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Abstract

Simultaneous machine translation (SiMT) ne-
cessitates a robust read/write (R/W) policy to
determine the optimal moments for translation,
thereby balancing translation quality and la-
tency. Effective timing in translation can align
source and target tokens accurately. The at-
tention mechanism within translation models
inherently provides valuable alignment infor-
mation. Building on this, previous research has
attempted to modify the attention mechanism’s
structure to leverage its alignment properties
during training, employing multi-task learn-
ing to derive the read/write policy. However,
this multi-task learning approach may compro-
mise the efficacy of the attention mechanism
itself. This raises a natural question: why
not directly learn the read/write policy from
the well-trained attention mechanism? In this
study, we propose DrFrattn, a method that di-
rectly learns adaptive policies from the atten-
tion mechanism. Experimental results across
various benchmarks demonstrate that our ap-
proach achieves an improved balance between
translation accuracy and latency.

1 Introduction

Simultaneous Machine Translation (SiMT) (Kolss
et al., 2008; Gu et al., 2017) presents distinct chal-
lenges by generating target tokens in real-time
while processing streaming source tokens. In con-
trast to traditional machine translation (MT) (Bah-
danau et al., 2015; Vaswani et al., 2017), which
has access to the entire source text, SiMT operates
under a read/write (R/W) policy. This policy de-
termines whether to produce target tokens immedi-
ately or delay output to wait for more source tokens.
The read/write policies in simultaneous translation
can be categorized into two types: prefixed and
adaptive. Prefixed approaches, such as the wait-k
policy (Ma et al., 2018; Elbayad et al., 2020; Zhang
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et al., 2021b), rely on simple, rule-based read/write
decisions. While these methods are easier to imple-
ment, they typically yield limited translation out-
comes, especially under low-latency scenarios. In
contrast, adaptive methods (Gu et al., 2017; Dalvi
et al., 2018; Zheng et al., 2019, 2020; Ma et al.,
2020; Zhang and Feng, 2022c; Guo et al., 2023;
Zhao and Zeng, 2024; Chen et al., 2024; Zhao et al.,
2024), tailor read/write decisions based on the cur-
rent contextual information, thereby achieving a
more effective balance between translation quality
and latency.

Optimal timing for WRITE operations in simul-
taneous translation often coincides with the precise
alignment of an upcoming target token with an
existing source token. In the Transformer model
(Vaswani et al., 2017), the cross-attention mech-
anism is specifically designed to have this align-
ment capability, as demonstrated in Figure 1 (a).
This feature enables the model to effectively match
corresponding segments between the source and
target languages, facilitating accurate and contex-
tually aware translations. Consequently, numer-
ous adaptive policies leveraging the cross-attention
mechanism (Arivazhagan et al., 2019; Ma et al.,
2020; Zhang et al., 2020; Zhang and Feng, 2022a,b;
Zhang et al., 2022; Papi et al., 2023) have been de-
veloped. However, these methods typically involve
modifying the attention mechanism’s structure us-
ing multi-task training to attain the read/write pol-
icy, which may inadvertently compromise the over-
all effectiveness of the attention mechanism in cap-
turing relevant features for translation tasks.

On another front, Zhao et al. recently introduced
DaP-SiMT, an approach for deriving read/write
decisions directly from supervised signals, pro-
viding a novel solution in the realm of simulta-
neous translation. This innovation and the existing
limitations of the previous attention-based meth-
ods prompt a question: why not directly learn the
read/write policy from the well-trained attention
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(a) Cross Attention Matrix (b) Cumulative Attention Matrix (c) Cross Attention Mask

Figure 1: An Zh→En example of the Cross Attention Matrix, Cumulative Attention Matrix and Cross Attention
Mask. The red elements denote a potential read/write path, determined by a predefined threshold λ (0.5 in this case).

mechanism itself? Inspired by this, we propose
DrFrattn, a method to directly learn an adaptive
read/write policy from attention. Specifically, we
first conduct a systematic analysis of the feasibil-
ity of using the cross-attention matrices from vari-
ous decoder layers of a Transformer as labels for
read/write decisions. Subsequently, we employ
lightweight parameters to model these automati-
cally generated labels to develop a high-quality
decision-maker. Additionally, due to the accessi-
bility of cross-attention matrices during training,
we can readily generate batches of cross-attention
masks from these read/write paths, facilitating ef-
ficient prefix-to-prefix training of the translation
model and enhancing translation performance. Our
primary contributions are as follows:

1. We introduce DrFrattn, a novel method for
learning adaptive policies directly from the
cross-attention mechanism, where attention-
based read/write supervision can be con-
structed automatically during forward prop-
agation.

2. We devise a method for efficient prefix-
to-prefix training for simultaneous transla-
tion models using the read/write paths and
cross-attention masks derived from the cross-
attention matrix generated during training.

3. Experiments on multiple benchmarks show
that our method achieves a superior accuracy-
latency trade-off.

2 Related Works

Adaptive policies optimize read/write operations by
predicting these actions based on the current source

and target prefixes, thereby enhancing the balance
between latency and translation quality. The DaP-
SiMT framework (Zhao et al., 2023) autonomously
generates read/write supervisions by exploiting fu-
ture information divergence to train a decision-
making network. PsFuture (Zhao et al., 2024) pro-
poses a novel zero-shot adaptive read/write policy,
which utilizes the inherent capabilities of the trans-
lation model to make read/write decisions without
any additional training.

Furthermore, numerous methods utilize the
cross-attention mechanism, leveraging its capabil-
ity to align corresponding source and target tokens,
to develop adaptive read/write policies. Techniques
such as MILK (Arivazhagan et al., 2019) and MMA
(Ma et al., 2020) adaptively learn the real-time prob-
abilities of write operations at specific moments
through the attention mechanism. GMA (Zhang
and Feng, 2022a), ITST (Zhang and Feng, 2022b),
and wait-info (Zhang et al., 2022) employ the in-
herent alignment capability of the attention mech-
anism to predict aligned source positions, quan-
tify waiting latency, and assess information weight,
respectively, for crafting adaptive policies. The
MU method (Zhang et al., 2020) constructs Mean-
ingful Unit Chunking data based on the attention
mechanism and makes read/write decisions by de-
termining whether the current source part forms
meaningful units. EDATT (Papi et al., 2023) di-
rectly utilizes attention for read/write decisions in
simultaneous speech translation, achieving notable
performance.
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3 Preliminary

3.1 Full-sentence MT and SiMT
The Transformer architecture (Vaswani et al., 2017)
addresses full-sentence translation by mapping a
source-target pair x = (x1, x2, ..., xN ) and y =
(y1, y2, ..., yT ) from input embeddings to latent
spaces and then autoregressively generating the
target sequence. This optimization targets the re-
duction of cross-entropy loss, represented by:

Lmt = −
∑T

t=1
log p (yt | x,y<t) . (1)

For SiMT, which employs a monotonic function
g(t) to determine the necessary source input to pre-
dict each subsequent target token, the loss function
is:

Lsimt = −
∑T

t=1
log p

(
yt | x≤g(t),y<t

)
. (2)

3.2 Cross-attention Mechanism
Translation models leverage cross-attention to pri-
oritize source elements contributing to each target
token. Calculations utilize attention scores αij be-
tween target hidden states s and source states z:

αij = softmax

(
siW

Q
(
zjW

K
)⊤

√
dk

)
, (3)

where WQ and WK are projection parameters, and
dk is the dimension of inputs.

3.3 Prefix-to-Prefix Training and wait-k
Policy

Prefix-to-Prefix Training (P2P) is pivotal in SiMT
for predicting target tokens from limited source
prefixes. Studies (Ma et al., 2018) have shown sub-
optimal performances without P2P training, partic-
ularly at low latency scenarios.
Wait-k policy (Ma et al., 2018), the most widely
used fixed policy, commences by processing k
source tokens and subsequently alternating be-
tween WRITE and READ action. The function
g(t) for the wait-k policy is:

gwaitk(t; k) = min{t+ k − 1, N}. (4)

Multi-path Wait-k (Elbayad et al., 2020) is an ef-
ficient technique for wait-k training. It randomly
samples different k values between batches during
model optimization. By employing a unidirectional
attention encoder with a tailored upper triangular
masked cross-attention mechanism, the multi-path

wait-k model not only enables efficient prefix-to-
prefix training, but also supports incremental de-
coding during inference, thereby avoiding repeated
re-encoding of prefix tokens with each new source
token and substantially reducing computational
overhead. After introducing the cross-attention
mask M , the computation of cross-attention in a
Transformer model can be calculated as follows:

α̃ij = softmax

(
siW

Q
(
zjW

K
)⊤

√
dk

+mij

)
,

(5)

mij =

{
0 if g(t) ≥ i,

−∞ if g(t) < i.
(6)

4 Method

4.1 Cross-Attention Analysis

Potential of Cross-attention in Guiding R/W De-
cisions Many previous approaches leverage the
inherent alignment capability of cross-attention
to obtain the read/write policy through multi-task
training. This inspires us to explore the poten-
tial of cross-attention itself as a supervisory signal
for simultaneous translation read/write decisions.
As illustrated in Figure 1, we visualize the cross-
attention matrix of a widely adopted multi-path
wait-k translation model on one Zh→En example.
By applying simple transformations to the cross-
attention matrix, as specified in Equation 7, the Cu-
mulative Attention Matrix C can be derived. Based
on this matrix, a high-quality read/write path can be
determined by an appropriate predefined threshold,
as shown in Figure 1 (b). Specifically, starting from
the top-left corner, a reading operation is performed
when the value exceeds the threshold, otherwise, a
writing operation is executed. This demonstrates
the potential of the Cumulative Attention Matrix as
the supervisory signal for read/write decisions.

cij = 1−
j∑

k=1

αik, ∀i, j. (7)

Which Layer’s Cross-Attention is Optimal for
R/W Decisions? Transformer models (Vaswani
et al., 2017) consist of multiple decoder layers,
each equipped with multi-head attention mecha-
nisms. Every layer and each head within it has its
own cross-attention mechanisms, which adaptively
differentiate learning objectives during training to
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(c) Attention Visualization
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Figure 2: An overall schematic of the proposed DrFrattn method.

capture varying levels of representations. There-
fore, it is necessary to explore which attention is
optimal for guiding read/write decisions. To sim-
plify the problem, and inspired by the success of
EDATT (Papi et al., 2023) in real-time speech trans-
lation, we opt to average the attention across all
heads within the same layer when selecting atten-
tion heads.

To quantify which layer’s cross-attention pro-
duces the highest-quality read/write paths, we uti-
lize the Negative Log-Likelihood (NLL) vs. Aver-
age Lagging (AL) curve. AL(Ma et al., 2018) is
a widely used metric for translation latency. For
a given parallel sentence, we derive the read/write
path, denoted as {g(1), g(2), . . . , g(T )}, under the
read/write policy and calculate the negative log-
likelihood (NLL) of the translation along the path,
as defined by Equation. (2). By aggregating these
NLL scores and their corresponding AL scores
across the dataset, we generate NLL vs. AL curves
for different read/write policies. As illustrated in
Figure 3, we plot the NLL vs. AL curves for paths
obtained from the Cumulative Attention Matrix of
different layers and the wait-k method, based on
the multi-path wait-k model on the Zh→En vali-
dation dataset. The results show that layer 5 (out

0 2 4 6 8 10
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3.4

3.8

4.2

AL

N
L

L

layer 1

layer 2

layer 3

layer 4

layer 5

layer 6

wait-k

Figure 3: NLL vs. AL curves derived from different
decoder layers.

of 6 layers) achieves the best performance, with
significantly higher read/write path quality com-
pared to the wait-k method. This finding further
validates the potential of the Cumulative Attention
Matrix as the supervisory signal for guiding read/
write decisions. In this work, all supervised signals
for read/write decisions are derived from the 5th
decoder layer.
Improving R/W Supervision Signals Using
Temperature-Adjusted Softmax We observe that
the attention distribution in some examples is in-
sufficiently focused, leading to unclear boundaries
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Figure 4: NLL vs. AL curves caculated based on differ-
ent softmax temperature τ .

in the Cumulative Attention Matrix for certain to-
kens and resulting in ambiguous read/write deci-
sions. To address this issue, we use the temperature-
adjusted Softmax with a parameter τ when comput-
ing cross-attention, as shown in Equation 8. When
τ < 1, the attention distribution becomes sharper
and more focused, while τ = 1 reduces the formu-
lation to the standard Softmax. We also employ the
NLL vs. AL metric to explore the optimal temper-
ature parameter τ . As illustrated in Figure 4, ex-
ploration experiments on the Zh→En valid dataset
using the multi-path wait-k model show that a tem-
perature of 0.6 achieves the best NLL score for
low-latency read/write paths. Similar results are
observed on other datasets, and in this study, we
use a temperature of 0.6 to construct read/write
supervision signals.

Softmaxτ (zi) =
exp

(
zi
τ

)
∑

j exp
( zj
τ

) . (8)

4.2 The DrFrattn Policy Net

Since the complete Cumulative Attention Matrix
is inaccessible during inference because it requires
the full source sentence, which is unavailable
during simultaneous translation, we follow DaP-
SiMT (Zhao et al., 2023) and introduce an addi-
tional decoder layer to model the read/write su-
pervision signal, thereby deriving the read/write
policy net. During policy network training, the
parameters of the backbone translation model re-
main frozen. As illustrated in Figure 2 (b), for
each parallel sentence pair, we compute a predicted
cumulative attention matrix and a ground truth cu-
mulative attention matrix. The predicted matrix is
optimized toward the ground truth using the binary
cross-entropy (BCE) loss.

4.3 Cross-Attention-Based Shift-k Training

The above Cumulative Attention Matrix serves
as an easily obtainable supervision signal for
read/write decisions, which can be batch-extracted
during the forward propagation of the translation
model. This enables the efficient computation of
read/write paths for each parallel corpus pair and
the corresponding cross-attention masks. These
motivate us to employ the masks in prefix-to-prefix
training to reduce the gap between simultaneous
translation training and inference, thereby improv-
ing performance.

Specifically, given a Cumulative Attention
Matrix and a sampled threshold λ within a
predefined range [λ1, λ2], a read/write path
{gDrFrattn(1), gDrFrattn(2), . . . , gDrFrattn(T )} can be
derived. To prevent hallucinations caused by an
excessively large λ, which can result in premature
writing operations before sufficient source informa-
tion has been received, we utilize the wait-1 path
as the safeguard read/write path, formulated as fol-
lows:

gDrFrattn(t) = max{gDrFrattn(t), gwait1(t)}. (9)

Drawing on the multi-path wait-k method, where
uniform sampling of the value of k enables robust
performance across various latency levels, we pro-
pose a shift-k training approach. Notably, the de-
rived read/write path gDrFrattn is randomly shifted
to the right by k tokens, resulting in a new path:

g̃DrFrattn(t) = min{gDrFrattn(t) + k, |X|}, (10)

k ∼ Uniform({0, 1, . . . , |X|}). (11)

The shifted path is subsequently used to com-
pute the cross-attention mask MDrFrattn based on
the Equation 6 and the mask is incorporated into
the training process of the simultaneous translation
model, as shown in Figure 2 (a).

It is worth mentioning that the threshold λ di-
rectly influences the delay level of the read/write
path, with smaller λ values corresponding to paths
with greater delays. By adjusting the range of λ
values, [λ1, λ2], it is possible to control the delay
range of the read/write path to some extent. How-
ever, since the relationship between λ and the delay
level is nonlinear and difficult to determine pre-
cisely, we introduce the shift-k operation to achieve
finer control over delay levels in the training pro-
cess. This also allows the read/write path to cover
a broader range of translation situations, leading
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to a more robust simultaneous translation model.
Specifically, when [λ1, λ2] is adjusted to values
greater than 1, the wait-1 safeguard path is consis-
tently triggered. Combined with the shift-k opera-
tion, the read/write path degenerates into the con-
ventional wait-k path. When [λ1, λ2] is adjusted
to values less than 0, the read/write path transi-
tions into an offline translation path. Therefore, by
appropriately tuning [λ1, λ2], the proposed shift-
k training method can simulate diverse read/write
paths. In Section 6.1, we further investigate the im-
pact of the hyperparameters λ1 and λ2 on results.

4.4 Overall Procedure of the DrFrattn
Method

The overall procedure of applying the proposed
DrFrattn method is summarized as follows:

1. (Optional) Training the Simultaneous
Translation Backbone Model First, the pro-
posed shift-k training method is used to
train a simultaneous translation model from
scratch, as illustrated in Figure 2 (b). Alter-
natively, any pre-trained simultaneous transla-
tion model with a cross-attention mechanism,
such as the multi-path wait-k model, can be
employed as the backbone model.

2. Training the R/W Policy Net Based on the
backbone model, an additional decoder layer
is introduced to fit the read/write supervision
signals discussed in Section 4.1, as shown
in Figure 2 (a), while keeping the backbone
model’s parameters frozen. Although an inde-
pendent policy network can also be used to fit
these supervision signals, this work focuses
on the additional decoder layer for efficient
training.

3. Inferring Based on the trained policy net and
the backbone translation model, simultaneous
translation tasks can be performed. Addition-
ally, following (Zhao et al., 2023), another hy-
perparameter is introduced in the read/write
decision-making process to limit the maxi-
mum number of consecutive READ opera-
tions for certain languages, thereby improving
their performance. The inference process is
summarized in Appendix C.

5 Experiments

5.1 Datasets

WMT2022 Zh→En1. We use a subset with 25M
sentence pairs for training2, from which 1500
unique sentence pairs are extracted as the valida-
tion set. We first tokenize the Chinese and English
data using the Jieba Chinese Segmentation Tool3

and Moses4, respectively, and then apply BPE with
32000 merge operations. We employ the dev set
of 956 sentence pairs from BSTC (Zhang et al.,
2021a) as the test set.
WMT15 De→En5. All 4.5M sentence pairs from
this dataset are used for training, and are tok-
enized using 32K BPE merge operations. We use
newstest2013 (3000 sentence pairs) for validation
and report results on newstest2015 (2169 sentence
pairs).
IWSLT15 En→Vi6. All 133K sentence pairs from
this dataset (Luong and Manning, 2015) are used
for training. We use TED tst2012 (1553 sentence
pairs) for validation and TED tst2013 (1268 sen-
tence pairs) as the test set. Following the settings
in (Ma et al., 2020), we adopt word-level tokeniza-
tion and replace rare tokens (frequency < 5) with
<unk>. The vocabulary sizes are 17K for English
and 7.7K for Vietnamese, respectively.

5.2 System Settings

The models used in our experiments are introduced
as follows. To ensure a fair comparison, all our im-
plementations are adapted from the Fairseq Library
(Ott et al., 2019) and we carefully select strong
baseline systems. All methods are built based on
Transformer(Vaswani et al., 2017) with a unidirec-
tional encoder—and employ a cross-attention mask
(as described in Equation 5) during forward propa-
gation to enable efficient prefix-to-prefix training.

Multi-path Wait-k (Elbayad et al., 2020): a
fixed policy, which improves wait-k by randomly
sampling different k during training.

ITST (Zhang and Feng, 2022b): an adaptive
policy, which models the SiMT task as a transport
problem of information from source to target.

DaP-SiMT (Zhao et al., 2023): an adaptive pol-
icy, which learns from automatically constructed

1
www.statmt.org/wmt22

2The data sources include casia2015, casict2011, casict2015, datum2015,
datum2017, neu2017, News Commentary V16, ParaCrawl V9.

3
https://github.com/fxsjy/jieba

4
https://github.com/moses-smt

5
www.statmt.org/wmt15

6
nlp.stanford.edu/projects/nmt
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Figure 5: Comparison of BLEU vs. AL curves between multi-path (abbreviated as Mp) wait-k, ITST, DaP-SiMT,
and our proposed DrFrattn approach on three language pairs.

read/write supervision signals, inspired by the
translation behavior of human experts.

For the Zh→En experiments, we utilize the trans-
former big architecture, while the base and small
architectures are used for De→En and En→Vi ex-
periments respectively. In relation to the threshold
range [λ1, λ2] used during the training process of
the main experiments, we select the configurations
that yield the best performance on the validation
set, [0.4, 0.85] for Zh→En, [0.4, 0.85] for De→En,
and [−0.15, 0.85] for En→Vi, respectively.

For evaluation, following ITST and DaP-SiMT,
we report case-insensitive BLEU (Papineni et al.,
2002) scores to assess translation quality and Av-
erage Lagging (AL/token) (Ma et al., 2018) to
measure latency. Regarding the maximum num-
ber of continuous read actions in our method, we
empirically select the best-performing configura-
tions, which are no constraint, 4, no constraint for
Zh→En, De→En, En→Vi respectively.

5.3 Main Results
We compare the proposed DrFrattn method with
previous approaches for three language pairs, as
shown in Figure 5. DrFrattn Wait-k and DrFrattn
Shift-k correspond to translation models based on
the multi-path wait-k model and the cross-attention-
based shift-k training method introduced in Sec-
tion 4.3, respectively.

First, it is evident that the DrFrattn Wait-k ex-
periment outperforms the multi-path wait-k experi-
ment by a substantial margin. With both the back-
bone translation models being the multi-path wait-
k model, the proposed DrFrattn adaptive policy
demonstrates superior performance compared to
the fixed wait-k policy, effectively exploiting the

latent translation potential of the backbone model.
Additionally, DrFrattn Wait-k performs compara-
bly to previous top SiMT methods, DaP-SiMT and
ITST, and even surpasses them in certain latency
scenarios, further validating the effectiveness of the
proposed DrFrattn policy.

Second, the DrFrattn Shift-k experiment exhibits
more robust results across all translation directions.
Particularly in the Zh→En experiment, DrFrattn
Shift-k significantly surpasses all other methods.
This highlights the efficacy of our cross-attention-
based shift-k training method. This training ap-
proach fully leverages the inherent accessibility of
cross-attention in the model training process and
the efficacy of read/write paths derived from it. Fur-
thermore, the random sampling of the shift-k value
across samples facilitates more extensive coverage
of different latency scenarios, thereby enhancing
the model’s robustness across various conditions.

6 Analysis

6.1 Ablation Study

Effect of the temperature parameter In Sec-
tion 4.1, we mentioned that to improve the distribu-
tion of the cumulative attention matrix and achieve
better corresponding read/write paths, we incor-
porate a temperature parameter τ in the softmax
function during cross-attention computation. In
this part, we conduct experiments to evaluate the
impact of the temperature parameter τ on the fi-
nal translation performance. Figure 6 presents the
experiment results for De→En and En→Vi trans-
lation tasks. Compared to the default temperature
value of 1, setting τ to 0.6 consistently improves
BLEU scores across all translation directions and
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AL 1.5±0.1 2.5±0.1 3.5±0.1 4.3±0.1 5.2±0.1 6.2±0.1 7.8±0.1 8.5±0.1 9.9±0.1

DrFrattn Accuracy 0.921 0.917 0.919 0.907 0.908 0.905 0.904 0.909 0.915
Wait-k Accuracy 0.841 0.843 0.825 0.812 0.819 0.806 0.803 0.819 0.822

Table 1: The prediction accuracy of the DrFrattn policy net compared with the wait-k method

latency scenarios. This demonstrates the effective-
ness of the temperature parameter τ , which en-
hances the quality of read/write supervision signals
and leads to a better policy network.
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Figure 6: BLEU vs. AL curves comparing among Dr-
Frattn Wait-k experiments with varying softmax tem-
perature τ .

Effect of the shift-k training threshold range
In Section 4.3, we introduced the hyperparameter
threshold range [λ1, λ2] to control the variability
of read/write path latencies during shift-k train-
ing. To prevent meaningless read/write paths in
cases of excessively low latency, we set λ2 to 0.85,
which corresponds to a read/write latency with the
AL range approximately from 0 to 1. Especially,
when λ value is less than 0, the read/write path
is considered the offline scenario, allowing us to
set λ1 as a negative value to introduce a certain
proportion of offline training. Figure 7 illustrates
the impact of the threshold range on the En→Vi
experiment. It shows that, regardless of the hy-
perparameter settings, the model performs well in
low-latency scenarios. However, when λ1 is set
to −0.15, the model achieves better performance
in mid- to high-latency conditions. We hypothe-
size that the inclusion of offline training improves
the translation capability of the En→Vi model.
This experiment demonstrates that, when applying
the shift-k method, carefully tuning the threshold
range hyperparameter can enhance translation per-
formance.
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Figure 7: Effect of the cross-attention-based shift-k
training threshold range [λ1, λ2].

6.2 The Prediction Accuracy of the
Read/Write Policy Net

In the DrFrattn method, the read/write policy net-
work plays a critical role in ensuring appropriate
read/write decisions, which in turn balances trans-
lation quality and latency effectively. This sec-
tion examines the prediction accuracy of the policy
network. It is important to note that the values
predicted by the policy net, like those in the Cumu-
lative Attention Matrix shown in Figure 1 (b), are
continuous. Our primary focus is not on the precise
prediction of these values, but rather on whether
suitable read/write paths can be obtained based on
the prediction matrix, given similar read/write la-
tencies. We aim to quantify the differences between
the read/write paths derived from the prediction ma-
trix and the ground truth matrix. Therefore, we use
the area accuracy for evaluating the similarity of
the two paths by aligning them on the same matrix
and calculating the area enclosed by both paths.
The accuracy is then calculated as follows:

Area =
∑T

t=1
|gpred(t)− gground(t)| (12)

Accuracy = 1− Area

|x||y| (13)

When the predicted path exactly matches the
ground truth, the enclosed area is zero, resulting
in an accuracy of 1. We evaluate accuracy on the
Zh→En test set at different AL values and com-
pare it with the wait-k path. Results in Table 1
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show that the well-trained policy network in the
DrFrattn method significantly outperforms the wait-
k method, demonstrating the network’s ability to
learn and apply valuable contextual information for
making accurate read/write decisions.

2 4 6 8 10

13

15

17

19

AL

B
L

E
U

Zh→En

DrFrattn Ground Truth

DrFrattn Prediction

Figure 8: BLEU vs. AL curves comparing between Dr-
Frattn with ground truth cumulative attention value and
standard DrFrattn with predicted cumulative attention
value.

6.3 Upper Bound of the DrFrattn Policy Net

The evaluation of DrFrattn Policy Net’s upper
bound performance quantifies the impact of mod-
eling inaccuracies. This is done by substituting
the predicted cumulative attention values with the
true ones, computed based on the complete source
sentence using Equation 3 and 7 during inferring.
As shown in Figure 8, DrFrattn’s upper bound per-
formance, notably outperforms the results from
the learned policy model. This indicates that the
proposed method still has substantial potential for
improvement, with significant scope to further ap-
proach the upper bound and thereby achieve better
performance.

7 Conclusion

In this paper, we present the DrFrattn policy for si-
multaneous translation tasks, a novel approach for
learning adaptive policies directly from the cross-
attention mechanism. Additionally, we propose
an innovative method for efficient and effective
prefix-to-prefix training for simultaneous transla-
tion models. Experimental results across multiple
benchmarks demonstrate that DrFrattn achieves an
optimal balance between translation quality and
latency, outperforming previous top approaches in
SiMT.

Limitations

In this work, the proposed DrFrattn method does
not allow for the joint training of the backbone
translation model and the read/write policy, unlike
many existing methods. This separation of training
processes introduces additional complexity to the
overall training workflow. However, this approach
also offers increased flexibility, as the DrFrattn pol-
icy can be applied to any attention-based backbone
translation model, allowing it to be integrated into a
variety of architectures. While the split-phase train-
ing procedure may make the training process more
cumbersome, it significantly enhances the adapt-
ability of the method, enabling the use of DrFrattn
with different translation models without requiring
model-specific modifications.
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A Case Study

Here, we present specific cases to demonstrate the effectiveness of the proposed method, as illustrated in
Figure 9 and Figure 10. It can be observed that at certain time steps, the proposed DrFrattn method makes
more reasonable read/write decisions than the previous top SiMT approach, DaP-SiMT, enabling accurate
translation with lower latency.

Figure 9: Case No.226 in BSTC Zh→En test set, evaluated using DaP-SiMT method, with λ = 0.26.

Figure 10: Case No.85 in BSTC Zh→En test set, evaluated using DrFrattn shift-k method, with λ = 0.5. The red
text in strikethrough in the table indicates where the DrFrattn method makes better read/write decisions during
inference compared to the DaP-SiMT approach.
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B Numerical Results

The numerical main results are presented in Table 2.

Main Results (Figure 5)
Mp Wait-k ITST DaP-SiMT DrFrattn wait-k DrFrattn shift-k

Zh→En

AL BLEU AL BLEU AL BLEU AL BLEU AL BLEU
1.31 11.7 0.7 8.91 1.18 13.07 1.09 12.17 0.76 12.66
2.23 13.46 1.46 11.92 1.85 14.67 1.94 14.81 1.23 14.09
2.96 14.37 2.16 14.35 2.8 16.7 2.74 15.94 1.79 15.58
3.87 15.15 2.76 15.55 3.72 17.25 3.55 16.92 2.92 16.56
4.76 16.34 3.5 17.06 4.54 17.73 4.65 17.88 3.39 17.56
5.63 16.98 4.27 17.72 5.06 18.14 5.54 18.13 4.52 18.47
6.45 17.61 4.79 17.95 5.85 18.19 6.85 18.66 5.43 18.56
7.27 17.87 5.74 18.07 6.83 18.76 7.76 18.95 6.73 18.77
8.09 18.05 6.82 18.63 8.36 18.88 8.96 19.1 7.65 19.01
8.82 18.54 7.66 18.58 10.71 18.9 10.95 19.21 8.94 19.52
9.56 18.45 8.74 18.61 14.37 19.23 10.94 19.7
10.26 18.55 9.96 18.75 14.36 19.74
10.9 18.55 13.68 19.15
11.46 18.76

De→En

AL BLEU AL BLEU AL BLEU AL BLEU AL BLEU
0.47 21.08 1.57 19.2 0.49 21.65 1.44 24.97 1.63 26.07
1.45 23.97 2.17 24.71 1.3 24.51 1.97 26.87 2.43 28.03
2.12 26.21 2.77 28.26 2.17 27.12 2.55 28.22 3.49 29.88
3.12 27.15 3.31 28.85 3.25 29.19 3.15 29.58 5.39 30.88
4.1 28.53 4.01 29.55 4.31 29.97 3.58 29.97 6.24 31.15

5.05 29.16 4.82 30.35 5.87 30.84 4.17 30.36 6.98 31.44
6.03 29.72 5.66 30.52 7.65 31.29 5.41 30.86 8.36 31.58
6.97 30.16 6.65 30.91 8.98 31.52 7.13 31.21 9.09 31.66
7.9 30.69 7.7 31.05 10.53 31.6 9.09 31.33 10.16 31.67

8.78 30.86 8.73 31.08 12.53 31.79 11.22 31.55 11.29 31.72
9.7 31.11 9.79 31.2 12.53 31.74 12.5 31.73

10.57 31.2 12.6 31.32
11.42 31.41
12.24 31.41

En→Vi

AL BLEU AL BLEU AL BLEU AL BLEU AL BLEU
3.21 27.87 1.29 23.06 0.89 21.89 0.81 22.3 0.75 22.26
3.93 29.4 1.85 26.33 1.41 27.11 1.31 25.93 1.2 25.81
4.73 30.11 2.44 28.7 1.99 29.31 1.78 28.82 1.61 28.44
5.57 30.14 3.23 29.37 3.06 29.63 2.24 29.43 2.06 29.55
6.43 30.08 3.76 29.5 4.6 30.15 2.9 29.51 2.8 29.9
7.28 30.13 4.42 29.48 5.44 30.09 3.92 29.9 3.88 30.12
8.12 30.14 5.15 29.79 6.25 30.13 4.94 30.08 4.91 30.22
8.93 30.11 5.91 29.83 7.49 30.15 6.11 30.09 6.08 30.17
9.7 30.1 6.7 29.94 8.08 30.2

10.43 30.2 7.69 29.95 8.74 30.17
11.13 30.16 8.67 29.84 9.61 30.01
11.79 30.13 9.93 29.95 10.67 30.11
12.41 30.16 12.58 30.01 11.69 30.1
13.01 30.18

Table 2: Numerical results in Figure 5.
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C Algorithm

The inference process of DrFrattn policy is summarized in Algorithm 1.

Algorithm 1: SiMT inference with the DrFrattn Policy Net
Input: streaming source tokens: X≤j ,

threshold: λ,
target idx: i← 1,
source idx: j ← 1,
max continuous READ constraint: rmax,
current number of continuous READ: rc ← 1

Output: target tokens: Y ← {<BOS>}
1 while Yi−1 ̸= <EOS> do
2 calculate the predicted cumulative attention c with Yi−1 using the DrFrattn policy net

mentioned in 4.2;
3 if c ≤ λ or rc ≥ rmax then
4 translate yi with X≤j ,Y≤i−1;
5 if yi ̸= <EOS> or j ≥ |X| then
6 // execute WRITE action

7 Y.Append(yi);
8 rc ← 0;
9 i← i+ 1;

10 else
11 // execute READ action

12 j ← j + 1;
13 rc ← rc + 1;
14 else
15 // execute READ action

16 j ← j + 1;
17 rc ← rc + 1;
18 return Y
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