Train It and Forget It: Merge Lists are Unnecessary for BPE Inference in
Language Models

Tomohiro Sawada *, Kartik Goyal
Georgia Institute of Technology

Abstract

Standard Byte-Pair Encoding (BPE) tokeniza-
tion compresses text by pairing a learned token
vocabulary with a detailed merge list. Recent
work has shown that this merge list exposes
a potential attack surface for extracting infor-
mation about language model’s training data.
In this paper, we explore the downstream im-
pact of BPE inference algorithms that do not
rely on this merge list at all, and hence differ
from the encoding process during BPE training.
To address this question, we investigate two
broad classes of BPE inference schemes that
differ from BPE application during training: a)
targeted deviation from merge-lists including
random merge orders, and various corruptions
of merge list involving deletion/truncation, and
b) non-targeted BPE inference algorithms that
do not depend on the merge list but focus on
compressing the text either greedily or exactly.
Extensive experiments across diverse language
modeling tasks like accuracy-based QA bench-
marks, machine translation, and open-ended
generation reveal that while targeted deviation
from the merge lists exhibits significant degra-
dation in language model performance, the non-
targeted merge-list-free inference algorithms
result in minimal impact on downstream per-
formance that is often much smaller than ex-
pected. These findings pave way for simpler
and potentially more privacy-preserving tok-
enization schemes that do not catastrophically
compromise model performance.

1 Introduction

Byte-pair encoding (Gage, 1994; Sennrich et al.,
2016; Kudo and Richardson, 2018; Radford et al.)
is the standard algorithm used to tokenize input
texts for large language models (LLMs). In prac-
tice, most BPE-based tokenizer implementations
used for frontier language models' rely on a learned
*Corresponding author: tsawada@ gatech.edu.

"Most notably, the Hugging Face tokenizer codebase:
https://github.com/huggingface/tokenizers

merge list to iteratively combine subword units into
tokens during inference time. This BPE inference
procedure is appealing because it mimics the merge
application procedure during BPE training. How-
ever, dependence on the learned merge list exposes
a vulnerability that might facilitate exploits to af-
fect the model’s downstream performance. Also, as
shown in recent work (Hayase et al., 2024), these
merge lists expose an attack surface where adver-
saries can steal information about the tokenizer’s
training data that is likely correlated with the LLM
training data. Moreover, other works (Geiping
et al., 2024) have shown that discrepancies between
the tokenizer and LLM’s training data can lead to
"glitch tokens" which lead to generation failures
thus, information about the tokenizer’s training
data can be used to finding and exploiting these
glitches (Land and Bartolo, 2024). It is therefore
undesirable to rely on the BPE merge list during
the deployment of the associated language model.

Hence in this paper, we investigate the effective-
ness of using alternative BPE inference algorithms
that do not depend on the learned merge lists post
hoc for large language models trained with merge-
list dependent BPE tokenization. BPE vocabulary
typically admits multiple possible segmentations
of the input pretokens that can be obtained from
a myriad of BPE inference schemes. However, as
we show in our experiments, these schemes are
not all equal and the standard merge-list dependent
scheme is ideal because of its alignment with the
BPE training procedure.? Specifically, we focus on
two such algorithms that aim to optimally compress
the input text: a) left-to-right encoding that greedily
maximizes compression; and b) an exact maximal
compression encoding algorithm to compress the

*Technically, the inference scheme used for tokenization
of data during training of language models is the most ideal
scheme. But in our experiments and general practice, the
language models use the merge-list dependent BPE inference
scheme.

35034

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 35034-35047
November 4-9, 2025 ©2025 Association for Computational Linguistics

https://github.com/huggingface/tokenizers

Using language models Process Oitpit
a First, drag the raw audio
How do I quantize the Tokenize pa signal to the stem bar and
audio to the grid? the prompt Transformer
Input Prompt -~ t--- and Gene_rzi\tia_
Input Pretoken to encode/tokenize: quantize
Merge-list dependent:
. Merge-free tokenizers
Standard Tokenizer | 9
Merge-list BPE Vocabulary
ini tzq,u,e,a,n,int,
BPE Training tq,i uz, aé b Lose ordering info » an, ...quanti, qu, ...nt, tize,
T a,n e ant, ize, quant,...
a+n=an (525) t\
n +t = nt (505) u step 1: q,u,an,t, i,z e
__copfrol PErdd Left-to-right tokenizer
scpndalous N .
_traundEizd ize step n: g, U, an, tize output:
—_— /s' ep n+l: Qu, an, tize

- a+nt=ant(217)

GrEEﬁiﬂgl icize_
queen bagftizd

t + ize = tize (107)
q+u=qu(98)

t(i]zute/

quant
quanti

ant =

quanti+z +e

Final output:

qu + an + tize - - -
Maximal-compression tokenizer

output:

quant + ize

Figure 1: Illustration comparing merge-list-based and merge-list-free BPE algorithms elaborated in the pink
expanded box. The pretoken “quantize” is tokenized by three different algorithms: a merge-list-based standard
tokenizer (left) and two merge-list-free algorithms left-to-right (right-top) and maximal-compression
(right-bottom). The ordered merge list is obtained from bigram statistics during BPE training. In contrast, merge-list-
free algorithms only depend on the unordered BPE vocabulary, which contains less information about the training

corpus.

input pretokens given the BPE vocabulary. We con-
trast the impact of these algorithms to a class of
inference algorithms that arise by targeted manipu-
lation of the vulnerable merge list which includes
truncation/deletion of merges, random shuffling of
ordered merges, and backing-off to single charac-
ters. On three diverse language modeling tasks —
a) multiple-choice QA, b) conditional generation
(machine translation), and c) open-ended genera-
tion — we observe that the targeted inference algo-
rithms significantly degrade the downstream LLM
performance, but the non-targeted algorithms fo-
cusing on compression do not negatively impact
LLM performance, and even improve it in some
cases. Finally, we conduct further quantitative and
qualitative analysis to study this surprising pattern
of results in greater detail.

Our contributions are: i) empirically support
compression-focused inference algorithms for to-
kenization which ameliorate the security vulner-
ability arising from the dependence on merge-
lists; ii) investigate the downstream effect of nu-
merous BPE inference algorithms, including ones
that exploit the merge-list vulnerability, that de-

viate from training on diverse language modeling
tasks; and iii) shed light on the extent to which
the non-deterministic encoding property of BPE
documented in prior work is impactful in practice.

2 Training and Inference for BPE

Given a fixed BPE vocabulary, there are many pos-
sible encoding algorithms one can use to encode
a pretoken. * Typically, BPE training produces
merge-lists and inference also uses these merge
lists in the same way as training to avoid mismatch
and reduce ambiguity in segmentation. A merge-
list-based BPE encoder is deterministic once the
merge list is fixed; a vocabulary alone only spec-
ifies a family of possible deterministic encoders.
Our focus in this paper is to explore mismatched in-
ference algorithms for BPE on a model pretrained
with a merge-list-based inference scheme. In this
section, we review how standard BPE training and
encoding process and describe the two alternate

3Given a BPE vocabulary, there are multiple ways to en-
code a given pretoken that are each deterministic functions of
the input. Following the terminology in (Gastaldi et al., 2025),
we call such tokenizers non-deterministic. See Section 5 for
why this is a useful perspective.

35035

merge-free BPE inference algorithms explored in
this paper.

2.1 Training and Merge-list

BPE is a greedy compression algorithm that is
trained on a corpus by repeatedly merging the most
frequent pair of tokens in the training corpora, and
recording the new merged token at each step into
the BPE tokenizer vocabulary. In practice, each
pretoken (space separated word) is processed in-
dividually across the corpus. This results in the
vocabulary of the tokenizer.

A lesser known fact is that many standard BPE
implementations also record the merge list, which
is the ordered list of merges that were performed
sequentially during the training process (see Fig-
ure 1). This list has strictly more information than
the vocabulary alone because it contains the "train-
ing dynamics" of the tokenizer, namely a.) the split-
tings of the tokens (and hence the "dependencies"
between them), and b.) the order of the merges.
Recent work (Hayase et al., 2024) has shown that
this information can be used to extract information
about the tokenizer’s training data, which is often
correlated with the pretraining data of the language
model. Thus, the tokenizer merge lists are potential
attack surfaces which adversaries can exploit to
extract information about the language model. In
contrast, the BPE vocabulary does not include any
information about the order of the merges, and is
more difficult to use for attacks.

2.2 Merge-based BPE Encoding Algorithms

Standard implementations of BPE encodings use
the merge list to encode pretokens returned by some
pretokenization pipeline (which often returns a list
of pretokens). To the best of our knowledge, there
is no single consensus ‘“standard BPE inference
algorithm,” even though popular libraries follow
merge-list-based inference variants, e.g., Hugging
Face Tokenizers®, tiktoken”, SentencePiece (BPE

*https://github.com/
huggingface/tokenizers/blob/
ee2c5708bdce9d6610fa74faeb22cf6297¢c6390a/
tokenizers/src/models/bpe/model.rs#
1L382C5-L468C1

Shttps://github.com/
openai/tiktoken/blob/
4560a8896f5fb1d35c6f8fdbeeec0399f%alal27ca/
src/lib.rs#L17-183

mode)®, and fastBPE’. The tokenizer first attempts
to match the pretoken with an element in the vocab-
ulary. If there are no exact matches, the tokenizer
then takes a list of merges from the merge list ap-
pearing in the pretoken, and subsequently applies
the merges to the pretoken as illustrated in Figure 1.
The primary motivation behind this scheme is to
emulate the same compression process at inference
time as in the training process so that the token
distribution seen by the models at inference time
is similar to the training distribution. In this paper,
we call the algorithm described above the merge-
based BPE encoding algorithm since it relies on
the merge list at test time.

An important aspect of merge lists is their nat-
ural hierarchical structure. For example, if the
bigram "an" is learnt at the first step of training,
and the token "ant" is learnt at the seventh step
by merging "an" and "t", then the token "ant" can
only be used after applying the merge "a n", and
so "ant" is a child of "an". This is a key property
of merge lists. We revisit this in our merge-list
perturbation based experiments — when we delete a
symbol from the merge list, we must also delete all
its children since they are no longer reachable dur-
ing the standard BPE encoding process. As noted
above, the merge lists provide a security risk which
can have severe consequences to model providers.
Our work shows that it is possible to encode text
by patching this vulnerability while maintaining
downstream performance. Moreover, our method
does not require retraining the language model on
the new tokenizer, and can be applied post-hoc to
any existing language model.

2.3 Non-targeted merge-list-free BPE
inference algorithms

Given a BPE vocabulary, we can encode a preto-
ken without relying on the merge list. We explore
two merge-list-free algorithms that focus on com-
pression and integrate cleanly into the LM infer-
ence pipeline. These likely behave well because
BPE training can be interpreted (Zouhar et al.,
2023) as implicitly prioritizing compression in a
greedy manner. We call them non-targeted be-

*https://github.com/
google/sentencepiece/blob/
273449044caa593c2fd7eb7550cb3ab2cff93fla/
src/bpe_model.cc#L38-L202

"https://github.com/
glample/fastBPE/blob/
036711f8fdc3265d64e8e123a0761lbel2c5a8e74/
fastBPE/fastBPE.hpp#L581-L630

35036

https://github.com/huggingface/tokenizers/blob/ee2c5708bdce9d6610fa74faeb22cf6297c6390a/tokenizers/src/models/bpe/model.rs#L382C5-L468C1
https://github.com/huggingface/tokenizers/blob/ee2c5708bdce9d6610fa74faeb22cf6297c6390a/tokenizers/src/models/bpe/model.rs#L382C5-L468C1
https://github.com/huggingface/tokenizers/blob/ee2c5708bdce9d6610fa74faeb22cf6297c6390a/tokenizers/src/models/bpe/model.rs#L382C5-L468C1
https://github.com/huggingface/tokenizers/blob/ee2c5708bdce9d6610fa74faeb22cf6297c6390a/tokenizers/src/models/bpe/model.rs#L382C5-L468C1
https://github.com/huggingface/tokenizers/blob/ee2c5708bdce9d6610fa74faeb22cf6297c6390a/tokenizers/src/models/bpe/model.rs#L382C5-L468C1
https://github.com/openai/tiktoken/blob/4560a8896f5fb1d35c6f8fd6eee0399f9a1a27ca/src/lib.rs#L17-L83
https://github.com/openai/tiktoken/blob/4560a8896f5fb1d35c6f8fd6eee0399f9a1a27ca/src/lib.rs#L17-L83
https://github.com/openai/tiktoken/blob/4560a8896f5fb1d35c6f8fd6eee0399f9a1a27ca/src/lib.rs#L17-L83
https://github.com/openai/tiktoken/blob/4560a8896f5fb1d35c6f8fd6eee0399f9a1a27ca/src/lib.rs#L17-L83
https://github.com/google/sentencepiece/blob/273449044caa593c2fd7eb7550cb3ab2cff93f1a/src/bpe_model.cc#L38-L202
https://github.com/google/sentencepiece/blob/273449044caa593c2fd7eb7550cb3ab2cff93f1a/src/bpe_model.cc#L38-L202
https://github.com/google/sentencepiece/blob/273449044caa593c2fd7eb7550cb3ab2cff93f1a/src/bpe_model.cc#L38-L202
https://github.com/google/sentencepiece/blob/273449044caa593c2fd7eb7550cb3ab2cff93f1a/src/bpe_model.cc#L38-L202
https://github.com/glample/fastBPE/blob/036711f8fdc3265d64e8e123a0761be12c5a8e74/fastBPE/fastBPE.hpp#L581-L630
https://github.com/glample/fastBPE/blob/036711f8fdc3265d64e8e123a0761be12c5a8e74/fastBPE/fastBPE.hpp#L581-L630
https://github.com/glample/fastBPE/blob/036711f8fdc3265d64e8e123a0761be12c5a8e74/fastBPE/fastBPE.hpp#L581-L630
https://github.com/glample/fastBPE/blob/036711f8fdc3265d64e8e123a0761be12c5a8e74/fastBPE/fastBPE.hpp#L581-L630

cause they do not manipulate the learned merge
list. In this paper, we call a merge-list-free encod-
ing algorithm performant if it achieves comparable
or better downstream performance as the standard
merge-based encoding algorithm.

2.3.1 Left-to-right greedy encoding

The left-to-right encoding algorithm is a simple
and efficient procedure for encoding a pretoken.
Given a pretoken, we look for the longest prefix
of the pretoken that is in the vocabulary, and we
output that prefix as a token. We then repeat this
process for the remaining suffix of the pretoken.
For example, given the pretoken "quantize" and the
vocabulary provided in 1, the left-to-right encoding
algorithm chooses the token "quanti" (as opposed
to "quant” or "qu") since it is the longest prefix in
the vocabulary. The suffix "ze" is then encoded
as "z" and "e" since the string "ze" is not in the
vocabulary.

This is a natural candidate for a performant
merge-list-free encoder. Since BPE learns tokens
greedily during training, it is plausible that left-to-
right encoding achieves a similar level of compres-
sion.

2.3.2 Maximal compression encoding

Prior work (Goldman et al., 2024a) has shown that
compression during LLM pretraining correlates
strongly with downstream performance. It is there-
fore natural to ask whether better compression at
inference time leads to better downstream perfor-
mance. To address this question, we consider the
maximal compression encoding algorithm. Given
a pretoken, we look for the combination of tokens
in the vocabulary which gives the highest compres-
sion of the pretoken.

For example, if we have the pretoken "quantize"
and the vocabulary provided in 1, the string "quan-
tize" is not an element in the vocabulary, so the
shortest encoding must contain at least two tokens.
From manual inspection, we see that "quant" and
"ize" are both in the vocabulary, so the maximal
compression encoding algorithm chooses this split.

A naive implementation has exponential time
complexity in the pretoken length, but dynamic
programming reduces this to quadratic time . In
practice, pretokens are short after pretokenization.

8See Appendix, Algorithm 1.

2.4 Other merge-list-free encoding algorithms

Although there are many other merge-free infer-
ence algorithms, many of them do not compress
the prompt as well as the ones discussed above.
The most trivial one is the character-based encod-
ing algorithm: this breaks the pretoken into char-
acters and outputs them as tokens. This encoding
method has the worst compression for a given piece
of prompt, and is thus the opposite of the maximal
compression encoding algorithm.

As described in the subsequent sections, we ob-
serve that the compression-oriented inference al-
gorithms, especially the left-to-right greedy encod-
ing algorithm, have comparable downstream per-
formance to the standard merge-based encoding
algorithm, while the character-based encoding al-
gorithm, although also merge-free, performs signif-
icantly worse.

3 Impact of Training-Inference Mismatch
on LM Performance

In this section, we describe our empirical findings
on the impact of different tokenization schemes
on downstream LM performance. We not only
compare the merge-free non-targeted compression-
based inference algorithms to the standard tokeniza-
tion algorithm described above, but we also investi-
gate other tokenization schemes that explicitly seek
to exploit and manipulate the vulnerabilities offered
by a publicly available merge-list. We perform ex-
tensive investigation on three diverse LM-based
tasks as described below. The central question we
aim to explore is the nature of the impact of the
mismatch between training and inference time tok-
enization procedures.

3.1 Experimental Setup

We evaluate an LLM on three diverse kinds of
tasks: multiple-choice QA tasks that require very
short form generation after encoding the question
prompt, a longer conditional generation task of ma-
chine translation that involves processing a prompt
with the source text and generating target text, and
a fully open-ended generation task that focuses on
completion based on context to be encoded. We
process the prompts with the different encoding
schemes, but generate with the full vocabulary. It
must be noted that the choice of tokenization infer-
ence does not affect generation with a BPE-based
tokenizer.

We choose to focus on the

35037

Qwen-2-7B-Instruct model (Yang et al,
2024) for our experiments. The choice of model is
motivated by the need for a model with a sizable
vocabulary size to experiment with different ranges
of corruptions) and a tokenizer which was trained
using the HF tokenizer (as opposed to tiktoken).
9 The Qwen-2 tokenizer has 151645 tokens in
its vocabulary, of which 255 are single character
tokens. Unless noted otherwise, the Qwen-2
tokenizer will be referred to as the "standard"
tokenizer (as opposed to the "custom" tokenizers
obtained by either using a different encoding
algorithm or by corrupting the merge list).

3.1.1 MCQA tasks

For the accuracy-based tasks, we evaluate the
model on two popular Q&A benchmarks: MMLU
(Hendrycks et al., 2021) and ARC-Easy/Challenge
(Clark et al., 2018).

3.1.2 Conditional Generation: Machine
Translation

We consider the effect of different tokenizations on
the semantic correctness of the generated text by
testing it on the task of machine translation. We
evaluate the performance of the model on WMT16
Czech—English and WMT15 German—English
test sets, and report COMET (Rei et al., 2020) as
our primary metric in the main paper. We rele-
gate BLEU (Papineni et al., 2002) and METEOR
(Banerjee and Lavie, 2005), along with xCOMET
and CometKiwi, to the Appendix for completeness.
BLEU is computed on detokenized outputs.

3.1.3 Open-ended Generation

We evaluated the open-ended generation capabil-
ities of the model by prompting it with abstracts
from scientific papers. The prompts were gener-
ated by extracting the first five sentences from the
full text in the "Semantic Scholar Open Research
Corpus" (Lo et al., 2020), a text corpus consisting
of research papers extracted from Semantic Scholar.
To ensure the quality and diversity of the prompts,
we took 5,899 examples from the corpus across
multiple academic fields. The text corpora was

These desiderata eliminates other popular models such
as OLMo-7B and Llama-3. The former uses the GPT-NeoX
tokenizer, which has 50k tokens in its vocabulary, and the
latter uses the tiktoken tokenizer.

The tiktoken tokenizer is a proprietary tokenizer developed
by OpenAl for their models. Their merge lists do not strictly
adhere to the requirements we described in the previous sec-
tion.

chosen due to the high concentration of domain-
specific pretokens which are likely to be sensitive
to tokenization.

We then measured how much the generated text
deviated from the original human-written distribu-
tion by measuring the MAUVE score (Pillutla et al.,
2023) between the two sets of texts.

3.2 Targeted Tokenization

As mentioned above, we measure the impact on
the downstream LM performance when the infer-
ence algorithms target to manipulate merge-list
obtained via tokenizer training. We deliberately
corrupt the merge list of the tokenizer and measure
the performance degradation. To understand the
sensitivity of LLM inference on the merge list, we
ran inference using tokenizations generated from
a corrupted merge list. The merge list gives a fine-
grained interface for controlling the encoding of
the model (as opposed to the choice of encoding
algorithms which are qualitatively different from
one another). These experiments can also help us
understand to what extent the manipulation of the
merge list (by for example, a malicious insider) can
be used to sabotage the generation capability of the
model. We corrupt the tokenizer in the following
ways:

Truncation: Since the merge lists are generated
in the order in which the merges are learned, we
consider the effect of removing the less common
merges (learned last during training) by deleting
the last N merges from the merge list.

Deletion: We also consider the effect of random
deletion of merges since the merges important for
downstream performance may not be concentrated
in a particular region within the merge list. For ran-
dom deletions, we first choose an initial set of dele-
tions (the "initial set") and delete all merges which
depend on these seeds (the "number of deletions").
To generate our random deletion tokenizers, we’ve
fixed a random seed, chose an increasing number
of initial deletions, and measured the performance
of the model for each of these settings. (This is
why the number of deletions is not a clean number
for all of our random deletion experiments.)
Merge Shuffle: We also consider a merge-based
tokenization where at runtime, we randomly shuf-
fle the merge list being applied to the pretoken. For
example, the standard encoding algorithm 1 may
tokenize the pretoken "quantize" by successively
applying the merges "an", "z e", "i ze", "t ize", and
"qu", in this order, resulting in the tokenization "qu

35038

an tize". The random shuffle encoding algorithm
may instead apply the merges "u a", "nt", "qua",
"nti", and "ze" (assuming all of these appear in the
merge list somewhere), resulting in the tokeniza-
tion "qua nti ze". Throughout our experiments, we
have a fixed random seed which determines how
the merge list is shuffled.

The random shuffle encoding results in a drasti-
cally different token distribution at inference time
compared to the standard encoding algorithm. This
provides a natural baseline where we expect the
generation capability of the model to be signifi-
cantly degraded.

Character Level: As described above, we also
consider the baseline of splitting pretokens into
individual characters.

Accuracy-based Tasks Machine Translation OEG.

Tokenizer ARC MMLU De—En Cz—En MAUVE
Standard 0.869 0.656 0.502 0.685 0.904
Merge shuffle 0.853 0.617 0.478 0.633 0.245
Character-level ~ 0.860 0.624 0479 0.520 0.399
Random deletion 0.860 0.628 0.483 0.531 0.170

Table 1: Evaluation results for merge-list-based corrup-
tion tokenizers on the accuracy-based tasks (ARC and
MMLU) and machine translation (COMET for WMT
De—En and Cz—En). The corrupted tokenizers do not
suffer as much for accuracy-based tasks compared to
longer generation tasks. The random deletion tokenizer
was obtained by randomly deleting 149 802 merges from
the standard tokenizer’s merge list. “OEG.” stands for
“Open-ended Generation.”

Observing the results in Table 1, we see that the
corruption doesn’t seem to affect the MCQA tasks
much but it shows significant degradation in MT
and open-ended generation under corruption. Al-
though the prompts in accuracy-based benchmarks
are long enough to have different tokenizations un-
der our scheme, the generation length is not long
enough to show substantial differences in perfor-
mance. The merge shuffle corruption consistently
performs at least as bad as, if not worse than, the
character-level corruption. This suggests that se-
vere corruption to the merge lists can essentially do
away any benefits of subword tokenization, and the
model may as well use a character-level tokeniza-
tion.

In Figure 2, we investigate the relationship be-
tween the effect on downstream performance and
severity of corruption. We observe that both se-
mantic and n-gram metrics are not too sensitive

to mild corruption on a per-example level. As the
corruption levels cross a threshold (merge shuffle,
char-level, aggressive deletion), the drop in per-
formance is noticeably significant. In fact, we’ve
observed that performance is quite stable even for
"medium-sized" deletions (107060 and 115604).
This seems to suggest that the model’s performance
relies primarily on "highly-trained" tokens which
are only destroyed for very aggressive corruptions.
It could also be the case that large portions of BPE
vocabulary are never used for practical purposes
indicating the existence of many undertrained to-
kens in the vocabulary. It is also interesting to note
that the decline for the random deletion tokenizer
is more steady in the machine translation task com-
pared to the accuracy-based tasks. This robustness
is likely due to the fact that the model is generating
longer text in the machine translation task.

Overall on manual inspection, the degradation
of generated output exhibits unnatural syntactic
choices (e.g., characters separated out by spaces)
which causes drops in BLEU and MAUVE.

3.3 Non-targeted Tokenization

As described above, we compare compression-
based merge-free algorithms against the standard
algorithm. These algorithms either greedily or ex-
actly maximize compression of the pretoken given
the BPE vocabulary.

Accuracy-based Tasks Machine Translation OEG.

Tokenizer ARC MMLU De—En Cz—En MAUVE
Standard 0.869 0.656 0.502 0.685 0.904
Maximal Compression 0.863 0.678 0.494 0.633 0.927
Left to right 0.903 0.705 0.495 0.633 0.985

Table 2: Evaluation results for merge-list-free tokeniz-
ers on the accuracy-based tasks (ARC and MMLU),
machine translation (COMET for WMT De—En and
Cz—En), and the open-ended generation task. The left-
to-right tokenizer maintains performance or even out-
performs the standard tokenizer on QA and OEG; small
degradations are observed on MT (see text). The max-
imal compression also largely maintains the standard
tokenizer’s performance. “OEG.” stands for “Open-
ended Generation.”

In Table 2, we observe that left-to-right and
maximal compression tokenization schemes main-
tain performance on accuracy-based QA and OEG,
with left-to-right even improving ARC/MMLU
and MAUVE. For machine translation, however,
COMET shows modest but consistent drops rela-
tive to the standard tokenizer: for De—En, 0.5017

35039

MT: METEOR and BLEU vs Number of Deletions

METEOR Score

1.44x10° 1.46x10° 1.48x10° 15x10°

Number of Deletions.

1.42 x 10°

ARC average

ACC: ARC and MMLU vs Number of Deletions

0.88 1

0.87 4

104
Number of Deletions

Figure 2: Performance of different random deletion tokenizers on the accuracy-based tasks (ARC and MMLU) and
the machine translation task. For both datasets, the performance degrades after around 70k deletions.

(standard) vs. 0.4953 (left-to-right) and 0.4944
(maximal); for Cz—En, 0.6853 (standard) vs.
0.6325/0.6328. These differences are potentially
meaningful, particularly for Cz—En. In Appendix
Table 6 and Table 5, BLEU and METEOR broadly
reflect the same directionality, though COMET ap-
pears more sensitive on Cz—En. This aligns with
COMET’s semantic focus, while BLEU/METEOR
capture n-gram surface deviations. Overall, these
results indicate that merge-list-free, compression-
based encoders are robust across tasks but can in-
duce small MT degradations, especially in morpho-
logically richer settings.

This is because when we measure how differ-
ently the prompts are encoded under various tok-
enization schemes compared to the standard tok-
enizer, we find that the merge-free tokenizers differ
in the encoding of every single prompt in the open-
ended generation task. Table 3 shows the average
edit distances between the merge-based standard
tokenizer encodings and encodings from the other
tokenizers. We observe that the left-to-right and
maximal compression encodings are less distant
than other corruption-based tokenizers. Though,
we also notice that they have higher perplexity
on the prompts than the standard merge-based
tokenizer. This indicates that the compression-
based approaches use potentially unconventional
and undertrained tokens, but these effects are over-
come by the model’s robustness to specific kinds
of typos and over-segmentations associated with
compression-based algorithms.

4 Characterizing Bad Tokenization

We analyze why different tokenizations lead to dif-
ferent downstream performance, complementing
the aggregate results in Section 3. We present quan-
titative indicators of sensitivity/robustness and qual-
itative patterns in tokenization differences.

4.1 Quantitative indicators of sensitivity and
robustness

Why do some tokenizations lead to better perfor-
mance than others? One hypothesis is the pres-
ence of undertrained tokens, i.e., vocabulary ele-
ments that occurred infrequently during pretraining.
Past work (Land and Bartolo, 2024) shows such to-
kens can cause undesirable behavior, e.g., failures
to follow instructions. Following (Land and Bar-
tolo, 2024), we use the minimum token-embedding
norm as a proxy for undertrainedness.'”

Prior work (Bigelow et al., 2024) also shows
that changing a single token can drastically alter
generations, suggesting even a small number of
undertrained tokens in a prompt may lead to poor
behavior. To study this, we examine “surprising”
cases where large tokenization deviations yield
small performance changes (robust) and where
small tokenization deviations yield large perfor-
mance changes (sensitive). For each generated se-
quence L, we compute

in || E(t 1
min | £(7)], m
where ||-|| is the norm and E(t) is the token

101f a token appears rarely during pretraining, its embedding
sees fewer updates and tends to remain closer to the origin.

35040

Tokenizer

Jaccard Levenshtein

Standard 0.000
Left to right 0.226
Maximal Comp. 0.196
Merge Shuffle 0.918
Character-level 0.925
Random Deletion 0.927
Truncation 0.889

Edit Perplexity

0.000 0.000 83.798
29.645 0.165 95.891
24740 0.139 155.751
692.000 0.959 131.400
796.987 0.964 58.212
800.719 0.966 92.734
455.775 0.884 97.202

Table 3: Perplexity scores and prompt metrics (Jaccard similarity, Levenshtein distance, edit distance) between
different tokenization approaches and standard tokenization.

Cluster Size

Min Norm

Robust Sensitive

Robust Sensitive

Random deletion 420
Character-level 430
Merge shuffle 415
Left to right 406
Maximal compression 397

157 2891.22 1609.89
115 2891.01 1606.73
128 2837.74 1539.82
64 274835 1626.64
60 2720.20 1597.86

Table 4: Cluster size and minimum token embedding norm computed over each cluster. We analyze the WMT15
de-en test set (2998 samples). Notice that a) the robust cluster tends to be larger for non-targeted tokenizers
compared to targeted tokenizers, and b) the norm for sensitive cluster is consistently smaller than robust cluster.

embedding. In Table 4, sensitive clusters are con-
sistently larger for targeted tokenizations than for
merge-list-free ones, indicating targeted schemes
more often induce small perturbations that cause
large performance deviations. Sensitive clusters
also exhibit smaller minimum norms than robust
clusters, consistent with a higher incidence of un-
dertrained tokens.

4.2 Qualitative patterns in tokenization
differences

We further examine token-level edit distance (Lev-
enshtein distance between token-ID sequences)
relative to the standard tokenizer for open-ended
generation. Figure 3 summarizes the distribu-
tions; merge-list-free (non-targeted) algorithms
produce smaller encoding differences than targeted
schemes.

Qualitatively, low-distance prompts cover di-
verse scientific domains and use simpler language;
high-distance prompts are often biomedical with
hyperspecific jargon and rare terms, consistent with
more rarely trained tokens. This aligns with the
quantitative evidence that sensitive cases are asso-

Left-to-right Max-comp

Frequency
°
2
°
2
°
2
°
&
°
&
°
2
°
4
°
2
°
&
°
&

Character Shuffle Deletion

1500 .
1250 1500

1000
1000 1000
750

500 500 .
250

o 0 ol
075 080 085 0% 095 100 08 085 09 095 100 075 080 085 03 095 100

Edit Distance

Figure 3: Distribution of token-level edit distance be-
tween standard and alternative tokenizers for open-
ended generation (S20RC subset; N noted in text). Top:
non-targeted merge-list-free schemes. Bottom: targeted
schemes. Lower is closer to standard.

ciated with smaller embedding norms.

5 Related Work

While we focus on BPE inference algorithms
that ameliorate security vulnerabilities associated
with merge-lists (Hayase et al., 2024), the non-

35041

deterministic property '! of tokenization algo-

rithms (Kudo and Richardson, 2018; Sennrich et al.,
2016; Mielke et al., 2021) in general—identified
in several prior works (Cao and Rimell, 2021;
Gastaldi et al., 2025)—forms the crux of our
motivation. The symbols in the vocabulary can
give rise to multiple possible segmentations for a
given word/pretoken, some of which may be non-
canonical. This is a useful perspective because it
opens the possibility for more sophisticated tok-
enization/inference algorithms with desirable prop-
erties. Several recent works have explored this
from the perspective of treating tokenization of a
character string as a latent variable and marginal-
izing over them to compute the "true" distribution
over character strings. For instance, (Geh et al.,
2025) proves that marginalizing over all tokeniza-
tions to find the "true" string probability is com-
putationally hard. Critically, they also provide the
surprising empirical result that even though non-
canonical tokenizations have negligible probability
mass, aggregating them improves performance on
downstream QA tasks. (Vieira et al., 2025a) pro-
vides an efficient beam-search algorithm to approx-
imate this marginalization, enabling the conver-
sion of token-level models into more principled
character-level ones. In contrast, (Vieira et al.,
2025b) argues that non-canonical tokenizations are
a probabilistic flaw. They propose inference meth-
ods and architectural changes to force the model to
only generate canonical sequences, thereby correct-
ing the probability distribution. Our paper differs
from the concurrent work in that we explored the
empirical effect of non-canonical tokenization for
the prompt inputs for downstream tasks (which are
not a priori obvious from the marginalization per-
spective above). Our work also explicitly identifies
tokenizations which performed well in downstream
tasks. This raises the question: what mechanisms
are at play behind transfer of training on canonical
tokenization to other alternative schemes? We hope
to explore this in future work.

While much work has studied the effect of
training different types of tokenizers/segmenters
and models based on those tokenizers (Goldman
et al., 2024b; Saleva and Lignos, 2023), we in-
stead focus on evaluating different BPE inference
schemes on pretrained tokenizers and models with
the standard BPE approach. While training mod-

See Section 2 for the use of the term “non-deterministic
tokenization.”

els (Provilkov et al., 2020) with different tokeniza-
tion schemes in general does not affect downstream
performance significantly, in our setting of train-
ing—inference mismatch we observe significant per-
formance degradation with certain algorithms.

Related to our work, (Uzan et al., 2024) also
study different BPE inference algorithms, but they
limit their analysis to intrinsic tokenization met-
rics like cognitive plausibility (Beinborn and Pin-
ter, 2023) and morphology (Bostrom and Durrett,
2020) and do not investigate their downstream im-
pact on model performance. Our finding that algo-
rithms like left-to-right and maximal compression
do not result in significant performance degrada-
tion despite encoding the prompts differently is
also related to recent findings that LLLMs have an
implicit lexicon of pretokens (Kaplan et al., 2025)
and are robust to typos (Cao et al., 2023).

6 Conclusion

In light of security vulnerabilities associated with
inference-time usage of the merge-list learned dur-
ing BPE training, we explored alternative merge-
free algorithms for BPE inference on pretrained
models. We found that although arbitrary and
targeted inference-time deviations from standard
BPE hurt downstream LM performance signifi-
cantly, surprisingly the non-targeted compression-
based merge-free algorithms maintained or even
improved it. This suggests potential overlap in
the implicit objectives of BPE training and these
merge-free algorithms paving way for more secure
tokenization schemes for language models.

7 Limitations

The primary limitation of our work is that while
we have articulated the need for merge-list-free
BPE inference algorithms and have provided em-
pirical evidence for two such inference algorithms
focusing on compression across a diverse set of LM
tasks, it is not clear that the algorithms investigated
are the optimal algorithms for merge-free infer-
ence that preserves performance across all domains
and languages. Relatedly, we only have empirical
support from our experiments and prior works for
concluding that left-to-right and maximal compres-
sion algorithms preserve performance—possibly
because the original BPE training procedure im-
plicitly greedily optimizes (Zouhar et al., 2023)
for compression and breaks ties in a left-to-right
manner for most languages. We do not have theo-

35042

retical support and guarantees for this conjecture,
and our findings might not hold for small amounts
of data in low-resource languages, especially with a
non-monotonic or a non-left-to-right writing order.
Finally, while our recommendation might eliminate
data inference and other security vulnerabilities di-
rectly related to merge-lists, they still would not
defend against other kinds of attacks based on to-
kenization such as those focusing on finding and
exploiting glitch tokens.

8 Ethical Considerations

While we recommend defending against vulnera-
bilities associated with merge lists during deploy-
ment by not using them, this would also result in
less transparency. It can be argued that publicly
available merge-lists possible allow data-mixture
inference and it might be desirable in certain cases
because of transparency and auditability reasons.
However, depending on the context, it can also be
argued that LMs should be protected from the se-
curity vulnerabilities posed by publicly available
merge-lists. We recognize that our recommenda-
tion applies for the latter contexts and doesn’t apply
in contexts that disproportionately prioritize trans-
parency.

References

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An Automatic Metric for MT Evaluation with Im-
proved Correlation with Human Judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65-72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

Lisa Beinborn and Yuval Pinter. 2023. Analyzing cogni-
tive plausibility of subword tokenization. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 4478-4486,
Singapore. Association for Computational Linguis-
tics.

Eric Bigelow, Ari Holtzman, Hidenori Tanaka, and
Tomer Ullman. 2024. Forking paths in neural text
generation. Preprint, arXiv:2412.07961.

Kaj Bostrom and Greg Durrett. 2020. Byte pair encod-
ing is suboptimal for language model pretraining. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 4617-4624, Online.
Association for Computational Linguistics.

Kris Cao and Laura Rimell. 2021. You should evalu-
ate your language model on marginal likelihood over

tokenisations. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 2104-2114, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Qi Cao, Takeshi Kojima, Yutaka Matsuo, and Yusuke
Iwasawa. 2023. Unnatural error correction: GPT-
4 can almost perfectly handle unnatural scrambled
text. In Proceedings of the 2023 Conference on Em-
pirical Methods in Natural Language Processing,
pages 8898-8913, Singapore. Association for Com-
putational Linguistics.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have Solved Question An-
swering? Try ARC, the AI2 Reasoning Challenge.
arXiv preprint. ArXiv:1803.05457 [cs] version: 1.

Philip Gage. 1994. A new algorithm for data compres-
sion. The C Users Journal archive.

Juan Luis Gastaldi, John Terilla, Luca Malagutti, Brian
DuSell, Tim Vieira, and Ryan Cotterell. 2025. The
foundations of tokenization: Statistical and compu-
tational concerns. In The Thirteenth International
Conference on Learning Representations.

Renato Lui Geh, Honghua Zhang, Kareem Ahmed, Ben-
jie Wang, and Guy Van den Broeck. 2025. Where
is the signal in tokenization space? Preprint,
arXiv:2408.08541.

Jonas Geiping, Alex Stein, Manli Shu, Khalid Saifullah,
Yuxin Wen, and Tom Goldstein. 2024. Coercing
Ilms to do and reveal (almost) anything. Preprint,
arXiv:2402.14020.

Omer Goldman, Avi Caciularu, Matan Eyal, Kris Cao,
Idan Szpektor, and Reut Tsarfaty. 2024a. Unpacking
Tokenization: Evaluating Text Compression and its
Correlation with Model Performance. arXiv preprint.
ArXiv:2403.06265 [cs].

Omer Goldman, Avi Caciularu, Matan Eyal, Kris Cao,
Idan Szpektor, and Reut Tsarfaty. 2024b. Unpack-
ing tokenization: Evaluating text compression and its
correlation with model performance. In Findings of
the Association for Computational Linguistics: ACL
2024, pages 2274-2286, Bangkok, Thailand. Associ-
ation for Computational Linguistics.

Jonathan Hayase, Alisa Liu, Yejin Choi, Sewoong Oh,
and Noah A Smith. 2024. Data Mixture Inference:
What do BPE Tokenizers Reveal about their Training
Data?

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring Massive Multitask Language Un-
derstanding. arXiv preprint. ArXiv:2009.03300 [cs].

Guy Kaplan, Matanel Oren, Yuval Reif, and Roy
Schwartz. 2025. From tokens to words: On the inner
lexicon of LLMs. In The Thirteenth International
Conference on Learning Representations.

35043

https://aclanthology.org/W05-0909/
https://aclanthology.org/W05-0909/
https://aclanthology.org/W05-0909/
https://doi.org/10.18653/v1/2023.emnlp-main.272
https://doi.org/10.18653/v1/2023.emnlp-main.272
https://arxiv.org/abs/2412.07961
https://arxiv.org/abs/2412.07961
https://doi.org/10.18653/v1/2020.findings-emnlp.414
https://doi.org/10.18653/v1/2020.findings-emnlp.414
https://doi.org/10.18653/v1/2021.emnlp-main.161
https://doi.org/10.18653/v1/2021.emnlp-main.161
https://doi.org/10.18653/v1/2021.emnlp-main.161
https://doi.org/10.18653/v1/2023.emnlp-main.550
https://doi.org/10.18653/v1/2023.emnlp-main.550
https://doi.org/10.18653/v1/2023.emnlp-main.550
https://doi.org/10.48550/arXiv.1803.05457
https://doi.org/10.48550/arXiv.1803.05457
https://www.semanticscholar.org/paper/A-new-algorithm-for-data-compression-Gage/1aa9c0045f1fe8c79cce03c7c14ef4b4643a21f8
https://www.semanticscholar.org/paper/A-new-algorithm-for-data-compression-Gage/1aa9c0045f1fe8c79cce03c7c14ef4b4643a21f8
https://openreview.net/forum?id=B5iOSxM2I0
https://openreview.net/forum?id=B5iOSxM2I0
https://openreview.net/forum?id=B5iOSxM2I0
https://arxiv.org/abs/2408.08541
https://arxiv.org/abs/2408.08541
https://arxiv.org/abs/2402.14020
https://arxiv.org/abs/2402.14020
http://arxiv.org/abs/2403.06265
http://arxiv.org/abs/2403.06265
http://arxiv.org/abs/2403.06265
https://doi.org/10.18653/v1/2024.findings-acl.134
https://doi.org/10.18653/v1/2024.findings-acl.134
https://doi.org/10.18653/v1/2024.findings-acl.134
https://doi.org/10.48550/arXiv.2009.03300
https://doi.org/10.48550/arXiv.2009.03300
https://openreview.net/forum?id=328vch6tRs
https://openreview.net/forum?id=328vch6tRs

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for Neural Text Processing.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66—71, Brussels, Belgium.
Association for Computational Linguistics.

Sander Land and Max Bartolo. 2024. Fishing for
magikarp: Automatically detecting under-trained
tokens in large language models. Preprint,
arXiv:2405.05417.

Kyle Lo, Lucy Lu Wang, Mark Neumann, Rodney Kin-
ney, and Daniel Weld. 2020. S20RC: The Semantic
Scholar Open Research Corpus. In Proceedings of
the 58th Annual Meeting of the Association for Com-
putational Linguistics, pages 4969—4983, Online. As-
sociation for Computational Linguistics.

Sabrina J. Mielke, Zaid Alyafeai, Elizabeth Salesky,
Colin Raffel, Manan Dey, Matthias Gallé, Arun Raja,
Chenglei Si, Wilson Y. Lee, Benoit Sagot, and Sam-
son Tan. 2021. Between words and characters: A
Brief History of Open-Vocabulary Modeling and To-
kenization in NLP. arXiv preprint. 2.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a Method for Automatic Eval-
uation of Machine Translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Krishna Pillutla, Lang Liu, John Thickstun, Sean
Welleck, Swabha Swayamdipta, Rowan Zellers, Se-
woong Oh, Yejin Choi, and Zaid Harchaoui. 2023.
MAUVE Scores for Generative Models: Theory and
Practice. arXiv preprint. ArXiv:2212.14578 [cs].

Ivan Provilkov, Dmitrii Emelianenko, and Elena Voita.
2020. BPE-dropout: Simple and effective subword
regularization. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1882—1892, Online. Association for
Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. Language Models
are Unsupervised Multitask Learners.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A Neural Framework for MT
Evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685-2702, Online. Association
for Computational Linguistics.

Jonne Saleva and Constantine Lignos. 2023. What
changes when you randomly choose BPE merge op-
erations? not much. In Proceedings of the Fourth
Workshop on Insights from Negative Results in NLP,
pages 59-66, Dubrovnik, Croatia. Association for
Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715-1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Omri Uzan, Craig W. Schmidt, Chris Tanner, and Yuval
Pinter. 2024. Greed is All You Need: An Evalua-
tion of Tokenizer Inference Methods. arXiv preprint.
ArXiv:2403.01289 [cs].

Tim Vieira, Ben LeBrun, Mario Giulianelli, Juan Luis
Gastaldi, Brian DuSell, John Terilla, Timothy J.
O’Donnell, and Ryan Cotterell. 2025a. From lan-
guage models over tokens to language models over
characters. Preprint, arXiv:2412.03719.

Tim Vieira, Tianyu Liu, Clemente Pasti, Yahya Emara,
Brian DuSell, Benjamin LeBrun, Mario Giulianelli,
Juan Luis Gastaldi, Timothy J. O’Donnell, and Ryan
Cotterell. 2025b. Language models over canonical
byte-pair encodings. Preprint, arXiv:2506.07956.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Ke-
gin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni,
Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize
Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan,
Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge,
Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren,
Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing
Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan,
Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang,
Zhifang Guo, and Zhihao Fan. 2024. Qwen2 techni-
cal report. Preprint, arXiv:2407.10671.

Vilém Zouhar, Clara Meister, Juan Gastaldi, Li Du, Tim
Vieira, Mrinmaya Sachan, and Ryan Cotterell. 2023.
A formal perspective on byte-pair encoding. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2023, pages 598-614, Toronto, Canada.
Association for Computational Linguistics.

A Appendix

35044

https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://arxiv.org/abs/2405.05417
https://arxiv.org/abs/2405.05417
https://arxiv.org/abs/2405.05417
https://doi.org/10.18653/v1/2020.acl-main.447
https://doi.org/10.18653/v1/2020.acl-main.447
https://doi.org/10.48550/arXiv.2112.10508
https://doi.org/10.48550/arXiv.2112.10508
https://doi.org/10.48550/arXiv.2112.10508
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.48550/arXiv.2212.14578
https://doi.org/10.48550/arXiv.2212.14578
https://doi.org/10.18653/v1/2020.acl-main.170
https://doi.org/10.18653/v1/2020.acl-main.170
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2023.insights-1.7
https://doi.org/10.18653/v1/2023.insights-1.7
https://doi.org/10.18653/v1/2023.insights-1.7
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.48550/arXiv.2403.01289
https://doi.org/10.48550/arXiv.2403.01289
https://arxiv.org/abs/2412.03719
https://arxiv.org/abs/2412.03719
https://arxiv.org/abs/2412.03719
https://arxiv.org/abs/2506.07956
https://arxiv.org/abs/2506.07956
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://doi.org/10.18653/v1/2023.findings-acl.38

Algorithm 1 Dynamic programming for maximal-compression BPE encoding. Given an input string
s and a BPE vocabulary represented as a prefix trie rooted at root, this procedure finds the shortest
sequence of token IDs whose concatenation exactly matches s. We maintain a one-dimensional array
dp [0. .n] where dp[i] holds the best encoding (minimal number of tokens) for the prefix s[0..i — 1]. At
each position ¢, we traverse the trie from the root to extend all valid tokens starting at 7, updating dp[j+1]
whenever we discover a shorter encoding ending at j. Time complexity O(n?), space complexity O(n).

1: procedure MAXCOMPBPEENCODE(s, root)

2 n <« |s|

3 dp « [Nonejo..n

X dplo] « [

S: fori <~ Oton — 1do

6: if dp[i] # None then

7: node ¢ root

8 for j < iton — 1do

9: if s[j] ¢ node.children then

10: break

11: node < node.children[s[j]]

12: if node.token_id is defined then

13: candidate < dpl[é] || node.token_id
14: if (dp[j + 1] = None) V |candidate| < |dp[j + 1]| then
15: dp[j + 1] + candidate

16: return dp|n]

Tokenizer COMET xCOMET CometKiwi
Standard 0.501667554 0.5854197109 0.3723556075
Maximal Compression 0.4944257367 0.5497664318 0.3476544334
Left to right 0.4953334777 0.5668370956 0.3942931857
Merge Shuffle 0.4775965853 0.4836160445 0.2200489447
Character-level 0.479254821 0.5089406749 0.2534056265
Random Deletion 0.482456316 0.5226766439 0.2672921025

Table 5: German-to-English machine translation results (COMET primary; xCOMET, CometKiwi in Appendix for
completeness).

Tokenizer COMET xCOMET CometKiwi BLEU METEOR
Standard 0.6852737008 0.5452000509 0.3664651487 18.3668 0.4682134426
Maximal Compression 0.6327833553 0.454005471 0.2956552479 12.9995 0.4124162695
Left to right 0.632486759 0.4565238956 0.297760896 12.8238 0.4125467474
Merge Shuffle 0.632486759 0.2627696861 0.1404431969 3.4871 0.2103303214
Character-level 0.5194693237 0.2788883335 0.1708871849 5.2251 0.2400589537
Random deletion 0.5312855418 0.288390215 0.1817652996 5.317 0.2511355355

Table 6: Czech-to-English machine translation results. BLEU is computed on detokenized outputs.

35045

Left to right Merge Shuffle Truncation (Del. Seed = 151267, Start Index =
800

600 -
600 -

Frequency

Frequency
2
S
o 51
Frequency
&
S
S 3

200 200 4

0.0 02 . 0.6 0.8 0.80 0.85 0.90 0.95 1.00 0.80 0.85 0.90
Metric value Metric value Metric value
Truncation (Del. Seed = 150867, Start Index = 500) Random Deletion (Seed = 41500) Character-level
1000 - 6004
600 1
800 4 500 4
> z g a00
g 600 - § %00 g
& E S 300 4
£ 4004 K3 K3
200 4 200 4
200 4 100 4
0 0 04
070 075 080 085 090 095 0.85 0.90 0.95 0.85 0.90 0.95
Metric value Metric value Metric value
Truncation (Del. Seed = 151347, Start Index = 20) Random Deletion (Seed = 41000) Maximal Compression
600 4
500 4 6004
7 400 [oy
H 5
% 300 4 % %
£ 500 = &
200 4
100

0
0.825 0.850 0.875 0.900 0.925 0.950 0.975 0.85 0.90 0.95 0.2 0.4 0.6 0.8
Metric value Metric value Metric value

Figure 4: Jaccard distance between the tokenization of the Semantic Scholar prompts obtained from the standard
tokenizer and custom tokenizers.

Left to right Merge Shuffle Truncation (Del. Seed = 151267, Start Index =
3000 - 1200 - 1000 -
25004 1000 4 800 4
= > >
T’ 2000 g 800 g
§ 5 5 6004
% 1500 4 % 600 o %
ic & 400
1000 4 400
500 - 200 | 200
0- T T T T T r 0 0
0 100 200 300 400 500 600 500 1000 1500 2000 200 400 600 800 1000 1200
Metric value Metric value Metric value
Truncation (Del. Seed = 150867, Start Index = 500) Random Deletion (Seed = 41500) Character-level
1200 1000 4
1500 4]
1000 500 4
> > >
z 2 800]
€ 1000 4 g g 6004
& g ©001 g
i L. & 400 A
500
200 4 200
o o0

250 500 750 1000 1250 1500 500 1000 1500 2000 500 1000 1500 2000
Metric value Metric value Metric value
Truncation (Del. Seed = 151347, Start Index = 20) Random Deletion (Seed = 41000) Maximal Compression
1200 - 1500 4
1000 1250 4
> > >
: 2 8007 2 1000
g E El
= = 600 g 750
T & T
400 - 500 A
200 4 250 4
0- 0-
250 500 750 1000 1250 1500 500 1000 1500 2000 0 50 100 150
Metric value Metric value Metric value

Figure 5: Levenshtein distance between the tokenization of the Semantic Scholar prompts obtained from the standard
tokenizer and custom tokenizers.

35046

Left to right Merge Shuffle Truncation (Del. Seed = 151267, Start Index =

1200 1200
1500 1000
1000 4
> > >
) 3 T 8004
g 800 § 1000 1 5
600
£ g g
400 4 500 4 400
200 200
0- o0 0
0.0 0.2 0.4 0.6 0.8 080 085 090 095 100 0.7 0.8 0.9
Metric value Metric value Metric value
Truncation (Del. Seed = 150867, Start Index = 500) Random Deletion (Seed = 41500) Character-level
1200
1000 4 1500
1500 o
1250
z %7 z % 1000 |
§ 5004 g 1000 1 g
g g gz 750
400+ = =
500 500
200 250
0- 0- 04
0.6 0.7 0.8 0.9 1.0 075 080 085 090 095 100 075 080 085 090 095 100
Metric value Metric value Metric value
Truncation (Del. Seed = 151347, Start Index = 20) Random Deletion (Seed = 41000) Maximal Compression
800 1500 4 1200
1000
>, 600 . .
e € 1000 4 2 8001
EU @ o
& 400 4 B 2 600
£ £ 3
500 400 4
200
200
0- o0
o. 0.85 0.90 075 080 085 090 095 100 0.0 0.2 0.4 0.6 0.8
Metric value Metric value Metric value

Figure 6: Token-level Levenshtein edit distance between the tokenization of S20RC prompts obtained from the
standard tokenizer and alternative tokenizers (open-ended generation subset). Lower is closer to standard.

35047

