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Abstract

With new large language models (LLMs)
emerging frequently, it is important to con-
sider the potential value of model-agnostic
approaches that can provide interpretability
across a variety of architectures. While re-
cent advances in LLM interpretability show
promise, many rely on complex, model-specific
methods with high computational costs. To
address these limitations, we propose Nor-
mXLogit, a novel technique for assessing the
significance of individual input tokens. This
method operates based on the input and out-
put representations associated with each token.
First, we demonstrate that the norm of word
embeddings can be utilized as a measure of
token importance. Second, we reveal a signifi-
cant relationship between a token’s importance
and how predictive its representation is of the
model’s final output. Extensive analyses in-
dicate that our approach outperforms existing
gradient-based methods in terms of faithfulness
and offers competitive performance compared
to leading architecture-specific techniques.

1 Introduction

Transformer-based models have gained widespread
adoption across various natural language process-
ing (NLP) tasks, demonstrating their versatility.
However, the underlying mechanisms of these mod-
els are not quite understood. This means when the
model fails and generates inaccurate or harmful
content, we are unable to diagnose the source and
improve the model’s behavior. Consequently, a
multitude of endeavors in recent years aimed at
enhancing the interpretability of these models.
Architecture-agnostic methods, such as
perturbation-based and gradient-based techniques,
are widely used to identify influential input tokens
that impact a model’s predictions. However, these
approaches face significant challenges, including
the generation of out-of-distribution inputs and
vulnerability to adversarial exploitation (Wang
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Figure 1: (a) Importance scores of NormXLogit for
the sentiment analysis task. NormXLogit generates
attributions per-label with signed scores denoting pos-
itive/negative impact. (b) Applying the head-on-top
(HoT) on each of the final representations to obtain a
prediction based on each token.

et al., 2020). Additionally, they often come with
high computational costs, limiting their scalability.
For instance, advanced gradient-based methods
like Integrated Gradients (Sundararajan et al.,
2017) involve repeated forward and backward
passes, leading to substantial overhead.

By leveraging the internal components of the tar-
get model, a new class of architecture-specific ap-
proaches, termed vector-based methods, has been
developed (Kobayashi et al., 2021; Ferrando et al.,
2022). Most of these approaches offer per-layer
explanations, which are subsequently aggregated
using the rollout technique (Abnar and Zuidema,
2020) to achieve a global interpretation that inte-
grates all layers of the model. However, rollout can
result in inaccurate outcomes due to the vanishing
attribution problem (Mehri et al., 2024). Despite
recent advances in faithfulness, a key drawback of
vector-based methods is their architecture-specific
design, which limits their adaptability to the rapidly
evolving landscape of LLMs. Furthermore, almost
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all of these methods ignore the head-on-top' which
is crucial to produce task-dependent explanations.

In response to these limitations, this paper
presents NormXLogit, a simple yet powerful, com-
putationally efficient, and architecture-agnostic?
approach that outperforms many sophisticated tech-
niques and can be easily applied to any NLP task.
NormXLogit eliminates the need for any backward
passes, utilizing the pre-trained model only once. It
leverages the informativeness of the norm of input
embeddings, in conjunction with the rich semantic
and syntactic information encoded in the model’s
final-layer representations. The latter enables the
incorporation of all internal components, thereby
removing the need for any aggregation method,
such as rollout. We incorporate the head-on-top of
pre-trained models into our analysis, which serves
as a task-specific interpreter of token attributions?,
tailoring its attention to the nuances of the task.
This helps NormXLogit to generate per-label attri-
butions with positive and negative impacts of each
input token (cf. Figure 1(a)).

Based on comprehensive experiments across
multiple tasks and models, we show that in nu-
merous instances, the faithfulness of NormXLogit
surpasses that of widely recognized gradient-based
approaches. In the regression setup, it demon-
strates superior performance compared to a state-
of-the-art architecture-specific baseline. Further-
more, through a targeted experiment on the BLiMP
corpus (Warstadt et al., 2020), we evaluate the
alignment between NormXLogit’s attributions and
known linguistic evidence across diverse grammat-
ical phenomena. Our results demonstrate that Nor-
mXLogit consistently yields more faithful and plau-
sible explanations than existing approaches, high-
lighting its effectiveness as a general-purpose token
attribution method.

2 Related Work

In recent years, vector-based analyses have
emerged as an architecture-specific approach to
Transformer interpretability. These methods build
on findings that attention weights can be mislead-
ing (Jain and Wallace, 2019; Serrano and Smith,
2019). Kobayashi et al. (2021) extended analy-

"By ‘head-on-top’, we are referring to the classification or
regression head used on top of the pre-trained models.

By using the term "architecture-agnostic," we aim to dif-
ferentiate our approach from vector-based methods, ensuring
generalization across different Transformer-based models.

3We use “attribution’ and ‘importance’ interchangeably.

sis beyond attention weights by decomposing the
entire attention block. To aggregate per-layer at-
tributions into global ones, Abnar and Zuidema
(2020) proposed attention rollout to quantify the
flow of information through self-attention.

GlobEnc (Modarressi et al., 2022) and ALTI
(Ferrando et al., 2022) advanced previous work
by further incorporating other Transformer com-
ponents. ALTI challenged the use of £? norms for
measuring contributions, proposing the Manhattan
distance for improved results. GlobEnc added the
second residual connection and layer normalization
into the analysis but overlooked the impact of the
feed-forward network. To address this, DecompX
(Modarressi et al., 2023) captured the influence
of the feed-forward network by approximately de-
composing the activation function and propagating
decomposed vectors across layers, eliminating re-
liance on aggregation methods like rollout.

Perturbation-based methods, such as SHAP
(Lundberg and Lee, 2017) and LIME (Ribeiro et al.,
2016), investigate the causal link between input fea-
tures and the model’s final prediction by perturbing
or erasing parts of the input. Recently, Mohebbi
et al. (2023) proposed Value Zeroing which is based
on the Explaining-by-Removing intuition (Covert
etal., 2022), in order to quantify the context mixing.
Their approach, in contrast to other perturbation-
based methods, does not remove the input token
representations. Value Zeroing instead suggests
zeroing the value vector of each token to measure
its contribution.

Gradient-based methods involve analyzing the
gradients of the model’s output with respect to
the input features to understand their impact on
the model’s decision-making process. Methods
such as Gradient Norm (Simonyan et al., 2014),
Gradient xInput (Kindermans et al., 2016), and In-
tegrated Gradients (Sundararajan et al., 2017) are
the most prominent ones in this category.

3 Proposed Approach

3.1 Background: Transformer Architecture

The Transformer architecture consists of multi-
ple identical layers, each with a multi-head self-
attention (MHA) block and a position-wise fully
connected feed-forward network (FFN), where
both are followed by a residual connection (RES)
and layer normalization (LN).

The MHA component is responsible for creat-
ing contextualized representations for the input el-
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ements. The output representation of MHA for
token xz; and head A in [-th layer is then calculated
as the weighted sum of transformed input represen-
tations:

n
-1 ® ® 1 ®
=) (D
j=1
where aﬁ ng represents the attention weight of token

¢ with respect to token j in the h-th head of the
MHA of the [-th layer.

Kobayashi et al. (2021) demonstrated that the
output representation of each token produced by
the attention block can be explained via two effects:
(1) “preserving” its original input using the RES and
the contribution of the token itself through context
mixing of MHA, and (ii) “mixing” the representa-
tions in the context (except the target token). They
showed that the preserving effect is predominant,
primarily due to the higher contribution of RES to
the output representation.

3.2 Norm of Word Embedding

Oyama et al. (2023) demonstrated that the norm of
input embeddings encodes information gain. They
showed that tokens with higher ¢? norm carry more
information, effectively capturing the least frequent
words in the text. Additionally, based on the Eq.
1, the MHA could be interpreted as the weighted
sum of transformed vectors. In other words, the
final representation of each token is built by mix-
ing the representations of all tokens in the input
sequence. Consequently, tokens with higher norms
are expected to contribute more to the final repre-
sentation of the target token. Higher contribution
suggests greater importance, allowing us to utilize
the #? norm of word embeddings to identify crucial
tokens influencing the model’s decision.

3.3 LogAt: Logit Attribution

The tasks in the domain of NLP can be broadly
divided into two main categories: classification
tasks and regression tasks. For both of these setups,
we utilize a special token (often known as [CLSIY),
which is embedded in almost all pre-trained models.
This token serves as a single vector representing the
entire input sequence, which is then fed into head-
on-top, an FFN placed on top of the pre-trained
model to produce the output prediction.

*The name of this special token may vary depending on
the model. Also, in auto-regressive models, the last token in
the input is typically used for classification.

The intuition behind the attention mechanism
implies that more important tokens have a greater
contribution to building the final representation of
the [CLS] token. In other words, an identical [CLS]
embedding is fed into the model for all input se-
quences, and based on the fine-tuning objective,
the attention block attempts to utilize the most
relevant (i.e., important) tokens to construct the
new representation of [CLS]. This suggests that
the [CLS] token has a higher degree of similarity
to the most important input tokens in the model’s
decision-making process. To identify the tokens
that are most similar to [CLS], we use the head-on-
top to evaluate how each individual token in the
input contributes to predicting the target task. In
the following, we describe the approach for each
setup.

Classification. In a classification setup, the out-
put of the head-on-top for each sample is a vector of
length equal to the number of labels (i.e., classes).
The values in this output vector are referred to as
logits, which are further processed using the soft-
max function to obtain probabilities over the output
labels. The model’s final prediction is the label as-
sociated with the highest logit value. To determine
the most important input tokens for a model with
L layers, we apply the head-on-top to each one
of the output representations at layer L, as illus-
trated in Figure 1(b). Next, we extract the logits
corresponding to the predicted class, which is al-
ready determined by applying the head-on-top to
the [CLS] token. The logit value associated with
each token represents its attribution, and tokens
with the highest logits are regarded as the most
important for the classification task. We call this
method Logit Attribution (LogAt). To calculate
the attribution (Attyoga¢) Of the token 7 for a task
with C' classes and a classification head HoT¢j,s(+)
€ RY, we have:

AttLogAt(«'Ui) = HOTclas (-%L)[ﬁ}v (2)

where z7 is the final representation of the i-th token
in a model with L layers, and p € {0,1,...,C' — 1}
denotes the index of the predicted class. By chang-
ing the index of p to other class labels in the task,
we can identify the important tokens relative to
those classes as well, leading to a per-label attribu-
tion technique.

Due to the dominance of the “preserving” effect
in the attention block, the contextualized represen-
tations in the last layer still retain the identity of
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the original input tokens. As a result, the logits
can be seen as a direct reflection of each token’s
contribution. The use of the head-on-top provides
task-specific explanations, allowing us to semanti-
cally identify the tokens that are most critical for
the target task. Furthermore, the sign of the logits
provides insight into the direction of the contribu-
tions, indicating whether each label is positively or
negatively influenced, specifically with respect to
the model’s predicted label.

To interpret the choice of token in various lan-
guage modeling objectives, we categorize them as
classification tasks, where the number of labels cor-
responds to the vocabulary size. In language mod-
eling, the goal is to predict the correct word given
the context, which yields a probability distribution
over the vocabulary for generating each individual
word. In this setup, we utilize the masked language
modeling head as the head-on-top to identify the to-
kens that contribute most to predicting the [Mask]
token.

Regression. For the regression setup, the ap-
proach typically involves generating a single value
in the output rather than a vector of probabilities.
So, instead of taking the largest logit corresponding
to the prediction label, we take the absolute dis-
tance of the output for each token from the model’s
prediction. For the attribution of i-th token in a
regression task, we have:

Attyopa(7;) = [HoTyeg (zF) — HoTreg([CLSTH)]

3)
where HoTy, () € R denotes the regression head,
z¥ is the final representation of the i-th token in
a model with L layers, and [CLS]” is the final
representation of the [CLS] token.

3.4 NormXLogit

Although LogAt provides valuable explanations of
the model’s decision-making process, our experi-
ments show that considering the informativeness of
the norm of word embeddings can yield more faith-
ful results. Therefore, we introduce NormXLogit,
an architecture-agnostic interpretation method that
can be applied to any task and domain. The attri-
bution of token ¢ using NormXLogit is obtained
as:

AttNormXLogit(xi) = HJ}?H2 X AttLogAt(xi)a 4)

where the ||2?|],, is the £ norm of the input word
embedding for the i-th token, and Atty oea¢(-) is the
LogAt attribution according to the task setup.

4 Experiment 1: Faithfulness Analysis

To analyze the faithfulness of NormXLogit, we
begin with a set of experiments on classic classifi-
cation and regression tasks. Our goal is to evaluate
whether the tokens identified as important are truly
aligned with the model’s internal reasoning.

4.1 Experimental Setup

Data. In the classification setup, we will use
SST-2 (Socher et al., 2013) for sentiment analysis,
MultiNLI (Williams et al., 2018) for recognizing
textual entailment, and QNLI for question answer-
ing (Wang et al., 2018). SST-2 contains movie
review sentences labeled as positive or negative,
while MultiNLI includes sentence pairs labeled as
entailment, contradiction, or neutral. QNLI con-
sists of question—sentence pairs labeled for entail-
ment. STS-B (Cer et al., 2017) is used for semantic
similarity as a regression task, with scores from 0
(no similarity) to 5 (semantic equivalence).

Models. Our target models in this section involve
three prominent models: LLAMA 2 (Touvron et al.,
2023), DeBERTa (He et al., 2023), and BERT (De-
vlin et al., 2019).> We use the fine-tuned version
of each model for the corresponding task. To fine-
tune LLAMA 2 and perform inference, we employ
the LoRA (Hu et al., 2021) technique with a rank
of 4 from the PEFT library®.

Input Attribution Methods. To analyze the per-
formance of our proposed method, we compare
NormXLogit with three well-known gradient-based
input attribution methods: Gradient Norm (Grad.
Norm), Gradient x Input (GxI), and Integrated Gra-
dients (IG), using the ¢! norm for aggregation. No-
tably, we focus on gradient-based methods over
perturbation-based approaches due to their more
faithful results. To account for vector-based ap-
proaches, we adopt DecompX as the current state-
of-the-art method among them. However, this fam-
ily of methods is primarily developed for BERT-
like architectures and may not be applicable to all
models. In addition, we consider a random base-
line where tokens are ranked randomly from most
important to least important.

SWe employ the 7 billion parameter variant of LLAMA 2,
the uncased BERTy,se model, and DeBERTaV 3y, all from
HuggingFace’s Transformers library (Wolf et al., 2020).

®https://github.com/huggingface/peft
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4.2 Evaluation Metrics

To assess the faithfulness of the aforementioned
methods, we adopt two complementary criteria:
comprehensiveness and sufficiency (DeYoung
et al., 2020). Both measure how the model’s be-
havior changes when input tokens identified as im-
portant are perturbed. Each criterion is evaluated
through two metrics: (i) Confidence Drop, which
quantifies how the model’s probability for the pre-
dicted class changes, and (ii) Accuracy, which eval-
uates how overall task performance is affected. For
classification tasks, we report both metrics, while
regression tasks use only Accuracy due to the ab-
sence of discrete class probabilities.

4.2.1 Comprehensiveness

Comprehensiveness evaluates model performance
when different proportions (e.g., 10%, 20%, ...)
of the most important input tokens are perturbed,
reflecting the necessity of these tokens for the
model’s prediction. For the masked language mod-
eling objectives, masking is used for token pertur-
bations, while for auto-regressive models, deletions
are employed due to the absence of a [MASK] token.
We quantify comprehensiveness using two metrics:
Confidence Drop and Accuracy.

Confidence Drop: This metric measures how
much the model’s confidence in its predicted la-
bel decreases when the most important tokens are
removed. For a given input sequence X, the per-
turbed sequence X;\ K is generated by applying
the perturbation on K% of the most important to-
kens. Then, for all of the instances in the dataset,
the average Confidence Drop is defined as:

— f(XA\K)],
(5)

where m is the number of instances, and f;;(X)
is the model’s output probability for label 3. For
comprehensiveness, a higher confidence drop indi-
cates better attribution performance, as the model’s
prediction is more strongly affected by the removal
of important tokens.

1 m
C (K%)= — g
ompcp (K %) m

Accuracy: This metric works by calculating the
model’s accuracy on the target dataset, where for
each instance the top K % most important tokens
are perturbed. For regression tasks, we utilize the
Pearson correlation coefficient as the Accuracy met-
ric. For classification tasks, we report standard ac-
curacy (i.e., the percentage of correctly predicted

labels) on the perturbed inputs. Formally,

Comp o (K%) = ACC(D\K)7 (6)
where D\K = {(X;\K,y;)}, is the perturbed
dataset. Here, lower values indicate higher faith-
fulness, as perturbing key tokens is expected to
decrease task accuracy.

4.2.2 Sufficiency

Sufficiency evaluates whether the highlighted to-
kens alone are adequate to preserve the model’s
prediction. Unlike comprehensiveness, which per-
turbs important tokens, sufficiency masks or re-
moves all unimportant tokens, retaining only the
top K% identified as most important. We again
evaluate sufficiency through both Confidence Drop
and Accuracy.

Confidence Drop: This variant measures the de-
crease in confidence when the input is reduced to
only the important tokens:

m

Suffen(K%) = - 3" [ f5(X) — ;X )], )

i=1

where X/¢ denotes the sequence containing only
the top K% tokens. Here, lower values are better,
since keeping only the important tokens should
ideally preserve the model’s confidence.

Accuracy: Similarly, task performance can be
measured on inputs restricted to the important to-
kens:

Suffacc(K%) = Acc(DX). 8)

For sufficiency, a higher accuracy indicates better
attribution performance.

4.3 Results

4.3.1 Comprehensiveness

Figure 2 illustrates the superior performance of
NormXLogit in LLAMA 2 fine-tuned on SST-
2. NormXLogit achieves a higher Confidence
Drop for the comprehensiveness criterion across all
thresholds, indicating its effectiveness in identify-
ing crucial tokens for the model’s decision-making
process. It should be noted that DecompX, due to
its architecture-specific nature, may not be applica-
ble to LLAMA 2. Additionally, even if it were, the
computational cost of DecompX may not be easily
manageable given the size of LLAMA 2 on many
accessible hardware configurations.
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Figure 2: Comprehensiveness Confidence Drop of dif-

ferent attribution methods for LLAMA 2 fine-tuned on
SST-2 (higher values are better).
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Figure 3: Comprehensiveness Accuracy of different at-
tribution methods for BERT fine-tuned on STS-B (lower
values are better).

SST-2 (CompcpT)

MNLI (Compcp 1)

QNLI (Compcp?) STS-B (Compyccl)

LLAMA 2 DeBERTa

BERT | LLAMA2 DeBERTa BERT | LLAMA2 DeBERTa

BERT ‘ LLAMA 2 DeBERTa BERT

Random 0256  0.266 0.245| 0.421 0445 0361 0.284 0306 0.273| 0.283  0.430 0.457
Grad. Norm  0.216  0.320 0.331| 0.364  0.535 0460| 0334 0365 0.360| 0.351 0.338 0.374
GxI 0.236  0.345 0.339| 0442 0565 0456| 0353 0382 0.364| 0255 0214 0.358
1G 0.220  0.346 0367 | 0448  0.571 0466| 0336 0381 0364| 0237 0227 0370
DecompX N/A N/A 0574 N/A N/A  0.585| N/A N/A 0460 | N/A N/A  0.336
£2 norm 0.299 0360 0.311| 0420 0473 0.393| 0272 0339 0.304| 0.251 0.199 0.321
LogAt 0.341 0.377 0364 | 0518  0.548 0.566| 0378 0435 0394 | 0.167 0423 0.313
NormXLogit 0.341  0.386 0.423| 0.519 0.566 0.556| 0.363 0474 0.402| 0.233  0.320 0.281

Table 1: Comprehensiveness of NormXLogit against other methods across various model and dataset configurations.
Each value is computed by averaging across all perturbation ratios (higher Confidence Drop and lower Accuracy are
better). Best values are in bold, and second-best values are underlined.

In the regression setup of STS-B depicted in
Figure 3, dropping important tokens results in a
decrease in Accuracy. To leverage DecompX for
this setup, in the absence of a classification head,
we applied the #2 norm to the decomposed vectors
obtained from the final layer. The results for the ini-
tial K% ratios are very close, with DecompX and
Gradient x Input showing a slight lead at the outset.
However, after dropping 40% of the most impor-
tant tokens, the performance of all these methods
deteriorates, while NormXLogit continues to expe-
rience a drop in Accuracy.

Table 1 presents the average Confidence Drop
and Accuracy across different ratios of perturba-
tion, evaluated on various models and datasets’.
For classification tasks, the Accuracy metric re-
sults are consistent with Confidence Drop mea-
surements and are provided in the appendix to
avoid repetition (cf. Table 4). In SST-2 and QNLI,
NormXLogit consistently outperforms architecture-

"The corresponding diagrams are provided in Section A.2.

agnostic methods. However, DecompX, which
is specific to the BERT architecture, results in a
larger confidence drop. In the MultiNLI dataset,
NormXLogit performs better than gradient-based
approaches in LLAMA 2 and BERT, though In-
tegrated Gradients show a slight edge in the De-
BERTa model. In the BERT model, similar to SST-
2, DecompX performs better, but the difference is
notably smaller compared to the SST-2 dataset.

In the regression setup, the /2 norm performs
surprisingly well and also boosts the performance
of GradientxInput. This strong performance on
STS-B can be attributed to the structure of STS-B
samples: sentence pairs consist of relatively short
sentences with similar openings, where key infor-
mation that determines the label often resides in
less frequent words toward the end. Such words
tend to have higher embedding norms, making the
£? norm approach more effective.

Furthermore, in the BERT model, the absence
of a classification head diminishes DecompX’s ef-
fectiveness, resulting in performance worse than
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ATTRIBUTION METHOD

Input Length Gradient Norm  GradientxInput Integrated Gradients DecompX ‘ NormXLogit
40 0.77 +0.03 0.80+0.02 0.82+0.02 0.39+0.01 0.36--0.00
120 0.77 +0.02 0.81+002 0.96-+0.03 0.38+0.00 0.36--0.00
360 0.76+0.03 0.80+0.02 1.47 +0.05 0.99-+0.02 0.38+0.01
512 0.78+0.02 0.80-0.02 1.7910.06 2.36+0.02 0.36--0.00

Table 2: Average time (in seconds) per instance for different attribution methods across various input lengths. Nor-
mXLogit demonstrates significantly lower computational costs compared to other methods and remains unaffected
by input sequence length. The values in subscript represent the standard deviation.

that of the input embeddings’ norms. In LLAMA 2,
NormXLogit slightly surpasses all gradient-based
methods, largely due to the strong performance of
LogAt.

4.3.2 Sufficiency

While NormXLogit repeatedly outperforms
gradient-based methods in comprehensiveness,
it lags behind in sufficiency (cf. Table 4). This
difference arises from how transformers encode
meaning: tokens often matter through their
interactions with surrounding context rather
than in isolation. NormXLogit highlights such
contextually important tokens, as their represen-
tations strongly contribute to the full-sequence
logit. Removing these tokens therefore causes
a substantial confidence drop, which explains
the method’s strength under comprehensiveness.
However, when only the top-ranked tokens are
retained, the contextual cues needed to sustain
the original prediction are lost, leading to weaker
sufficiency scores. In other words, NormXLogit
excels at identifying necessary tokens within
context but is less effective when tokens must
stand alone as sufficient evidence.

4.4 Computational Efficiency

NormXLogit is not only faithful and generaliz-
able, but also computationally lightweight. In
perturbation-based methods, it is costly to search
for appropriate combinations of tokens to inter-
vene, as this requires multiple forward passes. Sim-
ilarly, advanced gradient-based methods like In-
tegrated Gradients incur substantial overhead due
to repeated forward and backward passes. In con-
trast, NormXLogit performs attribution in a single
forward pass, eliminating the need for any back-
propagation.

Our runtime analysis shows that for longer inputs
(e.g., 360 tokens or more), NormXLogit can be up
to 6 x faster and up to 750 x more memory-efficient

than its counterparts (cf. Tables 2 and 7).

S Experiment 2: Evidence Alignment

In our second experiment, we extend our evaluation
beyond classification and regression by focusing
on the language modeling task, using the BLIMP
dataset. This experiment serves four purposes: (1)
to assess the faithfulness of NormXLogit in the
masked language modeling setting, expanding the
scope of our evaluation, (2) to examine its plausi-
bility, i.e., the extent to which its attributions align
with human-understood linguistic rationales pro-
vided by BLiMP, (3) to analyze the target model’s
sensitivity to specific linguistic phenomena, and
(4) to investigate how contextualization evolves
throughout the model by analyzing the output rep-
resentations at different layers of the Transformer
(i.e., per-layer attributions).

5.1 Experimental Setup

Data. The BLiMP dataset contains sentence pairs
with minimal contrasts in syntax, morphology, or
semantics. It is constructed to provide samples
where the true label is uniquely determined by a
single word in each sentence, providing an ideal
benchmark for assessing attribution methods. This
word, which serves as the decisive factor in deter-
mining grammatical acceptability, is termed the
evidence. BLIMP offers a strong prior on which
token is expected to drive the model’s prediction,
thereby supporting a targeted assessment of attri-
bution faithfulness. Additionally, it enables evalua-
tion of plausibility, as the evidence in this dataset
inherently aligns with human reasoning. In sum-
mary, using BLIMP we are evaluating both the
faithfulness and plausibility of these methods.
Following Mohebbi et al. (2023), we utilize
a subset of the BLIMP dataset comprising five
paradigms that represent three distinct linguistic
phenomena. Examples of each phenomenon are
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Phenomenon UID Example (Target ¢//Foil X)

Anaphor Number Agreement ana This government alarms itself ¢//themselves X.

dna Russell explored this ¢//these X mall.

Determiner-Noun Agreement . .
& dnaa Patients scan this ¢//these X orange brochure.

darn The sister of doctors writes ¥//write X.

Subject-Verb Agreement rpsv The pedestrian has //have X forgotten Grace.

Table 3: Examples of various linguistic phenomena
that have been investigated in our experiments. Each
paradigm is represented by a unique identifier (UID)
from the BLiMP dataset. The target and foil words are
denoted using check and cross marks. In each instance,
the relevant evidence is underlined.

provided in Table 3. Using spaCy (Honnibal and
Montani, 2017), we are able to identify the evi-
dence of each linguistic phenomenon. For anaphor
number agreement, we employ NeuralCoref® to
detect the coreferent of the target word. To ad-
dress determiner-noun agreement, we generate the
dependency tree for each sample and extract the de-
terminers corresponding to the target noun. Lastly,
for subject-verb agreement, the same dependency
tree can be used to identify the subjects associated
with the verb.

Model. In this section, we employ the RoBERTa
(Liu et al., 2019) model for our evaluations. We
use both pre-trained’ and fine-tuned versions of
the model. For fine-tuning, the target token is re-
placed with [MASK], and the model is optimized to
select the correct target token (the grammatically
appropriate word) over the foil token (a similar but
grammatically incorrect alternative). Next, for in-
ference, we use the head-on-top, also known as the
unembedding matrix, to generate probabilities over
the vocabulary.

Attribution Methods. GlobEnc, ALTI, and
Value Zeroing are the attribution methods we con-
sider for comparison in this experiment. Unlike
Value Zeroing, which produces layer-wise attribu-
tions, the other two methods generate global impor-
tance scores. To acquire per-layer attributions for
GlobEnc and ALTI, we bypass the rollout aggre-
gation method to directly derive per-layer scores
and we denote them as GlobEnc— and ALTI-. We
also consider a random baseline in which tokens
are attributed equal scores.

Layer-wise Attribution with NormXLogit. Fol-
lowing the procedure described in Subsection 3.3,

8https://github.com/huggingface/neuralcoref
°The results of the pre-trained model are covered in Sec-
tion A.3.

we treat the language modeling setup as a classifica-
tion task, where the number of labels corresponds
to the size of the vocabulary. In this setup, apply-
ing the head-on-top to the token representations
yields a probability distribution over the vocabu-
lary for each input token. For NormXLogit, to
obtain the attributions of layer [, we apply LogAt
to the output representations of the [-th layer, com-
bined with the ¢? norm of the input embeddings,
where [ € {1,2,..., L}. Then, for each input to-
ken, LogAt(target) is considered its attribution
score with respect to the target token. Thanks to
the per-label attributions obtained via LogAt, we
can also identify the importance of evidence words
in predicting both foil and target tokens. These
attributions can be generated for any token in the
vocabulary (cf. A.3).

5.2 Alignment Metrics

Following Yin and Neubig (2022), we define the
known evidence (i.e., ground truth token-level ra-
tionale) as a binary vector £ with a length equal to
the input sequence X . In this vector, a value of 1 at
a given index indicates the presence of known evi-
dence, while a value of 0 indicates its absence. Sim-
ilarly, the explanation vector S has the same length,
with each element S; representing the attribution
score assigned to the i-th token for predicting the
target token. To evaluate the alignment between ev-
idence and explanation vectors, we take advantage
of the Dot Product and Average Precision metrics
(see Section A.4 for a worked example).

Dot Product: The dot product £ - & measures
the total score that the target attribution method
assigns to the evidence tokens.

Average Precision: To evaluate whether an at-
tribution method successfully identifies the most
important tokens, we use Average Precision (AP).
This metric concentrates on the ranking obtained
via the attribution method rather than its raw scores.
For a given sample, AP is computed as:

AP = "(Ri — Ry_1) Py )
=1

where Ry, and Py indicate the recall and precision
at threshold k, and n is the length of the input
sequence.

5.3 Results

Figures 4 and 5 present the results of the alignment
for different attribution methods and the known ev-
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Figure 4: Per-layer alignment between evidence and
explanation vectors in fine-tuned RoBERTa, calculated
using Dot Product (higher values are better). Alignment
for ¢2 norm of word embeddings (layer 0): 0.14.

idence enforcing a linguistic paradigm. In Figure
4, it can be seen that across almost all layers, Nor-
mXLogit consistently outperforms other methods
in the experiment. The LogAt scores correspond-
ing to the foil token in both alignment metrics are
lower than those obtained from the target token.
Specifically, as we progress to higher Transformer
layers, there is a drop in alignment for the foil
token and an increase for the target token. This
pattern can be explained by the fact that token rep-
resentations become more contextualized as they
pass through layers. Increased context mixing from
evidence words can lead to a correct prediction
(LogAt(Target)), while reduced context mixing
can result in incorrect predictions (LogAt(Foil)).

As noted earlier, the LogAt scores can be cal-
culated for other tokens in the vocabulary as well.
Our analysis shows that the LogAt score for the
word ‘plural’ (LogAt(“plural”)) outperforms all
other methods in our experiments by a notable mar-
gin. This superior performance, unlike that of other
random words, might be attributed to the number
agreement phenomena underlying this experiment.
At layer 7, the results of Log At(“plural”) for Dot
Product and Average Precision are 0.28 and 0.50,
respectively (cf. A.3).

As mentioned in the caption of Figures 4 and 5,
the high alignment between the norm of input word
embeddings and the evidence confirms that indeed
they are informative.
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Figure 5: Per-layer alignment between evidence and ex-
planation vectors in fine-tuned RoBERTa, calculated us-
ing Average Precision (higher values are better). Align-
ment for #2 norm of word embeddings (layer 0): 0.35.

6 Conclusion and Future Work

In this paper, we introduced NormXLogit, an
architecture-agnostic interpretation method that
can be applied to any setup to reveal the opaque
mechanism behind the decision-making process
of LLMs. This method is fast and scalable, and
it can be applied to models of any size. By uti-
lizing the head-on-top, we gain the advantage of
producing per-label explanations, which can be
used to identify the most important tokens with
respect to each label. Through extensive experi-
ments, we showed that the attributions produced by
NormXLogit are not only more faithful than those
generated by gradient-based methods but also com-
petitive with architecture-specific approaches.
Future work could explore the applicability of
our proposed method to other domains and models,
such as vision and non-Transformer architectures.
Another promising direction is to investigate how
aggregating attributions across all labels in a classi-
fication setup could lead to improved explanations.

Limitations

As with most attempts to interpret deep learning
models, our evaluation, as well as those of existing
methods, is inherently constrained by the lack of a
definitive gold standard for understanding model in-
ternals. To mitigate this, we employed independent
and complementary evaluation frameworks, includ-
ing the AOPC metric, to measure the faithfulness
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of our approach.

Our work primarily targets models with a trans-
former architecture, with evaluations focused on
models applied to text. Nevertheless, we believe
our method is broadly applicable to scenarios
where inputs are represented numerically and the
model generates token-wise representations.
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A Appendix

A.1 Computing Infrastructure

All experiments were conducted on a machine with
an Nvidia Quadro RTX 8000 GPU with 48GB of
memory. The operating system used is Ubuntu
22.04.3 LTS.

A.2 Experiment 1: Complete Results

Figures 6 to 46 illustrate the Comprehensive-
ness and Sufficiency across different models and
datasets. In Figure 6, we demonstrate the global
performance of Value Zeroing on the SST-2 dataset.
The results show that this method is not faithful to
the model’s decision-making process. This issue
may stem from the inherent limitations of the roll-
out aggregation method, as previously discussed.
Additionally, since Value Zeroing is a perturbation-
based method, it may also inherit some of the chal-
lenges associated with these approaches. For in-
stance, this method zeros out each token’s value
vector one at a time, which can lead to problems
like ignoring dependencies between features. Con-
sider the following example:

"The movie is mediocre, maybe even
bad.”

In this case, erasing “mediocre" or “bad" indepen-
dently may not significantly impact the overall sen-
timent of the sentence.

For our Integrated Gradients experiments, we
generally used 50 steps. However, for LLAMA2,
we reduced the number of steps to 25 due to re-
source constraints.

Computational Efficiency. We conducted exper-
iments to compare the computational efficiency of
the attribution methods, using the BERT model
with a maximum input length of 512 tokens. Tim-
ing results, averaged over five runs and reported in
seconds, reveal that the runtime for Gradient Norm
and Gradient x Input remains nearly constant across
different input lengths, while Integrated Gradients
and DecompX show noticeable increases as input
length grows. NormXLogit consistently demon-
strates the fastest processing times, with minimal
sensitivity to input length. In terms of memory effi-
ciency, we identified the maximum batch size each
method could handle within 48GB of GPU mem-
ory. NormXLogit significantly outperforms others,
processing up to 750 samples per batch, whereas
Integrated Gradients and DecompX are limited to

very small batch sizes (2 and 1, respectively). Con-
sequently, NormXLogit offers both superior speed
and memory efficiency, enabling more scalable at-
tribution computations.
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Figure 6: Comprehensiveness Confidence Drop of dif-
ferent attribution methods for BERT fine-tuned on SST-
2 (higher values are better).
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Figure 7: Comprehensiveness Accuracy of different at-
tribution methods for BERT fine-tuned on SST-2 (lower
values are better).

—@— NormXLogit
—#- Random Baseline
GradientxInput
—¥— Integrated Gradients
—9— Gradient Norm

0.9

o o o
o N £

Comprehensiveness - Accuracy

°
0

0.4

0% 10%  20% 30%  40%  50% 60% 70%  80% 90%
K%

Figure 8: Comprehensiveness Accuracy of different
attribution methods for LLAMA 2 fine-tuned on SST-2
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A.3 Experiment 2: RoOBERTa Complete
Results

The evidence alignment experiment is conducted
on a masked language modeling task to understand
why a particular target token is chosen. The LogAt
method provides per-label attribution scores, en-
abling us to apply it to other labels (i.e., tokens in
the vocabulary) to identify the most important to-
kens in the input sequence for predicting each spe-
cific label. Figures 48 and 49 display the results of
the Dot Product and Average Precision alignment
metrics for the pre-trained RoOBERTa model. An
important observation is the notable performance
of LogAt(”plural”), which demonstrates its ef-
fectiveness in identifying evidence words. This
level of performance is not seen with two other
randomly chosen words. Specifically, the results
are more pronounced in the top layers, indicating
that increased context mixing enhances the connec-
tion between the evidence and the word “plural.”" In
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Figure 10: Comprehensiveness Accuracy of different

attribution methods for DeBERTa fine-tuned on SST-2
(lower values are better).
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Figure 12: Sufficiency Accuracy of different attribution
methods for BERT fine-tuned on SST-2 (higher values
are better).

other words, as we progress through the layers, the
contextualized representation of the evidence word
becomes increasingly similar to the word “plural,"”
resulting in a higher attribution for this word. We
attribute the superior performance for the word
“plural” primarily to the nature of the phenomena
used from the BLiMP dataset, which focused on
number agreement. Figures 50 and 51 demonstrate
the results for the fine-tuned RoBERTa model.
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Figure 21: Comprehensiveness Confidence Drop of dif-  Figure 22: Comprehensiveness Accuracy of different at-
ferent attribution methods for LLAMA 2 fine-tuned on tribution methods for LLAMA 2 fine-tuned on MultiNLI
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Figure 25: Sufficiency Confidence Drop of different at-
tribution methods for DeBERTa fine-tuned on MultiNLI
(lower values are better).
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Figure 27: Sufficiency Confidence Drop of different at-
tribution methods for LLAMA 2 fine-tuned on MultiNLI
(lower values are better).
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Figure 29: Comprehensiveness Confidence Drop of dif-
ferent attribution methods for BERT fine-tuned on QNLI
(higher values are better).
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Figure 26: Sufficiency Accuracy of different attribution
methods for DeBERTa fine-tuned on MultiNLI (higher
values are better).
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Figure 28: Sufficiency Accuracy of different attribution
methods for LLAMA 2 fine-tuned on MultiNLI (higher
values are better).
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tribution methods for BERT fine-tuned on QNLI (lower
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Figure 37: Sufficiency Confidence Drop of different
attribution methods for DeBERTa fine-tuned on QNLI
(lower values are better).
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Figure 39: Sufficiency Confidence Drop of different
attribution methods for LLAMA 2 fine-tuned on QNLI
(lower values are better).
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Figure 41: Comprehensiveness Accuracy of different at-
tribution methods for BERT fine-tuned on STS-B (lower
values are better).
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Figure 38: Sufficiency Accuracy of different attribution
methods for DeBERTa fine-tuned on QNLI (higher val-
ues are better).
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Figure 40: Sufficiency Accuracy of different attribution
methods for LLAMA 2 fine-tuned on QNLI (higher val-
ues are better).
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Figure 42: Sufficiency Accuracy of different attribution
methods for BERT fine-tuned on STS-B (higher values
are better).
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Figure 43: Comprehensiveness Accuracy of different  Figure 44: Sufficiency Accuracy of different attribution
attribution methods for DeBERTa fine-tuned on STS-B ~ methods for DeBERTa fine-tuned on STS-B (higher
(lower values are better). values are better).
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Figure 45: Comprehensiveness Accuracy of different Figure 46: Sufficiency Accuracy of different attribution
attribution methods for LLAMA 2 fine-tuned on STS-B~ methods for LLAMA 2 fine-tuned on STS-B (higher
(lower values are better). values are better).

SST-2 (Compaccd) MNLI (Compaccd) QNLI (Compaccd)

LLAMA 2 DeBERTa BERT ‘ LLAMA 2 DeBERTa BERT ‘ LLAMA 2 DeBERTa BERT

Random Baseline 0.652 0.719 0.734| 0466 0521 0.484 | 0.634 0.675 0.690
Gradient Norm 0.738 0.665 0.659 | 0.517 0.440 0.393 | 0.602 0.591 0.614
GradientxInput 0.683 0.644 0.653| 0434 0408 0.406| 0.563 0.605 0.613
Integrated Gradients  0.698 0.642 0.622 | 0.423 0.403 0.393 | 0.566 0.606  0.609
DecompX N/A N/A  0422| N/A N/A 0294 | N/A N/A  0.525
£% norm 0.595 0.624 0.670 | 0.497 0.502 0.477 | 0.651 0.645 0.665
LogAt 0.599 0.610 0.636| 0.367 0440 0.324| 0.556 0.510 0.563
NormXLogit 0.590 0.604 0.579 | 0.375 0.426 0333 | 0.564 0459 0.554

Table 4: Comprehensiveness of NormXLogit against other methods across various model and dataset configurations.
Each value is computed by averaging across all perturbation ratios (lower Accuracy is better). Best values are in
bold, and second-best values are underlined.
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SST-2 (Suffcpl) MNLI (Suffcpl) QNLI (Suffep ) STS-B (Suffacct)

LLAMA 2 DeBERTa BERT ‘ LLAMA 2 DeBERTa BERT ‘ LLAMA 2 DeBERTa BERT ‘ LLAMA 2 DeBERTa BERT

Random 0.241 0274 0241] 0404 0416 0362| 0285 0300 0.272| 0347 0430 0.428
Grad. Norm  0.260  0.201 0.178 | 0413  0.240 0.250| 0.236  0.260 0.162| 0.323  0.611 0.625
GxI 0.230  0.192 0.196| 0.365 0.220 0.245| 0.205 0.240 0.166| 0.394  0.677 0.637
1G 0256  0.188 0.165| 0442  0.219 0.221| 0.228 0.238 0.163| 0330  0.669 0.643
DecompX N/A N/A  0.064| N/A N/A 0157 N/A N/A 0109 | N/A N/A  0.659
2% norm 0.210  0.201 0.230| 0.315 0.361 0.389| 0.241 0.351 0.262| 0.658  0.714 0.599
LogAt 0.176  0.193 0.189| 0423 0351 0.373| 0237 0316 0.268| 0.123 0490 0.495
NormXLogit 0.177 0200 0.171| 0432 0305 0.381| 0.247 0.273 0.265| 0.235 0.538 0.582

Table 5: Sufficiency of NormXLogit against other methods across various model and dataset configurations. Each
value is computed by averaging across all perturbation ratios (lower Confidence Drop and higher Accuracy are
better). Best values are in bold, and second-best values are underlined.

SST-2 (Suffacct) MNLI (Suffacct) QNLI (Suffacc?)

LLAMA 2 DeBERTa BERT ‘ LLAMA 2 DeBERTa BERT ‘ LLAMA 2 DeBERTa BERT

Random Baseline 0.668 0.712  0.742 | 0.477 0.537 0.490| 0.613 0.681 0.698
Gradient Norm 0.638 0.771  0.794 | 0.466 0.708 0.610 | 0.670 0.723  0.800
GradientxInput 0.675 0.791 0.787 | 0.540 0.727 0.613 | 0.706 0.745 0.799
Integrated Gradients  0.672 0.795 0.816 | 0.449 0.730 0.642 | 0.679 0.746  0.803
DecompX N/A N/A  0.877| N/A N/A  0.666 | N/A N/A  0.840
£2 norm 0.702 0.787 0.763 | 0.589 0.597 0.451| 0.658 0.560 0.727
LogAt 0.730 0.781 0.786 | 0.460 0.578 0.459 | 0.666 0.671 0.724
NormXLogit 0.726 0.773  0.809 | 0.450 0.638  0.451 | 0.664 0.718 0.734

Table 6: Sufficiency of NormXLogit against other methods across various model and dataset configurations. Each
value is computed by averaging across all perturbation ratios (higher Accuracy is better). Best values are in bold,
and second-best values are underlined.

ATTRIBUTION METHOD

Evaluation Criteria Gradient Norm  GradientxInput Integrated Gradients DecompX ‘ NormXLogit

Maximum Batch Size 100 100 2 1 750
Average Time per Instance (s)  0.007640.00 0.0081+0.00 1.4104+0.01 2.3625+0.02 0.0005+0.00

Table 7: Efficiency of attribution methods when maximizing batch size under a 48GB memory constraint (input
length = 512). NormXLogit supports significantly larger batch sizes and achieves the lowest per-instance time,
demonstrating superior scalability and memory efficiency. The values in subscript represent the standard deviation.

Integrated Gradients [€IS] [he f[film's direction kept me [EHGEGEH from start [to finish § [SEP]
LIME [CLS] the film's [direction [KEPE (me [EHGaGEd @M start to finish . [SEP]
NormXLogit [[€ES]) the film's (@iEEHON Kept me [EHGAGEd) from start to [finish [ (SEP)

Figure 47: Qualitative comparison of token attribution methods for the sentiment analysis task. NormXLogit is
compared with Integrated Gradients and LIME.
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Figure 48: Per-layer alignment between evidence
and explanation vectors for the pre-trained version of
RoBERTa, calculated using Dot Product metric (higher
values are better). The alignment for £? norm of word
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Figure 50: Per-layer alignment between evidence
and explanation vectors for the fine-tuned version of
RoBERTa,, calculated using Dot Product metric (higher
values are better). The alignment for /2 norm of word

embeddings (layer 0) is 0.14.
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Figure 49: Per-layer alignment between evidence

and explanation vectors for the pre-trained version of
RoBERTa, calculated using Average Precision metric
(higher values are better). The alignment for /2 norm of

word embeddings (layer 0) is 0.35.
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Figure 51: Per-layer alignment between evidence

and explanation vectors for the fine-tuned version of
RoBERTa:, calculated using Average Precision metric
(higher values are better). The alignment for /2 norm of

word embeddings (layer 0) is 0.35.

34935



A.4 Experiment 2: Worked Example for
Alignment Metric Computation

To illustrate how the alignment metrics work, we
provide an example using the following sentence:

"Karla thinks/think about it"

In this example, “Karla” serves as the evidence
that determines the correct verb (“thinks”).

Vector Definitions. We first define a binary evi-
dence vector £ to indicate which tokens are consid-
ered known evidence (1 for evidence, O otherwise).
For this example, the input sequence is tokenized
as:

[Karla, thinks, about, it]

Since only “Karla” is the evidence, we define:
€ =11,0,0,0]

Next, we define the attribution vector S, where
each element S; corresponds to the score assigned
by the attribution method to token :

S =10.3,0.1,0.5,0.1]

Dot Product: We compute the dot product be-
tween the two vectors:

£E-8=1-03+0-01+0-05+0-0.1
=0.3

This score reflects the total attribution the method
assigns to the known evidence (“Karla”). A higher
dot product indicates better alignment with known
evidence.

Average Precision (AP): This metric evaluates
how well the attribution method ranks the evidence
token(s). We start by sorting the attribution scores
in descending order and recording their indices:

Rank(S) = [2,0, 1, 3]

This means the token at index 2 (“about”) has the
highest score, followed by index 0 (“Karla”), and
so on. The known evidence index (based on &) is:

Evidence Index = {0}

To compute AP, we iterate through the ranked
list and monitor when the evidence index is in-
cluded. Precision is calculated at each step where
recall increases (i.e., when a new evidence token is
found):

1. [2] — does not include index 0 — no change
in recall

2. [2, 0] — includes index 0 — recall changes
— precision = 1/2 = 0.5

3. [2, 0, 1] — no change in recall
4. [2,0,1, 3] — no change in recall
So, the final AP is:
AP =0.5

Note that if the evidence index were 2 (evidence
ranked first), the AP would be 1.0. If it were 1
(ranked third), the AP would be approximately
0.33. A higher AP indicates better alignment be-
tween the attribution method’s ranking and the true
evidence.
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