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Abstract

Reasoning models have demonstrated remark-
able performance on complex tasks by gen-
erating long reasoning traces prior to produc-
ing final answers. However, previous research
on long-context scaling in language models
has generally focused on managing lengthy
input prompts instead of producing long out-
puts. To leverage the strong long context under-
standing abilities of current models, we intro-
duce Understanding-to-Reasoning Transition
(URT) fine-tuning, a sequence-level curricu-
lum learning framework that gradually shifts
a model’s focus from interpreting long chain-
of-thoughts to generating them. By incorpo-
rating partial reasoning steps in the input con-
text, URT naturally exposes the model to di-
verse prompt lengths during training, preserv-
ing its performance on long-context compre-
hension while developing advanced reasoning
capabilities. Experiments on rigorous reason-
ing benchmarks, including AIME24 and GPQA
Diamond, reveal that our approach surpasses
standard fine-tuning by over 10%, while main-
taining robust performance on the understand-
ing tasks in RULER.

1 Introduction

Enhancing the long-context capabilities of large
language models (LLMs) (Anthropic, 2023; Tou-
vron et al., 2023; Reid et al., 2024) has become
both immensely popular and critically important.
In recent years, researchers have primarily focused
on improving the long-context comprehension abil-
ities of LLMs (Xiong et al., 2023; Zhu et al., 2023;
Peng et al., 2023; Gao et al., 2024b), achieving
substantial progress on tasks such as summariza-
tion and question answering that emphasize the
effective utilization and understanding of long in-
puts. However, with the emergence of reasoning
models (OpenAI, 2024; DeepSeek-AI et al., 2025),
the focus has noticeably shifted; optimization in

*Work done during internship at ByteDance Seed

the long-context setting is now aimed at generat-
ing long outputs, typically in the form of extensive
chain-of-thoughts (CoTs) (Wei et al., 2023).

However, it remains unclear (1) whether current
open-source reasoning models that are trained with
short prompts can preserve their long-context com-
prehension capabilities; and (2) whether their abili-
ties to handle long prompts can be effectively lever-
aged to enhance the learning of long CoTs. To ad-
dress this gap, our study begins with a preliminary
evaluation (§3.1) examining whether popular base
LLMs and their reasoning variants can effectively
utilize information from lengthy inputs. First, to as-
sess the models’ general long-context capabilities,
we adopt the existing benchmark RULER (Hsieh
et al., 2024), which measures performance on stan-
dardized long-context tasks. In addition to the
general domain, we introduce CoT-U (Chain-of-
Thought Understanding), a new understanding task
that evaluates models’ ability to process and reason
over lengthy inputs which are human-verified rea-
soning paths. As illustrated in Figure 1, each input
combines a problem statement with its correspond-
ing CoT rationale, testing how effectively models
leverage structured reasoning paths. Our evalua-
tion leads to two key observations: (1) Reasoning
models (trained predominantly on math problem
with limited prompt-length variety) lag behind base
models in both CoT-U and general long context
tasks, and (2) incorporating partial reasoning steps
(tokens) into the input significantly mitigates the
difficulty of learning long reasoning chains.

Building on these findings, we propose a new
framework for fine-tuning LLMs on challenging
chain-of-thought data, termed Understanding-to-
Reasoning Transition (URT) fine-tuning. In this
context, understanding refers to the model’s ability
to process long-form CoT inputs and assimilate
them into accurate final answers. While reasoning
in our approach involves generating the reasoning
steps rather than merely interpreting them. Re-
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cent studies, e.g., Sky-T1 and S1 (DeepSeek-AI
et al., 2025; NovaSky Team, 2025; Ye et al., 2025;
Muennighoff et al., 2025), have demonstrated that
fine-tuning on long CoT data offers a straightfor-
ward and cost-effective approach to enabling mod-
els to learn extended CoTs. In contrast to these
works that finetuned models on complete reason-
ing chains, URT models the learning process as
a gradual transition from understanding to genera-
tion. Specifically, URT splits a long reasoning trace
into two segments—incorporating part of the trace
into the input while requiring the generation of the
remaining steps. This means that during training,
the input prompt is gradually shortened while the
expected output becomes longer. Our approach of-
fers two key benefits. First, it enhances reasoning
by employing a sequence-level curriculum learning
process that bridges the gap between long chain-of-
thought understanding and generation by starting
with an easier understanding task. Second, it im-
proves comprehension by exposing the model to
diverse prompt lengths during fine-tuning, thereby
avoiding overfitting on short-prompt inputs.

We evaluate our URT fine-tuning method on sev-
eral challenging reasoning benchmarks, including
AIME24 (MAA, 2024), GPQA (Rein et al., 2023),
and MATH500 (Hendrycks et al., 2021a), as well
as a long-context benchmark, RULER (Hsieh et al.,
2024). Our experiments cover various model sizes
(8B, 14B, and 32B), and in every case, URT fine-
tuning consistently delivers improvements. No-
tably, our 32B model achieves an improvement
of over 10% compared to standard SFT meth-
ods. The overall performance of our model is
even comparable to that of the teacher models R1-
Preview and QwQ-Preview, demonstrating its im-
pressive capacity to acquire and generalize knowl-
edge. In addition, for long-context understand-
ing tasks, our model achieves robust performance
on RULER, outperforming QwQ-32B-preview by
over 12 points.

2 Related Work

Long-Context Understanding Language mod-
els have recently increased their context lengths
from 2K to over 128K tokens (Chen et al., 2023;
Han et al., 2024; Gao et al., 2024b; Lin et al.,
2025). Despite this growth, evaluation and train-
ing datasets have mainly concentrated on compre-
hending long prompts (Li et al., 2024; Jiang et al.,
2024). Benchmarks like Scrolls (Shaham et al.,

2022) and LEval (An et al., 2023) assess long-
context capabilities through tasks such as ques-
tion answering (Kočiský et al., 2018; Dasigi et al.,
2021), summarization (Zhong et al., 2021; Chen
et al., 2022), and synthetic challenges like Needle-
in-a-Haystack (gkamradt, 2023; Laban et al., 2024).
For training, efforts focus on curating high-quality
long-context data from real-world QA datasets, typ-
ically following a long-prompt, short-response for-
mat (Zhao et al., 2024a; An et al., 2024; Koluguri
et al., 2024; Liu et al., 2024; Fu et al., 2024; Wu
et al., 2024; Gao et al., 2024a).

Long Chain-of-Thought Reasoning As LLMs’
context lengths expand, research also focuses on
generating extended content, such as story writ-
ing (Mikhaylovskiy, 2023; Bai et al., 2024). With
the release of o1 (OpenAI, 2024), generating long,
coherent chains of thought (CoTs) in model re-
sponses has become a critical research area (Zhang
et al., 2024a; Latif et al., 2024). Enhancements
in long CoT generation include Monte Carlo Tree
Search (Yao et al., 2023; Zhou et al., 2024; Zhang
et al., 2024c), large-scale reinforcement learn-
ing (DeepSeek-AI et al., 2025; Pan et al., 2025),
and supervised fine-tuning on CoT datasets (Team,
2025; LI et al., 2024). We use supervised fine-
tuning for its scalability and strong reasoning per-
formance (Huang et al., 2025; Zhang and Chen,
2024; Muennighoff et al., 2025). Unlike data-
centric approaches focused on data diversity and
quality (Ye et al., 2025; Min et al., 2024; NovaSky
Team, 2025), our work optimizes the training pro-
cess with a new sequence-level finetuning frame-
work without complex data engineering.

3 Method

This section comprises two primary components:
(1) a preliminary evaluation of the long-context
capabilities of current models, and (2) our URT-
based fine-tuning framework.

3.1 Long Context Understanding Capabilities
of Current LLMs

In this section, we describe the details of the long-
context understanding evaluation process of current
base models and reasoning models.

Evaluation Setup Base models have demon-
strated remarkable progress in long-context under-
standing, as evidenced by their performance on
various benchmarks (Zhang et al., 2024b; Song
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et al., 2025; Bai et al., 2025). However, their ability
to comprehend complex chain-of-thought (CoT)
reasoning and the effectiveness of reasoning mod-
els for processing long inputs remain largely un-
explored. In general long-context ability tests, we
utilize RULER (Hsieh et al., 2024) to evaluate these
models. We note that there is currently no under-
standing task featuring long CoT inputs. In this
work, we introduce CoT-U, a new test dataset de-
signed to assess a model’s ability to retrieve and
aggregate information from long chain-of-thought
reasoning traces. Given a problem statement ac-
companied by its multi-step reasoning process as
input context, the model must aggregate the useful
information to arrive at the correct final answer (see
Figure 1).

The contruction of CoT-U requires not only the
problems but also their corresponding correct rea-
soning steps. Our experiments are conducted on
a dataset comprising 180 math problems and their
corresponding solutions, sourced from the Art of
Problem Solving (AoPS) platform1 and spanning
the AIME competitions from 2019 to 2024. The
AoPS platform provides Olympiad-level math prob-
lems accompanied by detailed, human-authored
CoTs. In addition to these human-written solu-
tions, we also develop a set of model-generated
reasoning paths. Unlike the human solutions, the
synthetic paths are enriched with more elaborate
explanations and reflective steps, and thus longer
and more challenging. Given that o1 (OpenAI,
2024) lacks explicit reasoning tokens, we employ
the state-of-the-art open-source model QwQ-32B-
Preview from Qwen Team (Bai et al., 2023) to
generate these solutions.

From the initial set of 180 generated solutions,
we apply rejection sampling to eliminate 56 in-
stances—those with incorrect answers (identified
via rule-based matching) and those with correct
answers but insufficient or flawed reasoning (deter-
mined through human review). In CoT-U, we do
not directly include the correct answer in the input.
Instead, we remove any sentences that explicitly
reveal the ground truth. The model is prompted
with the incomplete reasoning process which have
already demonstrate the key reasoning steps for
deducing the answer. After comprehending this
solution, the model only needs to perform simple
reasoning to arrive at the final answer. All the data
are then subject to manual review to ensure that the

1https://artofproblemsolving.com/

<prompt> 
A bug walks all day and sleeps all night. On the first 
day, it starts at point O, facing east, and walks 5 
units due east. Each subsequent day, it walks half as 
far as the previous day in a direction that is 60°
counterclockwise ... Find m+n. So I have this problem 
about a bug that walks different distances each day 
and rotates 60 degrees counterclockwise every night. 
It starts at point O, facing east, and walks 5 units 
east on the first day. Then each subsequent day, it 
walks half as far as the previous day in a new 
direction that‘s 60 degrees counterclockwise from 
where it was facing the previous night ... Then, OP² = 
x² + y² = 25 + (25*3)/9 = 25 + 75/9 = 25 + 25/3 = (75 
+ 25)/3 = 100/3
Therefore, m = 100 and n = 3, so m + n = 103.Wait, but 

earlier I had a different...(removed)

User: The provided solution has sufficient information 
to derive the answer to the question. Please 
understand the solution and obtain the final answer.

</prompt> 

Figure 1: An illustrative example from our CoT-U test
set, where we remove sentences that directly reveal the
final answer and instead include an instruction prompt-
ing the model to comprehend the given CoTs.

reasoning steps are logically sound and free from
overt mistakes, resulting in a refined test set of 112
cases. Human-generated chains-of-thought average
872 tokens, while AI-generated chains are signifi-
cantly longer at 16,133 tokens (approximately 18
times longer).

Findings We evaluate the long thought un-
derstanding ability of GPT-4o (OpenAI, 2023),
Llama3.1-8B (Llama Team, 2024), Qwen2.5-
7B/32B (Qwen et al., 2024), and their correspond-
ing long reasoning models: o1-preview (OpenAI,
2024), Qwen2.5-marco-o1 (Zhao et al., 2024b),
Qwen2.5-skywork-o1 (o1 Team, 2024), Llama3.1-
open-o12, and QwQ-32B-preview on CoT-U.
Results are presented in Figure 2 and Figure 3.
Our results reveal the following insights:
(1) All open-source reasoning models exhibit
a significant performance degradation in long-
context understanding tasks compared to their
non-reasoning counterparts.
(2) Without any hints or reasoning steps provided,
open-source reasoning models achieve superior
performance in solving mathematical problems.
However, when supplied with CoTs generated by
other AI systems or humans, their problem-solving
capability paradoxically underperforms compared
to non-reasoning models.
(3) Model performance is closely associated
with the length of the provided context. Fig-
ure 3 illustrates the continuous improvement
in performance of Qwen2.5-32B-Instruct and
Llama3.1-8B-Instruct as they are supplied with
more reasoning steps. Specifically, Qwen2.5-32B-

2https://github.com/Open-Source-O1/Open-O1
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(a) Results on RULER(32K). (b) Results on CoT-U (human-written). (c) Results on CoT-U (AI-generated).

Figure 2: Long context understanding ability of current LLMs. Black bars: base models; orange bars: long reasoning
models. Qwen2.5-CoT-SFT and Llama3.1-CoT-SFT is trained by us on the STILL2 dataset (Min et al., 2024).
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Figure 3: Model performance with varying numbers of
provided CoT tokens.

Instruct demonstrates a significant improvement
of over 60% compared to directly prompting the
model with the problem statement which means
the accuracy of solving math problems can be
controlled by the number of reasoning tokens.

3.2 Fine-Tuning on Long Thought data

The evaluation results highlights the need for ad-
vanced fine-tuning techniques to enhance the long
CoT capabilities of reasoning models without com-
promising their long-context understanding capa-
bilities. This section details our URT fine-tuning
method.

Formulation Consider the training dataset de-
fined as

D = {(x(i), y(i))}Ni=1,

where x(i) is an input instance (e.g., a question or
prompt) and y(i) is the corresponding long chain-
of-thought response, which includes intermediate
reasoning steps and the final answer.

The LLM, parameterized by θ, defines a condi-
tional distribution over outputs as p(y | x; θ). For
a single training instance (x, y), the loss is defined
by:

L(θ;x, y) = − log p(y | x; θ).

The overall objective for fine-tuning is to minimize
the total loss over the entire dataset:

L(θ) = 1

|D|
∑

(x(i),y(i))∈D
L(θ;x(i), y(i)).

This formulation represents the traditional Su-
pervised Fine-Tuning (SFT) method. However,
in practice, when dealing with long reasoning
chains, the response y is often highly complex and
lengthy (Xu et al., 2025; Wang et al., 2024), posing
significant challenges for effective model learning.

To overcome the challenges associated with
long reasoning chains, we propose Understanding-
to-Reasoning Transition Supervised Fine-Tuning
(URT-SFT), which involves partitioning the re-
sponse y into two distinct parts and embedding a
segment of y within the input prompt. Specifically,
the response y is divided as follows:

y = y1:t ◦ yt+1:T ,

where: y1:t = {y1, y2, . . . , yt},, yt+1:T =
{yt+1, yt+2, . . . , yT }, and ◦ denotes the concate-
nation of sequences. Here, t represents the length
of the segment from y that is integrated into the
input prompt, which is a hyperparameter. The aug-
mented input x′ is then defined as:

x′ = x ◦ y1:t,

where x is the original input prompt augmented
with the first t tokens of the response y.

Consequently, the loss function for a single train-
ing instance under URT-SFT is formulated as:

L(θ;x, y) = − log p(yt+1:T | x′; θ).

This splitting strategy enables the model to han-
dle long reasoning chains more effectively by re-
ducing the complexity of the output. Furthermore,
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Table 1: Examples of different fine-tuning strategies on long reasoning data. During training, the prompt and
response are separated by the special token ‘</prompt>’. The lengths of the prompt and response can be adjusted
by modifying the placement of </prompt>. Instead of fine-tuning on the entire response, our method begins with an
input format that is closer to long-context understanding and gradually transitions to training on the whole thought.

Fine-tuning on whole
thought

<prompt> A bug walks all day and sleeps all night... Find m+n </prompt> (no loss on prompt)
So I have this problem about a bug that walks different distances each day and...(the whole
thought has about 5,120 tokens) the final answer is 103

From long thought
understanding to long
thought generation

<prompt> A bug walks all day and sleeps all night... Find m+n So I have this problem about a
bug that walks different distances...(the input context contains 4,096 tokens) </prompt>
Now, P = 5/0.75− i

(√
3/4

)
. To divide by a complex number, multiply numerator and

denominator by the conjugate of the denominator...(the output contains about 1024 tokens) the
final answer is 103
<prompt> A bug walks all day and sleeps all night... Find m+n So I have this problem about a
bug that walks different distances...(the input context contains 2,048 tokens) </prompt>
First day: walk 5 units east, so position Z1 = 5 + 0i. Then, rotate 60 degrees...(the output contains
about 3072 tokens) the final answer is 103
Fine-tuning on whole thought (the output contains about 5120 tokens)

in traditional SFT, most inputs x are math prob-
lems (Min et al., 2024; NovaSky Team, 2025; LI
et al., 2024), which are naturally short. However,
after concatenation, x′ becomes a long-context in-
put. Exposing the model to a range of input lengths
during fine-tuning demonstrably enhances the per-
formance of long reasoning models on long-context
tasks (§4.4).

An Example of Decomposing In this section,
we demonstrate how we split a long thought, with
t set to powers of 2, specifically {2,048, 4,096,
8,192}. The thought y consists of approximately
5,120 tokens, as illustrated in Table 1. We utilize
a simple chat template where the user input is en-
closed within <prompt>...</prompt>. Following
previous work (Wang et al., 2023; Zheng et al.,
2024), we do not calculate loss on the prompt.

In the top block of Table 1, the model is fine-
tuned on the entire chain-of-thought y, where the
prompt x contains only a brief problem descrip-
tion (e.g., “A bug walks all day and sleeps all
night. . . Find m + n”), and the full reasoning
(about 5,120 tokens) along with the final answer is
produced in the response. The subsequent blocks
illustrate our method of decomposing the long
thought—transitioning from long thought under-
standing to long thought generation. Given that the
input length of 5,120 tokens is below the 8,192 to-
kens threshold, we experiment with splitting points
t = 2,048 and 4,096. In our implementation, we
first split the text by \n\n and then by length. This
ensures that splitting points are at \n\n positions,
preventing tokenization errors. In the first row of
the second block, the prompt includes a portion of
the chain-of-thought (with the context containing

t = 4, 096 tokens), and the response provides the
remaining reasoning steps (approximately 1, 024
tokens) together with the final answer. In the sec-
ond row, we increase the task difficulty by reducing
the input context length to around t = 2, 048 to-
kens, resulting in a longer response (about 3, 072
tokens). Finally, the model is trained on the whole
thought without any reasoning steps provided. The
training details are in Section §4.1.

Difficulty Control As a sequence-level curricu-
lum learning framework, URT is designed to mimic
an easy-to-hard training progression. At the se-
quence level, we emphasize training examples with
longer prompts—providing additional context or
intermediate reasoning—paired with shorter re-
sponses. This design encourages the model to lever-
age extended prompts containing rich reasoning
information while reducing the burden of generat-
ing lengthy responses. At the beginning of every
epoch, the training data is shuffled. For identical
math problems, training samples that incorporate
more reasoning steps are prioritized. It means the
model is initially exposed to instances where more
intermediate steps help in reaching the final answer.
This ordering facilitates a gradual increase in diffi-
culty as training progresses. After each epoch, the
model is evaluated on the training set. If it correctly
derives a problem’s final answer, that problem is
removed, allowing the model to concentrate on
unsolved challenges.
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4 Experiments

4.1 Training Details
In this section, we describe the data preparation,
training process, and hyperparameter settings used
in our experiments. Our focus is on the training
methodology rather than on curating or annotating
data; therefore, we directly use publicly available,
open-source dataset provided by STILL2 (Min
et al., 2024) where the teacher models are QwQ-
32B-preview (Qwen Team, 2024) and R1-lite-
preview (DeepSeek Team, 2024).

Data Preparation We utilize the dataset pro-
vided in STILL23 which comprises approximately
4,9K question and chain-of-thought pairs. The ma-
jority of the prompts are from the mathematics do-
main, with a smaller portion from code and science.
In the original dataset, there are 4,900 prompts in
total, with 2,429 having lengths exceeding 2,048 to-
kens, 1,071 exceeding 4,096 tokens, and 81 exceed-
ing 8,192 tokens. We then create a decomposed
dataset using the method illustrated in Table 1, con-
sisting of 4,814 prompts with diverse input lengths
(2,048∼8,192).

Training The SFT baselines are trained on 4.9K
prompts for 10 epochs, while the URT models are
trained on 9.8K prompts for 5 epochs. Addition-
ally, we exclude data that the model can already
handle correctly. To validate the effectiveness of
our approach, we perform experiments on three
base models with sizes ranging from 8B to 32B:
Llama3.1-8B-Instruct, Qwen2.5-14B-Instruct, and
Qwen2.5-32B-Instruct. We do not modify the mod-
els’ tokenizers or chat templates, and we adopt a
full-parameter fine-tuning setting. We use Llama
Factory (Zheng et al., 2024) for fine-tuning and
follow their default SFT hyperparameters. We use
a batch size of 64, training in bfloat16 precision.
The learning rate is set to 1× 10−5, with no warm-
up, and it decays to 0 following a cosine schedule.
We employ the AdamW optimizer (Loshchilov and
Hutter, 2019) with β1 = 0.9, β2 = 0.95, and a
weight decay of 1×10−4. Note that during training
we compute the loss only on the reasoning traces
from the response, and not on the input (which in-
cludes the question and any partial solution). All
experiments are conducted on a single machine
equipped with 8 NVIDIA A100 GPUs, and we set
the maximum training sequence length to 16384.

3https://github.com/RUCAIBox/Slow_Thinking_
with_LLMs

Our training pipeline is based on DeepSpeed ZeRO-
3 (Aminabadi et al., 2022) and accelerated by Flash-
Attention-2 (Dao, 2023). For the 32B model, CPU
offload is utilized to mitigate GPU out-of-memory.
In our experiments, the 8B and 14B models are
fine-tuned in under 4 hours, while the 32B model
requires approximately 14 hours.

4.2 Evaluation Setup
In this section, we outline the benchmarks and base-
lines used to evaluate the reasoning capabilities of
our models. Specifically, we compare URT with
the traditional SFT on widely recognized reasoning
tasks covering multiple domains as well as long-
context benchmarks. For a detailed description
of the benchmarks and baselines employed in this
work, please refer to Section A.1.

4.3 Main Results
Long-Reasoning Results Table 2 presents a com-
prehensive comparison of various models evaluated
on three benchmark datasets: MATH500, AIME24,
and GPQA-Diamond. The results demonstrate that
URT-SFT consistently outperforms the standard
SFT approach across all evaluated models. For
instance, applying URT-SFT to the Llama3.1-8B-
Instruct model results in accuracy improvements
of 17.6% on MATH500, 506.1% on AIME24, and
30.6% on GPQA-Diamond, greatly surpassing the
SFT baseline. Similarly, URT-SFT outperforms
SFT on larger base models like Qwen2.5-14B-
Instruct and Qwen2.5-32B-Instruct.

Our proposed URT-SFT method leverages only
5K prompts to fine-tune models, yet achieves
performance that rivals or exceeds that of our
teacher models R1-preview and QwQ-32B-preview.
Specifically, on the AIME24 dataset, our method
achieves an accuracy of 56.7%, outperforming r1-
preview’s 52.5% and QwQ-32B-preview’s 50.0%.
Furthermore, in the GPQA-Diamond benchmark,
our 32B model reaches an accuracy of 61.6, sur-
passing r1-preview by 3 points, demonstrating
competitive performance despite the use of fewer
prompts. When assessed against contemporary
state-of-the-art open-source models, our URT-SFT-
trained models also exhibit competitive perfor-
mance across all benchmarks. On the AIME24
dataset, our approach aligns closely with S1-32B
+ BF, which is trained on data distilled from the
stronger teacher model Gemini 2.0 Flash Think-
ing (Google Team, 2024). Our 32B model is able to
outperform strong open-source baselines STILL2-
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Table 2: Performance comparison of various models across three popular benchmarks to assess the long trace
reasoning ability of LLMs. Distilled From indicates which model provides the training data. The bold fonts denote
the best performance among our training variants, and we report the gain over the base model. The examples of the
input and output for the three benchmarks are shown in Appendix Table 5.

Models Distilled From MATH500 AIME24 GPQA-Diamond
Acc (%) Gain (%) Acc (%) Gain (%) Acc (%) Gain (%)

GPT-4o N.A. 76.6 - 9.3 - 53.6 -
Claude 3.5 Sonnet N.A. 78.3 - 16.0 - 65.0 -
o1 N.A. 94.8 - 74.4 - 77.3 -
o1-preview N.A. 85.5 - 44.6 - 72.3 -
r1 N.A. 97.3 - 79.8 - 71.5 -
r1-preview N.A. 91.6 - 52.5 - 58.5 -
QwQ-32B-preview N.A. 90.6 - 50.0 - 65.2 -

Trained on open-source dataset

Open-o1-Llama3.1-8B Synthetic data 54.8 - 10.0 - 30.8 -
S1-32B + BF Gemini Flash Think. 93.0 - 56.7 - 59.6 -
STILL2-32B r1-preview & QwQ-preview 89.2 - 43.3 - 55.0 -
Sky-T1-32B QwQ-preview 86.4 - 43.3 - 56.8 -

Llama3.1-8B-Instruct 48.4 - 3.3 - 23.2 -
+ SFT r1-preview & QwQ-preview 52.2 +7.9% 13.3 +303.0% 27.2 +17.2%
+ URT-SFT 57.0 +17.6% 20.0 +506.1% 30.3 +30.6%
Qwen2.5-14B-Instruct 78.6 - 13.3 - 43.4 -
+ SFT r1-preview & QwQ-preview 83.2 +6.4% 33.3 +150.4% 53.5 +23.3%
+ URT-SFT 86.0 +9.4% 40.0 +200.7% 60.6 +39.6%
Qwen2.5-32B-Instruct 80.0 - 13.3 - 43.4 -
+ SFT r1-preview & QwQ-preview 88.2 +11.5% 43.3 +225.5% 55.1 +26.9%
+ URT-SFT 90.4 +12.8% 56.7 +326.3% 61.6 +41.9%

32B and Sky-T1-32B, which employ similarly-
performing teacher models. The results on the
GPQA-Diamond show that our method clearly out-
perform all previous models when tested with a
broader range of domains. We also demonstrate
that URT-SFT maintains an advantage over SFT in
more tasks (Table 3).

Table 3: Performance across a broader range of tasks,
including medicine, commonsense reasoning, code, and
math. LCB stands for LiveCodeBench, and PA stands
for Putnam-AXIOM.

Model MedQA BBH LCB PA

Qwen2.5-32B 72.0 50.8 40.8 17.7
+SFT 73.2 58.6 41.3 38.1
+URT-SFT 75.7 59.3 44.5 43.2

Long-Context Results As described in Sec-
tion 3.1, the model’s ability to understand long
reasoning traces deteriorates after extended CoT
training, despite the task being a straightforward
mathematical one. We hypothesize that this decline
is due to the model not encountering long input
prompts during training, which hampers its long-
context understanding capabilities. To validate this
hypothesis, we conducted evaluations using the
RULER long-context evaluation suite. The results
are presented in Table 4.

Our experiments reveal that, compared to
the base model Qwen3.5-32B-Instruct, mod-
els trained on a predominantly math problem
dataset—both the official Qwen checkpoint QwQ-
32B-Preview and models fine-tuned on open-
source datasets—exhibit decreased performance.
This decline becomes more pronounced as the in-
put length increases from 32K to 64K tokens. How-
ever, models fine-tuned with URT are exposed to
numerous long prompt inputs during training. Con-
sequently, compared to direct SFT, URT-SFT does
not suffer significant performance degradation on
long-context tasks and improves performance on
long-context tasks by over 10 percentage points
compared to QwQ-32B-Preview.

In conclusion, By decomposing long-chain rea-
soning into manageable segments embedded within
prompts, URT-SFT not only simplifies the learning
process but also capitalizes on the models’ ability
to handle extended contexts, leading to improved
accuracy and performance.

4.4 Anaysis

Performance Gains Across Different Difficulty
Levels To investigate the scenarios in which URT-
SFT enhances standard SFT, we constructed a di-
verse test set by randomly sampling 200 instances
from the MATH dataset across difficulty levels 1 to
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Table 4: Long context results of long reasoning mod-
els. We test the models on 3 categories: Needle-In-A-
Haystack (NIAH), Variable Tracing (VT) and Question
Answering (QA) from RULER (Hsieh et al., 2024). We
conduct tests using input lengths of 32K and 64K to-
kens. The demonstrations of the three tasks defined in
RULER are shown in Appendix Table 6 and 7.

Models
RULER

Avg.
NIAH VT QA

Context length = 32K

Qwen2.5-32B-Instruct 98.0 86.4 62.0 82.1

QwQ-32B-Preview 64.0 82.8 60.0 68.9
Qwen2.5 + SFT 92.0 89.0 50.0 77.0
Qwen2.5 + URT-SFT 95.0 90.4 59.0 81.5

Context length = 64K

Qwen2.5-32B-Instruct 71.0 67.8 56.0 64.9

QwQ-32B-Preview 52.0 57.4 37.0 48.8
Qwen2.5 + SFT 55.0 70.9 31.0 52.3
Qwen2.5 + URT-SFT 62.0 74.8 45.0 60.6

Figure 4: URT-SFT shows a greater performance im-
provement over SFT on more difficult math problems.

5 and 30 instances from AIME 2024, resulting in
a test set with varying levels of difficulty. Specifi-
cally, Level 1 includes problems from MATH diffi-
culty levels 1, 2, and 3; Level 2 comprises MATH
difficulty level 4 problems; Level 3 consists of
MATH difficulty level 5 problems; and Level 4
contains the 30 AIME 2024 problems. The per-
formance improvements of URT-over SFT across
these different difficulty levels are illustrated in
Figure 4. Our method demonstrates superior per-
formance on more challenging tasks, highlighting
its effectiveness in handling problems of increased
complexity.

Reinforcement Learning To evaluate the orthog-
onality between URT and Reinforcement Learning
(RL) fine-tuning, we conduct complementary ex-
periments using Group Relative Policy Optimiza-
tion (GRPO) (DeepSeek-AI et al., 2025). Specifi-

cally, we fine-tune our models for 1 epoch on the
STILL2 training set with a rollout size of 8 and a
maximum sequence length of 16,384 tokens per
trajectory, following the default configurations of
Verl (Sheng et al., 2024) with 8 NVIDIA A100
GPUs. Our results (Figure 5) indicate that RL scal-
ing and URT are orthogonal, with RL further en-
hancing URT’s performance. Notably, URT demon-
strates significantly higher training efficiency com-
pared to RL scaling. For instance, training a 32B
model with GRPO consumes over 12 days on 8
A100 GPUs, suggesting that knowledge distilla-
tion may be a more practical alternative for smaller
models with academic-level resources.

Figure 5: Training time and performance on AIME24
for SFT and URT models further trained with the GRPO.

Inference Time Scaling In our SFT-trained mod-
els, we observe inference time scaling behavior
similar to that of the o1 model. Specifically, as
the number of tokens processed during inference
increases, the performance continues to improve.
In all experiments, the models were run with a
maximum new tokens of 16K.
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Figure 6: Test-time scaling with URT models on GPQA
and AIME24.

5 Conclusion

This paper introduces a new fine-tuning frame-
work called Understanding-to-Reasoning Transi-
tion (URT) fine-tuning, which aims to improve the
ability of large language models to generate long
and coherent CoT reasoning. The core idea is to
gradually transition the model’s focus from under-
standing CoTs to generating them. This is achieved
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by incorporating partial reasoning steps into the
input context during fine-tuning. The experimental
results demonstrate that URT fine-tuning outper-
forms standard fine-tuning methods, especially on
challenging reasoning benchmarks.

Limitations

One limitation of this work is that we have only
explored the effectiveness of a training method that
gradually transfers from understanding to reason-
ing within the fine-tuning phase. Due to computa-
tional resource constraints, we have not validated
the efficacy of our approach within the reinforce-
ment learning framework. Additionally, in terms of
long-context understanding, when the input length
exceeds 64K tokens, the performance of models
trained using URT declines compared to the base
model. To further enhance the long reasoning
model’s ability to handle lengthy prompts, it may
be necessary to incorporate more high-quality long
prompt data, rather than relying solely on a train-
ing set predominantly consisting of mathematical
problems.
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A Appendix

A.1 Benchmarks and Baseline Models

Benchmarks We utilize three widely-recognized
reasoning benchmarks to assess the problem-
solving skills of our models: (1) AIME24 com-
prises 30 mathematical problems from the 2024
American Invitational Mathematics Examination.
(2) MATH500 (Hendrycks et al., 2021b; Lightman
et al., 2023) is a curated subset of 500 competition-
level problems. (3) GPQA Diamond (Rein et al.,
2023) comprises 198 PhD-level STEM questions
across Biology, Chemistry, and Physics. We
use this benchmark to assess our model’s reason-
ing ability across STEM domains. We also in-
clude MedQA (Jin et al., 2020), LiveCodeBench-
Medium (Jain et al., 2024) (24.08-24.1), BBH (Suz-
gun et al., 2022), and Putnam-AXIOM (Gulati
et al., 2024) to evaluate our method across broader
domains, covering medical exams, coding, and
commonsense. Since most datasets for long CoT
training are dominated by short inputs, we incor-
porate the RULER (Hsieh et al., 2024) evaluation
suite to assess whether models’ long-context un-
derstanding abilities are affected. This suite fea-
tures long-document comprehension tasks with cus-
tomizable input lengths.

Baselines We compare our models against sev-
eral strong baselines to contextualize performance:
o1 and o1-preview (OpenAI, 2024), commercial
models by OpenAI known for generating long rea-
soning traces; r1 and r1-preview (DeepSeek Team,
2024), developed by DeepSeek with performance
comparable to o1; QwQ-32B-preview (Qwen
Team, 2024), an open-weight reasoning model
from the Qwen Team; Sky-T1-32B-Preview (No-
vaSky Team, 2025), trained on reasoning data
distilled from QwQ-32B-preview; s1-32B-BF,
trained on data distilled from Google Gemini 2.0
Flash Thinking (Google Team, 2024) with bud-
get forcing to encourage longer reasoning paths;
STILL2-32B (Min et al., 2024), utilizing the

same training dataset as our model with addi-
tional refinements and reinforcement learning; and
Open-o1-Llama3.1-8B, an o1-like model based
on Llama3.1-8B-Instruct.
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Table 5: The example input prompt and model output for the reasoning benchmarks used in this paper.

MATH500

Input prompt Let a be a positive real number such that all the roots of

x3 + ax2 + ax+ 1 = 0

are real. Find the smallest possible value of a

Model reponse Let’s tackle this problem step by step. We have the cubic equation:

x3 + ax2 + ax+ 1 = 0

And we’re told that all its roots are real, with a being a positive real number. We need to
find the smallest possible value of a. First, I know that for a cubic equation of the form
x3 + bx2 + cx+ d = 0
...
Thus, the smallest possible value of a is: boxed{3}

AIME 2024

Input prompt Find the largest possible real part of

(75 + 117i)z +
96 + 144i

z

where z is a complex number with |z| = 4

Model reponse Alright, so I’ve got this problem here. It says: Find the largest possible real part of

(75 + 117i)z +
96 + 144i

z
,

where z is a complex number with |z| = 4. Okay, let’s break this down.
First off, z is a complex number with magnitude 4. So, z can be written in polar form as
z = 4eiθ , where θ is the argument of z. But maybe it’s easier to work with z in terms of
its real and imaginary parts. Let’s say z = a+ bi, where a and b are real numbers, and
a2 + b2 = 16, since |z| = 4
...
Therefore, the maximum value of the real part is: boxed{540}.

GPQA Diamond

Input prompt What is the energy of the Relativistic Heavy Ion Collider (RHIC) so that the speed of the
nucleus X is equal to 0.96c? Knowing that X is defined as Li with A=6.
A. 20 GeV
B. 10 GeV
C. 36 GeV
D. 49 GeV

Model reponse lright, I’ve got this problem about the Relativistic Heavy Ion Collider, or RHIC, and I need
to find out what energy it should have so that the speed of a lithium nucleus, specifically
Li with A=6, is equal to 0.96 times the speed of light. The options are 20 GeV, 10 GeV, 36
GeV, and 49 GeV. First off, I know that in relativity, when objects move at speeds close to
the speed of light, their energy isn’t just mc2; there’s additional kinetic energy involved.
The total energy of a relativistic particle is given by E = γmc2, where γ is the Lorentz
factor. The Lorentz factor, γ, is 1√

1− v2

c2

.

So, if the speed v is 0.96c, then v/c is 0.96. Let me calculate γ.

γ =
1√

1− (0.96)2

...
This value is closest to 20 GeV, so the correct answer is: boxed{A}
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Table 6: The example input prompt and model output for the Needle-in-a-Haystack and Variable Tracing in RULER.

Needle-in-a-Haystack (multi-needle)

Input prompt July 2006I’ve discovered a handy test for figuring out what you’re addicted to. Imagine
you were going to spend the weekend at a friend’s house on a little island off the coast
of Maine. There are no shops on the island and you won’t be able to leave while you’re
there. Also, you’ve never been to this house before, so you can’t assume it will have
more than any house might.What, besides clothes and toiletries, do you make a point
of packing? That’s what you’re addicted to... The UUID for bd9645ff-0667-1ad1-1e80-
b17fa7f1599d is 9dde507b-0676-9ad1-1e80-317fa3b1799c you can’t expect an idea to
be novel to everyone. Any insight that you have will probably have already been had by
at least one of the world’s 7 billion people. But it’s sufficient if an idea is novel to a lot
of readers.Ditto for correctness, importance, and strength. In effect the four components
But with Lisp our development cycle was so fast that we could sometimes duplicate a new
feature within a day or two of a competitor announcing it in a press release. By the time
journalists covering the press release got round to The UUID for b5d648fb-0666-1ad3-
5c80-39ff23b379ad is: bcd640fb-0667-1ad5-1c88-337fa3b0699d nThere is a founder
community just as there’s a VC community. They all know one another, and techniques
spread rapidly between them. If one tries a new programming language or a new hosting
provider and gets good results, 6 months later half of...
Please find the UUID for bd9645ff-0667-1ad1-1e80-b17fa7f1599d from the text above

Model reponse Alright, I need to find the UUID for bd9645ff-0667-1ad1-1e80-b17fa7f1599d from the
provided document. Let me look through the text carefully.I see that there are several
UUIDs mentioned, each associated with a specific UUID format. I need to find the
one that matches bd9645ff-0667-1ad1-1e80-b17fa7f1599d and note its corresponding
UUID.Looking at the first one:The UUID for bd9645ff-0667-1ad1-1e80-b17fa7f1599d is
9dde507b-0676-9ad1-1e80-317fa3b1799c.So, it seems like the UUID for bd9645ff-0667-
1ad1-1e80-b17fa7f1599d is 9dde507b-0676-9ad1-1e80-317fa3b1799c.I should double-
check to make sure I don’t miss any other occurrences.Looking further down, I see
another UUID mentioned:The UUID for b5d648fb-0666-1ad3-5c80-39ff23b379ad is:
bcd640fb-0667-1ad5-1c88-337fa3b0699d.And another one:The UUID for fdc644fb-1667-
1ad1-0d80-337fe3b7799d is: bdf6c05b-0427-dad1-0c00-317fa321699d...
Thus, the final answer is: boxed{9dde507b-0676-9ad1-1e80-317fa3b1799c}

Variable Tracing

Input prompt July 2006I’ve discovered a handy test for figuring out what you’re addicted to. Imagine you
were going to spend the weekend at a friend’s house on a little island off the coast of Maine.
There are no shops on the island and you won’t be able to leave while you’re there. Also,
you’ve never been to this house before, so you can’t assume it will have more than any
house might... var GNEXW = 62265 they’re going to issue a public report tracking how
this specific tranche of money is spent, NFTs are a new territory... var HQPDT = GNEXW
you can’t expect an idea to be novel to everyone. Any insight that you have will probably

have already been had by at least one of the world’s 7 billion people. But it’s sufficient if
an idea is novel to a lot of readers.Ditto for correctness, importance, and strength. In effect
the four components var OUNAI = HQPDT But with Lisp our development cycle was so
fast that we could sometimes duplicate a new feature within a day or two of a competitor
announcing it in a press release. By the time journalists covering the press release got
round to var AYWVH = OUNAI nThere is a founder community just as there’s a VC
community. They all know one another, and techniques spread rapidly between them. var
BWYCM = AYWVH If one tries a new programming language or a new hosting provider
and gets good results, 6 months later half of...
Please find all the 5 variables that are assigned the value 62265 in the text above.

Model reponse Alright, I need to find all the variables that are assigned the value 62265 in this text. I’ll
look for lines that have var followed by a variable name, an equals sign, and then 62265.
First, I see var GNEXW = 62265. So GNEXW is one variable assigned to 62265. Next,
I look further down and find var HQPDT = GNEXW. Wait, HQPDT is being assigned
the value of GNEXW, which is 62265. So HQPDT is another variable with the value
62265. Then, I see var BTTDM = 99634. That’s not 62265, so I skip that. Later, there’s
var OUNAI = HQPDT. Since HQPDT is 62265, OUNAI is also 62265... I need to make
sure I didn’t miss any or count any that shouldn’t be included. Let me double-check.
- GNEXW = 62265 (direct assignment)
- HQPDT = GNEXW (GNEXW is 62265)
- OUNAI = HQPDT (HQPDT is 62265)
- AYWVH = OUNAI (OUNAI is 62265)
- BWYCM = AYWVH (AYWVH is 62265)
Looks correct. These are the five variables assigned to 62265. Thus, the final answer is:
boxed{GNEXW, HQPDT, OUNAI, AYWVH, BWYCM }
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Table 7: An example of the input prompt and corresponding model output for the long-context QA task in RULER.

Long context QA

Input prompt The Normans had a profound effect on Irish culture and history after their invasion at
Bannow Bay in 1169. Initially the Normans maintained a distinct culture and ethnicity.
Yet, with time, they came to be subsumed into Irish culture to the point that it has been
said that they became "more Irish than the Irish themselves." The Normans settled mostly
in an area in the east of Ireland, later known as the Pale, and also built many fine castles
and settlements, including Trim Castle and Dublin Castle. Both cultures intermixed,
borrowing from each other’s language, culture and outlook. Norman descendants today
can be recognised by their surnames. Names such as French, (De) Roche, Devereux,
D’Arcy, Treacy and Lacy are particularly common in the southeast of Ireland, especially in
the southern part of County Wexford where the first Norman settlements were established.
Other Norman names such as Furlong predominate there. Another common Norman-Irish
name was Morell (Murrell) derived from the French Norman name Morel. Other names
beginning with Fitz (from the Norman for son) indicate Norman ancestry. These included
Fitzgerald, FitzGibbons (Gibbons) dynasty, Fitzmaurice. Other families bearing such
surnames as Barry (de Barra) and De Búrca (Burke) are also of Norman extraction. rior to
European settlement, the area now constituting Victoria was inhabited by a large number of
..(lengthy documents containing the background for the question)... Victoria was officially
created a separate colony in 1851, and achieved self-government in 1855. The Victorian
gold rush in the 1850s and 1860s significantly increased both the population and wealth
of the colony, and by the Federation of Australia in 1901, Melbourne had become the
largest city and leading financial centre in Australasia. Melbourne also served as capital of
Australia until the construction of Canberra in 1927, with the Federal Parliament meeting
in Melbourne’s Parliament House and all principal offices of the federal government being
based in Melbourne. Before the St. Elizabeth’s flood (1421), the Meuse flowed just south
of today’s line Merwede-Oude Maas to the North Sea and formed an archipelago-like
estuary with Waal and Lek. This system of numerous bays, estuary-like extended rivers,
many islands and constant changes of the coastline, is hard to imagine today. From 1421
to 1904, the Meuse and Waal merged further upstream at Gorinchem to form Merwede.
For flood protection reasons, the Meuse was separated from the Waal through a lock and
diverted into a new outlet called "Bergse Maas", then Amer and then flows into the former
bay Hollands Diep.
What river originally bounded the Duchy?

Model reponse Alright, I’m trying to figure out which river originally bounded the Duchy. I remember
that the Duchy of Normandy was established in the 10th century, and it was located in
what is now northern France. I think the river in question is the Seine because I recall that
Normandy extended down to the Seine River. But I’m not entirely sure, maybe it’s another
river? Let me think. I know that the Duchy of Normandy was founded by Rollo, a Viking
leader, and it was granted to him by the French king in the Treaty of Saint-Clair-sur-Epte
in 911. The treaty specified that Rollo and his men could settle in the area between the
river Epte and the Atlantic coast. So, the Epte River might have been a boundary, but
I don’t think that’s the main river that bounded the Duchy... Therefore, the river that
originally bounded the Duchy of Normandy was the boxed{Epte River}
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Table 8: Error bars for the main results. To assess
the statistical significance of our results in Table 2, we
conduct multiple runs of the model using top-p decoding
16 times with a temperature of 0.6 and top-p=0.95 using
our 32B model.

Dataset
SFT URT

Mean Std Dev Mean Std Dev

AIME 45.6 4.85 57.1 4.93
GPQA 55.6 1.72 62.0 1.76
MATH500 87.4 1.04 89.8 0.98
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