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Abstract

Contrastive Language—Audio Pretraining
(CLAP) models learn by aligning audio and
text in a shared embedding space, enabling
powerful zero-shot recognition. However, their
performance is highly sensitive to prompt
formulation and language nuances, and they
often inherit semantic ambiguities and spurious
correlations from noisy pretraining data. While
prior work has explored prompt engineering,
adapters, and prefix tuning to address these
limitations, the use of structured prior knowl-
edge remains largely unexplored. We present
iKnow-audio, a framework that integrates
knowledge graphs with audio-language
models to provide robust semantic grounding.
iKnow-audio builds on the Audio-centric
Knowledge Graph (AKG), which encodes
ontological relations comprising semantic,
causal, and taxonomic connections reflective of
everyday sound scenes and events. By training
knowlege graph embedding models on the
AKG and refining CLAP predictions through
this structured knowledge, iKnow-audio
improves disambiguation of acoustically
similar sounds and reduces reliance on
prompt engineering. Comprehensive zero-shot
evaluations across six benchmark datasets
demonstrate consistent gains over baseline
CLAP, supported by embedding-space
analyses that highlight improved relational
grounding. Resources are publicly available at
https://github.com/michelolzam/iknow-audio.

1 Introduction

In recent years, self-supervised and multimodal
models such as contrastive language-audio pretrain-
ing (CLAP) (Elizalde et al., 2023) have shown
impressive performance in audio understanding
tasks by leveraging large-scale contrastive learning
between audio and natural language descriptions.
While excelling at capturing general semantic cor-
respondences, these models often lack a deeper
understanding of the relational and contextual struc-
ture of real-world sound events. Common deficien-
cies include disambiguating acoustically similar
sounds, modeling co-occurrence patterns or hier-
archical relationships, and a lack of commonsense
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Figure 1: Audio understanding requires contextual and
background knowledge, which can be represented using
a knowledge graph linking sounds and related concepts.

grounding necessary for reasoning about sounds in
novel contexts. Additionally, the performance of
these models relies heavily on prompt engineering.
Indeed, previous work has shown that changes in
prompt wording and formatting can substantially
affect performance in zero-shot audio classification
tasks (Olvera et al., 2024).

Understanding real-world sounds often requires
contextual and background knowledge. For exam-
ple, the scenario illustrated in Figure 1, shows that
the sound of sirens may indicate the presence of
emergency vehicles, —often associated with acci-
dents, fires, or emergencies— and frequently co-
occurs with engine noise, people shouting, or brak-
ing sounds. Such relationships extend beyond mere
labels; they reflect structured, situational knowl-
edge that is paramount for accurate interpretation.
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Yet existing datasets for sound event detection
and classification largely catalog sounds as inde-
pendent categories. Their annotations and under-
lying taxonomies lack a structured semantic repre-
sentation of how sounds interconnect.

To address this gap, we introduce iKnow-audio,
a framework for integrating Knowledge Graphs
(KGs) with audio-language models. iKnow-audio
is built on two key components: (i) the Audio-
centric Knowledge Graph (AKG), a general-
purpose, text-based KG that encodes rich relational
information about sounds, and (ii) CLAP-KG, a
pipeline that refines CLAP predictions using em-
beddings derived from our proposed AKG.

While a knowledge graph like AKG is a pow-
erful source of relational knowledge, querying it
directly using symbolic methods (e.g., rule-based
lookup or SPARQL-style queries) is limited to
exact matches and fails to generalize or infer
new knowledge beyond what’s explicitly encoded.
Knowledge Graph Embedding (KGE) models ad-
dress this limitation by mapping entities and rela-
tions into continuous vector spaces, allowing for:
generalization to unseen or sparse triples through
latent similarity, robust reasoning under uncertainty
or label noise, and efficient link prediction (e.g., in-
ferring yelping as a plausible child category of dog
even if not explicitly stated). By combining these
embeddings with CLAP, iKnow-audio grounds
audio-language predictions in factual knowledge
while reducing reliance on prompt engineering and
improving robustness in low-resource or zero-shot
settings.

In summary, we present the following contribu-
tions: (1) iKnow-audio: a novel framework that
integrates knowledge graphs with audio-language
models for contextual and relational audio under-
standing. (2) AKG: Audio-centric Knowledge
Graph. A comprehensive KG for audio understand-
ing that encodes rich relational semantics among
everyday sounds. (3) CLAP-KG: a pipeline that
leverages AKG embeddings to refine CLAP predic-
tions. (4) Systematic zero-shot evaluation on six
benchmark datasets, showing consistent improve-
ments over baseline CLAP.

2 Related Work

Multimodal and Domain-Specific Knowledge
Graphs Conventional knowledge graphs are typ-
ically limited to the textual space, restricting their
efficacy on other modalities (Hogan et al., 2021).

Recent research has aimed to overcome this limita-
tion by integrating cross-modal knowledge. Wang
et al. (Wang et al., 2023) first constructed a multi-
modal KG incorporating text, image, video, and au-
dio modalities, supported by extensively annotated
datasets. A unified pipeline was proposed in (Gong
et al., 2024) to help construct multimodal KGs.
Wei et al. built domain-specific KGs by connecting
medical images and their related biomedical con-
cepts (Wei et al., 2024). To the best of our knowl-
edge, there are currently no knowledge graphs rep-
resenting rich relational semantics among everyday
sounds.

Vision-Language Models with KGs Large lan-
guage models (LLMs) are prone to hallucina-
tions, which has motivated the integration of
factual knowledge to improve reasoning in vi-
sion—language models. One approach leverages
knowledge graphs constructed via vision—language
alignment and cross-modal similarity recalibra-
tion to enhance LLMs’ multimodal reasoning abili-
ties (Liu et al., 2025). Similarly, GraphAdapter (Li
et al., 2023) fine-tunes models using dual KGs to
strengthen vision—language understanding. Other
work introduces cross-modal alignment modules
to reconcile knowledge from images and text dur-
ing fine-tuning (Lee et al., 2024), while retrieve-
and-rerank frameworks have been proposed to
augment Contrastive Language—Image Pretraining
with structured knowledge (Gao et al., 2025). To-
gether, these methods show that KGs improve se-
mantic grounding and mitigate spurious correla-
tions in vision—language tasks.

Leveraging KGs for Audio While knowl-
edge graphs have been actively explored in vi-
sion—language research, their use in audio un-
derstanding remains limited. Penamakuri et al.
(2025) introduced Audiopedia, a framework for
audio question answering augmented with exter-
nal knowledge. While their method also leverages
KGs, it relies on general-purpose knowledge re-
sources (e.g., from Wikidata) rather than knowl-
edge bases tailored to audio understanding. In con-
trast, our work contributes the first KG specifically
designed for sound events and auditory scenes. Our
work is closely related to (Gao et al., 2025), but
their method is based on prompt engineering. In
contrast, we only use class labels as prompts. This
simplification shifts the focus to the core seman-
tic connection between audio and language while
leveraging the AKG to enhance reasoning.
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Figure 2: iKnow-audio: Our framework enhances zero-shot audio classification via reasoning over the Audio-
centric Knowledge Graph (AKG). (a) CLAP initially misranks the correct label (e.g., baby) due to acoustic ambiguity
with other labels. (b) We query the AKG using top-k predictions to retrieve related concepts via relevant relations
(e.g., has parent). (c) Enriched prompts are compared with the audio embedding, and similarity scores are
aggregated to re-rank predictions, this time correctly identifying baby as the top label. This refinement demonstrates
the utility of structured symbolic knowledge for disambiguating acoustic scenes and improving interpretability.

3 iKnow-audio: Integrating Knowledge
Graphs with Audio-Language Models

We introduce iKnow-audio, a framework that
enhances audio-language models with structured
knowledge for improved reasoning. As outlined
in Figure 2, it combines a Knowledge Graph Em-
bedding (KGE) model with a pipeline for refining
zero-shot predictions of CLAP. We demonstrate
iKnow-audio using CLAP, but the framework is
adaptable to any aligned audio-language model.

3.1 Knowledge Graph Embedding Models

To enable structured reasoning over audio-centric
relationships, we employ KGE models that learn
vector representations for entities and relations.
These embeddings support link prediction, infer-
ring plausible but unobserved relations between
audio concepts.

We represent the knowledge graph as G =
(E,R), where £ denotes the set of entities (e.g.,
siren, barking) and 'R the set of relation types (e.g.,
belongs to class, co-occurs with). Each fac-
tual statement is encoded as a triple (h,r,t) €
E X R x &, where h is the head entity, r the rela-
tion, and ¢ the tail entity. For example, the triple
(dish clinking, occurs in, kitchen) captures a spa-
tial context in which the sound typically appears.

We define a scoring function ¢gg : £ X R X
€ — R, which assigns a plausibility score to a
given triple (h,r,t). In our zero-shot classifica-
tion pipeline, this function is primarily used for
link prediction, specifically tail prediction, where,
given a head entity h and relation 7, we rank can-
didate tail entities ¢t € £ based on their plausibility.

Higher scores indicate greater semantic compatibil-
ity, enabling the discovery of relevant or missing
connections between audio concepts.

To model these interactions, we experiment
with several KGE models which include: (1)
TransE (Bordes et al., 2013), which models re-
lations as translations in the embedding space. (2)
TransH (Wang et al., 2014) and TransR (Lin
et al., 2017), which extend TransE by introduc-
ing relation-specific projection spaces; (3) Com-
pIEx (Trouillon et al., 2016), which leverages
complex-valued embeddings to model asymmet-
ric relations; (4) RotatE (Sun et al., 2019), which
represents each relation as a rotation in the com-
plex vector space C%; and (5) GCN -based (graph
convolutional network) models (Schlichtkrull et al.,
2018), which propagate information through the
graph structure via message passing.

In this work, we adopt RotatE as the KGE model
due to its strong empirical performance on our pro-
posed AKG (see Section 4). RotatE embeds entities
and relations in a complex vector space C¢, and
models each relation as a rotation in that space.
The score of a triple (h, r,t) is given by:

¢KG(haT7t) :—HhOI‘—tHZ, (1)

where h, r,t € C? are the embeddings of the head,
relation, and tail, respectively, and o denotes the
element-wise (Hadamard) product. A higher score
indicates a more plausible triple.

This scoring mechanism enables structured rea-
soning over multi-relational knowledge, which we
exploit to retrieve semantically related entities via
link prediction.

34674



3.2 Zero-Shot Classification with CLAP

We leverage CLAP (Elizalde et al., 2023), a pre-
trained model that embeds audio and text into a
shared representation space. This enables zero-
shot audio classification by computing similarity
scores between audio inputs and candidate label
embeddings.

Let A denote the space of input audio signals and
L the space of textual labels. Given a set of target
class labels C' = {c1,...,en} C L and an input
audio sample a € A, CLAP maps both modalities
into a joint embedding space via an audio encoder
oa : A — R9, and a text encoder ¢ : £ — R

CLAP formulates classification as a nearest-
neighbor retrieval task (Figure 2 (a)), where the
predicted label ¢ € C is obtained by maximizing
cosine similarity:

¢ = argmaxsim (¢a(a), ¢1(c)),  (2)
ceC

where sim(-, -) denotes cosine similarity. We de-
note the top-k retrieved labels as:

C = {é(l), ... ,é(k)}, ranked by similarity.

3.3 Enhancing CLAP Inference with AKG

To enhance interpretability and robustness, we re-
fine the predictions C}, via symbolic reasoning over
G. This produces enriched, context-aware prompts
that reflect the semantic neighborhood of each class.
This process is depicted in Figure 2 (b).

Link Prediction To enrich top-k CLAP pre-
dictions with structured knowledge, we perform
link prediction using the trained KGE model ¢kg.
Given a predicted class label ¢ € C}, we use ¢kg
to infer the most semantically plausible tail entities
t € £ connected to ¢ via a curated subset of infor-
mative relations R, C R. These predicted tails
serve as contextual signals to refine and expand
the textual prompts used for similarity computation
within the CLAP model.

Contextual Prompt Expansion For each top pre-
diction ¢ € Cy, we query the knowledge graph to
retrieve candidate tail entities connected via infor-
mative relations:

Te={(¢rt)eT |reRy},

where R, C R is a curated set of relations used
for semantic enrichment (e.g., produces).

Using the KGE model ¢kg, we rank tail candi-
dates t € & for each relation r € R, based on their

plausibility in completing the triple (¢, r,t). We
select the top-m most plausible tails:

TP ={t],...,t5},

where tf € arg maxcg score(é, r,t; ¢kg), and
score(-) is the plausibility score assigned by ¢kg.

To generate enriched prompts, we concatenate
each class label ¢ with its associated tail entities ¢}
For example, prompts can take the form:

pesr = concat(é,t7).

Let P» = {péﬁ,...,p@,m} be the set of
knowledge-enriched prompts for class ¢.

Scoring with Enriched Prompts Each enriched
prompt p € P; is encoded using the CLAP text
encoder ¢r, and scored against the input audio
a € A via cosine similarity:

s(p) = sim (¢a(a), ér(p)) - 3)

This yields a refined similarity score for
each knowledge-augmented prompt, enabling re-
ranking of the initial predictions C} based on se-
mantically enriched textual context.

Aggregation and Re-ranking To consolidate ev-
idence from both the original label and its aug-
mented prompts, we aggregate their similarity
scores into a single score per class (Figure 2 (c)).

For each class ¢ € Cf, let s(¢) =
sim(¢a(a), ¢(¢)) denote the original CLAP score,
and {s(p) | p € P:} the scores of its enriched
prompts. We define the aggregated score 5(¢) us-
ing a log-sum-exp fusion:

5(¢) =log | exp(s(8)) + Y _ exp(s(p)) | - 4)

pEP;

This operation softly pools evidence across the
original and contextualized prompts, allowing the
model to benefit from both raw CLAP predictions
and knowledge-enriched signals. Aggregation in
Equation 4 is crucial in striking this balance: with-
out it, performance may degrade due to overre-
liance on contextual prompts, which risks introduc-
ing noise or ambiguity. The final class prediction
is then obtained by:

¢ = argmax §(¢). (5)
eeCl

A detailed description of the algorithm is provided
in Appendix A.4.
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Figure 3: Generation of knowledge triples from SALT.

4 Knowledge Graph Construction

Sound events are ubiquitous and seldom occur in
isolation. They are situated within broader con-
texts that encompass temporal dynamics, causal
relations, environmental cues, perceptual attributes,
and even human intent. Capturing such relation-
ships is essential for integrating commonsense
knowledge, easing robust inference and better gen-
eralization in audio tasks. To move beyond con-
ventional classification paradigms, we construct
a domain-specific knowledge graph that encodes
these relational semantics among everyday sounds.

Unlike general-purpose KGs such as DBpe-
dia (Auer et al., 2007), ConceptNet (Speer et al.,
2017), and Wikidata (VrandeCi¢ and Krotzsch,
2014), which offer limited coverage of everyday
sounds and lack fine-grained audio semantics and
perceptual grounding, our knowledge graph is tai-
lored for auditory scenes, enabling symbolic rea-
soning aligned with audio-language models.

We construct the Audio-centric Knowledge
Graph (AKG) to encode structured knowledge
about sound events and their semantic and con-
textual properties. We derive this graph from stan-
dardized sound event labels aggregated across over
27 publicly available datasets, as cataloged in the
Standardized Audio event Label Taxonomy (SALT)
(Stamatiadis et al., 2024). Our AKG includes en-
tities such as sound-producing sources (e.g., dog,
engine), sound events (e.g., barking, idling), and
higher-level categorical labels (e.g., domestic ani-
mal, vehicle).

The schema comprises nine high-level relation
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Figure 4: Generation of knowledge triples from LLM:s.

categories, each reflecting distinct aspects of audi-
tory context. These categories guide the generation
of plausible triples in the format (head, relation,
tail), where the head is a standardized sound event
label and the relation contextualizes its link to
the tail concept. The AKG is formally represented
as a collection of triples with relations such as has
parent and occurs in. The full relation schema
is detailed in Appendix A.1.

The AKG triples are generated through two com-
plementary approaches: (1) exploiting the hierar-
chical structure of the SALT taxonomy (Figure 3),
and (2) prompting a Large Language Model (LLM)
(Figure 4), both applied to SALT labels. For the
LLM-based method, we use Mistral-7B-Instruct
(Jiang et al., 2023). The outputs of both meth-
ods are merged into an initial raw AKG contain-
ing 51,254 triples. The subset of LLM-generated
triples is then refined through a two-stage filter-
ing pipeline: an LLM-based plausibility check fol-
lowed by manual validation. This process yields a
curated set of 20,387 unique, high-quality triples,
which we refer to as the pruned AKG. The triples
derived directly from the SALT taxonomy remain
unchanged throughout this process. In subsequent
experiments, we train KGE models on both the raw
and pruned variants to compare their effectiveness.
Details of the LLM prompt templates are provided
in Appendix A.5, and summary statistics of the
resulting KGs are reported in Appendix A.2.

5 [Evaluation

We evaluate the iKnow-audio framework on zero-
shot audio classification across multiple benchmark
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datasets, using a standardized prompt setup and
common retrieval metrics. We also detail the train-
ing setup of KGE models on the AKG variants.

5.1 Datasets

We evaluate our approach on six benchmark
datasets designed for single-class or multi-label en-
vironmental sound classification: ESC50 (Piczak,
2015): A dataset of 2,000 labeled 5-second audio
clips spanning 50 environmental sound classes. Ur-
banSound8K (Salamon et al., 2014): Comprises
8,732 labeled audio excerpts, each with a dura-
tion of up to 4 seconds, across 10 urban sound
categories. TUT2017 (Mesaros et al., 2016): Con-
tains 6,300 10-second recordings representing 15
distinct acoustic scenes. FSD50K (Fonseca et al.,
2022): A collection of 51,197 variable-length audio
clips (0.3-30 seconds) from Freesound, annotated
across 200 classes. AudioSet (Gemmeke et al.,
2017): A large-scale dataset with over 2 million 10-
second YouTube clips, covering 527 diverse sound
categories. DCASE17-T4 (Mesaros et al., 2017):
A curated subset of AudioSet focusing on 17 warn-
ing and vehicle sound classes, consisting of 52,763
10-second clips. We utilize all cross-validation
folds for ESC50, US8K, and TUT2017, and test
sets for AudioSet (20,371), FSD50K (20,462), and
DCASE17-T4 (488).

5.2 Prompt Format

We use standard labels from the SALT taxonomy as
prompts, formatted in lowercase with underscores
replaced by spaces (e.g., dog_barking — dog bark-
ing). This deliberate choice avoids the variability
and required dataset-specific tuning typically intro-
duced by prompt engineering. This setup allows
isolating the contribution of structured knowledge
in refining CLAP’s predictions, without confound-
ing effects from prompt engineering. Although not
optimized for best-case accuracy, it offers a clean
and consistent basis for evaluating the impact of
knowledge-based reasoning in audio classification.

5.3 Metrics

We use two metrics to measure the performance
across datasets.

Hit@k: For a given query, Hit@k measures
whether the ground-truth label appears within the
top 1, 3, 5, 10 retrieved candidates, reporting the
proportion of successful hits.

Mean reciprocal rank (MRR): The average of
the reciprocal ranks of ground truth across multiple
queries. For each query, the reciprocal rank is the
inverse of the position at which the ground truth
appears in the ranked list.

5.4 KGE Model Training

To learn structured representations over our AKG,
we trained a suite of KGE models using the
PyKEEN library (Ali et al., 2021). We evaluated
six established models: TransE (Bordes et al.,
2013), TransH (Wang et al., 2014), TransR (Lin
et al., 2017), ComplEx (Trouillon et al., 2016), R-
GCN (Schlichtkrull et al., 2018), and RotatE (Sun
et al., 2019). For each model, we conducted a grid
search over the following hyperparameters: batch
size (values in {2829 210 211 2121 Jearning rate
(in {107%,1072,1073,10~*}), and embedding di-
mensionality ({64, 128,256}). Training was car-
ried out on two variants of the AKG: (i) a raw
version composed of raw triples without refine-
ment, and (ii) the pruned version obtained through
LLM-based plausibility verification and manual
post-processing to remove duplicates, spurious en-
tries, and inconsistencies in label granularity.

6 Results

We first report the retrieval performance of the se-
lected KGE models on the AKG, and then evaluate
their effectiveness in zero-shot audio classification
(ZSAC) using AKG embeddings.

6.1 Performance of KGE Models

Model Hit@l Hit@3 Hit@5 Hit@1l0 MRR
Raw AKG

TransE 1.0 36.0 474 59.8 22.2
TransH 6.0 12.1 16.7 22.5 11.8
TransR 34 7.1 9.6 13.3 7.1

ComplEx  19.6 34.3 40.9 50.5 30.1
R-GCN 17.4 33.8 439 56.7 30.0
RotatE 37.0 56.9 64.8 73.2 49.5

Pruned AKG

TransE 1.6 40.8 50.9 60.6 24.3
TransH 17.3 28.9 35.5 43.5 26.1

TransR 7.3 15.0 18.8 25.1 13.6
ComplEx  22.7 35.1 40.1 48.2 31.3
R-GCN 28.6 417 574 68.8 417
RotatE 46.4 61.9 67.7 74.0 56.1

Table 1: Comparison of KGE models on raw and pruned
variants of the AKG. Retrieval results (%) in terms of
Hit@1, Hit@3, Hit@5, Hit@ 10, and MRR. Best perfor-
mances are in bold and second-best are underlined.
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ESC50 US8K

Metric

TUT2017

FSD50K AudioSet DCASE17-T4

CLAP +KG-agg +KG CLAP +KG-agg +KG CLAP +KG-agg +KG CLAP +KG-agg +KG CLAP +KG-agg +KG CLAP +KG-agg +KG

Hit@1 932 935
Hit@3 98.8 99.1
Hit@5 99.5 99.5
MRR 959 96.2

954 82.5 845
99.2 96.6 95.6
99.5 98.8 96.3
97.2 89.6 90.1

85.9 37.8
96.9 74.9
98.8 91.3
91.5 57.7

49.3 479 61.1
82.1 83.3 82.8 80.7
82.8 91.3 889 8I.1
64.3 654 722 71.7

63.6 64.0 184 19.6
84.2 33.1 312
88.9 41.1 315

74.3 26.5 25.0

19.9 37.7
344 77.3
41.1 91.2
27.7 57.3

43.0 459
764 178.5
79.5 91.2
58.5 63.1

Table 2: Retrieval results (%) in terms of hit@1, hit@3, hit@5, and MRR on the six benchmark datasets. Each
dataset has three sub-columns: CLAP (baseline), +KG-agg (CLAP-KG w/o aggregation), and +KG (CLAP-KG).
Performance improvement larger than 1% over CLAP is in bold, and improvement of 1% or less is underlined.

Table 1 presents a comparison of KGE models
trained on our proposed AKG. We evaluated each
model on the link prediction task, comparing per-
formance under both the raw and pruned variants
of the AKG.

Raw vs Pruned Settings Transitioning from the
raw to the pruned AKG yields substantial perfor-
mance gains for all models, underscoring the impor-
tance of post-processing triples. Notable improve-
ments include TransH’s MRR rising from 11.8 to
26.1 and R-GCN’s from 30.0 to 41.7. This supports
the notion that spurious triples and inconsistencies
in entity labeling can obscure latent relational pat-
terns crucial to learning effective embeddings for
link prediction.

Model-based Performance RotatE outperforms
all models in both raw and pruned settings, achiev-
ing the highest MRR (56.1) and leading in all
Hit@k metrics. Its performance effectively cap-
tures asymmetric and compositional relations such
as produces, or causes, outperforming simpler
translational models like TransE and TransH. R-
GCN performs well on the pruned graph due to its
use of structural information but is highly sensitive
to noise, where simpler models like TransE and
ComplEx perform better. Despite its strengths, R-
GCN slightly underperforms RotatE, possibly due
to weaker handling of relation directionality or sub-
optimal tuning. ComplEx, effective for asymmetric
relations, shows no notable gains in the pruned set-
ting, performing similarly across both conditions.

KGE Model Selection Based on the comparative
analysis above, we select RotatE as the backbone
model for downstream knowledge reasoning/query-
ing. Its superior link prediction capabilities en-
sure that the semantic augmentations introduced
to CLAP are grounded in plausible, relationally
informed expansions of the label space. The ro-
bustness of RotatE in both raw and pruned settings

further supports its integration into our proposed
iKnow-audio framework.

6.2 Zero-Shot Audio Classification

Table 2 presents ZSAC retrieval results across six
benchmark datasets. For each dataset the table
reports, left to right, the CLAP baseline, the ablated
variant without the aggregation module (+KG-agg),
and the full CLAP-KG model (+KG).

We observe that the full CLAP-KG model con-
sistently outperforms the CLAP baseline across
datasets, with notable gains in the Hit@1 metric.
The only exception is Hit@5, where CLAP-KG
matches the baseline performance. This trend can
be explained by the semantic closeness of top-k
candidates to the ground truth: as the number of
candidates increases, both CLAP and CLAP-KG
are more likely to include the correct label.

The most striking improvement is observed in
Hit@1 on TUT2017, with a gain of 10.1%. Since
TUT2017 targets acoustic scene classification, the
additional context provided by the AKG helps
disambiguate between scenes, making classifica-
tion easier. Relations like scene contains or
described as disentangle the auditory scene into
its sound event components.

Importance of Aggregation We assess the role
of the aggregation step introduced in Section 3.3
via Equation 4. To this end, we evaluate CLAP-KG
without aggregation, denoted as +KG-agg, and com-
pare it with the full model, +KG, which includes
aggregation.

Table 2 reports the results across datasets, with
the +KG-agg and +KG columns highlighting the
impact of the aggregation step. Removing the ag-
gregation step corresponds to relying solely on the
scores of contextual prompts. This setting already
improves over the CLAP baseline in terms of mean
reciprocal rank (MRR) on several datasets, though
it underperforms on FSD50K and AudioSet. How-
ever, compared to the full CLAP-KG, the +KG-agg
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Figure 5: Performance change (%) of CLAP-KG as compared to CLAP in terms of Hit@1, Hit@3, and MRR.

Only the top 10 relationships are displayed. associated w.

associated w. =emotionally associated with.

variant consistently lags behind.

These results highlight the importance of ag-
gregation: the LogSumExp pooling in Equation 4
balances raw CLAP predictions with knowledge-
enriched signals, preventing overreliance on noisy
prompts. Integrating knowledge from the AKG in
this manner is more effective, as it mitigates the pit-
falls of relying solely on augmented prompts while
preserving the grounding of the original CLAP pre-
dictions.

Impact of Relations Datasets often vary in terms
of context and structure, reflecting different rela-
tions among classes. To shed light on this per-
spective, we plot ZSAC performance with different
relation types, as shown in Figure 5. Clearly, many
relations boost the performance across datasets.
Among them, has parent provides robust gains
for all datasets. This is expected due to the in-
herent taxonomical categorization of sound events
reflected in many datasets, where labels are system-
atically grouped into categories. The most impact-
ful relations, however, vary by dataset and are often
content-specific. For TUT2017, the top relations
is a variant of, has parent and scene occurs
pertain to acoustic scenes, including sound event
variations, label hierarchy, and scene location.

Embedding Visualizations While the overall ac-
curacy of ZSAC improves with the integration
of knowledge graphs, performance varies across
classes. This variation is analyzed in Appendix A.6,
using the ESC50 dataset as a case study.

To investigate why CLAP-KG improves ZSAC
performance for certain classes but degrades it for
others, we visualize the Uniform Manifold Approx-
imation and Projection (UMAP) (Mclnnes et al.,
2018) projections of the embeddings, focusing on

env. = associated with environment; emo.

a subset of classes of the ESC50 dataset, as shown
in Figure 6. Although UMAP does not preserve
exact distances, the resulting embedding clusters
can still offer valuable insights into the relative data
distribution.

The top row of Figure 6 shows the mean audio
embeddings (circle), the embedding of the top-1
CLAP predictions (star), and the top-1 CLAP-KG
(triangles). Colors indicate different classes, with
each subfigure using a distinct color scheme be-
cause of the different set of predictions. For each
subfigure, we see multiple triangles as the CLAP
predictions can be enriched by the KG in various
ways depending on the set of relations and tails.
CLAP-KG enriches predictions when the ground-
truth is helicopter, bird chirping, crow, crackle,
and cow. These are the classes to which CLAP-KG
brings the most improvement. Indeed, for all these
classes, the CLAP-KG prediction clusters overlap
with the audio embeddings, whereas the CLAP
predictions remain disjoint.

To provide a more balanced perspective, we also
visualize five classes where CLAP-KG degrades
performance: cricket, rain, laughing, mouse click,
and engine, shown in the bottom row of Figure 6.
In these cases, the audio embeddings and the cor-
rect CLAP predictions (circle and star of the same
color) overlap, whereas the CLAP-KG predictions
do not in most cases. This indicates that additional
information from the AKG is not always benefi-

cial, possibly due to heuristic retrieval strategies
(e.g., querying the KGE model with suboptimal
relations) or residual noise in the AKG.

6.3 Discussion

Based on the observations and analysis above, we
sum-up the following main findings:
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color scheme. Top: the 5 classes rightmost in Figure 10 that CLAP-KG improves the performance. Bottom: the 5
classes leftmost in Figure 10 that CLAP-KG degrades the performance.

A posthoc prediction recalibration with our AKG
can boost ZSAC without further training or tuning.
Note that in our pipeline, the KG directly operates
on CLAP predictions without further training.

Meaningful relations are key to integrating the
AKG due to the specificity of different datasets. As
evidenced by Figure 5, relations that enhance the
understanding of context and background knowl-
edge of acoustic scenes augment the performance
on TUT2017 by a large margin. This also points
out that a powerful and generalizable AKG must
encompass a variety of relations.

Our AKG frees the efforts on prompt engineering
and provides trackable reasoning. Audio—language
models can be queried using only semantic cores
(e.g., class labels), without the need for extensive
prompt design. Labels can be directly enriched
with tail predictions from a KGE model trained on
the AKG. Moreover, such predictions provide trans-
parency into the classification process (through rea-
soning or factual knowledge retrieval), revealing
both the predicted labels and their interrelations.

7 Conclusion

In this paper, we present iKnow-audio, a frame-
work that integrates knowledge graphs with au-
dio—language models to provide robust semantic
grounding and improve zero-shot audio classifica-
tion. Core to this framework is the first Audio-
centric Knowledge Graph (AKG), which captures
rich relational semantics among everyday sounds.
This structured knowledge is encoded into a knowl-
edge graph embedding model and used to aug-
ment predictions of an instantiated CLAP model.
Our key finding is that, rather than relying on iso-
lated semantic cores, the AKG provides essential
context and background knowledge for interpret-
ing sound events. The proposed method is post-
hoc and lightweight, akin to Retrieval Augmented
Generation (RAG), requiring neither fine-tuning
nor prompt engineering when applied to audio-
language models. Moreover, the framework shows
promise for generalization to other tasks, such as
question answering.
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Limitations and Future Work

Despite the potential of the proposed method, we
are aware of the following limitations of the current
work and suggest the corresponding future direc-
tions: (1) Shallow and Heuristic Reasoning: Our
approach currently performs only single-hop rea-
soning (tail prediction) over the knowledge graph
(AKG) and enriches prompts using simple string
concatenation. This limits the depth and expres-
siveness of semantic inference. Future work could
explore multi-hop reasoning as relations in the KG
space can be chained. (2) Noise and Incomplete-
ness in the AKG: The AKG was automatically
constructed and cleaned, yet it may still contain
noisy, generic, or missing triples. Additionally, link
prediction from the KGE model can be unreliable
for rare or ambiguous events, potentially introduc-
ing irrelevant or spurious concepts into the reason-
ing process. (3) Limited Evaluation Scope: We
have not evaluated the method on music datasets,
although the AKG encodes music-related knowl-
edge (through music-related labels from SALT).
Extending evaluation to musical audio and broader
domains would help assess the generality of the
approach. (4) Design and Efficiency Constraints:
The use of top-k selection for both CLAP and KG
predictions may not capture the most informative
evidence and could be biased toward frequent en-
tities. Moreover, inference-time reasoning intro-
duces additional computational overhead (through
a beam search). Future work may explore alter-
native sampling strategies and efficiency optimiza-
tions.
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A Appendix
A.1 Knowledge Graph Relation Schema

We define a schema comprising nine high-level re-
lation categories, each reflecting a distinct aspect
of auditory context. Each category includes a set
of relations that guide the generation of plausible
triples (head, relation, tail), where the head is a
standardized sound event label (from SALT (Stama-
tiadis et al., 2024)) and the relation contextualizes
its link to the tail concept. These categories are
summarized in Table 3 and described as follows:

Co-occurrence and Temporal relations capture
how sound events unfold over time or co-occur
within sound scenes. Relations such as co-occurs
with, precedes, follows, and overlaps with
help model the sequencing of events (e.g., "thunder
precedes lightning").

Causal and Functional relations express under-
lying causes or functions of sound events, includ-
ing produces, caused by, triggers, indicates,
responds to, and affects. These relations al-
low the AKG to represent inferential chains (e.g.,
"siren triggers emergency response") and explain
sound occurrences based on physical or intentional
causality.

Taxonomic and Hierarchical relations organize
sounds into ontological structures using is a type
of, has subtype, is instance of, belongs to
class, and is variant of. These relations sup-
port reasoning about sound categories and enable
class-based generalizations (e.g., "laughter is a
type of human sound").

Spatio-Environmental Relations situate sound
events within physical and environmental contexts
through relations such as occurs 1in, can be
heard in, localized in,originates from, and
associated with environment. These are par-
ticularly valuable for acoustic scene classification
and localization tasks.

Source and Agent Relations focus on the
source of origin of a sound event. Relations like
emitted by, performed by, generated by, is
sound of, and produced during encode associ-
ations between sounds and their animate or inani-
mate sources (e.g., "chirping performed by bird").

Perceptual and Qualitative relations model
human-centric interpretations of sound, using de-
scriptors such as has loudness, has pitch,
has duration, has timbre, perceived as, and
emotionally associated with. These attributes
provide complementary information that supports

affective computing and perceptual modeling.

Modality-Crossing relations link auditory sig-
nals to language and vision, including described
by, associated with event, linked to visual,
and transcribed as. Such relations enable mul-
timodal grounding and textual or visual alignment
for sound events.

Intentionality relations express functional
and normative expectations related to sound,
via invites action, used for, requires
attention, and warns about. These are par-
ticularly relevant for modeling listener responses
and action-affording cues (e.g., "doorbell invites
action open door").

Scene Composition and Event Structure cap-
tures how individual sound events compose or im-
ply broader scenes or activities, through part of
scene, scene contains, event composed of,
temporal component of, and entails event.
These relations provide a high-level abstraction of
the acoustic scene and a structural prior for scene
recognition.

A.2 Audio Knowledge Graph Statistics

In Figure 7 we present key statistics that provide a
detailed characterization of the relational structure
of the proposed knowledge graph. This includes
measures of reflexivity, transitivity, and relation
frequency distributions.

Total Relations, Heads and Tails summarize
the volume and diversity of relational instances.
The total relations count all occurrences, while
unique heads and tails reflect the number of dis-
tinct entities appearing as the first (head) or second
argument (tail) in each relation.

Reflexivity is evaluated by counting instances
where the head and tail entities are identical.
This highlights self-referential relations within the
graph.

Transitivity is assessed by identifying triples
where the relation can be inferred transitively (if
(a,r,b)and (b, r, c) exist, then (a, r, ¢) is expected).
The proportion of such inferred triples provides
information on potential hierarchical or chain-like
relational structures.

An overview of the global entity and relation
counts, along with the 20 most frequent relations
is summarized in Table 4.

A.3 Exemplary triples from the AKG

Table 5 presents a set of exemplary triples from
the constructed knowledge graph. The first part of
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Category

Example Relations

Purpose

Co-occurrence & Temporal

co-occurs with, precedes,
follows, overlaps with

Capture temporal ordering and co-
occurrence of sound events.

Causal & Functional

produces, caused by,
triggers, indicates,
responds to, affects

Encode causality, function, and event-
response dynamics.

Taxonomic & Hierarchical

is a type of, has subtype,
is instance of, belongs to
class, is variant of

Structure sound events via type, class,
and instance hierarchies.

Environmental

occurs in, can be heard in,

localized 1in, originates
from, associated with
environment

Anchor sound events in physical, spatial,
and environmental contexts.

Source & Agent

emitted by, performed by,
generated by, is sound of,
produced during

Link sounds to their generating sources.

Perceptual & Qualitative

has loudness, has pitch,
has duration, has timbre,
perceived as, emotionally
associated with

Model perceptual properties and subjec-
tive qualities of sound.

Cross-modality

described by, associated
with event, linked to
visual, transcribed as

Establishes connections to textual or vi-
sual modalities.

Intentionality invites action, used for, Representexpectations, actions, or alerts
requires attention, warns invoked by sound.
about

Compositionality part of scene, Capture hierarchical and compositional
scene contains, structure of scene and events.
event_composed_of,
temporal  component  of,

entails event

Table 3: Relation schema for knowledge graph construction. Each category defines semantic relations that support

rich contextualization of audio events.

the table includes examples generated using a large
language model (LLM), selected to depict a wide
range of semantic relations such as causality, emo-
tional association, perceptual attributes, and func-
tional use. The second part provides examples de-
rived from SALT, reflecting structured annotations
grounded in taxonomies for everyday sound cate-
gorization. This combined presentation illustrates
both the generative breadth of LLMs in synthetic
data creation and the specificity of human-curated
data, providing qualitative insight into the diverse
relational structure captured in the graph.

A4 CLAP-KG Algorithm Description

Algorithm 1 details the full inference pipeline for
knowledge-guided zero-shot audio classification
using CLAP and a KGE model. Given an input
audio sample and a set of candidate class labels,
the algorithm first performs standard CLAP-based

retrieval to identify the top-k£ most similar labels
based on cosine similarity in the joint embedding
space. For each top-ranked label, it queries a cu-
rated set of semantic relations R, using the KGE
model ¢kg to predict the most plausible tail entities.
These tail entities are concatenated with the orig-
inal label to form enriched, context-aware textual
prompts. The CLAP text encoder then scores these
prompts against the input audio. The final predic-
tion is made by aggregating evidence from both
the original and enriched prompts using a log-sum-
exp fusion strategy, enabling semantic re-ranking
of the top-k candidates. This procedure enhances
both the interpretability and robustness of zero-shot
classification by leveraging structured knowledge.

A.5 Prompt Templates for Triple Generation

To extract relational knowledge from large lan-
guage models, we design a prompt template that

34684



Knowledge Graph Summary

Subset Triples  Relations  Heads Tails

Overall Stats  Clean 18,348 47 857 4,282

Noisy 49,215 47 860 11,063

Test 2,039 46 673 1,068

Top 20 Most Frequent Relations (Split by Clean and Noisy Sets)

# Relation Triples Heads Tails

Clean Noisy Clean Noisy Clean Noisy
1 has subtype 2552 3773 331 528 1020 1731
2 belongs to class 2242 2739 828 835 252 471
3 occurs in 2052 2982 550 622 347 640
4 has children 907 907 211 211 773 773
5 has sibling 890 890 760 760 207 207
6 has parent 886 886 764 764 206 206
7 can be heard in 631 1212 289 366 249 378
8 localized in 623 893 226 241 268 355
9 part of scene 564 1531 164 253 337 752
10 is a type of 529 929 233 304 251 460
11 generated by 501 936 255 327 277 450
12 described by 393 661 242 295 368 627
13 event composed of 390 1368 236 441 284 877
14 produced during 363 712 161 219 241 395
15 overlaps with 348 2009 185 434 237 844
16 associated with environment 330 593 128 180 210 323
17 precedes 308 1010 122 227 220 643
18 originates from 304 579 138 172 207 377
19 warns about 272 1854 97 353 187 854
20 emitted by 254 319 135 149 149 183

Table 4: Summary statistics for the knowledge graph. The upper section presents overall statistics including the
number of triples, relations, head and tail entities. The lower section lists the 20 most frequent relations, split by
clean and noisy subsets, with counts of associated triples, heads, and tails.

guides the generation of plausible (head, relation,
tail) triples grounded in sound event semantics. The
prompt is tailored to elicit contextually relevant re-
lations for each unique sound label in the SALT
taxonomy. We apply it at scale to generate an initial
pool of candidate triples, which are subsequently
refined through a two-stage filtering process in-
volving automated plausibility checks and manual
curation. Figure 8 illustrates the prompt used for
triple generation, while Figure 9 shows the prompt
used to verify their semantic plausibility.

A.6 Additional Results

Per-class zero-shot audio classification perfor-
mance In addition to the overall performance
analysis in Section 6.2, we also investigate how
CLAP-KG benefits individual classes. Consider-
ing ESC50 as a case study, Figure 10 illustrates
the class-wise classification performance of CLAP
and CLAP-KG. We notice that although the overall
accuracy is increased by 2.2% as shown in Table 2,
the class-wise performance varies. Large perfor-
mance increase happens for crow, crackle, and cow,
while CLAP-KG degrades performance for cricket,

rain, and laughing.

A.7 Dataset Licenses

For transparency, we provide a comprehensive sum-
mary of the licensing terms associated with each
dataset used in our experiments in Table 6. All
datasets are publicly available and widely used in
academic research on environmental sound classifi-
cation.
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Figure 7: Overview of key statistics for relations of the clean set in the knowledge graph. (a): Distribution of
counts, unique heads, and unique tails for the top 10 most frequent relations. (b): Counts of reflexive relations
where the head equals the tail. (¢): Proportion of transitive triples identified among the total triples per relation. (d):
Distribution of relation frequencies.

"You are an expert in sound event classification and knowledge graph generation. Given a sound
event label, your task is to reason about and, if appropriate, generate knowledge graph triples
that describe real-world, common-sense relationships between the sound event and other entities or
events. The relation type is: {relation_type}. The relation details are: {relation_details}. Here
is an example for guidance: {examples}.

Step 1: Reason about the plausibility of generating real-world, common-sense triples for
the sound event label: {label_name}, using the relation type:{relation_type}. Determine if this
type of relation is meaningfully applicable to the event in a way that reflects actual, observable
relationships in the world.

If the relation type is not applicable or would lead to speculative, forced, or non-sensical
triples, conclude that no valid triples can be generated.

Step 2: If the relation is applicable and meaningful, generate a list of plausible, real-world
triples grounded in common sense. Ensure that each triple reflects knowledge that a reasonable
person would accept as true in everyday understanding.

There is no fixed number of triples required, but include only those that are relevant, accurate,
and justifiable by common sense.

Respond with only the final list of triples in the exact format: [[headl, relation, taill], [head2,
relation, tail2], ...].

If in Step 1 you determine that no meaningful triples can be generated, respond with an empty list:
[1.

Do not include any reasoning or explanation in the final output. The head should strictly be the
label name: {label_name}."”

Figure 8: Prompt template to generate synthetic triples via LLM.

"You are an expert in knowledge graphs for audio understanding. Given a triple in the format
[head, relation, tail], assess whether it is pertinent for inclusion in a knowledge graph for
audio understanding. The head represents a sound event label, i.e., a sound or an abstraction
of the sound emitted, implied, or perceptually associated with an entity. A triple is pertinent
if it is non-speculative, grounded in common-sense and real-world experience, and contributes to
a taxonomical, hierarchical, temporal, causal, perceptual, compositional, or phisical contextual
understanding of sound events. Reject triples which are vague, speculative, or not useful for
structuring knowledge about sound. Is the triple {kg_triple} pertinent to structure knowledge about
sound? Answer strictly “Yes” or “No” without any reasoning or explanation in the final output.”

Figure 9: Prompt template to verify synthetic triples via LLM.
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SALT Label Head Relation Tail
Triple examples (generated by LLM)

1 vehicle engine vehicle engine caused by combustion

2 chicken crowing chicken crowing caused by rooster

3 smoke alarm smoke alarm caused by smoke

4 crying crying emotionally associated with sadness

5 cello cello emotionally associated with melancholy

6 lullaby lullaby emotionally associated with calmness

7 coffee machine coffee machine has duration medium

8 timpani timpani has duration long

9 cap gun cap gun has duration short

10 bird bird has pitch high

11 humming humming has pitch low

12 flute flute has pitch high

13 thunderstorm thunderstorm indicates thunder

14 marching marching indicates parade

15 firecracker firecracker indicates celebration

16 maraca maraca is instance of percussion instrument
17 giggling giggling is instance of laughter

18 microphone microphone is instance of audio recording device
19 fireworks fireworks perceived as celebratory
20 castanets castanets perceived as rhythmic instrument
21 pulse pulse perceived as heartbeat rate
22 flute Sflute performed by orchestra
23 kwaito music kwaito music performed by musicians
24 playing guitar playing guitar performed by guitarist
25 clock tick clock tick precedes door opening
26 electric guitar electric guitar precedes composing music
27  dog dog precedes yelping
28  mantra mantra used for self-improvement
29 whistle whistle used for alerting
30  knife knife used for self-defense

Triple examples (derived by SALT)

31 pigeon dove pigeon dove belongs to class bird
32 large rotating saw large rotating saw belongs to class sawing
33 vehicle compressor vehicle compressor belongs to class large vehicle
34 speech speech has children chatter
35 wild animal wild animal has children roar
36 bowed string instrument bowed string instrument has children cello
37 whoosh swoosh swish whoosh swoosh swish has parent wind
38  bouncing on trampoline bouncing on trampoline has parent Jjumping
39 swimming swimming has parent water activity
40  swimming swimming has sibling diving
41 whoosh swoosh swish whoosh swoosh swish has sibling rustling
42 bouncing on trampoline bouncing on trampoline has sibling bouncing ball
43 piano piano has subtype grand piano
44 music genre music genre has subtype jazz
45 vehicle vehicle has subtype bicycle
46 smash or crash smash or crash occurs in kitchen
47 drum kit drum kit occurs in train station
48  clatter clatter occurs in gym

Table 5: Representative examples of knowledge graph triples. The first section includes examples generated using a
large language model (LLM), grouped by semantic relation types such as causality, perception, and functionality.
The second section includes examples extracted from the SALT. Both sets illustrate complementary richness and
diversity of relation types from automated and curated construction approaches.
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Algorithm 1 Knowledge-Guided CLAP Inference

Require: Input audio @ € A, label set C

{c1,...,en} C L, CLAP encoders ¢a, ¢r,
KGE model ¢kg, relation set R, C R, top-k

parameters k, m
Ensure: Predicted label ¢ € C'
1: Encode audio: a < ¢4(a)
Encode labels: ¢; <+ ¢r(¢;) forall ¢; € C
Compute similarities: s(c;) < sim(a, ¢;)
Retrieve  top-k  labels: Cy
{0 P} TopK({s(cs)}, k)

Rl N

<

<_

5: Initialize enriched prompt set: P < ()

6: for all c € C}, do

7. forallr € R, do

8: Predict top-m tails: T,

TOpM(¢Kg(C, r, '), m)
9: forallt € 7 do
10: Form enriched prompt: pc:
concat(c,t)

11: Add p.; to P

12: end for

13:  end for

14: end for

15: Encode enriched prompts: p; < ¢r(p;) for
allp; € P

16: Compute prompt similarities: s(p;)
Sim(a7 pj)

17: for all c € C}, do

18:  Retrieve prompt scores: {s(p;) | p; € Pe}

19:  Aggregate  score: 5(c)
log (exp(s(c)) + X2, cp, exp(s(py))
20: end for

21: Predict final label: ¢ <— arg max.cc, 5(c)
22: return ¢

<_

Dataset

License

ESC50 (Piczak, 2015)

UrbanSound8K (Salamon et al., 2014)
TUT2017 (Mesaros et al., 2016)

FSD50K (Fonseca et al., 2022)

AudioSet (dataset) (Gemmeke et al., 2017)
AudioSet (ontology) (Gemmeke et al., 2017)
DCASE17-T4 (Mesaros et al., 2017)

CC BY-NC 3.0 (Attribution-NonCommercial)

CC BY-NC 3.0 (Attribution-NonCommercial)
Custom EULA: Non-commercial scientific use only
CC BY 4.0 (Attribution)

CC BY 4.0 (Attribution)

CC BY-SA 4.0 (Attribution-ShareAlike)

Follows AudioSet licensing

Table 6: Summary of dataset licenses used in this study.
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