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Abstract

Large language models (LLMs) have revolu-
tionized natural language processing, yet their
tendency to hallucinate poses serious chal-
lenges for reliable deployment. Despite numer-
ous hallucination detection methods, their eval-
uations often rely on ROUGE, a metric based
on lexical overlap that misaligns with human
judgments. Through comprehensive human
studies, we demonstrate that while ROUGE
exhibits high recall, its extremely low preci-
sion leads to misleading performance estimates.
In fact, several established detection meth-
ods show performance drops of up to 45.9%
when assessed using human-aligned metrics
like LLM-as-Judge. Moreover, our analysis re-
veals that simple heuristics based on response
length can rival complex detection techniques,
exposing a fundamental flaw in current evalua-
tion practices. We argue that adopting semanti-
cally aware and robust evaluation frameworks
is essential to accurately gauge the true per-
formance of hallucination detection methods,
ultimately ensuring the trustworthiness of LLM
outputs.

1 Introduction

Large language models (LLMs) have transformed
natural language processing, but their tendency to
hallucinate—generating fluent yet factually incor-
rect outputs—poses a critical challenge for real-
world applications (Huang et al., 2025). As LLMs
are increasingly deployed in high-stakes scenarios,
unsupervised hallucination detection has emerged
as a promising solution, offering scalable evalu-
ation without the generalization limitations of a
supervised approach and costly annotation process
(Su et al., 2024). A growing body of work has ex-
plored this direction (Chen et al., 2024; Farquhar
et al., 2024; Du et al., 2024; Nikitin et al., 2024;
Qiu and Miikkulainen, 2024; Duan et al., 2024;
Nguyen et al., 2025), often relying on ROUGE as
the primary correctness metric. ROUGE, originally
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Figure 1: ROUGE-based evaluation fails to reliably
capture true hallucination detection capabilities. Hal-
lucination detection performance (AUROC) comparison
of ROUGE-L and LLM-as-Judge evaluation across
three datasets. Many methods show significant evalua-
tion discrepancies.

developed to assess summary quality based on lex-
ical overlap (Lin, 2004), is used to approximate
factual consistency by applying threshold-based
heuristics: responses with low ROUGE overlap to
reference answers are often labeled as hallucinated.
However, the suitability of ROUGE for assessing
the factual accuracy of Question Answering (QA)
responses, specifically in identifying hallucinations,
has been largely assumed rather than rigorously val-
idated. This assumption is especially critical in QA,
where short, entity-centric answers are thought to
make ROUGE suitable. Our findings show that
even in these contexts, ROUGE can be misleading.

While prior critiques of ROUGE focus on its lim-
itations in capturing fluency or adequacy in long-
form summarization or dialogues (Honovich et al.,
2022; Dziri et al., 2022; Zhong et al., 2022). In
contrast, this paper presents a systematic, large-
scale empirical investigation specifically evaluat-
ing ROUGE’s efficacy in the context of QA hal-
lucination detection. Our analysis goes beyond
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general critiques by quantitatively demonstrating
ROUGE’s key shortcomings—such as its suscepti-
bility to response length—and how these issues can
inflate the reported performance of hallucination
detection methods. Furthermore, while ROUGE
serves as our primary case study due to its ubiquity,
we also demonstrate that other commonly used
metrics share similar vulnerabilities, highlighting a
broader deficiency in current evaluation practices.

To establish a human-aligned benchmark, we
collect human judgments of factual correctness
and compare metric outputs against these gold la-
bels. We find that ROUGE exhibits alarmingly low
precision in identifying actual factual errors. In
contrast, an LLM-as-Judge approach (Zheng et al.,
2023a) aligns far more closely with human assess-
ments. Based on these insights, we re-evaluate
existing detection methods under both ROUGE
and human-aligned criteria, revealing dramatic per-
formance drops (up to 45.9% for Perplexity and
30.4% for Eigenscore) when moving from ROUGE
to LLM-as-Judge evaluation (see Figure 1).

Finally, we uncover a surprising baseline: sim-
ple length-based heuristics can match or exceed
the performance of sophisticated detectors like Se-
mantic Entropy. Through controlled causal experi-
ments manipulating verbosity and input ambiguity,
we demonstrate that longer or more ambiguous re-
sponses are more prone to hallucination and that
metrics like ROUGE can be easily manipulated
through trivial repetition, even when factual con-
tent remains unchanged. Our findings expose a
widespread overestimation of current methods
and underscore the urgent need for more reliable,
human-aligned evaluation metrics in QA hallucina-
tion detection. Our contributions are as follows:

1. A human evaluation study validating
LLM-as-Judge as a reliable metric for factual
correctness, while showing that ROUGE and
other n-gram or semantic metrics are poorly
aligned with human judgments.

2. A systematic re-evaluation of existing hal-
lucination detection methods, revealing that
their reported effectiveness is often overstated
when measured with ROUGE or similar met-
rics, which can hide critical flaws.

3. Identification of response length as a strong
hallucination indicator, with simple length-
based heuristics often matching or surpassing
the performance of more sophisticated meth-
ods.

2 Related Work

Hallucination Detection Methods Recent re-
search has shown that hallucinations in LLMs are
inevitable (Xu et al., 2024), spurring work on two
main detection paradigms: supervised and unsuper-
vised. Supervised methods usually employ probing
classifiers trained on labeled hidden states to detect
hallucinations (Azaria and Mitchell, 2023; Orgad
et al., 2024; Arteaga et al., 2024). While effective,
they depend on costly human annotations and often
fail to generalize across domains. Unsupervised
methods detect hallucinations by estimating uncer-
tainty directly—token-level confidence from single
generations (Ren et al., 2023), sequence-level vari-
ance across multiple samples (Malinin and Gales,
2021; Farquhar et al., 2024), or hidden-state pat-
tern analysis (Chen et al., 2024; Sriramanan et al.,
2024a). While these methods show strong per-
formance on standard benchmarks, our analysis
reveals that simpler length-based baselines can
achieve comparable results—echoing prior find-
ings that simple baselines remain surprisingly com-
petitive and underscoring the need for rigorous
head-to-head comparisons (Fadeeva et al., 2023).

Evaluation Metrics and Their Limitations Tra-
ditional n-gram overlap measures such as ROUGE
(Lin, 2004) remain popular for detecting halluci-
nations, despite their inability to reliably assess
factual consistency (Honovich et al., 2022). Recent
studies have further highlighted these limitations,
particularly in multilingual settings where lexical
overlap proves unreliable compared to NLI-based
approaches (Kang et al., 2024). Even ROUGE-L,
which tracks the longest common subsequence,
often misses errors that leave surface overlap in-
tact. To overcome these shortcomings, a family of
embedding-based metrics — BERTScore (Zhang
et al., 2020), UniEval (Zhong et al., 2022), Align-
Score (Zha et al., 2023), and related approaches —
has been proposed to capture deeper semantic sim-
ilarity. However, embedding-based similarity does
not always align with human assessments of factual
correctness. By contrast, LLM-as-Judge methods
(Zheng et al., 2023a) have shown strong agreement
with human judgments in QA tasks (Thakur et al.,
2025), offering a more reliable alternative. Our
study builds on these insights by exposing the blind
spots of ROUGE and other metrics, and validating
LLM-as-Judge as a more faithful framework for
factual evaluation.
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3 Experimental Setup

3.1 Overview
Our experimental design aims to investigate both
the shortcomings of current evaluation methods
and the effectiveness of simpler alternatives.

3.2 Datasets and Models
For our experiments, we use three established QA
datasets, each with distinct characteristics:

• NQ-Open (Kwiatkowski et al., 2019): Con-
tains 3,610 question-answer pairs drawn from
real Google search queries, representing natu-
ral information-seeking behavior

• TriviaQA (Joshi et al., 2017): A subset of
3,842 examples from the validation set, featur-
ing trivia questions that often require specific
factual knowledge

• SQuAD (Rajpurkar et al., 2018): 4,150 ex-
amples from the validation set (rc.nocontext),
characterized by longer, more complex ques-
tions and answers

NQ-Open and TriviaQA primarily feature
shorter questions and answers, whereas SQuADv2
contains longer inputs, making it suitable for evalu-
ating our method in more complex contexts.

We generated answers using two open-source
LLMs: LLAMA3.1-8B-INSTRUCT1 (Grattafiori,
2024) and MISTRAL-7B-INSTRUCT-V0.32 (Jiang
et al., 2023). For simplicity, we refer to these mod-
els as LLAMA and MISTRAL in our plots and ta-
bles.

3.3 Hallucination Detection Baselines
We compare our approach against established base-
lines that fall into two categories. Uncertainty-
based methods estimate model confidence, in-
cluding Perplexity (Ren et al., 2023), Length-
Normalized Entropy (LN-Entropy) (Malinin and
Gales, 2021), and Semantic Entropy (SemEntropy)
(Farquhar et al., 2024), which use multiple gen-
erations to capture sequence-level uncertainty.
Consistency-based methods analyze internal rep-
resentations. EigenScore (Chen et al., 2024) com-
putes generation consistency via eigenvalue spectra,
while LogDet (Sriramanan et al., 2024a) measures
covariance structure from single generations. We
also evaluate Effective Rank (eRank) (Roy and Vet-
terli, 2007; Garrido et al., 2023), an intrinsic dimen-

1hf.co/meta-llama/Llama-3.1-8B-Instruct
2hf.co/mistralai/Mistral-7B-Instruct-v0.3

sionality measure we adapt as a novel hallucination
indicator (see Appendix F.1).

3.4 Ground Truth Labels

To obtain reliable ground truth labels for evaluating
the correctness of generated responses, we utilize
two complementary approaches:

LLM-as-Judge leverages GPT-4o-Mini (et al.,
2024) for semantic assessment, following the
methodology outlined in (Zheng et al., 2023b) and
using a prompt adapted from (Orgad et al., 2025).
This approach classifies generated responses into
three categories: "correct," "incorrect," or "refuse"
(with "refuse" being treated as a hallucination). By
focusing on semantic equivalence and factual accu-
racy, this method goes beyond surface-level com-
parisons and exhibits strong alignment with human
judgments (Thakur et al., 2025).

ROUGE-L F1 Score (Lin, 2004) measures the
longest common subsequence between the gener-
ated response and the ground truth. Consistent
with prior work (Farquhar et al., 2024), we ap-
ply a threshold of 0.3 for this metric. Including
ROUGE-L allows us to compare our findings with
existing literature and highlight the limitations of
relying solely on lexical overlap for evaluating fac-
tual correctness. It helps to quantify the discrep-
ancy between semantic understanding (assessed by
the LLM judge) and simple word matching.

3.5 Evaluation Metrics

We employ Area Under the Receiver Operating
Characteristic curve (AUROC) and Area Under the
Precision-Recall curve (PR-AUC) as our primary
evaluation metrics. AUROC assesses the ability of
a hallucination detection method to correctly rank
positive and negative instances (hallucinations vs.
non-hallucinations). PR-AUC is particularly valu-
able when dealing with imbalanced datasets, which
is often the case in hallucination detection, where
non-hallucinated responses might be more frequent.
Both metrics offer a threshold-independent evalua-
tion of the ranking performance (Lin et al., 2023).

3.6 Implementation Details

We utilize pretrained model weights from the Hug-
ging Face Transformers (Wolf et al., 2020) without
any additional fine-tuning. Following (Farquhar
et al., 2024), we generate 10 samples (n = 10)
using temperature 1.0 for uncertainty estimation.
Additionally, we generate one "best answer" sam-
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ple with a temperature of 0.1 to serve as the best-
generation estimate for performance evaluation.

The models are evaluated in both zero-shot and
few-shot (k = 5) settings:

• Zero-shot: Models rely solely on their pre-
existing knowledge, testing base capabilities

• Few-shot: Models receive five carefully se-
lected examples demonstrating the expected
answer formats

Both settings use a standardized prompt de-
signed to elicit concise answers. The specific
prompt, adapted from (Kossen et al., 2024), can be
found in Appendix D. We report results for a single
run unless specified otherwise.

4 Human Evaluation: The Gold Standard

Before analyzing the technical problems of hallu-
cination detection methods, we first establish that
commonly used evaluation metrics—specifically
ROUGE—are poorly aligned with human judg-
ments of factual correctness (Honovich et al.,
2022; Kang et al., 2024). In contrast, an evalua-
tion method based on LLM-as-Judge demonstrates
much closer agreement with human assessments
(Thakur et al., 2025). To illustrate this, we con-
ducted a comprehensive human evaluation study.

Study Design We randomly selected 200 ques-
tion–answer pairs from the Mistral answers on the
NQ-Open dataset, ensuring a balanced representa-
tion of cases where ROUGE and LLM-as-Judge
yield conflicting hallucination assessments. Each
answer was independently assessed by three anno-
tators using standardized guidelines from (Thakur
et al., 2025), classifying responses as correct, in-
correct, or refuse (we then classify model refusal
as incorrect). The high inter-annotator agreement
(Cohen’s Kappa = 0.799) confirms the reliability
of human judgments.

Key Findings Our results reveal a significant
performance gap between LLM-as-Judge and
ROUGE when benchmarked against human con-
sensus. While ROUGE demonstrates high recall,
it suffers from low precision, flagging many non-
hallucinated content as errors. LLM-as-Judge
achieves significantly higher precision, aligning
more closely with human assessments, as shown in
Table 1.

Implications Our findings underscore that
ROUGE is a poor proxy for human judgment in
evaluating hallucination detection. Despite its high

Table 1: LLM-as-Judge provides superior alignment
with human judgment. Comparison of ROUGE (with
standard 0.3 threshold) and LLM-as-Judge against hu-
man labels.

Method Precision Recall F1-Score Agreement

LLM-as-Judge 0.736 0.957 0.832 0.723
ROUGE 0.401 0.957 0.565 0.142

precision, ROUGE fails to capture many critical
errors, resulting in a significant misalignment with
human assessments of factual correctness. In con-
trast, LLM-as-Judge exhibits strong agreement
with human evaluations—achieving both high pre-
cision and recall—which motivates its adoption
as a more robust, semantically aware evaluation
method throughout this work.

5 Re-evaluating Hallucination Detection
Methods

5.1 Limitations of ROUGE for Factual
Accuracy Assessment in QA

The predominant reliance on ROUGE for evaluat-
ing QA hallucination detection methods warrants
careful scrutiny, as its core design for lexical over-
lap does not inherently capture factual correctness.
Our in-depth analysis, presented in Appendix G,
reveals several critical failure modes that systemati-
cally undermine ROUGE’s utility for this task. Key
limitations include: sensitivity to response length,
inability to handle semantic equivalence and sus-
ceptibility to false lexical matches.
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Figure 2: ROUGE produces systematic errors across
all evaluation settings. Distribution of False Negatives
and False Positives across different datasets and models
highlights the inconsistency in ROUGE’s evaluation.

These failure modes, illustrated with concrete ex-
amples and error distributions in Figure 2, highlight
the potential for ROUGE to provide a misleading
assessment of both LLM responses and the effi-
cacy of hallucination detection techniques. This
underscores the need for evaluation against more
human-aligned metrics.
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Table 2: Detection methods show dramatic performance drops when evaluated against human-aligned metrics
instead of ROUGE. Performance comparison using AUROC scores for LLAMA and MISTRAL models across three
datasets in zero-shot setting, where negative ∆% values reveal ROUGE’s overestimation of method effectiveness.

Model Metric
NQ-Open SQuAD Trivia-QA Mean

ROUGE LLM ∆% ROUGE LLM ∆% ROUGE LLM ∆% ROUGE LLM ∆%

LLAMA

Perplexity 0.709 0.700 -1.2 0.703 0.687 -2.4 0.733 0.789 7.2 0.715 0.725 1.2
LN-Entropy 0.521 0.605 13.9 0.558 0.611 8.7 0.563 0.636 11.5 0.547 0.617 11.4
SE 0.778 0.742 -4.8 0.707 0.705 -0.2 0.769 0.832 7.6 0.751 0.760 0.9
Eigenscore 0.816 0.686 -19.0 0.720 0.638 -12.7 0.752 0.734 -2.5 0.763 0.686 -11.4
eRank 0.825 0.632 -30.6 0.754 0.621 -21.4 0.717 0.660 -8.6 0.765 0.638 -20.2
LogDet 0.511 0.515 0.7 0.521 0.536 2.7 0.604 0.509 -18.6 0.545 0.520 -5.1

MISTRAL

Perplexity 0.852 0.584 -45.9 0.516 0.500 -3.2 0.843 0.627 -34.4 0.737 0.570 -27.8
LN-Entropy 0.718 0.645 -11.3 0.734 0.657 -11.7 0.586 0.596 1.8 0.679 0.633 -7.1
SE 0.836 0.729 -14.7 0.784 0.701 -11.9 0.726 0.707 -2.6 0.782 0.712 -9.7
Eigenscore 0.873 0.669 -30.4 0.803 0.648 -24.0 0.775 0.652 -18.9 0.817 0.656 -24.4
eRank 0.925 0.678 -36.4 0.518 0.511 -1.3 0.851 0.645 -31.9 0.765 0.611 -23.2
LogDet 0.628 0.508 -23.6 0.562 0.518 -8.5 0.843 0.606 -39.2 0.678 0.544 -23.8

5.2 Quantifying the Evaluation Gap: ROUGE
vs. LLM-as-Judge

Given the outlined limitations of ROUGE, we re-
evaluated existing unsupervised hallucination de-
tection methods using LLM-as-Judge, which, as
validated by our human study, offers a closer align-
ment with human judgments of factual correctness.

Main results As detailed in Table 2, hallucina-
tion detection methods that show promise under
ROUGE often suffer a substantial performance
drop when re-evaluated with LLM-as-Judge. For
instance, Perplexity sees its AUROC score plum-
met by as much as 45.9% for the MISTRAL model
on NQ-Open. Similarly, Eigenscore performance
erodes by 19.0% and 30.4% for LLAMA and MIS-
TRAL, respectively, on the same dataset. Even
eRank, which posts impressive ROUGE-based
scores, experiences a sharp decline of 30.6% and
36.4% under the LLM-as-Judge paradigm. More-
over, when evaluated using PR-AUC, we observe
even larger performance discrepancies across all
methods (see Tables 12 and 16 in the Appendix
H.2); this amplifies the impact of class imbalance
in the QA setup, as further evidenced by the low
QA accuracies reported in Table 13.

Correlation This systematic discrepancy, visu-
ally underscored by the scatter plot in Figure 3,
points to a fundamental inadequacy in ROUGE’s
ability to reflect true hallucination detection perfor-
mance. The moderate Pearson correlation coeffi-
cient (r = 0.55) between the AUROC scores de-
rived from these two evaluation approaches further
suggests that methods may be inadvertently opti-
mized for ROUGE’s lexical overlap criteria rather
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Figure 3: ROUGE and human-aligned evaluations
show weak correlation across detection methods.
Correlation between ROUGE and LLM-as-Judge AU-
ROC scores for the MISTRAL model, with each point
representing a metric’s performance on specific dataset.

than genuine factual correctness. Notably, among
the evaluated detection techniques, only Semantic
Entropy maintains a degree of relative stability,
exhibiting more modest performance variations be-
tween the two evaluation frameworks.

5.3 Impact of Few-Shot Examples on
Evaluation Reliability

Our analysis of few-shot versus zero-shot settings
reveals three key patterns in how examples affect
evaluation stability (Table 3).

Improved Metric Stability Few-shot settings
consistently yield more reliable evaluations across
metrics. For LLAMA, the discrepancy between
ROUGE and LLM-as-Judge narrows significantly
with few-shot examples. For instance, eRank per-
formance drop (for LLAMA) reduces from −16.7%
in zero-shot to just −4.2% in few-shot settings.
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This suggests that few-shot examples help standard-
ize response formats with more consistent evalua-
tion.

Table 3: Few-shot examples reduce but don’t elimi-
nate evaluation biases. Performance comparison show-
ing relative differences between ROUGE and LLM-as-
Judge in both settings.

Model Metric
Few-Shot Zero-Shot

ROUGE LLM ∆(%) ROUGE LLM ∆(%)

LLAMA

Perplexity 0.783 0.784 0.0 0.715 0.725 1.5
LN-Entropy 0.738 0.759 2.8 0.547 0.617 12.8
SE 0.742 0.773 4.2 0.751 0.760 1.1
Eigenscore 0.761 0.747 -1.9 0.763 0.686 -10.0
eRank 0.707 0.678 -4.2 0.765 0.638 -16.7

MISTRAL

Perplexity 0.806 0.645 -20.0 0.747 0.579 -22.4
LN-Entropy 0.754 0.659 -12.5 0.679 0.633 -6.8
SE 0.750 0.732 -2.4 0.782 0.712 -8.9
Eigenscore 0.760 0.694 -8.7 0.817 0.656 -19.7
eRank 0.829 0.697 -15.9 0.773 0.612 -20.8

Model-Specific Effects The impact of few-shot
examples varies notably between models. MIS-
TRAL shows pronounced degradation in zero-shot
settings, with performance drops up to 45.9%
(Perplexity), while LLAMA maintains more con-
sistent performance, with some metrics showing
minimal degradation. This variation suggests that
the architecture and pre-training may influence the
effectiveness of few-shot calibration.

Metric Robustness Different metrics show vary-
ing levels of stability across settings. Semantic
Entropy maintains the most consistent perfor-
mance in both settings, while traditional metrics
like Perplexity or LN-Entropy show higher sen-
sitivity to setting changes.

Implications While few-shot examples generally
improve evaluation reliability, the degree of im-
provement varies significantly across models and
metrics. This suggests that robust hallucination de-
tection systems should be validated under both con-
ditions to ensure consistent performance across de-
ployment scenarios. Of particular note is that few-
shot examples reduce evaluation discrepancies by
providing answer formats that more closely align
with gold-standard responses. This indicates that
some of the apparent improvements in few-shot set-
tings may come from better format matching rather
than enhanced factual assessment.

5.4 Evaluating beyond ROUGE

While ROUGE remains a widely adopted metric,
its limitations underscore broader concerns about
the reliability of lexical evaluation methods. To

assess whether alternative metrics fare better, we
extended our analysis to several others frequently
used or proposed for text evaluation, including lex-
ical metrics such as BLEU (Papineni et al., 2002)
and semantic metrics such as BERTScore (Zhang
et al., 2020), SummaC (Laban et al., 2022), and
UniEval-fact (Zhong et al., 2022). We evaluated
these metrics in both few-shot and zero-shot set-
tings, benchmarking their outputs against our LLM-
as-Judge labels, which show strong alignment with
human judgments (see Table 1).

Table 4: All metrics show limited alignment with
human-like judgment, underscoring their shortcom-
ings in capturing factual correctness. Agreement of
different correctness metrics with LLM-as-Judge labels
in zero-shot settings. The results averaged across three
QA datasets: NQ-Open, SQuAD, and TriviaQA.

Model Metric PRAUC AUROC F1 Precision Recall

LLAMA

BERTScore 0.735 0.769 0.723 0.609 0.934
BLEU 0.758 0.624 0.673 0.539 0.982
ROUGE 0.891 0.878 0.812 0.728 0.926
SummaC 0.826 0.782 0.725 0.616 0.944
UniEval 0.828 0.830 0.762 0.739 0.804

MISTRAL

BERTScore 0.736 0.730 0.725 0.586 0.990
BLEU 0.799 0.682 0.712 0.573 0.996
ROUGE 0.865 0.825 0.757 0.629 0.971
SummaC 0.836 0.778 0.758 0.648 0.950
UniEval 0.720 0.706 0.693 0.674 0.746

Performance of Alternative Metrics As shown
in Table 4, these alternative metrics also exhibit
substantial shortcomings in reliably detecting hallu-
cinations in QA tasks, particularly under zero-shot
conditions. For example, BERTScore—despite
leveraging contextual embeddings—often fails to
outperform simpler lexical metrics in aligning with
our LLM-as-Judge labels. BLEU and UniEval-fact
similarly demonstrated limited effectiveness.

Implications These results suggest that the inad-
equacies of ROUGE are not isolated, but indicative
of a broader challenge: current lexical and semantic
metrics struggle to capture factual consistency, of-
ten favouring surface-level similarity or structural
features such as length. Even when employing
few-shot prompting (see Table 14 in the Appendix
I), which can help with answer formatting, these
metrics remain fundamentally constrained in their
ability to assess factual correctness.

6 The Length Factor: A Hidden Signal in
Hallucination Detection

Our analysis reveals a surprising and significant
finding: response length alone serves as a powerful
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signal for detecting hallucinations. This discovery
challenges conventional wisdom about hallucina-
tion detection and raises fundamental questions
about the complexity needed in detection methods.
Our investigation demonstrates that: (1) Simple
length statistics can serve as surprisingly effective
hallucination detectors, often matching or exceed-
ing more sophisticated methods; (2) The strong
influence of length on current evaluation methods
raises concerns about their ability to assess factual
correctness independently of response verbosity;
(3) This relationship may provide insights into the
underlying mechanisms of how LLMs generate in-
correct information.

6.1 Length Patterns in Hallucinated
Responses

correct incorrect
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Figure 4: Hallucinations have a distinct length signa-
ture in model outputs. Distribution of answer lengths
for MISTRAL in a few-shot settings with LLM-as-Judge
labels, showing incorrect answers tend to be longer.

Analysis of response distributions using LLM-
as-Judge labels reveals a striking pattern: halluci-
nated responses tend to be consistently longer and
show greater length variance (Figure 4). While our
primary experiments focus on short-form QA, this
pattern also holds across other tasks. In particular,
analysis of the HaluEval dataset—which includes
summarization and dialogue tasks—confirms that
length-based hallucination patterns generalize be-
yond QA (Figure 6 in Appendix J.1), suggesting
a fundamental relationship between verbosity and
hallucination.

This tendency toward longer responses likely re-
flects two key mechanisms. First, models attempt
to maintain coherence while generating incorrect
information, leading to additional context and elab-
oration. Second, initial errors often cascade into
further mistakes, creating a "snowball effect" of
increasing verbosity (Zhang et al., 2023)

6.2 Length Correlations with Existing
Methods

To quantify this relationship, we examined corre-
lations between response length and various hal-
lucination detection metrics. Our analysis reveals

Figure 5: ROUGE’s bias against long responses un-
dermines its reliability. Distribution of answer length
versus ROUGE score for MISTRAL in few-shot set-
tings, revealing a strong correlation between length and
ROUGE scores.

two critical findings. First, established methods
show unexpectedly strong length correlations (see
Table 5): Eigenscore and eRank exhibit particu-
larly high correlations, suggesting these supposedly
sophisticated methods may be primarily detect-
ing length variations rather than semantic features.
Second, ROUGE scores demonstrate a systematic
length bias: As shown in Figure 5, responses ex-
ceeding 100 tokens consistently receive scores be-
low the 0.3 threshold, regardless of factual accuracy.
This aligns with prior observations of hallucina-
tion snowballing (Zhang et al., 2023), where LLMs
compound initial errors with additional mistakes.

Table 5: Sophisticated detection methods primarily
capture length effects. Pearson correlation coefficients
between metrics and length, showing unexpectedly high
values.

Method Llama Mistral

LogDet -0.185 0.311
Perplexity 0.841 -0.423
eRank 0.763 0.803
Eigenscore 0.826 0.894
LN-Entropy 0.305 -0.753
Semantic Entropy 0.436 0.631

These correlations raise fundamental questions
about whether current hallucination detection meth-
ods are truly capturing semantic features or simply
leveraging length-based patterns.

6.3 Length as a Competitive Baseline
Given these strong correlations, we developed three
simple length-based metrics: the raw length of a
single generation (Len), the average length across
multiple generations (Mean-Len), and the standard
deviation of lengths across generations (Std-Len).

Evaluation results (Table 6) demonstrate that
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these straightforward metrics achieve surprisingly
competitive performance. The Mean-Len metric
matches or outperforms sophisticated approaches
like Eigenscore and LN-Entropy across multiple
datasets. Response length variability proves to be
a key indicator, with Std-Len showing particular
effectiveness in identifying hallucinations. Per-
haps most surprisingly, even the simple Len metric
achieves competitive performance, challenging the
fundamental need for complex detection methods.

Table 6: Simple length-based metrics achieve com-
petitive performance with sophisticated detection
methods. Hallucination detection performance (AU-
ROC) compared across datasets and models using LLM-
as-Judge since it shows better alignment with human
judgements.

Model Metric NQ-Open SQuAD Trivia-QA Mean

LLAMA Perplexity 0.767 0.758 0.826 0.784
LN-Entropy 0.732 0.717 0.829 0.759
SE 0.730 0.741 0.849 0.773
Eigenscore 0.744 0.733 0.762 0.747
eRank 0.714 0.681 0.638 0.678
Len 0.686 0.687 0.640 0.671
Mean-Len 0.730 0.716 0.716 0.721
Std-Len 0.727 0.721 0.806 0.751

MISTRAL Perplexity 0.632 0.636 0.637 0.635
LN-Entropy 0.619 0.667 0.692 0.659
SE 0.734 0.698 0.765 0.732
Eigenscore 0.686 0.691 0.706 0.694
eRank 0.698 0.690 0.703 0.697
Len 0.664 0.685 0.729 0.693
Mean-Len 0.683 0.705 0.750 0.713
Std-Len 0.577 0.589 0.665 0.610

6.4 Towards Causal Understanding of Length
and Hallucination

To probe the relationship between response length
and hallucination, we designed controlled exper-
iments that manipulate factors such as verbosity,
ambiguity, and complexity, with an additional anal-
ysis of adversarial versus non-adversarial questions
reported for TriviaQA in Appendix 15. These
follow-up experiments serve as valuable extensions,
complementing the paper’s primary contribution of
exposing and challenging critical shortcomings in
current hallucination evaluation, rather than aim-
ing to definitively identify causal mechanisms (see
Section N for further discussion).

The Repetition Experiment To demonstrate
how ROUGE can be trivially misled by superficial
changes in response length, even when factual con-
tent remains unchanged, we conducted a controlled
experiment using systematic repetition. We mod-
ified model outputs by iteratively duplicating sen-
tences while maintaining the same factual content.

Results in Table 7 reveal a concerning trend: AU-
ROC scores consistently improve with increased
repetition, even though the information content re-
mains unchanged. This experiment highlights a
critical distinction: while verbose or repetitive re-
sponses may be inefficient, they aren’t necessarily
hallucinations if the core information is correct.
However, current evaluation approaches, includ-
ing both ROUGE and length-based metrics, fail to
make this distinction.

Table 7: ROUGE scores can be manipulated through
simple repetition. AUROC measurements for MIS-
TRAL when repeating the same content multiple times.

Dataset 0 1 2 4

NQ-Open 0.852 0.935 (+9.7) 0.955 (+12.1) 0.964 (+13.1)
SQuAD 0.842 0.894 (+6.2) 0.909 (+8.0) 0.948 (+12.6)
Trivia-QA 0.843 0.901 (+6.9) 0.907 (+7.6) 0.919 (+9.0)

The Controlled Intervention (Isolating Length)
To address the "correlation vs. causation" concern,
we designed a controlled intervention experiment
that isolates response length while holding the core
factual content constant. Our hypothesis is that if
response length is a causal factor in hallucination,
then prompting the model to generate longer an-
swers—even when the content is correct—should
increase the likelihood of subtle hallucinations or
factual drift. Prompts were designed to elicit an-
swers that preserve the same underlying factual
content, differing primarily in verbosity. For each
question in the test set, we prompted the model in
a few-shot setting to generate answers under four
different prompt conditions: Concise (original),
Short (to test sensitivity), Regular , and Verbose
(see Appendix L.1 for full prompts). Table 8 re-
ports the mean answer length, quartiles (Q1, Q2
[median], Q3), and accuracy (1 – hallucination
rate).

Table 8: Effect of response length on hallucination:
longer answers are more prone to factual drift.

Prompt Label Mean Q1 Q2 Q3 Accuracy

Concise correct 29.5 9 16 36.5 0.697
Concise incorrect 65.7 21 46 89 0.697
Short correct 28.7 10 16 37 0.698
Short incorrect 60.3 20 43 84 0.698
Regular correct 104.2 53 94 162 0.634
Regular incorrect 140.7 82 160 193 0.634
Long correct 196.9 181 196 212 0.604
Long incorrect 197.1 182 197 213 0.604
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Concise prompts yield much shorter and more
accurate answers, and instructing brevity consis-
tently lowers hallucination rates, supporting the
view that longer outputs are more prone to subtle
factual drift. The model follows brevity instruc-
tions more reliably when confident in its answer,
which may explain the higher accuracy of short
responses. These results indicate that longer re-
sponses may inadvertently introduce irrelevant or
incorrect information, even when the underlying
answer is known to the model. Thus, response
length appears to be a contributing causal factor to
hallucination—not merely correlated.

Deconstructing Hallucination Triggers To in-
vestigate which input factors most strongly induce
hallucination, we introduce two types of controlled
perturbations to the TriviaQA dataset while keep-
ing the original questions intact. The Ambiguous
Input variant rewrites questions to be indirect or
under-specified, and the Distractor Context vari-
ant prepends a 2–3 sentence paragraph containing
the correct answer alongside plausible but mislead-
ing details (full procedure in Appendix L.2). In
Table 9, we report the mean answer length, quar-
tiles (Q1, Q2 [median], Q3), and accuracy, defined
as 1–hallucination rate for each condition.

Table 9: Effect of input perturbations on halluci-
nation: Ambiguous questions substantially increase
response length and hallucination, whereas distractor
context has a smaller effect.

Modification Label Mean Q1 Q2 Q3 Accuracy

Ambiguous correct 48.4 13 28.5 66.0 0.564
Ambiguous incorrect 83.6 25 62.5 133.2 0.564
Distractor correct 33.2 10 16.0 41.0 0.671
Distractor incorrect 76.9 18 51.0 126.0 0.671
Regular correct 29.0 9 16.0 35.2 0.664
Regular incorrect 66.3 18 44.0 90.5 0.664

When comparing across conditions, we observe
that regular questions produce the shortest re-
sponses, while adding distractor context modestly
increases the average answer length—especially in
the upper tail—without harming accuracy. In con-
trast, ambiguous inputs trigger substantially longer
answers and a pronounced drop in accuracy, indi-
cating a higher hallucination rate. These findings
suggest that input ambiguity is a more potent trig-
ger for hallucination than misleading context: the
model can effectively filter out distractors when the
context is noisy but struggles when the question
itself is underspecified.

7 Discussion

Our results reveal a clear misalignment between
ROUGE and human judgments in identifying hal-
lucinations. Despite the short, focused nature
of QA answers—where n-gram overlap might
seem sufficient—these metrics consistently reward
fluent yet factually incorrect responses. While
careful prompt engineering or dataset-specific
post-processing may offer marginal improvements,
these approaches often lack scalability and gen-
eralizability. As our experiments show, models
frequently disregarded explicit brevity instructions
(see Appendix D), making universally reliable
prompts difficult to achieve.

Beyond ROUGE, evaluation with more sophisti-
cated semantic metrics—BERTScore, BLEU, and
UniEval-fact—against a strong LLM-based eval-
uator similarly revealed substantial disagreement,
highlighting their limitations in capturing factual
consistency. This is further underscored by our
finding that simple response length can often be
a more effective indicator of hallucinations than
some sophisticated detection methods, question-
ing the current trajectory of detector development.
Controlled interventions further show that longer
responses, even when factually correct, are more
prone to subtle factual drift, while input ambigu-
ity exerts an even stronger effect, increasing both
response length and hallucination rates. Together,
these findings indicate that although verbosity can
exacerbate hallucinations, the underlying input and
reasoning dynamics are the primary determinants.
Overall, our observations call for more robust, se-
mantically aware evaluation paradigms that move
beyond surface-level overlap metrics.

8 Conclusions

We demonstrate that prevailing overlap-based met-
rics systematically overestimate hallucination de-
tection performance in QA, leading to illusory
progress. LLM-as-Judge evaluation, validated
against human judgments, exposes steep perfor-
mance drops across all methods when judged for
factual accuracy. Moreover, because simple signals
like answer length can match complex detectors,
we caution against over-engineering; effective base-
lines are essential for meaningful advancement.
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Limitations

While our study provides valuable insights into
the limitations of ROUGE for hallucination detec-
tion, several constraints should be acknowledged.
First, our analysis primarily focuses on a subset
of LLMs and datasets, which may not fully cap-
ture the diversity of models and tasks in the field.
Consequently, the generalizability of our findings
to other contexts remains to be validated. Sec-
ond, although we propose response length as a
simple yet effective heuristic for detecting halluci-
nations, this approach may not account for nuanced
cases where longer responses are factually accurate.
Additionally, our reliance on LLM-as-Judge as a
benchmark for human-aligned evaluation, while
more robust than ROUGE, is not without its biases
and limitations. Future work should expand the
scope of the analysis to include a broader range
of models and datasets, beyond short question an-
swering task. Finally, while our controlled experi-
ments highlight the potential for the manipulation
of ROUGE scores, further research is needed to de-
velop metrics that are both robust against such ma-
nipulations and aligned with human judgment. The
primary risk is that over-reliance on length-based
heuristics and potentially biased human-aligned
metrics could lead to inaccurate assessments of
hallucination detection methods, resulting in the
deployment of LLMs that may not reliably ensure
factual accuracy in high-stakes applications.
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Appendix

A Licenses and Computational Resources

A.1 Datasets, models license

The datasets and models used in this study are sub-
ject to specific licenses. NQ-Open, TriviaQA, and
SQuAD are available under licenses that permit
academic use. The LLAMA3.1-8B-INSTRUCT and
MISTRAL-7B-INSTRUCT-V0.3 models are open-
source and can be accessed under their respec-
tive licenses, which allow for research and non-
commercial use.3

A.2 Hardware Specifications

We generated data using Nvidia A40 with 40GB
VRAM. For the remaining computations, we used
CPU.

B Human Involvement and Ethics

B.1 Annotator Recruitment and Consent

Participants were recruited through personal net-
works (friends and acquaintances) and participated
voluntarily without financial compensation. They
were informed of the study’s purpose and data
usage beforehand. Verbal consent was obtained,
and no personally identifiable information was col-
lected. Participants had the right to withdraw at
any time.

B.2 Demographics

All annotators were residents of Poland. No system-
atic collection of age, gender, or other demographic
information was conducted.

3For detailed license information, please refer to the re-
spective dataset and model documentation.
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C Use of AI Assistance

AI assistants, such as ChatGPT, were utilized in var-
ious aspects of the research, including coding, data
analysis, and writing tasks. These tools helped au-
tomate repetitive tasks, generate initial drafts, and
assist in exploring potential solutions. However, all
AI-generated outputs were reviewed and refined by
researchers to ensure accuracy and coherence.

D Main Prompts

We used the following prompt formats to elicit
responses from the models:

• QA (Zero-shot): Minimal prompt with no
examples (Listing 1)

• QA (Few-shot): Adapted from (Kossen et al.,
2024), includes multiple QA examples (List-
ing 2)

• LLM-as-Judge: Evaluation prompt with cor-
rectness labels, adapted from (Orgad et al.,
2024) (Listing 3)

Listing 1: Zero-shot prompt template
Answer the following question as briefly

as possible.

Question: {question}
Answer:

Listing 2: QA (Few-shot) prompt template
Answer the following question as briefly

as possible.

Here are several examples:

Question: What is the capital of France?
Answer: Paris

Question: Who wrote Romeo and Juliet?
Answer: William Shakespeare

Question: What is the boiling point of
water in Celsius?

Answer: 100

Question: How many continents are there
on Earth?

Answer: Seven

Question: What is the fastest land
animal?

Answer: Cheetah

Question: {question}
Answer:

Listing 3: LLM-as-Judge prompt template
Answer the following question as briefly

as possible.

Here are several examples:

Question: who is the young guitarist who
played with Buddy Guy?

Ground Truth: Quinn Sullivan , Eric Gales
Model Answer: Ronnie Earl
Correctness: incorrect

Question: What is the name of the actor
who plays Iron Man in the Marvel
movies?

Ground Truth: Robert Downey Jr.
Model Answer: Robert Downey Jr. played

the role of Tony Stark/Iron Man in
the Marvel Cinematic Universe films.

Correctness: correct

Question: What is the capital of France?
Ground Truth: Paris
Model Answer: I don 't have enough

information to answer this question.
Correctness: refuse

Question: Who was the first person to
walk on the moon?

Ground Truth: Neil Armstrong
Model Answer: I apologize , but I cannot

provide an answer without verifying
the historical facts.

Correctness: refuse

Question: {question}
Ground Truth: {gold}
Model Answer: {prediction}
Correctness:

E Additional Analysis of Human
Evaluation

For the human evaluation component of our study
(Section 4), we intentionally curated a dataset of
instances where ROUGE and our LLM-as-Judge
metric provided conflicting assessments regarding
the presence of hallucinations. This targeted se-
lection strategy was employed to enable a focused
examination of ROUGE’s specific failure modes.
By concentrating on these points of disagreement,
we aimed to gain deeper insights into the scenarios
where ROUGE’s reliance on lexical overlap demon-
strably misaligns with human judgments of factual
accuracy and overall response quality.

F Evaluation Metrics and Hallucination
Detection

F.1 eRank
eRank leverages eigenvalue-based entropy estima-
tion in hidden states:
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eRank = exp

(
−

m∑

k=1

pk log pk

)
(1)

where pk = λk∑m
j=1 λj

, and λk are the eigenvalues of

the covariance matrix Σ = ZTZ computed on the
hidden states Z.

We use Effective Rank (eRank) as a proxy for
how “spread out” or “diverse” the final-layer hid-
den representations are; however, we can also use
the hidden representation from the middle-layer.
Intuitively, if the model’s representation space col-
lapses to fewer dimensions (i.e., low eRank), it may
indicate that the model is relying on less context or
ignoring crucial input signals—often manifesting
as hallucinations. Conversely, a higher eRank sug-
gests a richer, more nuanced encoding of the input,
which typically correlates with more grounded and
accurate responses. This approach builds on prior
work (Sriramanan et al., 2024b) (LogDet), which
computes the log-determinant of the covariance
matrix.

While initial evaluations under ROUGE sug-
gested some promise, we found that eRank did
not consistently correlate with hallucination rates
across all datasets and settings when assessed us-
ing human-aligned metrics. These ’negative results’
illustrate how ROUGE’s limitations can mislead
method development.

G Understanding ROUGE’s Failure
Modes

Through detailed error analysis, we identify three
critical limitations in ROUGE’s evaluation ap-
proach: (1) sensitivity to response length, (2) inabil-
ity to handle semantic equivalence, and (3) over-
reliance on exact lexical matches. Our analysis
reveals that these limitations lead to both false neg-
atives—factually correct responses marked as in-
correct—and false positives—incorrect responses
receiving high scores. As shown in Figure 2, these
errors occur frequently across different datasets and
models.

G.1 Length-Based Penalties

Question: When was Pride and Prejudice writ-
ten?
Prediction: “Pride and Prejudice was written
by Jane Austen and published in 1813.”
Gold Answer: “1813’

ROUGE systematically penalizes factually cor-
rect but verbose answers. In this example, despite
providing accurate information with helpful con-
text, the response receives a low score purely due
to length mismatch. As shown in Figure 5, this bias
affects longer responses regardless of their factual
accuracy, with responses exceeding 100 tokens con-
sistently scoring below our 0.3 threshold. Notably,
this is the most frequent type of error ROUGE
makes.

G.2 Semantic Equivalence Failures

Question: What is one element a topographic
map shows?
Prediction: “Elevation”
Gold Answer: “Relief”
ROUGE fails to recognize semantic equivalence

between different phrasings. Here, despite "ele-
vation" and "relief" being contextually equivalent
terms in topography, ROUGE assigns a lower score
due to lexical mismatch. This limitation systemati-
cally undervalues responses that use valid alterna-
tive terminology.

G.3 False Lexical Matches
Question: “How many episodes of Grey’s
Anatomy season 14?”
Prediction: “23 episodes.”
Gold Answer: “24 episodes.”
ROUGE can assign high scores to factually in-

correct answers that share a surface structure with
the reference. Despite the critical numerical error,
the response receives a relatively high score due
to its match with surrounding words. This creates
a dangerous bias toward structurally similar but
factually incorrect answers.

H Quantitative Results

H.1 Metric Evaluation: AUROC

Tables 10 and 11 present comprehensive results
comparing LLM-based and ROUGE-based eval-
uation metrics across three datasets: NQ-Open,
SQuAD, and Trivia-QA. We evaluate nine differ-
ent metrics using AUROC evaluation metric for
both Llama and Mistral models under zero-shot
and few-shot settings.

H.2 Metric Evaluation: PR-AUC

Tables 12 and 16 provide PR-AUC scores under
the same conditions.
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Table 10: Full comparison of LLM-based and ROUGE-based evaluation metrics across different datasets (NQ-Open,
SQuAD, and Trivia-QA) for Llama and Mistral models in zero-shot setting using AUROC evaluation metric. The
∆% columns show the relative percentage difference between LLM and ROUGE scores. Mean columns present the
averaged scores across all datasets.

Model Metric
NQ-Open SQuAD Trivia-QA Mean

ROUGE LLM ∆% ROUGE LLM ∆% ROUGE LLM ∆% ROUGE LLM ∆%

Llama Perplexity 0.709 0.700 -1.2 0.703 0.687 -2.4 0.733 0.789 7.2 0.715 0.725 1.2
Llama LN-Entropy 0.521 0.605 13.9 0.558 0.611 8.7 0.563 0.636 11.5 0.547 0.617 11.4
Llama SE 0.778 0.742 -4.8 0.707 0.705 -0.2 0.769 0.832 7.6 0.751 0.760 0.9
Llama Eigenscore 0.816 0.686 -19.0 0.720 0.638 -12.7 0.752 0.734 -2.5 0.763 0.686 -11.4
Llama eRank 0.825 0.632 -30.6 0.754 0.621 -21.4 0.717 0.660 -8.6 0.765 0.638 -20.2
Llama Len 0.834 0.616 -35.3 0.777 0.622 -24.9 0.760 0.691 -10.0 0.790 0.643 -23.4
Llama LogDet 0.511 0.515 0.7 0.521 0.536 2.7 0.604 0.509 -18.6 0.545 0.520 -5.1
Llama Mean-Len 0.825 0.654 -26.1 0.743 0.643 -15.7 0.771 0.743 -3.8 0.780 0.680 -15.2
Llama Std-Len 0.711 0.644 -10.5 0.664 0.627 -6.0 0.759 0.754 -0.7 0.711 0.675 -5.7

Mistral Perplexity 0.852 0.584 -45.9 0.516 0.500 -3.2 0.843 0.627 -34.4 0.737 0.570 -27.8
Mistral LN-Entropy 0.718 0.645 -11.3 0.734 0.657 -11.7 0.586 0.596 1.8 0.679 0.633 -7.1
Mistral SE 0.836 0.729 -14.7 0.784 0.701 -11.9 0.726 0.707 -2.6 0.782 0.712 -9.7
Mistral Eigenscore 0.873 0.669 -30.4 0.803 0.648 -24.0 0.775 0.652 -18.9 0.817 0.656 -24.4
Mistral eRank 0.925 0.678 -36.4 0.518 0.511 -1.3 0.851 0.645 -31.9 0.765 0.611 -23.2
Mistral Len 0.934 0.634 -47.2 0.860 0.624 -37.8 0.929 0.673 -37.9 0.908 0.644 -41.0
Mistral LogDet 0.628 0.508 -23.6 0.562 0.518 -8.5 0.843 0.606 -39.2 0.678 0.544 -23.8
Mistral Mean-Len 0.890 0.643 -38.4 0.828 0.626 -32.2 0.875 0.667 -31.3 0.864 0.645 -34.0
Mistral Std-Len 0.516 0.512 -0.7 0.540 0.505 -6.9 0.613 0.572 -7.2 0.556 0.530 -4.9

H.3 QA Accuracy Across Settings

Table 13 presents the accuracies on the QA datasets.
These accuracies are computed by selecting the
most likely answer at a low temperature setting and
comparing it to labels derived from either ROUGE
or LLM-as-Judge evaluations.

Table 13: Accuracies of different models, datasets, and
prompts for the QA task.

Accuracy

Dataset Model Prompt # Refused ROUGE LLM

NQ-Open Llama Few-Shot 692 28.1% 29.2%
NQ-Open Llama Zero-Shot 139 24.2% 43.2%
NQ-Open Mistral Few-Shot 117 20.9% 35.8%
NQ-Open Mistral Zero-Shot 72 7.8% 39.0%

SQuAD Llama Few-Shot 924 22.0% 18.3%
SQuAD Llama Zero-Shot 447 20.2% 25.0%
SQuAD Mistral Few-Shot 230 16.0% 22.6%
SQuAD Mistral Zero-Shot 116 5.8% 25.3%

Trivia-QA Llama Few-Shot 95 63.7% 69.4%
Trivia-QA Llama Zero-Shot 39 58.8% 71.1%
Trivia-QA Mistral Few-Shot 11 53.8% 69.7%
Trivia-QA Mistral Zero-Shot 2 29.0% 64.8%

I Ground Truth Labeling Metrics

To evaluate and compare automatic labeling strate-
gies, we examined the agreement between various
evaluation metrics and the LLM-as-Judge annota-
tions (Table 14). This analysis provides insight
into the reliability of proxy labeling methods for

hallucination detection.

Table 14: Few-shot evaluation metrics vs. LLM-as-
Judge labels. Average agreement across NQ-Open,
SQuAD, and TriviaQA, showing how standard QA met-
rics align with LLM-based judgments.

Model Metric PRAUC AUROC F1 Precision Recall

LLAMA

BERTScore 0.810 0.848 0.776 0.742 0.859
BLEU 0.775 0.536 0.699 0.576 0.976

ROUGE 0.935 0.921 0.883 0.866 0.906
SummaC 0.850 0.776 0.760 0.653 0.977
UniEval 0.943 0.933 0.862 0.868 0.868

MISTRAL

BERTScore 0.764 0.770 0.749 0.637 0.958
BLEU 0.784 0.627 0.707 0.581 0.987

ROUGE 0.903 0.878 0.820 0.738 0.932
SummaC 0.855 0.795 0.758 0.657 0.957
UniEval 0.813 0.801 0.754 0.751 0.778

J Answer Length Distribution

J.1 HaluEval

Figure 6 illustrates answer lengths across the
HaluEval dataset (Li et al., 2023).
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Figure 6: Length-based hallucination patterns gen-
eralize across datasets. Answer length distribution for
HaluEval tasks, showing consistent patterns.
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Table 11: Full comparison of LLM-based and ROUGE-based evaluation metrics across different datasets (NQ-Open,
SQuAD, and Trivia-QA) for Llama and Mistral models in few-shot setting using AUROC evaluation metric. The
∆% columns show the relative percentage difference between LLM and ROUGE scores. Mean columns present the
averaged scores across all datasets.

Model Metric
NQ-Open SQuAD Trivia-QA Mean

ROUGE LLM ∆% ROUGE LLM ∆% ROUGE LLM ∆% ROUGE LLM ∆%

Llama Perplexity 0.814 0.767 -6.1 0.736 0.758 2.9 0.800 0.826 3.1 0.783 0.784 -0.0
Llama LN-Entropy 0.753 0.732 -2.9 0.663 0.717 7.5 0.799 0.829 3.6 0.738 0.759 2.7
Llama SE 0.738 0.730 -1.1 0.688 0.741 7.1 0.800 0.849 5.7 0.742 0.773 3.9
Llama Eigenscore 0.813 0.744 -9.3 0.725 0.733 1.2 0.745 0.762 2.3 0.761 0.746 -1.9
Llama eRank 0.794 0.714 -11.2 0.708 0.681 -4.0 0.620 0.638 2.8 0.707 0.678 -4.1
Llama Len 0.761 0.686 -10.9 0.694 0.687 -1.0 0.620 0.640 3.1 0.692 0.671 -2.9
Llama LogDet 0.729 0.690 -5.6 0.659 0.636 -3.7 0.590 0.618 4.5 0.659 0.648 -1.6
Llama Mean-Len 0.799 0.730 -9.4 0.713 0.716 0.4 0.681 0.716 4.8 0.731 0.721 -1.4
Llama Std-Len 0.777 0.727 -7.0 0.705 0.721 2.2 0.783 0.806 2.9 0.755 0.751 -0.6

Mistral Perplexity 0.804 0.632 -27.1 0.782 0.636 -23.0 0.744 0.637 -16.7 0.777 0.635 -22.3
Mistral LN-Entropy 0.727 0.619 -17.4 0.785 0.667 -17.7 0.750 0.692 -8.3 0.754 0.659 -14.5
Mistral SE 0.772 0.734 -5.3 0.737 0.698 -5.6 0.741 0.765 3.1 0.750 0.732 -2.6
Mistral Eigenscore 0.789 0.686 -15.0 0.775 0.691 -12.2 0.717 0.706 -1.5 0.760 0.694 -9.6
Mistral eRank 0.874 0.698 -25.1 0.829 0.690 -20.1 0.786 0.703 -11.8 0.830 0.697 -19.0
Mistral Len 0.879 0.664 -32.2 0.857 0.685 -25.1 0.858 0.729 -17.7 0.865 0.693 -25.0
Mistral LogDet 0.737 0.663 -11.2 0.687 0.631 -8.9 0.612 0.630 2.9 0.679 0.641 -5.7
Mistral Mean-Len 0.834 0.683 -22.1 0.822 0.705 -16.5 0.806 0.750 -7.4 0.821 0.713 -15.3
Mistral Std-Len 0.609 0.577 -5.6 0.629 0.589 -6.8 0.663 0.665 0.3 0.634 0.610 -4.0

K Answer-Length Prompts

To investigate the effect of response length on hal-
lucination, we prompted the model to generate an-
swers at different verbosity levels. Four prompt
variants were used: Concise, Short, Regular, and
Verbose.

• Concise (as in the main paper):
Answer the following question as
briefly as possible.

• Short (to test sensitivity):
Answer the following question in few
words.

• Regular:
Answer the following question.

• Verbose:
Answer the following question in a
detailed and comprehensive manner.

L Input Perturbation Prompts

To study hallucination triggers, we created two in-
put perturbation variants: Ambiguous Input and
Distractor Context. We subsampled 1,000 ex-
amples from the TriviaQA dataset and evaluated
the few-shot Mistral model under three conditions:
Ambiguous, Distractor, and the original (Regular)
questions. The prompts used for automated ques-
tion rewriting are provided below.

L.1 Ambiguous Input
Each question was automatically rewritten to be
intentionally indirect or under-specified. For exam-
ple:
Original: “What city is the capital of France?”
Rewritten: “What is the main administrative cen-
ter of the French nation?”

Listing 4: Prompt used for rewriting to make more
ambigous
You are given a factual question.
Your task is to rephrase it to make it
sound more ambiguous , indirect , or open -
ended , while still allowing someone
knowledgeable to infer and provide the
correct specific answer. Avoid adding or
removing factual content - focus on

phrasing that introduces uncertainty or
generality. Output only the rephrased
question without any additional
explanation or commentary.

System prompt: "You are an expert at
rephrasing questions to make them more
challenging ."

L.2 Distractor Context
Each question was prepended with a 2–3 sentence
paragraph embedding the correct answer alongside
plausible but incorrect details. For example:
Original: “Which country won the 2007 FIFA
Women’s World Cup?”
Rewritten: “The 2007 FIFA Women’s World Cup
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Table 12: Full comparison of LLM-based and ROUGE-based evaluation metrics across different datasets (NQ-Open,
SQuAD, and Trivia-QA) for Llama and Mistral models in zero-shot setting using PR-AUC evaluation metric. The
∆% columns show the relative percentage difference between LLM and ROUGE scores. Mean columns present the
averaged scores across all datasets.

Model Metric
NQ-Open SQuAD Trivia-QA Mean

ROUGE LLM ∆% ROUGE LLM ∆% ROUGE LLM ∆% ROUGE LLM ∆%

Llama Perplexity 0.833 0.680 -22.4 0.863 0.823 -4.8 0.594 0.514 -15.6 0.763 0.672 -14.3
Llama LN-Entropy 0.717 0.611 -17.4 0.793 0.773 -2.6 0.570 0.652 12.5 0.693 0.679 -2.5
Llama SE 0.845 0.695 -21.5 0.864 0.829 -4.1 0.575 0.533 -7.9 0.761 0.686 -11.2
Llama Eigenscore 0.850 0.670 -26.8 0.866 0.809 -7.1 0.565 0.574 1.6 0.760 0.684 -10.8
Llama eRank 0.782 0.607 -28.9 0.820 0.783 -4.6 0.674 0.760 11.3 0.759 0.717 -7.4
Llama Len 0.865 0.681 -27.2 0.885 0.820 -8.0 0.605 0.548 -10.4 0.785 0.683 -15.2
Llama LogDet 0.852 0.659 -29.2 0.873 0.810 -7.8 0.602 0.562 -7.1 0.776 0.677 -14.7
Llama Mean-Len 0.851 0.658 -29.3 0.870 0.808 -7.7 0.573 0.568 -0.9 0.765 0.678 -12.6
Llama Std-Len 0.825 0.647 -27.6 0.846 0.802 -5.5 0.562 0.570 1.4 0.744 0.673 -10.6

Mistral Perplexity 0.664 0.536 -23.8 0.951 0.754 -26.0 0.690 0.752 8.3 0.768 0.681 -13.8
Mistral LN-Entropy 0.882 0.664 -32.8 0.920 0.790 -16.4 0.625 0.633 1.3 0.809 0.696 -16.0
Mistral SE 0.956 0.725 -31.8 0.964 0.819 -17.7 0.808 0.510 -58.3 0.909 0.685 -35.9
Mistral Eigenscore 0.957 0.698 -37.1 0.965 0.804 -20.0 0.818 0.544 -50.3 0.913 0.682 -35.8
Mistral eRank 0.658 0.506 -30.0 0.955 0.755 -26.4 0.534 0.704 24.2 0.716 0.655 -10.7
Mistral Len 0.964 0.682 -41.4 0.973 0.803 -21.0 0.849 0.536 -58.4 0.929 0.674 -40.3
Mistral LogDet 0.964 0.699 -37.9 0.950 0.753 -26.1 0.847 0.550 -54.1 0.920 0.667 -39.4
Mistral Mean-Len 0.958 0.671 -42.8 0.966 0.786 -22.9 0.833 0.548 -52.1 0.919 0.668 -39.3
Mistral Std-Len 0.891 0.583 -52.8 0.889 0.724 -22.7 0.755 0.605 -24.8 0.845 0.637 -33.4

was marked by intense competition and surpris-
ing outcomes. Many expected Brazil, with their
star player Marta, to dominate the tournament,
while others believed Japan or Norway might pre-
vail based on their strong qualifying performances.
However, the tournament concluded with a differ-
ent team emerging victorious. Which country won
the 2007 FIFA Women’s World Cup?”

Listing 5: Prompt used for generating distractor context
You are given a factual question.
Your task is to prepend a context
paragraph (2-3 sentences) that contains
plausible but incorrect information (
distractors) related to the topic of the
question. Then , present the original

question below the context. Ensure the
distractor context is believable and
topically related but factually
incorrect or misleading. Output only the
final result without any additional

explanation.

System prompt: "You are an expert at
rephrasing questions to make them more
challenging ."

M Adversarial examples with
TruthfulQA

We investigated the performance difference be-
tween adversarial and non-adversarial questions
in the TriviaQA dataset. Surprisingly, our initial
results indicate that adversarial examples are not

more difficult for the model to answer; in fact, the
model performs slightly better on adversarial ques-
tions.

We did, however, observe notable differences
in answer lengths between hallucinated and cor-
rect responses. This is shown in Table 15, which
presents statistics for the few-shot Mistral model
used in Figure 4. Notably, across all three datasets
examined in this study, the distribution of answer
lengths was consistent between the Mistral and
LLaMA models, as well as between zero-shot and
few-shot settings.

Table 15: Answer-length and accuracy statistics for
adversarial vs. non-adversarial TriviaQA questions.
Mean answer length, quartiles (Q1, Q2 [median], Q3),
and accuracy (1 – hallucination rate) for the few-shot
Mistral model show that adversarial questions are not
harder than regular ones and yield similar length distri-
butions.

Prompt Label Mean Q1 Q2 Q3 Accuracy

Adversarial incorrect 143 87 141 197 0.47
Adversarial correct 133.2 79 121 183 0.47
Non-Adversarial incorrect 143.5 88 146 195 0.439
Non-Adversarial correct 131 77 128 183.5 0.439

Additionally, we found several issues with the
TriviaQA dataset itself. After manually reviewing
a number of cases, we discovered that the LLM-as-
Judge annotations were occasionally inaccurate. To
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Table 16: Full comparison of LLM-based and ROUGE-based evaluation metrics across different datasets (NQ-Open,
SQuAD, and Trivia-QA) for Llama and Mistral models in few-shot setting using PR-AUC evaluation metric. The
∆% columns show the relative percentage difference between LLM and ROUGE scores. Mean columns present the
averaged scores across all datasets.

Model Metric
NQ-Open SQuAD Trivia-QA Mean

ROUGE LLM ∆% ROUGE LLM ∆% ROUGE LLM ∆% ROUGE LLM ∆%

Llama Perplexity 0.844 0.824 -2.4 0.861 0.891 3.4 0.551 0.502 -9.8 0.752 0.739 -2.9
Llama LN-Entropy 0.810 0.796 -1.8 0.828 0.874 5.3 0.525 0.522 -0.5 0.721 0.731 1.0
Llama SE 0.814 0.802 -1.5 0.842 0.879 4.3 0.536 0.506 -6.1 0.731 0.729 -1.1
Llama Eigenscore 0.829 0.802 -3.4 0.852 0.876 2.7 0.511 0.542 5.7 0.731 0.740 1.7
Llama eRank 0.746 0.726 -2.8 0.711 0.762 6.8 0.679 0.737 7.9 0.712 0.742 4.0
Llama Len 0.834 0.806 -3.5 0.856 0.884 3.1 0.522 0.571 8.7 0.737 0.754 2.8
Llama LogDet 0.817 0.800 -2.1 0.859 0.882 2.6 0.526 0.582 9.6 0.734 0.755 3.4
Llama Mean-Len 0.825 0.798 -3.4 0.852 0.878 2.9 0.509 0.553 7.9 0.729 0.743 2.5
Llama Std-Len 0.820 0.794 -3.2 0.846 0.873 3.1 0.526 0.524 -0.3 0.731 0.730 -0.1

Mistral Perplexity 0.506 0.520 2.7 0.624 0.673 7.4 0.740 0.778 4.9 0.623 0.657 5.0
Mistral LN-Entropy 0.508 0.505 -0.6 0.587 0.615 4.5 0.759 0.825 8.0 0.618 0.648 4.0
Mistral SE 0.872 0.754 -15.7 0.898 0.843 -6.5 0.609 0.538 -13.3 0.793 0.712 -11.8
Mistral Eigenscore 0.873 0.738 -18.4 0.902 0.842 -7.2 0.598 0.567 -5.5 0.791 0.716 -10.4
Mistral eRank 0.515 0.526 2.0 0.855 0.789 -8.4 0.606 0.736 17.8 0.659 0.684 3.8
Mistral Len 0.897 0.735 -22.1 0.918 0.848 -8.3 0.687 0.530 -29.7 0.834 0.704 -20.0
Mistral LogDet 0.895 0.734 -21.9 0.869 0.793 -9.5 0.673 0.561 -19.8 0.812 0.696 -17.1
Mistral Mean-Len 0.879 0.734 -19.7 0.907 0.844 -7.5 0.629 0.548 -14.7 0.805 0.709 -14.0
Mistral Std-Len 0.827 0.683 -20.9 0.873 0.808 -8.0 0.546 0.608 10.1 0.749 0.700 -6.3

further explore this, we conducted a study compar-
ing the judgment of GPT-4o-mini with that of the
larger GPT-4.1 model. Specifically, we calculated
Cohen’s Kappa score to measure the agreement be-
tween the two models in labeling answers as correct
or incorrect based on a known reference answer.

The results from Table 17 show strong agree-
ment across most datasets, except for TruthfulQA,
which exhibited a notably lower Kappa score. Due
to the unreliability of the results on this dataset,
we decided to exclude TruthfulQA from further
analysis.

Table 17: Agreement between GPT-4.1 and GPT-4o-
mini as judges. Cohen’s Kappa scores measuring inter-
model agreement on answer correctness across four
datasets, revealing strong alignment except for Truth-
fulQA, which shows notably lower reliability.

Dataset NQOpen SQuAD TriviaQA TruthfulQA

Cohen’s Kappa 0.883 0.854 0.939 0.714

N Causality Discussion

We argue that while longer responses may correlate
with the presence of hallucinations, response length
itself is not a direct causal factor, but rather a conse-
quence of underlying reasoning processes - longer
answers can co-occur with various confounding
factors. To illustrate that increased length does

not inherently cause hallucination, we can consider
Chain-of-Thought (CoT) reasoning. LLMs often
generate longer sequences through CoT, effectively
utilizing intermediate steps to enhance their com-
putational expressiveness and reasoning depth. Far
from inducing hallucination, this process has been
widely demonstrated to reduce factual errors and
improve the accuracy of question-answering abili-
ties, even as it increases response length.
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