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Abstract

Although speech language models are expected
to align well with brain language processing
during speech comprehension, recent studies
have found that they fail to capture brain-
relevant semantics beyond low-level features.
Surprisingly, text-based language models ex-
hibit stronger alignment with brain language
regions, as they better capture brain-relevant
semantics. However, no prior work has exam-
ined the alignment effectiveness of text/speech
representations from multimodal models. This
raises several key questions: Can speech em-
beddings from such multimodal models capture
brain-relevant semantics through cross-modal
interactions? Which modality can take advan-
tage of this synergistic multimodal understand-
ing to improve alignment with brain language
processing? Can text/speech representations
from such multimodal models outperform uni-
modal models? To address these questions,
we systematically analyze multiple multimodal
models, extracting both text- and speech-based
representations to assess their alignment with
MEG brain recordings during naturalistic story
listening. We find that text embeddings from
both multimodal and unimodal models signif-
icantly outperform speech embeddings from
these models. Specifically, multimodal text
embeddings exhibit a peak around 200 ms, sug-
gesting that they benefit from speech embed-
dings, with heightened activity during this time
period. However, speech embeddings from
these multimodal models still show a similar
alignment compared to their unimodal counter-
parts, suggesting that they do not gain meaning-
ful semantic benefits over text-based represen-
tations. These results highlight an asymmetry
in cross-modal knowledge transfer, where the
text modality benefits more from speech infor-
mation, but not vice versa. We make the code
publicly available1.

*Work was done prior to the current role at Amazon
1https://github.com/srijith9862/MEG_multimodal

1 Introduction

Despite the fact that Transformer-based language
models are not explicitly trained on brain data, re-
cent brain encoding studies have shown that both
text and speech Transformer-based language mod-
els exhibit a high degree of alignment with brain ac-
tivity when participants engage in reading or listen-
ing naturalistic stories (Toneva and Wehbe, 2019;
Deniz et al., 2019; Schrimpf et al., 2021; Millet
et al., 2022; Vaidya et al., 2022; Caucheteux and
King, 2022). Recent studies further investigated
which types of information within these models
lead to stronger alignment in both text and speech
modalities (Oota et al., 2024a). They found that
text-based language models strongly align with
brain language regions even after controlling for
low-level features (e.g., number of characters, num-
ber of phonemes, phonological features, etc.), indi-
cating that these models also capture brain-relevant
semantics (i.e., aspects of the model’s internal rep-
resentations that align with how the brain encodes
meaning during natural language comprehension).
In contrast, the alignment of speech-based models
is widely driven by low-level features, suggesting
that they do not encode crucial brain-relevant se-
mantics. However, prior research has primarily fo-
cused on text- or speech-based models in isolation
and has not investigated the potential of multimodal
models that integrate both modalities for enhanced
linguistic knowledge transfer. In this paper, we ex-
plore whether multimodal models can benefit from
joint text+speech understanding and capture cru-
cial brain relevant semantics better than unimodal
models, thereby improving their alignment with
brain language comprehension.

Deep learning for natural language process-
ing models has led to unimodal text models like
BERT (Devlin et al., 2019), XLNet (Yang et al.,
2019), FLAN-T5 (Chung et al., 2024) and LLaMA-
2 (Touvron et al., 2023a) which provide effec-
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Figure 1: Methodology for studying the alignment of unimodal/multimodal text/speech encoding models for story
listening with MEG brain activations. For unimodal alignment, we use representations from speech models or text
models, where the input consists exclusively of either speech or text, respectively. For multimodal alignment, we
leverage representations from text+speech aligned models, where the input consists of both text and speech.

tive text embeddings. Similarly, deep learning
for speech processing has resulted in the devel-
opment of effective unimodal speech models like
Wav2Vec2.0 (Baevski et al., 2020), Whisper (Rad-
ford et al., 2023) and WavLM (Chen et al., 2022).
To extract joint text+speech semantics, recent ad-
vances in AI systems have led to the development
of multimodal models (like CLAP (Elizalde et al.,
2023), Pengi (Deshmukh et al., 2023), and Speech
TTS (Ao et al., 2022)) which are trained on mas-
sive interleaved text-audio data, to represent paired
text+speech input. These multimodal models out-
put separate text as well as speech embeddings
based on their joint understanding of the input text
and speech information. We refer to such represen-
tations from multimodal models as multimodal text
and multimodal speech embeddings respectively.

In this work, we systematically address the
following research questions, with respect to
alignment with Magnetoencephalography (MEG)
brain recordings during naturalistic story listening:
(RQ1) Amongst unimodal text, unimodal speech,
multimodal text, and multimodal speech, which
embeddings best capture brain-relevant semantics?
(RQ2) Is there asymmetric knowledge transfer
across modalities in multimodal models, or do
multimodal-text and multimodal-speech perform
equally well? (RQ3) Do multimodal text/speech
embeddings encode brain relevant semantics, i.e.,
are alignment patterns primarily driven by low-
level auditory features or by higher-level, brain-
relevant semantics?

Using MEG recordings of participants listen-
ing to naturalistic stories from MEG-MASC
dataset (Gwilliams et al., 2023), we investigate
the alignment between human brain language com-
prehension and unimodal/multimodal models. We
selected MEG data over fMRI because, during

naturalistic story listening, paired text-audio sam-
ples are available with MEG-a pairing that is dif-
ficult with fMRI recordings due to hemodynamic
delayed response. Moreover, the high temporal
resolution of MEG enables sub-word-level process-
ing (Gwilliams et al., 2022; Oota et al., 2023b).
Given these advantages of MEG, our work ad-
dresses the aforementioned research questions us-
ing naturalistic brain recordings alongside multi-
modal and unimodal models. For the purposes
of this work, we focus on four unimodal text-
based models, three unimodal speech-based models
and three multimodal models as mentioned earlier.
Overall, this research investigates the alignment of
unimodal as well as multimodal representations to
develop encoding models based on MEG responses
(see Fig. 1).

Our analysis of multimodal models and brain
alignment reveals several key conclusions: (1) Both
multimodal and unimodal text embeddings show
higher degree of brain predictivity beyond 350
ms in both temporal and frontal language regions,
aligning with the time-frame associated with se-
mantic word processing. In contrast, speech em-
beddings exhibit a sharp decline in performance
around 350 ms, suggesting that text embeddings
are more effective in processing semantic informa-
tion compared to speech embeddings. (2) The im-
proved alignment of multimodal text embeddings,
particularly around the 200 ms window critical for
auditory processing (primary auditory regions), in-
dicates that integrating speech-derived features into
text embeddings enhances their brain-relevant sig-
nal. When we removed unimodal speech features
from multimodal text embeddings, we observed a
substantial drop in activity which underscores the
contribution of speech information. (3) While the
text modality benefits from effective knowledge
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transfer from the speech modality in multimodal
models, the reverse is not observed. (4) Multimodal
audio embeddings exhibit high MEG predictivity
between 100 and 350 ms-consistent with early audi-
tory processing and initial semantic integration-but
lose much of their predictive power after 350 ms
when low-level features are removed, indicating a
lack of brain-relevant semantic representations. In
contrast, while multimodal text embeddings also
show a drop in early auditory predictivity without
low-level features, their performance during later
semantic processing remains largely intact, suggest-
ing that they encode higher-level (beyond low-level
features), brain-relevant semantic information.

Overall, we make the following contributions to
this paper. (1) To the best of our knowledge, we are
the first to study the effectiveness of text/speech rep-
resentations from multimodal language models for
MEG brain encoding. (2) Besides experimenting
with 3 multimodal models, we also evaluate the per-
formance of several unimodal Transformer models
(four text and three speech) and measure their brain
alignment. (3) Additionally, using the residual ap-
proach proposed by Toneva et al. (2022); Oota et al.
(2024b,a), we remove unimodal and low-level fea-
tures from multimodal embeddings. This allows us
to explore the impact on brain alignment before and
after their removal, and check whether alignment
is driven by low-level features or by higher-level
semantics. We make the code publicly available1.

2 Related Work

Our work closely relates to a growing literature
that investigates the alignment between human
brains and language models. A number of stud-
ies have used unimodal text-based language mod-
els to predict both text-evoked and speech-evoked
brain activity to an impressive degree (Wehbe et al.,
2014; Jain and Huth, 2018; Toneva and Wehbe,
2019; Caucheteux and King, 2022; Antonello et al.,
2021; Oota et al., 2022a; Merlin and Toneva, 2024;
Oota et al., 2024b,a; Chen et al., 2024). Simi-
larly, the recent advances in Transformer-based
models for speech (Chung et al., 2020; Baevski
et al., 2020; Hsu et al., 2021) have motivated neuro-
science researchers to test their brain alignment
with speech-evoked brain activity (Millet et al.,
2022; Vaidya et al., 2022; Tuckute et al., 2023;
Oota et al., 2023c,a, 2024a). Our approach is com-
plementary and can be used to further understand
aligned multimodal text and speech models to un-

derstand the brain alignment of language models,
particularly for MEG brain encoding.

Our work also connects with the growing body
of literature on recent advances in multimodal mod-
els, offering insights into how embeddings from
these models differ from those of unimodal mod-
els in the context of brain encoding. For instance,
previous studies (Doerig et al., 2022; Wang et al.,
2023; Oota et al., 2022b; Popham et al., 2021) have
shown that multimodal models like CLIP (Radford
et al., 2021) better predict neural responses in the
high-level visual cortex compared to vision-only
models. Additionally, Tang et al. (2024) used multi-
modal models in a cross-modal experiment to eval-
uate how well language encoding models predict
movie-fMRI responses and how well vision encod-
ing models predict narrative story-fMRI responses.
Other recent studies (Dong and Toneva, 2023; Nak-
agi et al., 2024; Oota et al., 2025) have demon-
strated that brain recordings for multimodal stim-
uli reveal distinct regions associated with different
semantic levels, highlighting the need to model
various levels of semantic content simultaneously.
However, while these studies have primarily fo-
cused on visual stimuli and the alignment of multi-
modal models in embedding space for vision tasks,
the alignment of text+speech multimodal models
for language stimuli remains unexplored. In con-
trast, our work is the first to study text+speech
alignment in multimodal models for MEG encod-
ing, providing a comprehensive analysis of brain
alignment during naturalistic story listening.

3 Dataset and Curation

We used data from 27 participants in the MEG-
MASC dataset (Gwilliams et al., 2023), which con-
sists of 15 females (age: M = 24.1 years, SD =
6.7 years) and 12 males (age = 25.25 years, SD
= 6.21 years). The activity from 208 MEG sen-
sors was recorded while each subject listened to
naturalistic spoken stories selected from the Open
American National Corpus (“Cable spool boy”,

“LW1”, “Black willow” and “Easy money”).
MEG processing. We performed minimal process-
ing steps as described in Gwilliams et al. (2023).
On raw MEG data and for each subject separately,
using MNE-Python default parameters, we: (i)
bandpass filtered the MEG data between 0.5 and
30.0 Hz, (ii) temporally-decimated the data 10x,
(iii) segmented these continuous signals between
-200 ms and 600 ms after word onset, (iv) applied
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a baseline correction between -200 ms and 0 ms,
and (v) clipped the MEG data between the fifth and
ninety-fifth percentile of the data across channels.
Text and Speech processing. Since MEG data
are sampled at a higher rate (1000Hz) than word
presentation, epoching and downsampling yield 81
time points for each word/audio and for each of the
208 sensors. In total, there are 8,567 words/audio
samples in total across the four stories. In our ex-
periments, for each word/audio sample, the model
makes a prediction of MEG activity for all of the
208 sensors × 81 time points = 16848 values. Here,
we synthesize each word into a raw wav file using
a word synthesizer. We discuss data preprocessing
in detail in Appendix A.
Estimated cross-subject predictions. To account
for intrinsic noise in biological measurements and
obtain a more accurate estimate of the model’s per-
formance for the MEG-MASC dataset, we estimate
the cross-subject predictions approach proposed
by Schrimpf et al. (2021); AlKhamissi et al. (2024).
We first subsample the data with n participants
into all possible combinations of s participants for
all s ∈ [2, n] (e.g. 2, 3, 4, ..., 27 for n=27), and
use an encoding model to predict one participant’s
response from others. Note that the estimated cross-
subject prediction accuracy is based on the assump-
tion of a perfect model, which might differ from
real-world scenarios, yet offers valuable insights
into model’s performance. We present the average
cross-subject prediction accuracy (noise ceiling)
across sensors for the MEG-MASC dataset across
subjects in Appendix B.

4 Methodology

We experiment with 3 multimodal models, 4 uni-
modal text models and 3 unimodal speech mod-
els. We acknowledge that the models differ in ar-
chitecture, training objectives, and data sources.
However, as established in prior brain encoding
studies (Schrimpf et al., 2021; Toneva and Wehbe,
2019; Antonello et al., 2021; Aw and Toneva, 2023;
Oota et al., 2025), such diversity is a deliberate
design choice aimed at capturing general trends in
how different types of representation, regardless of
specific implementation details, align with brain
activity. Our goal is not to control for every archi-
tectural or dataset difference but to evaluate how
effectively text, speech, and multimodal representa-
tions from state-of-the-art models, despite inherent
differences, align with brain activity, and to iden-

tify consistent patterns in modality-specific brain
alignment.

4.1 Multimodal Models

To analyse whether speech models benefit from
the transfer of linguistic information via language
models and have brain-relevant semantics, we use
recent popular text+speech multimodal models and
build the encoding models for MEG. To extract
representations of the multimodal text-speech stim-
ulus, we used three recent text-speech multimodal
models: CLAP (Elizalde et al., 2023), Speech
TTS (Ao et al., 2022), and Pengi (Deshmukh et al.,
2023). Details of these models are reported in Ta-
ble 1 in Appendix C.
Extracting multimodal representations: Build-
ing upon prior approaches for extracting multi-
modal representations (Oota et al., 2022b, 2025),
we leveraged pretrained multimodal models to ob-
tain joint hidden-state representations from both
speech and text data. To align both modalities,
we paired individual words from text stimuli with
the corresponding spoken audio files. Specifically,
each word wi in a story of M words was linked
with the corresponding speech file. The speech
files were processed using librosa to ensure the
appropriate format and sampling rate for model in-
put. Both the text and corresponding speech were
passed through the pretrained multimodal model,
yielding aligned text+speech embeddings for each
token pair.

4.2 Unimodal Models

To investigate the effectiveness of multimodal rep-
resentations in comparison to representations for
unimodal ones, we use the following methods to
obtain embeddings for individual modalities.
Text-based language models. To extract repre-
sentations of the text stimulus, we use four popu-
lar pretrained Transformer text-based models from
Huggingface (Wolf et al., 2020): (1) BERT (De-
vlin et al., 2019), (2) LLaMA-2 (Touvron et al.,
2023a,b), (3) XLNet (Yang et al., 2019) and (4)
FLAN-T5 (Chung et al., 2024).
Speech-based language models. To extract rep-
resentations of the speech stimulus, we use three
popular pretrained Transformer speech-based lan-
guage models from Huggingface (Wolf et al.,
2020): (1) Wav2vec-2.0 (Baevski et al., 2020), (2)
WavLM (Chen et al., 2022) and (3) Whisper (Rad-
ford et al., 2023).
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Unimodal feature extraction. Details of the uni-
modal text and speech models are reported in the
Appendix C. To obtain text embeddings from uni-
modal text models, we extracted individual words
from the text stimuli and passed them through pre-
trained text-based language models, resulting in an
embedding for each word. Similarly, for speech em-
beddings, we processed corresponding audio files
through pretrained speech-based language models,
yielding an embedding for each spoken word.

4.3 Rationale for Choice of Unimodal and
Multimodal Models

To comprehensively investigate the alignment be-
tween language models and brain activity during
naturalistic speech comprehension, we selected a
diverse set of models spanning unimodal and mul-
timodal architectures. For multimodal text-speech
models, we included CLAP, SpeechT5, and Pengi,
which are designed to learn joint representations
across text and audio, making them ideal candi-
dates for probing cross-modal semantic transfer.

For unimodal text models, we chose BERT,
LLaMA-2, XLNet, and FLAN-T5, representing
a spectrum of transformer-based architectures with
varying pretraining objectives and inductive biases,
allowing us to assess how different textual rep-
resentations align with brain semantics. On the
speech side, Wav2Vec, WavLM, and Whisper were
selected for their strong performance in learning
speech representation and their ability to capture
low-level acoustic features and higher-level linguis-
tic cues. This curated selection enables a system-
atic comparison across modalities and model types,
helping us isolate the contributions of multimodal
integration versus unimodal specialization in cap-
turing brain-relevant semantics. We discuss the
details of the rationale for the choice of unimodal
and multimodal models in Appendix C.

4.4 Low-level Features
We use the DisVoice library2 to the following low-
level speech features from spoken audio files cor-
responding to each word: (1) phonological, (2)
phonation, and (3) articulation features. Further,
we use the Self-Supervised Speech Pre-training
and Representation Learning (S3PRL) toolkit3 to
compute features like (4) filter banks (fbanks), (5)
Mel Spectrogram and (6) MFCC. Details of each
low-level feature are reported in Appendix C.

2https://github.com/jcvasquezc/DisVoice
3https://github.com/s3prl/s3prl

4.5 Encoding Model

We use the extracted features for each stimulus
word with an encoding model to predict brain re-
sponses. MEG encoder models attempt to predict
brain responses associated with each MEG sen-
sor and each time point when given speech stim-
uli (spoken words in our case). Let L denote the
number of MEG sensors (208 in our case) and
T represent the time dimension of the brain ac-
tivity (81 in our case). Then for each spoken
word, the goal is to predict a vector of length
L× T . We trained a model per subject separately.
Following the literature on brain encoding, we
chose to use ridge regression to train our encod-
ing model. The ridge regression objective function
is f(Xs) = min

Ws

∥Yb −XsWs∥2F + λ∥Ws∥2F . Here,

Yb denotes the actual brain activity of size L× T ,
Ws ∈ RFsLT are the learnable weight parameters,
Fs denotes the number of features (dimensional-
ity) of stimulus representation, where s denotes the
current word whose representation is being con-
structed, ∥.∥F denotes the Frobenius norm, and
λ > 0 is a tunable hyper-parameter representing
the regularization weight. λ was tuned on a small
disjoint validation set obtained from the training.
Cross-Validation. We follow 4-fold (K=4) cross-
validation. All the data samples from K-1 folds (3
stories data) were used for training, and the model
was tested on samples of the left-out fold (1 story).
Model details and hyper-parameter settings are in
Appendix E.
Removal of unimodal modality/low-level fea-
tures from multimodal representations. To un-
derstand the contribution of unimodal or low-level
features to multimodal model representations, we
remove them from multimodal model representa-
tions by employing the direct or residual approach
previously proposed by Toneva et al. (2022); Oota
et al. (2024b); Dong and Toneva (2023); Oota et al.
(2024a, 2025). This method estimates the linear
contribution of specific modality or low-level fea-
tures to the multimodal representations on the align-
ment between the model and brain recordings by
comparing the alignment before and after compu-
tationally removing the targeted modality features
from the multimodal representations. In our set-
ting, we perform the removal by training a ridge
regression model, where the unimodal feature (text
or speech) or low-level feature vector is considered
as input and the multimodal representation serves
as the target. We compute the residuals by subtract-
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ing the predicted feature representations from the
actual features, resulting in the (linear) removal.
Since our encoding model (ridge regression) is also
a linear function, this linear removal limits the con-
tribution of features for the particular modality to
the eventual brain alignment. The mathematical
notation of residual approach is described in Ap-
pendix D.

Residual contamination is possible; that is, some
speech-related information may persist in the “text-
only” residuals after linear removal, especially
when modalities are deeply entangled within a
shared latent space. However, prior work sup-
ports the effectiveness of this approach in captur-
ing modality interactions. For example, Oota et al.
(2024a) report that removing phoneme-level fea-
tures from text models results in a significant drop
in brain alignment in the early auditory cortex. Sim-
ilarly, in speech models, removing letter- or word-
level features impacts early auditory processing.
These findings suggest that linguistic and acoustic
features are often correlated across modalities, and
removing one can impact the other. In our case, we
hypothesize that removing unimodal embeddings
from multimodal representations eliminates shared
components.

4.6 Evaluation Metrics
We evaluate our models using normalized predic-
tivity which is a popular brain encoding evalua-
tion metric. To compute Normalized Predictivity,
we first compute Pearson correlation coefficient
(PCC) between real and predicted MEG activity
to measure prediction performance for each sen-
sor location and each time point within epochs.
Then, Normalized Predictivity is computed as
neural model predictivity values normalized by
their respective subject ceiling values. The final
measure of a model’s performance (‘normalized
predictivity’) on a dataset is thus PCC between
model predictions and neural recordings divided
by the estimated cross-subject predictions and av-
eraged across sensor locations and participants.

4.7 Statistical Significance
We check statistical significance of PCC scores us-
ing a permutation test. We permute blocks of MEG
predictions and compute PCC scores between per-
muted predictions and real data 5000 times to es-
timate an empirical distribution of chance perfor-
mance and corresponding p-values. Finally, the
Benjamini-Hochberg False Discovery Rate (FDR)
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Figure 2: Avg. Normalized predictivity score for basic
speech features between predicted and real MEG activ-
ity, across sensors and subjects. Word onset is at 0ms.

correction (Benjamini and Hochberg, 1995) is ap-
plied globally, across all models, participants, and
sensors, on all tests to control the type I error rate.

5 Results

5.1 Encoding Performance of Low-level
Features

Fig. 2 reports the average normalized predictivity
across subjects and sensors in the time dimension.
From Fig. 2, we make the following observations:
(i) FBank and Mel Spectrogram features perform
the best across all time points. The activity is very
high across the time duration from 50ms-550ms
with a peak around 200ms, and a sudden drop
around 350ms. This is in line with our understand-
ing that auditory processing continues until around
350ms after which the semantic word processing
happens (Dikker et al., 2020). (ii) It is difficult to
capture articulation features from speech related to
single words. Hence, those features seem to per-
form the worst. (iii) Phonation and phonological
features both peak at similar time points, although
activity for phonological features seems to start
earlier.

5.2 Do multimodal models have better brain
alignment over unimodal models?

Fig. 3 presents the average normalized predictiv-
ity for text and speech embeddings from multi-
modal models (aggregated across subjects) as well
as unimodal text and speech embeddings. Similar
results for individual models are shown in Fig. 9
in Appendix F. We make the following observa-
tions from Fig. 3: (i) Text embeddings from both
multimodal and unimodal models significantly out-
perform speech embeddings from these models. (ii)
Multimodal text embeddings exhibit a peak around
200ms, suggesting that they benefit from speech
embeddings, with heightened activity during this
time period. Specifically, the topographical maps
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reveal that the higher normalized brain predictivity
in primary auditory regions is unique to multimodal
text embeddings and is not observed in unimodal
text models (see Appendix Fig. 8). (iii) Both multi-
modal and unimodal text embeddings remain active
beyond 350ms, aligning with the timeframe asso-
ciated with semantic word processing. In contrast,
speech embeddings experience a sharp decline in
performance around 350ms. Topographical maps
in Appendix Fig. 8 show that temporal, frontal, and
parietal language regions exhibit higher predictiv-
ity during this period, whereas speech embeddings
display low predictivity for both multimodal and
unimodal models.
Impact of extended input context and prolonged
MEG signal on brain predictivity. We further
explored the impact of varying the input con-
text length on model performance, as shown in
Appendix G. In this analysis, we expanded the
MEG recording window from 800 ms to 3 sec-
onds. For example, given a story comprised of
multiple speech files (with each file representing
a single word) and a context length of 5, we input
the sequence (w1, w2, w3, w4, w5) and use the
representation of the last word (w5) as the target.
From Fig. 10, we observe that-similar to the single-
word context-an increase in context length further
demonstrates that both multimodal text and uni-
modal text embeddings exhibit a higher degree of
brain predictivity than speech embeddings across
the extended temporal window. Our findings show
that extending the input context not only reinforces
the robustness of text embeddings but also un-
derscores their superior alignment with prolonged
brain activity compared to speech embeddings.

Lastly, multimodal text embeddings perform al-
most similar to unimodal text embeddings except
during the peak around 200ms timepoint when the
auditory information processing reaches height-
ened activity.

5.3 Is there asymmetric knowledge transfer
across modalities in multimodal models?

To answer this question, we employ a residual ap-
proach by removing unimodal text embeddings
from multimodal speech embeddings and unimodal
speech embeddings from multimodal text embed-
dings. This method helps determine whether re-
moving a specific modality affects the additional
knowledge gained in multimodal models. Fig. 4
presents MEG encoding performance after remov-
ing unimodal information from multimodal embed-
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Figure 3: The average normalized predictivity of both
text and speech embeddings from multimodal models,
and unimodal text and speech representations, is mea-
sured by comparing predicted and real MEG activity
across sensors and subjects. The word onset is at 0ms.

dings for all three multimodal models. From the
figure, we make the following observations: (1)
Impact of Removing Speech Embeddings from
Multimodal Text: Removing unimodal speech
embeddings significantly impacts multimodal text
embeddings, particularly around 200ms. This sug-
gests that multimodal text embeddings incorporate
additional speech-derived information, contribut-
ing to a higher peak at 200ms, as shown in Fig-
ure 3. (2) Impact of Removing Text Embeddings
from Multimodal Speech: Removing unimodal
text embeddings from multimodal speech embed-
dings primarily affects MEG predictivity during se-
mantic information processing (> 350 ms), while
no significant impact is observed in auditory pro-
cessing around 200 ms. This implies that speech
embeddings from multimodal models contain ad-
ditional information beyond unimodal text embed-
dings, but only during auditory information pro-
cessing (around 200ms).

5.4 Do multimodal text/speech embeddings
encode brain relevant semantics beyond
low-level features?

To further examine whether text/speech embed-
dings from multimodal models predict MEG activ-
ity beyond low-level features-potentially capturing
brain-relevant semantics-we adopt a residual ap-
proach, as discussed in Appendix D. Specifically,
we remove low-level features from multimodal
speech and text embeddings and assess whether
this removal affects MEG brain predictivity. We
follow the same feature removal method described
in Section 4.5. Fig. 5 shows normalized predic-
tivity over time (word onset is at 0 ms) for both
multimodal text and speech embeddings before and
after removal of low-level features.
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Figure 4: Residual Analysis: The average normalized
brain predictivity was calculated by comparing pre-
dicted and real MEG activity across sensors and par-
ticipants, both before and after the removal of unimodal
speech and text embeddings from multimodal speech
and text embeddings. The word onset is set at 0 ms. “-”
symbol represents residuals.

Removal of low-level features from multimodal
speech embeddings. The speech embeddings from
multimodal models generally exhibit higher MEG
predictivity, particularly between 100 to 350 ms,
where auditory information is predominantly pro-
cessed, followed by semantic information. How-
ever, the removal of low-level features from the
multimodal speech embeddings leads to a signifi-
cant drop in prediction performance. Notably, after
350 ms, the prediction becomes negligible. This
suggests that the predictive power of multimodal
speech embeddings is primarily driven by low-level
features, indicating a lack of brain-relevant seman-
tic representations. In contrast, the removal of
low-level features does not fully diminish MEG
predictivity between 100 to 350 ms, implying that
speech embeddings retain some additional informa-
tion beyond low-level features during this window.

Removal of low-level features from multimodal
text embeddings. Multimodal text embeddings ex-
hibit higher MEG predictivity, particularly between
100 ms and 350 ms, a time window associated with
auditory processing. This suggests that multimodal
text embeddings incorporate additional informa-
tion beyond standard textual representations, likely
benefiting from speech-derived semantic and acous-
tic cues. The removal of low-level features from
multimodal text embeddings results in a signifi-
cant drop in MEG predictivity, especially during
auditory processing windows. In contrast, the drop
in predictivity after 350 ms, corresponding to se-
mantic processing, is marginal and not statistically
significant. These findings suggest that the predic-
tive power of multimodal text embeddings extends
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Figure 5: Residual Analysis for low-level features: The
average normalized brain predictivity was calculated by
comparing predicted and real MEG activity across sen-
sors and participants, both before and after the removal
of low-level features from multimodal speech and text
embeddings. The word onset is set at 0 ms. “-” symbol
represents residuals.

beyond low-level features, indicating that these em-
beddings contain brain-relevant semantics.
Topographic analysis of low-level feature resid-
uals. Fig. 6 displays the topographical maps of
the residuals after the removal of low-level features
from multimodal text (left) and speech embeddings
(right). These maps highlight the MEG sensor loca-
tions that are significantly predicted across subjects
with word onset at 0 ms. We observe that removing
low-level features does not significantly affect the
predictivity of text embeddings across the frontal
and temporal regions between 150 and 550 ms. In
contrast, for speech embeddings, the removal leads
to a substantial decline in activity beyond 350 ms,
although significant predictivity remains between
150 and 300 ms.

6 Discussion and Conclusions

Using speech and text embeddings from multi-
modal models, we evaluated how these representa-
tions predict MEG brain activity when participants
engage in naturalistic story listening. Addition-
ally, we compared multimodal and unimodal rep-
resentations to assess their predictivity over time
across sensors and participants. Furthermore, we
examined which modality exhibits better knowl-
edge transfer by removing information related to
unimodal stimulus features (text and speech) from
the multimodal embeddings and analyzing how
this perturbation affects alignment with MEG brain
recordings during story listening. Finally, to deter-
mine whether speech embeddings from multimodal
models contain brain-relevant semantics, we re-
moved low-level features and investigated whether
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(a) Multimodal Text - Lowlevel (b) Multimodal Speech - Lowlevel
Figure 6: Residual Analysis: Topomaps display the average normalized predictivity for MEG activity (across
subjects) after removing low-level features from multimodal embeddings. Word onset is at 0 ms. The left plot (a)
shows the residual predictivity for multimodal text embeddings, while the right plot (b) presents that for multimodal
speech embeddings.

the speech embeddings could still predict MEG ac-
tivity beyond low-level auditory information. Our
analysis of speech and text embeddings from multi-
modal models in relation to MEG brain alignment
yields several key insights.

Towards RQ1, compared to speech models,
both multimodal and unimodal text embeddings
show higher degree of brain predictivity beyond
350 ms, aligning with the time-frame associated
with semantic word processing. In contrast, speech
embeddings exhibit a sharp decline in performance
around 350 ms, suggesting that text embeddings are
more effective in processing semantic information
compared to speech embeddings.

Towards RQ2, using residual approach, we ob-
serve a clear asymmetry in the knowledge transfer
across modalities in multimodal models. The im-
proved alignment of multimodal text embeddings,
particularly around the 200 ms window critical
for auditory processing, indicates that integrating
speech-derived features into text embeddings en-
hances their brain-relevant signal. When unimodal
speech features are removed, activity in this win-
dow drops, underscoring the contribution of speech
information. However, speech embeddings fail to
show similar gains from text integration, particu-
larly in semantic processing regions.

Towards RQ3, multimodal speech embeddings
show high MEG predictivity between 100 and 350
ms-consistent with early auditory processing and
subsequent semantic integration. However, the re-
moval of low-level features from the multimodal
speech embeddings leads to a significant drop in
prediction performance, especially after 350 ms,
suggests that the predictive power of these embed-
dings is primarily driven by low-level features, in-
dicating a lack of brain-relevant semantic represen-

tations. In contrast, the MEG predictivity between
100 and 350 ms is only partially reduced when
these features are removed, it suggests that the em-
beddings still capture additional, higher-level in-
formation during this time. These observations are
consistent with similar findings in unimodal speech
language models reported in recent work (Oota
et al., 2024a). Although removing low-level fea-
tures from multimodal text embeddings leads to a
significant drop in MEG predictivity during early
auditory processing, the impact on later (seman-
tic) processing windows is minimal. This indicates
that these embeddings encode brain-relevant se-
mantic information that extends beyond basic audi-
tory features-a characteristic that is also observed
in unimodal text models in recent studies (Oota
et al., 2024a).

Together, these results deepen our understanding
of how multimodal models process and represent
language-related information, bridging the gap be-
tween low-level auditory features and high-level
semantic processing as observed in brain dynam-
ics. Multimodal integration improves text-based
representations, enhancing brain alignment in early
auditory (∼200 ms) processing window. However,
speech-derived representations within multimodal
models fail to exhibit comparable improvements,
remaining constrained by low-level auditory fea-
tures and lacking robust brain-relevant semantics.
These findings extend prior work on unimodal mod-
els by demonstrating that multimodal integration
enhances text-side brain alignment but does not yet
overcome limitations on the speech side. Asym-
metric knowledge transfer reflects current gaps in
multimodal model design, highlighting the need for
further research, including brain-informed model
development.
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7 Limitations

One limitation of our approach is that the differ-
ences observed between the brain alignment of text-
and speech-based embeddings may be influenced
by factors beyond the stimulus modality, such as
variations in training data amounts and objective
functions across the underlying encoder models.
To mitigate this concern, we tested multiple mod-
els from each category-varying in objective func-
tions and training data-and found that our results
generalize across these models. However, differ-
ences in architectural variability and pretraining
methods could still contribute to performance dis-
crepancies, suggesting that future work should in-
volve more tightly controlled comparisons (like
parameter-matched unimodal checkpoints trained
under identical settings) to isolate these effects.

Further, as our study utilizes brain recordings
and stimuli in English with models predominantly
trained on English data, the findings may not gener-
alize to other languages, highlighting an important
avenue for future research.

Recent brain-tuning studies have demonstrated
that integrating neural brain data into speech-based
language models enables these unimodal systems
to capture semantic information that extends be-
yond low-level features (Moussa et al., 2025).
Building on this insight, incorporating brain data
into multimodal models could further enhance their
end-to-end language processing capabilities. We
believe that this brain-tuning approach could act
as a multimodal convergent buffer, effectively in-
tegrating semantic-level language information to
enrich the processing of speech-language seman-
tics. This is something that can be explored in the
future.

8 Ethics Statement

We did not create any new MEG data as part of this
work. We used the MEG-MASC dataset which is
publicly available without any restrictions. MEG-
MASC dataset can be downloaded from https:
//osf.io/ag3kj/. Please read their terms of use4

for more details.
We do not foresee any harmful uses of this tech-

nology.

4https://osf.io/ag3kj/metadata
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A Details of Data Preprocessing

The MEG-MASC dataset (Gwilliams et al., 2023)
already provides word-level aligned MEG record-
ings and corresponding onset and offset informa-
tion for each word in the story listening task. Each
word is associated with a pre-defined epoch of
MEG activity, already aligned to the word onset,
following the standardized preprocessing protocol
detailed in the MEG-MASC release (Gwilliams
et al., 2023).

MEG Preprocessing and Word-Aligned
Epoching. The MEG data used in our study comes
from the MEG-MASC dataset, which includes stan-
dardized preprocessing steps applied consistently
across all participants, including the following.

• Epoching of MEG signals from -200 ms to
+600 ms relative to each word onset.

• Temporal decimation by a factor of 10 (i.e.
downsampling).

• Baseline correction using the -200 ms to 0 ms
pre-stimulus window.

Thus, each word is associated with a fixed-duration
MEG segment (800 ms), independent of the actual
spoken word length. This standardized window
allows for consistent temporal alignment of brain
responses across all words.

Downsampling to 81 Time Points and Predic-
tivity Curve Computation. Following the MEG-
MASC protocol, the 800 ms word-aligned MEG
segments were downsampled to 81 time points,
ensuring consistent temporal resolution across all
words, regardless of word duration in the audio
stimulus. Our encoding model predicts MEG activ-
ity for each of these 81 time points × 208 sensors,
based on the corresponding model embeddings. At
each time point, we compute predictivity scores
(e.g., correlation or explained variance) between
predicted and actual MEG activity. This yields
time-resolved curves showing how brain alignment
evolves over time, relative to word onset, capturing
both early auditory responses and later semantic
processing stages.

B Cross-subject Prediction Accuracy

Fig. 7 displays the mean estimated cross-subject
prediction accuracy across MEG sensor locations
for different subjects. We observe that the average
cross-subject prediction accuracy (Pearson corre-
lation) across sensor locations is different across

subjects. Some subjects (12, 13, 19, and 26)
have higher Pearson correlation scores, while sev-
eral other subjects have lower Pearson correlation
scores.
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Figure 7: Estimated Cross-subject prediction accuracy
for each subject in the MEG-MASC dataset.

C Multimodal and Unimodal Models

C.1 Multimodal models

CLAP: The CLAP model (“Contrastive Language-
Audio Pretraining”), specifically the “laion/clap-
htsat-unfused” checkpoint from Hugging Face
which consists of 12 layers and produces 512-
dimensional embeddings, is a multimodal model
designed for contrastive learning between audio
and text. It leverages a Hierarchical Token-
Semantic Audio Transformer (HTSAT) for encod-
ing audio, paired with a text encoder. The model
aligns audio and textual representations in a shared
latent space, enabling cross-modal retrieval and
classification tasks. The unfused architecture en-
sures that audio and text features are processed
separately before being aligned, making it efficient
for a range of audio-text applications.
SpeechTTS: We use the “microsoft/speecht5_tts”
model from Hugging Face, a state-of-the-art text-
to-speech (TTS) model designed to generate nat-
ural, high-quality speech from text. SpeechT5 in-
tegrates both speech and text modalities through
a shared Transformer architecture, enabling it to
produce expressive speech outputs. The model
leverages a large pretrained network with multi-
layered attention mechanisms to convert text into
512-dimensional speech embeddings, which are
then decoded into waveform outputs. Its robust
architecture ensures clear and accurate speech syn-
thesis, making it well-suited for various TTS appli-
cations.
Pengi: Pengi is an advanced Audio Language
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Model that utilizes transfer Learning to frame var-
ious audio tasks as text-generation problems. It
processes both audio recordings and text inputs to
produce free-form text outputs. Its unified archi-
tecture supports a wide range of tasks, from open-
ended to close-ended, without needing additional
fine-tuning or specific task extensions.

C.2 Unimodal Text Models
BERT (Bidirectional Encoder Representations
from Transformers): BERT, developed by Devlin
et al. (2019), is a transformer-based model designed
for natural language understanding tasks. It utilizes
bidirectional training to capture context from both
left and right directions. BERT’s base model con-
sists of 12 layers, 768 hidden units, and 12 attention
heads, producing 768-dimensional representations.
Pre-trained on massive corpora, BERT is widely
used for tasks like text classification, question an-
swering, and language inference.
XLNet: XLNet, introduced by Yang et al. (2019),
is a generalized autoregressive pretraining method
that captures bidirectional contexts by maximizing
the expected likelihood over all permutations of the
input sequence. XLNet’s base model consists of
12 layers, 768 hidden units, and 12 attention heads,
producing 768-dimensional representations.
LLaMA-2: LLAMA-2 is an autoregressive lan-
guage model (decoder-based) (Touvron et al.,
2023b), designed for extensive language under-
standing and generation tasks. The model consists
of 32 layers, and it employs 4096-dimensional rep-
resentations.
FLAN-T5: FLAN-T5 (Chung et al., 2024) builds
upon the original T5 (Text-to-Text Transfer Trans-
former) by fine-tuning it with instruction-based
datasets for better generalization on a variety of
tasks. The base model consists of 12 transformer
layers with 768 hidden units and 12 attention
heads, producing 512-dimensional representations.
FLAN-T5 excels in translation, summarization,
and question-answering tasks, offering robust per-
formance across many domains.

C.3 Unimodal Speech Models
WavLM: WavLM is a self-supervised model de-
signed for full-stack speech processing, handling
tasks like ASR, speaker identification, and speech
enhancement. It combines masked speech predic-
tion and denoising in pre-training, capturing both
content and non-ASR features. Using gated rela-
tive position bias in its Transformer architecture,

WavLM excels at sequence modeling. Trained
on 94,000 hours of data, it achieves state-of-the-
art performance across benchmarks like SUPERB.
We utilized the “wavlm-libri-clean-100h-base-plus”
model checkpoint which consists of 12 layers and
produces 768-dimensional representations.
OpenAI Whisper: Whisper is OpenAI’s speech
recognition model designed for automatic speech-
to-text transcription. It utilizes an encoder-decoder
transformer architecture with 1.6 billion parame-
ters to process audio and generate transcriptions.
Trained on a large multilingual corpus, Whisper ex-
cels in various transcription tasks, including multi-
language speech recognition, speaker identification,
and noise-robust processing.
Wav2Vec: Wav2Vec is a self-supervised model
for speech recognition that pre-trains on raw audio
data. The model learns contextualized represen-
tations by solving a contrastive task over masked
audio segments. The base model consists of 12
transformer layers with 512 hidden units and 8
attention heads. Wav2Vec achieves state-of-the-
art performance in ASR tasks by learning robust
speech representations with minimal supervision.

We present details of these pretrained unimodal
and multimodal models in Table 1.

C.4 Low-level Features
FBank: Filter bank separates the raw audio signal
into multiple components (each one carrying a sin-
gle frequency sub-band of the original signal) using
a bandpass filter. Each raw audio signal results in
104 sized FBank vector.
Mel Spectrogram: It is computed by applying a
Fourier transform on the raw audio signal to ana-
lyze a signal’s frequency content and convert it to
the mel-scale, yielding an 80-dimensional feature
vector.
MFCC: MFCCs are Mel-frequency cepstral co-
efficients obtained by taking the Discrete Cosine
Transform (DCT) of the spectral envelope obtained
from Logarithmic filter bank outputs.
Phonation features: These are the parts of speech
sounds that are related to the vibration of the vocal
folds and the modification of the airstream by the
larynx. We compute 29 phonation features consist-
ing of (seven descriptors)×(4 functionals: mean,
std, skewness, kurtosis) + degree of Unvoiced seg-
ments.
Phonological features: These are the smallest
units of distinction between any two phonemes.
Phonemes are the basic sounds or signs that convey
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(a) Multimodal Text (b) Multimodal Speech

(c) Unimodal Text (d) Unimodal Speech

Figure 8: Topo maps showing the average normalized predictivity across four different settings for MEG activity:
(a) Multimodal Text, (b) Multimodal Speech, (c) Unimodal Text, and (d) Unimodal Speech. Word onset is at 0 ms.

Model Name Pretraining data modality # Parameters Dataset Layers Backbone
CLAP Speech+Text 154M LAION-Audio-630K 12 SWINTransformer, RoBERTa-base
SpeechTTS Speech+Text 150M LibriSpeech audio 12 Wav2Vec2.0-base, Transformer
Pengi Speech+Text 250M (90M Trainable) 3.4M audio+text pairs 12 SWINTransformer,RoBERTa-base
BERT Text 110M BooksCorpus, English Wikipedia 12 Transformer encoder
XLNet Text 110M BERT dataset, ClueWeb, Giga5 12 Transformer encoder
LLaMA-2 Text 7B 2T tokens 32 Transformer decoder
FLAN-T5 Text 250M C4, 1,800 NLP tasks 12 T5
WavLM Speech 94.7M LibriSpeech 12 HuBERT
Whisper Speech 74M 680K hours data 12 Transformer encoder-decoder
Wav2Vec Speech 95M LibriSpeech 12 CNN+Transformer encoder

Table 1: Multimodal and Unimodal Text and Speech Models

linguistic meaning in spoken or signed languages.
We compute 108 phonological features consist-
ing of (18 descriptors)×(6 functionals: mean, std,
skewness, kurtosis, max, min).

Articulation features: Articulation features in
speech refer to the physical properties of speech
sounds, including how they are produced, how long
they last, and their loudness. This feature set is
formed with 488 features = (122 descriptors)×(4
functionals: mean, std, skewness, kurtosis).

Phonation, phonological, and articulation fea-
tures are passed to speech and multimodal models
to create embeddings and extract the feature repre-
sentations.

C.5 Rationale for choice of unimodal and
multimodal models

We experiment with 3 multimodal models, 4 uni-
modal text models and 3 unimodal speech mod-
els. We acknowledge that the models differ in ar-
chitecture, training objectives, and data sources.
However, as established in prior brain encoding
studies (Schrimpf et al., 2021; Toneva and Wehbe,
2019; Antonello et al., 2021; Aw and Toneva, 2023;
Oota et al., 2025), such diversity is a deliberate
design choice aimed at capturing general trends
in how different types of representations, regard-
less of specific implementation details, align with
brain activity. Our goal is not to control for every
architectural or dataset difference but to evaluate
how effectively text, speech, and multimodal rep-
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Figure 9: Individual Model Analysis: The average normalized predictivity of both text and speech embeddings from
multimodal models, as well as unimodal text and speech representations, is measured by comparing predicted and
real MEG activity across sensors and subjects. The word onset occurs at 0 ms.

resentations from state-of-the-art models, despite
inherent differences, align with brain activity, and
to identify consistent patterns in modality-specific
brain alignment.

We deliberately selected BERT, LLaMA-2, XL-
Net, and FLAN-T5 to represent a diverse and rep-
resentative cross-section of modern text models
with varying architectural and training paradigms.
BERT and XLNet are well-established in the liter-
ature and offer contrasting pretraining strategies,
masked language modeling versus permutation-
based modeling, making them ideal for probing
different semantic encoding mechanisms. LLaMA-
2 brings in the perspective of large-scale au-
toregressive models optimized for instruction-
following, while FLAN-T5 represents a strong
encoder-decoder model fine-tuned on a wide range
of tasks. We intentionally limited the scope to these
models to maintain interpretability and avoid re-
dundancy, as many newer models are architectural
variants or scale-ups of these foundational types.
Including every available model would dilute the
clarity of our comparative analysis without nec-

essarily adding new insights into brain alignment.
Our goal was to strike a balance between diversity,
interpretability, and relevance to current trends in
both NLP and cognitive modeling.

We selected Wav2Vec, WavLM, and Whisper
as our core unimodal speech models due to their
strong representational capabilities and comple-
mentary design philosophies. Wav2Vec is a foun-
dational self-supervised model that has demon-
strated robust performance in learning contextu-
alized speech representations from raw audio, mak-
ing it a natural choice for probing low- and mid-
level auditory features. WavLM extends this by in-
corporating masked prediction and speech-specific
pretraining objectives, enabling it to capture richer
prosodic and phonetic cues. Whisper, on the other
hand, is a large-scale, multitask model trained
on diverse multilingual and noisy data, offering
a broader perspective on speech understanding that
includes robustness to real-world variability.

We intentionally focused on these models be-
cause they represent the state-of-the-art across dif-
ferent axes: self-supervised learning, task general-
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ization, and robustness to noise and multilingual-
ity. Including additional models such as HuBERT,
DeepSpeech, or traditional ASR systems would
have introduced architectural or performance re-
dundancies without significantly expanding the di-
versity of representational strategies. Our goal was
to maintain a balance between coverage, compara-
bility, and interpretability, ensuring that the models
we analyzed were both representative and distinct
in their approach to speech representation learning.

We selected CLAP, SpeechT5, and Pengi as our
multimodal models because they represent distinct
and innovative approaches to learning joint repre-
sentations across text and speech, making them par-
ticularly well-suited for investigating cross-modal
semantic alignment with brain activity. CLAP
(Contrastive Language-Audio Pretraining) is de-
signed to align audio and text through contrastive
learning, enabling it to capture rich semantic corre-
spondences between modalities. SpeechT5 adopts
a unified encoder-decoder framework that supports
multiple speech and text tasks, offering flexibility
and strong performance in both modalities. Pengi, a
recent model from Google, is trained on large-scale
multimodal data and optimized for general-purpose
speech understanding, making it a strong candidate
for capturing nuanced semantic features.

We focused on these models because they are
among the few that explicitly integrate text and
speech in a way that supports bidirectional repre-
sentation learning, which is critical for studying
cross-modal transfer effects. Other multimodal
models either focus on vision-language tasks or
lack sufficient granularity in speech-text alignment.
By choosing CLAP, SpeechT5, and Pengi, we
ensured coverage of contrastive, generative, and
instruction-tuned paradigms, allowing us to sys-
tematically assess how different multimodal learn-
ing strategies influence alignment with MEG brain
responses.

While PaLM-Audio and MM-Whisper are
promising multimodal models, we chose not to
include them in our study due to practical and
methodological considerations. PaLM-Audio, be-
ing part of a larger and more complex family of
models, is not publicly available in a form that al-
lows fine-grained extraction of intermediate text
and speech representations needed for brain align-
ment analysis. Its architecture also integrates mul-
tiple modalities beyond speech and text, which
could introduce confounding factors when isolat-
ing cross-modal interactions specific to language

processing. MM-Whisper, although built on the
robust Whisper backbone, is primarily optimized
for multilingual and multitask ASR performance
rather than joint semantic representation learning
across modalities. In contrast, CLAP, SpeechT5,
and Pengi offer clearer and more accessible path-
ways for extracting aligned embeddings from both
text and speech, making them more suitable for sys-
tematic comparison in the context of MEG-based
brain encoding. Our selection prioritizes models
with transparent architecture, accessible embed-
dings, and explicit multimodal training objectives,
ensuring interpretability and reproducibility in cog-
nitive neuroscience research.

D Residual Approach

Specifically, given an input feature vector Li with
dimension N × d for input feature i, and tar-
get neural model representations W ∈ RN×D,
where N denotes the number of samples, and d
and D denote the dimensionality of unimodal/low-
level and neural model representations, respec-
tively, the ridge regression objective function is
f(Li) = min

θi
∥W − Liθi∥2F + λ∥θi∥2F where θi

denotes the learned weight coefficient for embed-
ding dimension D for the input feature i, ∥.∥2F
denotes the Frobenius norm, and λ > 0 is a tun-
able hyper-parameter representing the regulariza-
tion weight for each feature dimension. Using the
learned weight coefficients, we compute the residu-
als as follows: r(Li) = |W − Liθi|.

E Implementation details for
reproducibility

All experiments were conducted on a machine with
1 NVIDIA GeForce-GTX GPU with 16GB GPU
RAM. We used cross-validated ridge-regression
with MSE loss function; L2-decay (λ) varied from
101 to 103. Best λ was chosen by tuning on valida-
tion data that comprised a randomly chosen 10%
subset from train set used only for hyper-parameter
tuning.

F Encoding Performance of Multimodal
Models vs. Unimodal Models

Multimodal text embeddings exhibit a peak around
200ms, suggesting that they benefit from speech
embeddings, with heightened activity during this
time period. Specifically, the topographical maps
shown in Fig. 8 reveal that the higher normalized
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Figure 10: Extended input context and prolonged MEG signal: The average normalized predictivity of both text and
speech embeddings from multimodal models, as well as unimodal text and speech representations, is measured by
comparing predicted and real MEG activity across sensors and subjects. The word onset occurs at 0 ms.

brain predictivity in primary auditory regions is
unique to multimodal text embeddings and is not
observed in unimodal text models. Both multi-
modal and unimodal text embeddings remain active
beyond 350ms, aligning with the timeframe asso-
ciated with semantic word processing. In contrast,
speech embeddings experience a sharp decline in
performance around 350ms. Topographical maps
in Fig. 8 show that temporal, frontal, and parietal
language regions exhibit higher predictivity during
this period, whereas speech embeddings display
low predictivity for both multimodal and unimodal
models.

Fig. 9 presents the average normalized predictiv-
ity for text and speech embeddings from individual
multimodal models (aggregated across subjects) as
well as unimodal text and speech embeddings. For
clarity, we use a distinct color scheme to differen-
tiate: Multimodal text embeddings (blue palette),
Multimodal speech embeddings (red palette), Uni-
modal text embeddings (yellow), and Unimodal
speech embeddings (green). From Fig. 9, we ob-
serve that, consistent with the averaged trends in
Fig. 3. Multimodal text embeddings (CLAP Text,
Pengi Text, SpeechT5 Text) exhibit consistently
higher normalized predictivity across the entire
time window compared to multimodal speech, uni-
modal text, and unimodal speech models. Among
these, CLAP Text and Speech-T5 Text align with
enhanced brain alignment during early auditory
processing, as highlighted in our main results.

G Impact of extended input context and
prolonged MEG signal on brain
predictivity

We further explored the impact of varying the input
context length on model performance, as shown in
Fig. 10. The primary goal of this experiment is to
assess whether providing a longer temporal con-
text to the models improves their alignment with
brain activity during naturalistic speech compre-
hension, particularly in time windows associated
with higher-level semantic processing.

In this analysis, we expanded the MEG recording
window from 800 ms to 3 seconds. For example,
given a story comprised of multiple speech files
(with each file representing a single word) and a
context length of 5, we input the sequence (w1, w2,
w3, w4, w5) and use the representation of the last
word (w5) as the target.

From Fig. 10, we observe that, similar to the
single-word context, an increase in context length
further demonstrates that both multimodal text
and unimodal text embeddings exhibit a higher
degree of brain predictivity than speech embed-
dings across the extended temporal window. Our
findings indicate that extending the input context
not only reinforces the robustness of text embed-
dings but also underscores their superior alignment
with prolonged brain activity compared to speech
embeddings. This experiment also provides addi-
tional evidence for asymmetric knowledge trans-
fer across modalities: text embeddings integrate
contextual and cross-modal information effectively,
while speech embeddings do not, even with access
to both modalities during training.
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