro-
ceedings of the 36th International Conference on
Neural Information Processing Systems, NIPS °22,
Red Hook, NY, USA. Curran Associates Inc.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Ef-
ficient memory management for large language
model serving with pagedattention. Preprint,
arXiv:2309.06180.

Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li,
and Nan Tang. 2024a. The dawn of natural language
to sql: Are we fully ready? Proc. VLDB Endow.,
17(11):3318-3331.

Haoyang Li, Shang Wu, Xiaokang Zhang, Xinmei
Huang, Jing Zhang, Fuxin Jiang, Shuai Wang, Tiey-
ing Zhang, Jianjun Chen, Rui Shi, Hong Chen,
and Cuiping Li. 2025. Omnisql: Synthesizing
high-quality text-to-sql data at scale. Preprint,
arXiv:2503.02240.

3614

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.1145/3689735
https://doi.org/10.1145/3689735
https://doi.org/10.1145/3689735
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://doi.org/10.18653/v1/2021.naacl-main.105
https://doi.org/10.18653/v1/2021.naacl-main.105
https://doi.org/10.18653/v1/P18-1068
https://doi.org/10.18653/v1/P18-1068
https://doi.org/10.18653/v1/2021.acl-long.195
https://doi.org/10.18653/v1/2021.acl-long.195
https://doi.org/10.18653/v1/2021.emnlp-main.702
https://doi.org/10.18653/v1/2021.emnlp-main.702
https://doi.org/10.18653/v1/2021.findings-emnlp.174
https://doi.org/10.18653/v1/2021.findings-emnlp.174
https://doi.org/10.14778/3641204.3641221
https://doi.org/10.14778/3641204.3641221
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/2024.findings-acl.653
https://doi.org/10.18653/v1/2024.findings-acl.653
https://doi.org/10.18653/v1/2024.findings-acl.653
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://doi.org/10.14778/3681954.3682003
https://doi.org/10.14778/3681954.3682003
https://arxiv.org/abs/2503.02240
https://arxiv.org/abs/2503.02240

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen.

2023a. Resdsql: decoupling schema linking and
skeleton parsing for text-to-sql. In Proceedings
of the Thirty-Seventh AAAI Conference on Artifi-
cial Intelligence and Thirty-Fifth Conference on In-
novative Applications of Artificial Intelligence and
Thirteenth Symposium on Educational Advances in
Artificial Intelligence, AAAT'23/TAAT’23/EAAT’23.
AAALI Press.

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xi-

aokang Zhang, Jun Zhu, Renjie Wei, Hongyan Pan,
Cuiping Li, and Hong Chen. 2024b. Codes: Towards
building open-source language models for text-to-sql.
Proc. ACM Manag. Data, 2(3).

Jinyang Li, Binyuan Hui, Reynold Cheng, Bowen Qin,

Chenhao Ma, Nan Huo, Fei Huang, Wenyu Du, Luo
Si, and Yongbin Li. 2023b. Graphix-t5: mixing
pre-trained transformers with graph-aware layers for
text-to-sql parsing. In Proceedings of the Thirty-
Seventh AAAI Conference on Artificial Intelligence
and Thirty-Fifth Conference on Innovative Applica-
tions of Artificial Intelligence and Thirteenth Sympo-
sium on Educational Advances in Artificial Intelli-
gence, AAAI'23/TAAT'23/EAAT’23. AAAI Press.

Jinyang Li, Binyuan Hui, GE QU, Jiaxi Yang, Binhua

Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guo-
liang Li, Kevin Chang, Fei Huang, Reynold Cheng,
and Yongbin Li. 2023c. Can LLM already serve as
a database interface? a Blg bench for large-scale
database grounded text-to-SQLs. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track.

Ruilin Luo, Liyuan Wang, Binghuai Lin, Zicheng Lin,

and Yujiu Yang. 2024. PTD-SQL.: Partitioning and
targeted drilling with LLMs in text-to-SQL. In Pro-
ceedings of the 2024 Conference on Empirical Meth-
ods in Natural Language Processing, pages 3767—
3799, Miami, Florida, USA. Association for Compu-
tational Linguistics.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan

Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2023. Codegen: An open large language
model for code with multi-turn program synthesis. In
The Eleventh International Conference on Learning
Representations.

Gabriel Orlanski, Kefan Xiao, Xavier Garcia, Jeffrey

Hui, Joshua Howland, Jonathan Malmaud, Jacob
Austin, Rishabh Singh, and Michele Catasta. 2023.
Measuring the impact of programming language
distribution. In Proceedings of the 40th Interna-
tional Conference on Machine Learning, ICML’23.
JMLR.org.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,

Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,

Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730-27744.
Curran Associates, Inc.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun-
jie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. Preprint, arXiv:1912.01703.

Mohammadreza Pourreza and Davood Rafiei. 2023.
DIN-SQL: Decomposed in-context learning of text-
to-SQL with self-correction. In Thirty-seventh Con-
ference on Neural Information Processing Systems.

Mohammadreza Pourreza, Ruoxi Sun, Hailong Li, Lesly
Miculicich, Tomas Pfister, and Sercan O. Arik. 2024.
Sql-gen: Bridging the dialect gap for text-to-sql
via synthetic data and model merging. Preprint,
arXiv:2408.12733.

Ge Qu, Jinyang Li, Bowen Li, Bowen Qin, Nan Huo,
Chenhao Ma, and Reynold Cheng. 2024. Before
generation, align it! a novel and effective strategy for
mitigating hallucinations in text-to-SQL generation.
In Findings of the Association for Computational
Linguistics: ACL 2024, pages 5456-5471, Bangkok,
Thailand. Association for Computational Linguistics.

Ge Qu, Jinyang Li, Bowen Qin, Xiaolong Li, Nan Huo,
Chenhao Ma, and Reynold Cheng. 2025. SHARE:
An SLM-based hierarchical action CorREction as-
sistant for text-to-SQL. In Proceedings of the 63rd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 11268—
11292, Vienna, Austria. Association for Computa-
tional Linguistics.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron
Grattafiori, Wenhan Xiong, Alexandre Défossez,
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Mar-
tin, Nicolas Usunier, Thomas Scialom, and Gabriel
Synnaeve. 2024. Code llama: Open foundation mod-
els for code. Preprint, arXiv:2308.12950.

Zhili Shen, Pavlos Vougiouklis, Chenxin Diao, Kaus-
tubh Vyas, Yuanyi Ji, and Jeff Z. Pan. 2024. Im-
proving retrieval-augmented text-to-SQL with AST-
based ranking and schema pruning. In Proceedings
of the 2024 Conference on Empirical Methods in
Natural Language Processing, pages 7865-7879, Mi-
ami, Florida, USA. Association for Computational
Linguistics.

Jie Shi, Bo Xu, Jiaqing Liang, Yanghua Xiao, Jia Chen,
Chenhao Xie, Peng Wang, and Wei Wang. 2025.

3615

https://doi.org/10.1609/aaai.v37i11.26535
https://doi.org/10.1609/aaai.v37i11.26535
https://doi.org/10.1145/3654930
https://doi.org/10.1145/3654930
https://doi.org/10.1609/aaai.v37i11.26536
https://doi.org/10.1609/aaai.v37i11.26536
https://doi.org/10.1609/aaai.v37i11.26536
https://openreview.net/forum?id=dI4wzAE6uV
https://openreview.net/forum?id=dI4wzAE6uV
https://openreview.net/forum?id=dI4wzAE6uV
https://doi.org/10.18653/v1/2024.emnlp-main.221
https://doi.org/10.18653/v1/2024.emnlp-main.221
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://openreview.net/forum?id=p53QDxSIc5
https://openreview.net/forum?id=p53QDxSIc5
https://arxiv.org/abs/2408.12733
https://arxiv.org/abs/2408.12733
https://doi.org/10.18653/v1/2024.findings-acl.324
https://doi.org/10.18653/v1/2024.findings-acl.324
https://doi.org/10.18653/v1/2024.findings-acl.324
https://doi.org/10.18653/v1/2025.acl-long.552
https://doi.org/10.18653/v1/2025.acl-long.552
https://doi.org/10.18653/v1/2025.acl-long.552
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://doi.org/10.18653/v1/2024.emnlp-main.449
https://doi.org/10.18653/v1/2024.emnlp-main.449
https://doi.org/10.18653/v1/2024.emnlp-main.449

Gen-SQL: Efficient text-to-SQL by bridging nat-
ural language question and database schema with
pseudo-schema. In Proceedings of the 31st Inter-
national Conference on Computational Linguistics,
pages 3794-3807, Abu Dhabi, UAE. Association for
Computational Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open foundation and
fine-tuned chat models. Preprint, arXiv:2307.09288.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Ji-
aqi Bai, Linzheng Chai, Zhao Yan, Qian-Wen Zhang,
Di Yin, Xing Sun, and Zhoujun Li. 2024. Mac-sql: A
multi-agent collaborative framework for text-to-sql.
Preprint, arXiv:2312.11242.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Ji-
aqi Bai, LinZheng Chai, Zhao Yan, Qian-Wen Zhang,
Di Yin, Xing Sun, and Zhoujun Li. 2025. MAC-
SQL: A multi-agent collaborative framework for text-
to-SQL. In Proceedings of the 31st International
Conference on Computational Linguistics, pages 540—
557, Abu Dhabi, UAE. Association for Computa-
tional Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824-24837. Curran Associates,
Inc.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,

Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020. Hug-
gingface’s transformers: State-of-the-art natural lan-
guage processing. Preprint, arXiv:1910.03771.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas
Muennighoff. 2023. C-pack: Packaged resources
to advance general chinese embedding. Preprint,
arXiv:2309.07597.

Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Junyang
Lin, and Chang Zhou. 2024. Synthesizing text-to-
SQL data from weak and strong LLMs. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 7864—7875, Bangkok, Thailand. Associ-
ation for Computational Linguistics.

Edward Yeo, Yuxuan Tong, Morry Niu, Graham
Neubig, and Xiang Yue. 2025. Demystifying
long chain-of-thought reasoning in llms. Preprint,
arXiv:2502.03373.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911-3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
Preprint, arXiv:1709.00103.

A Manual Examples

The demonstration pool is initialized with five man-
ual examples. These examples are selected based
on preliminary experiments that examine the types
of queries LLLMs struggle to generate correctly.

Question: What is the percentage of the
ratings were rated by user who was a
subcriber?

Evidence: user is a subscriber refers to
user_subscriber = 1; percentage of
ratings = DIVIDE(

SUM(user_subscriber = 1),
SUM(rating_score)) as percent;
Code:

stmt = select(
func.sum(case(
(
ratings.user_subscriber == 1,
1
)!
else_=0
)) * 100 / func.count()
)

Question: Which movie is more popular,
"The General” or "Il grido"?
Evidence: The General and Il grido are

3616

https://aclanthology.org/2025.coling-main.256/
https://aclanthology.org/2025.coling-main.256/
https://aclanthology.org/2025.coling-main.256/
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2312.11242
https://aclanthology.org/2025.coling-main.36/
https://aclanthology.org/2025.coling-main.36/
https://aclanthology.org/2025.coling-main.36/
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/2309.07597
https://arxiv.org/abs/2309.07597
https://doi.org/10.18653/v1/2024.acl-long.425
https://doi.org/10.18653/v1/2024.acl-long.425
https://arxiv.org/abs/2502.03373
https://arxiv.org/abs/2502.03373
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://arxiv.org/abs/1709.00103
https://arxiv.org/abs/1709.00103

movie_title; more popular movie refers
to higher (movie_popularity);
Code:
stmt = select(
movies.movie_title
) .where(
(movies.movie_title
== 'The General')
| (movies.movie_title
== "Il grido"')
).order_by(
movies.movie_popularity.desc()
). limit(1)

Question: What is the average rating for
movie titled 'When Will I Be Loved'?
Evidence: average rating = DIVIDE((
SUM(rating_score where movie_title
= 'When Will I Be Loved')),
COUNT(rating_score));
Code:
stmt = select(
func.avg(ratings.rating_score)
).join(
movies, movies.movie_id
== ratings.movie_id
) .where(
movies.movie_title
== 'When Will I Be Loved'
)

Question: List ther users who gave the
worst rating for movie 'Love Will Tear
Us Apart'.

Evidence: worst rating refers to
rating_score = 1;

Code:

stmt = select(

ratings.user_id
).join(
movies, ratings.movie_id
== movies.movie_id
) .where(
movies.movie_title
== 'Love Will Tear Us Apart',
ratings.rating_score ==

)

Question: For the user who post the
list that contained the most number of
the movies, is he/she a paying
subscriber when creating that list?

Evidence: the list that contained the
most number of the movies refers to
MAX(list_movie_number);
user_has_payment_method = 1 means the
user was a paying subscriber when he
created the list ;
user_has_payment_method = @ means the
user was not a paying subscriber when
he created the list

Code:

stmt = select(

lists_users
.user_has_payment_method
).join(
lists, lists_users.list_id
== lists.list_id

) .where(

lists.list_movie_number

== select(func.max(
lists.list_movie_number
))
)

B Data Synthesis for Insufficient
Question-SQL Pairs

For domains with insufficient question-SQL pairs,
data synthesis methods (Li et al., 2025; Yang et al.,
2024; Li et al., 2024b) can be utilized to generate
domain-specific data. This synthesized data can
then be employed with our bootstrapping approach
to produce question-ORM code pairs.

C Rationale for Choosing Python and
SQLAIlchemy

We choose Python and SQLAIchemy for several
reasons. First, Python is a widely used high-
resource language, and SQLAIchemy is a well-
established ORM that has been extensively adopted
in the industry. This popularity means that LLMs
have effectively learned the nuances of Python and
SQLAIchemy during large-scale pre-training, mak-
ing them well-suited for accurate intermediate code
generation.

Although we consider the option of using C#
with EF Core, we encounter a significant limita-
tion: this framework does not support the output
of SQL query statements, which is essential for
compatibility with traditional Text-to-SQL tasks.
This mismatch hinders our ability to leverage EF
Core effectively for our objectives.

We remain open to incorporating other ORM
frameworks that can output SQL queries. Our ar-
chitecture is designed to be adaptable, allowing for
the integration of alternative languages and ORMs
in future iterations of our work.

D Experiment Settings

D.1 Models

LLM. We conduct experiments using both
open-source and closed-source LLMs. The
open-source LLMs are Llama-3.1-70B-Instruct'’
and DeepSeek-R1-Distill-Qwen-32B.!! For
Llama (Touvron et al., 2023b,a), only SQL queries
or ORM code snippets are generated. In contrast,
for the distilled DeepSeek-R1 (DeepSeek-Al,
2025), long Chain-of-Thoughts (CoTs) (Yeo
lOht’cps://huggingface.co/meta—llama/Llama-3.

1-70B-Instruct

11https://huggingface.co/deepseek—ai/
DeepSeek-R1-Distill-Qwen-32B

3617

https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B

et al., 2025) are generated prior to producing
the SQL queries or ORM code snippets. The
closed-source LLMs are gpt-40-2024-11-20 and
claude-3-7-sonnet-20250219.

Retriever. We utilize the state-of-the-art text em-
bedding model bge-large-en-v1.5 (Xiao et al.,
2023) for our embedding-based retriever.

D.2 Metrics

We follow the convention (Pourreza and Rafiei,
2023; Wang et al., 2024; Gao et al., 2024; Shi et al.,
2025) to report three metrics for Text-to-SQL: Exe-
cution Accuracy (EX), Exact Matching Accuracy
(EM), and Valid Efficiency Score (VES). EX is de-
fined as the accuracy of the results obtained by ex-
ecuting the generated SQL query compared to the
results from executing the gold SQL query on the
specified database. EM measures string matching
similarity by assessing whether the decomposed
SQL components of the generated query align with
those of the gold query. VES evaluates the execu-
tion efficiency of the generated query relative to
the gold query.

Specifically, for Spider, we report all three met-
rics: EX, EM, and VES (Yu et al., 2018; Li et al.,
2023b,c). In the case of BIRD, we focus on EX
and VES (Li et al., 2023c¢) for SQLite, while report-
ing only EX for PostgreSQL and other databases.
Note that there are no gold SQL queries for the de-
velopment set on PostgreSQL and other databases.
Therefore, we execute the gold SQL queries on
SQLite and compare the results with those ob-
tained from the generated SQL queries on the other
databases.

D.3 Implementation Details

We implement our code based on the Py-
Torch (Paszke et al., 2019) version of the Trans-
formers (Wolf et al., 2020) library.

Generation Configuration. Default sampling
parameters are employed in all experiments. For
example, the default temperature for Llama-3.1-
70B-Instruct is 0.6. The maximum number of
tokens generated for each SQL query or ORM
code snippet is limited to 256 for Llama-3.1-70B-
Instruct, while there is no such limitation for the
other LLMs.

Model Serving. Both Llama-3.1-70B-Instruct
and DeepSeek-R1-Distill-Qwen-32B are deployed

Write a {{Database}} SQL query to answer the question.

Database Schema: Schema Definitions
CREATE TABLE ~comments™ (

“Id° INTEGER,

“PostId® INTEGER,

“Score” INTEGER,

PRIMARY KEY ("Id*),
FOREIGN KEY (“PostId) REFERENCES “posts™ (“Id')
)5

In-Context Demonstrations

Question: Among the universities...
SQL: SELECT COUNT(*)
FROM university AS T1
INNER JOIN country AS T2
ON T2.id = Tl.country_id
WHERE T2.country_name = 'Australia’
AND

Question: Among the users who...
SQL:

Question

Figure 9: Database-style prompt representation format
used in Direct-SQL.

across 8 GPUs using vLLM (Kwon et al., 2023) to
ensure optimal inference speed.

E Prompt for Direct-SQL

Direct-SQL employs a database-style prompt
to generate SQL queries tailored for specific
databases. This prompt, illustrated in Figure 9,
also consists of three parts: schema definitions,
in-context demonstrations, and the question.

Schema Definitions. This part outlines the
database schema &, detailing the definition of each
table s; along with its corresponding column col-
lection C; using CREATE TABLE statements. This
allows the LLM to understand the structure and
relationships within the database.

In-Context Demonstrations. This part provides
examples of relevant SQL syntax and structure.
These demonstrations typically consist of natural
language questions paired with their corresponding
SELECT statements.

Question. The natural language question g is pre-
sented in this part.

3618

[o%)
(=]
1

[
(=]
1

HEl w/ SQLite Demos.
I w/ DB-Specific Demos.

— —— |
PostgreSQL SQL Server

—_
(=]
1

Execution Accuracy (%)

0 T
Oracle

Figure 10: Effects of demonstration dialect on Direct-
SQL. “w/ SQLite Demos.” refers to demonstrations that
consist of SQL queries in the SQLite dialect. “w/ DB-
Specific Demos.” refers to demonstrations that include
SQL queries tailored for specific databases.

PostgreSQL
SQL Server
Oracle
MySQL

Execution Accuracy (%)

Direct-SQL
Direct-SQL
(w/o Regeneration)

Dialect-SQL
Dialect-SQL
(w/o Regeneration)

Figure 11: Performance of gemini-2.5-flash on BIRD.

F Effects of Demonstration Dialect on
Direct-SQL

This section investigates how Direct-SQL is influ-
enced by the dialect of SQL queries in in-context
demonstrations, based on Llama-3.1-70B-Instruct
and validated on the BIRD dataset. Since the origi-
nal BIRD dataset is based on the SQLite database,
our first experimental setup involves prompting the
LLM to generate queries for a specific database
using in-context demonstrations that consist of
SQLite dialect queries (as these are readily avail-
able). In contrast, the experimental setup depicted
in Figure 5a prompts the LLM to generate queries
for a specific database, with in-context demonstra-
tions also using that database’s dialect. The ex-
perimental results, shown in Figure 10, indicate
that using in-context demonstrations aligned with
the database’s dialect significantly improves perfor-
mance.

G Additional Results

We also evaluate our framework using gemini-2.5-
flash to further demonstrate its robustness. As

Question: Calculate the ratio of votes in 2010 and 2011.

ORM Code:
stmt = select(
func.sum(case((
func.extract(
'year', votes.CreationDate
) == 2010, 1), else_=0)) /
func.sum(case((
func.extract(
'year', votes.CreationDate
) == 2011, 1), else_=0))
)
SQLite:
SELECT
sum(CASE WHEN (
CAST(STRFTIME('%Y', votes."CreationDate")
AS INTEGER) = 2010) THEN 1 ELSE © END) / (
sum(CASE WHEN (
CAST(STRFTIME('%Y', votes."CreationDate")
AS INTEGER) = 2011) THEN 1 ELSE © END) + 0.9)
AS anon_1
FROM votes
PostgresQL:
SELECT sum(CASE WHEN (

EXTRACT(year FROM votes."CreationDate") = 2010)
THEN 1 ELSE © END) / CAST(sum(CASE WHEN (
EXTRACT(year FROM votes."CreationDate") = 2011)

THEN 1 ELSE @ END) AS NUMERIC) AS anon_1
FROM votes
SQL Server:
SELECT sum(CASE WHEN (
DATEPART (year, votes.[CreationDate]) = 2010)
THEN 1 ELSE @ END) / CAST(sum(CASE WHEN (
DATEPART (year, votes.[CreationDate]) = 2011)
THEN 1 ELSE @ END) AS NUMERIC) AS anon_1
FROM votes

Figure 12: Case study on BIRD. Dialect-SQL uses the
same ORM code to generate SQL queries that leverage
different built-in functions for date handling across vari-
ous database dialects.

shown in Figure 11, gemini-2.5-flash exhibits per-
formance trends consistent with the results in Sec-
tion 4.3. Dialect-SQL with regeneration achieves
an average EX of 63.00%, outperforming the other
baselines by a significant margin. This underscores
the consistent effectiveness of our ORM-based ap-
proach, even with different LLMs.

H Case Study

H.1 Dialect Adaptability

Figure 12 illustrates how Dialect-SQL bridges the
dialect gap through ORM code. The challenge of
this query arises from the differing built-in func-
tions for handling dates across various databases,
highlighting the lack of portability in the SQL
query. However, Dialect-SQL can utilize the same
code to address this issue. To extract the year
from the CreationDate column of the votes ta-
ble, which is of type DATE, the extract function
is invoked. The subsequent code interpreter gen-
erates the corresponding query statements for dif-

3619

Question: Among the films starring PENELOPE GUINESS, how
many of them are in English?
Incorrect ORM Code:
stmt = select(
func.count(film.film_id)
).join(
film_actor,
film_actor.actor_id == film_actor.actor_id

).join(

film, film_actor.film_id == film.film_id
).join(

language,

film.language_id == language.language_id
) .where(

language.name == 'English’,

actor.first_name == 'PENELOPE’,

actor.last_name == 'GUINESS'

)
Incorrect SQL:
SELECT count(film.film_id) AS count_1
FROM film
JOIN film_actor
ON film_actor.actor_id = film_actor.actor_id
JOIN film
ON film_actor.film_id = film.film_id
JOIN language
ON film.language_id = language.language_id,
actor
WHERE language.name = 'English’
AND actor.first_name = 'PENELOPE'’
AND actor.last_name = 'GUINESS'
Gold SQL:
SELECT COUNT(T3.film_id)
FROM actor AS T1
INNER JOIN film_actor AS T2
ON Tl.actor_id = T2.actor_id
INNER JOIN film AS T3
ON T2.film_id = T3.film_id
INNER JOIN language AS T4
ON T3.language_id = T4.language_id
WHERE T4.name = 'English’
AND T1.first_name = 'PENELOPE’
AND T1.last_name = 'GUINESS'

Figure 13: Example of incorrect join condition.
This example illustrates a failure case where the
generated ORM code produces a self-join error
(film_actor.actor_id == film_actor.actor_id)
instead of correctly linking the film_actor table to the
actor table.

ferent databases, such as STRFTIME in SQLite and
DATEPART in SQL Server. Acting as a mapping and
parsing knowledge base, the code interpreter effec-
tively addresses the limitations of LLMs in dealing
with various dialects.

H.2 Failure Cases

This section provides a detailed analysis of two
major failure types identified in our error analysis
on the BIRD training set: incorrect join condition
and incorrect column/expression in select. These
examples are illustrated in Figure 13 and Figure 14,
and they show that the LLM still struggles with gen-
erating accurate queries. The first type of failure
is a mistake in a multi-table join, where the pri-
mary challenge is specifying the precise conditions

Question: Between the years 1990 and 2007, of the total rebounds
achieved by each player, how many managed to exceed 75% of
defensive rebounds?
Incorrect ORM Code:
stmt = select(
func.count(player_allstar.playerID)
) .where(
player_allstar.season_id >= 1990,
player_allstar.season_id <= 2007,
func.cast(
func.cast(
player_allstar.d_rebounds, REAL
) * 100 / player_allstar.rebounds, REAL
) > 75
)
Incorrect SQL:
SELECT
count(player_allstar."playerID") AS count_1
FROM player_allstar
WHERE player_allstar.season_id >= 1990
AND player_allstar.season_id <= 2007
AND CAST(
(CAST(
player_allstar.d_rebounds AS REAL
) * 100) / (player_allstar.rebounds + 0.0
) AS REAL) > 75

Gold SQL:

SELECT COUNT(DISTINCT playerID)

FROM player_allstar

WHERE CAST(d_rebounds AS REAL) * 100
/ rebounds > 75
AND season_id BETWEEN 1990 AND 2007

Figure 14: Example of incorrect column/expres-
sion in select. This example shows an er-
ror where the generated ORM code counts all
rows (func.count(player_allstar.playerID)) in-
stead of counting the unique players (COUNT (DISTINCT
playerID)).

that accurately link the tables. The second arises
when complex expressions in the where clause in-
crease the overall complexity, which causes the
LLM to make a subsequent error in the select
clause, such as failing to include distinct within
the func. count function.

3620

