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Abstract

Entity Linking and Entity Disambiguation sys-
tems aim to link entity mentions to their cor-
responding entries, typically represented by
descriptions within a predefined, static knowl-
edge base. Current models assume that these
knowledge bases are complete and up-to-date,
rendering them incapable of handling entities
not yet included therein. However, in an ever-
evolving world, new entities emerge regularly,
making these static resources insufficient for
practical applications. To address this limi-
tation, we introduce RAED, a model that re-
trieves external knowledge to improve factual
grounding in entity descriptions. Using sources
such as Wikipedia, RAED effectively disam-
biguates entities and bases their descriptions on
factual information, reducing the dependence
on parametric knowledge. Our experiments
show that retrieval not only enhances overall
description quality metrics, but also reduces
hallucinations. Moreover, despite not relying
on fixed entity inventories, RAED outperforms
systems that require predefined candidate sets
at inference time on Entity Disambiguation. Fi-
nally, we show that descriptions generated by
RAED provide useful entity representations for
downstream Entity Linking models, leading to
improved performance in the extremely chal-
lenging Emerging Entity Linking task.

1 Introduction

Many Natural Language Processing (NLP) tasks
require access to world knowledge to perform effec-
tively. Despite their impressive capabilities, Large
Language Models (LLMs) struggle with emerg-
ing knowledge that was not present in their training
data (Zaporojets et al., 2022; Gekhman et al., 2024).
This limitation is particularly evident in scenarios
where accurate and up-to-date information is es-
sential, such as fact verification, knowledge base
completion, and entity-centric tasks (Wang et al.,
2024b; Sun et al., 2024; Scirè et al., 2024a). To

address this gap, retrieval-based methods are gain-
ing traction, as they enable models to incorporate
external, up-to-date information at inference time,
improving their ability to handle the dynamic na-
ture of knowledge (Lewis et al., 2020; Izacard and
Grave, 2021; Zhang et al., 2022).

One such scenario is creating accurate entity
representations, which is essential for knowledge-
intensive tasks. Entity Disambiguation (ED) and
Entity Linking (EL), in particular, both rely heavily
on titles and definitions to link mentions in text to
entities in a predefined knowledge base, typically
assuming that the underlying knowledge base (e.g.,
Wikipedia) is both complete and accurate (Wu et al.,
2020; De Cao et al., 2021; Procopio et al., 2023).

However, this assumption breaks down for
emerging or poorly described entities, as well as
in lower-resource languages, limiting the robust-
ness and scalability of existing systems. For ex-
ample, consider querying a system trained before
the Covid-19 pandemic with the sentence: By this
point, most people have had at least one brush with
Covid-19. Since Covid-19 is an emerging entity
absent from the training data, the model fails to
correctly resolve the mention.

Similarly, candidate retrieval-based approaches
(Zhang et al., 2022; Wang et al., 2024a; Orlando
et al., 2024) fail when they rely on outdated or in-
complete entity inventories. Consider our example
again: if an entry for Covid-19 is not available in
the knowledge base, the model is forced to select
from incorrect candidates. Instead, if we retrieve
general textual knowledge, such as Covid-19 be-
ing shorthand for ‘coronavirus disease 2019’, and
condition the model on this relevant context, we
enable it to generate more accurate and informative
outputs, even for previously unseen entities.

To address this issue, we propose RAED
(Retrieval-Augmented Entity Description), a
retrieval-based framework designed to tackle the
emerging entity challenge. Given a single men-
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tion of an entity, RAED generates a title and a
definition by retrieving high-quality, contextually
relevant information from external sources such as
Wikipedia. Unlike traditional approaches, which
are restricted to pre-constructed entity inventories
(i.e., knowledge bases), our method focuses on gen-
erating meaningful descriptions, even for entities
absent from the inventory.

We summarize our contributions as follows:

• Retrieval-Augmented Entity Description
Generation. We introduce a retrieval-
augmented framework that generates entity
descriptions (titles and definitions) for emerg-
ing entities, enabling effective disambiguation
even in the absence of pre-defined candidates.

• A novel retrieval training paradigm for En-
tity Disambiguation. We propose a retriever
trained on in-context mentions of entities in
Wikipedia as positive retrieval targets. This
shifts the focus from retrieving static entity
summaries to retrieving diverse, contextually
relevant passages.

• Bridging retrieval and generation for
emerging entities. Our approach reduces de-
pendence on static knowledge bases by dy-
namically incorporating retrieved contextual
passages into the generation process. This
enables RAED to generate descriptions that
can be utilized effectively for Emerging Entity
Linking (EEL).

In the hope of fostering research in Entity Descrip-
tion Generation, we release our code and models
at https://github.com/SapienzaNLP/RAED.

2 Related Work

2.1 Retrieval-Augmented Information
Extraction

Retrieval-based architectures have significantly ad-
vanced Information Extraction (IE) tasks by in-
corporating external knowledge at inference time.
Dense retrieval models, such as EntQA (Zhang
et al., 2022) and ReLiK (Orlando et al., 2024), have
demonstrated improvements in linking mentions to
entities by retrieving high-quality candidates from
large-scale indices. Our approach also builds on the
retrieval-augmented paradigm; however, instead
of retrieving target candidate entities, it leverages
general-purpose passages. This enables not only

disambiguation, but also the generation of new en-
tity titles and definitions. As a result, it offers a
more flexible and scalable alternative to traditional
methods that rely on predefined entity inventories.
This also opens the door to automatically updat-
ing entity inventories, which frequently become
outdated and are costly to maintain manually.

2.2 Generative Approaches for Entity
Disambiguation

Autoregressive models have emerged as strong
alternatives to classification-based ED systems.
GENRE (De Cao et al., 2021) formulates ED as a
sequence-to-sequence task, generating existing en-
tity titles directly. More recently, FusionED (Wang
et al., 2024a) employs an encoder-decoder model
that uses candidate entity descriptions retrieved
from an inventory. The encoder models interactions
between the context and each candidate, produc-
ing individual representations, while the decoder
selects the best match by generating its index from
the ordered candidate list. Our approach builds on
these insights by learning to generate entity descrip-
tions. However, unlike FusionED, which narrows
the search space by retrieving candidate entities
directly, RAED enriches its input with passages
retrieved from broad informative text. This enables
it to handle emerging entities that are absent from
the inventory, a capability current models lack.

2.3 Handling Emerging Entities

A core challenge in ED and EL is handling new
entities that are missing from the knowledge base
at training time, known as emerging entities. Tra-
ditional systems assume a static knowledge base,
making them ineffective for newly introduced enti-
ties. To study this issue, TempEL (Zaporojets et al.,
2022) introduced a temporally segmented bench-
mark that evaluates the ability of models to adapt
to new entities over time. EDIN (Kassner et al.,
2022) extended this by proposing an end-to-end
framework and benchmark to discover and index
unknown entities, highlighting the importance of
dynamically updating entity representations. To
the best of our knowledge, the EDIN benchmark
has not been publicly released. Despite these con-
tributions, existing approaches do not address the
challenge of automatically creating entries for miss-
ing entities.
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Figure 1: The Retrieval-Augmented Entity Descriptions (RAED) pipeline.

3 RAED

In this section, we introduce RAED, our model
for Entity Description Generation. RAED retrieves
highly informative passages from a knowledge base
(i.e., Wikipedia) and provides them as additional
context to the generator to ensure that:

1. Generated descriptions are grounded in fac-
tual knowledge, thus limiting hallucinations.

2. Ambiguous entities are more effectively dis-
ambiguated, particularly when the original
context alone is insufficient.

3.1 Passage Index
As discussed, our goal is to construct an external
index that functions as a non-parametric memory.
Following prior work (Lewis et al., 2020; Izac-
ard and Grave, 2021), we build this index using
Wikipedia1 by extracting the text from each page
along with its wikilinks, i.e., hyperlinks to other
Wikipedia pages. Previous studies have used wik-
ilinks as pseudo-labels, treating them as disam-
biguation signals for linked spans (Wu et al., 2020;
De Cao et al., 2021; Huguet Cabot and Navigli,
2021), while Izacard et al. (2021) leveraged en-
tire entity pages as retrieval targets for training. In
contrast, we leverage wikilinks as retrieval targets
by retrieving passages where an entity is explic-
itly mentioned, rather than relying solely on its
main Wikipedia page or description. In EL, retriev-
ing entity descriptions is a high-precision objective
(Zhang et al., 2022; Orlando et al., 2024; Wang
et al., 2024a), but disambiguation fails when de-
scriptions are missing or not retrieved. By shifting
from descriptions to passages that provide addi-
tional context, i.e., either by directly mentioning

1English Wikipedia dump released on Jan 20, 2023.

the entity or containing relevant information, we
enable the generator to produce more meaningful
descriptions, even for entities not present in the
inventory.

To construct our index, we follow these steps:

Wikipedia Parsing We use two li-
braries, wikiextractor (Attardi, 2015) and
mwparserfromhell (Kurtovic, 2013), to extract
raw text from Wikipedia pages, including wikilinks
and boundary annotations. Disambiguation pages
and other non-informative content are filtered out,
yielding approximately 6 million extracted pages.

Entity Filtering To ensure a manageable index
size, we divide each page into non-overlapping 100-
word windows and retain only those that contain
entities present in our datasets, either as annotated
or candidate entities. This step results in a corpus
of 88 million windows.

Similarity Filtering To further refine the index
and retain meaningful content, we limit the number
of passages per entity to 10. Passages are ranked
by their similarity to the entity’s definition using a
sentence similarity model,2 and only the top-ranked
ones are retained. The resulting index comprises 9
million passages.

It is important to note that while wikilinks are
used during index construction, the retriever oper-
ates only on the raw text, without any direct access
to the wikilinks or the associated entities.

3.2 Retriever

For the Retriever component, we follow a retrieval
paradigm similar to that of DPR (Karpukhin et al.,

2https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2
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2020, Dense Passage Retrieval), which uses an en-
coder to produce dense representations of queries
and passages. In our setup, the input text q con-
tains the target entity e for which we want to re-
trieve relevant passages. We use special tokens, i.e.,
[DEFINE] and [/DEFINE], to mark the beginning
and end, respectively, of the entity mention. For
example, the query most people have had at least
one brush with Covid-19 is represented as most
people have had at least one brush with
[DEFINE] Covid-19 [/DEFINE].

Given q ∈ Q as our query in a collection of
queries Q and a passage p ∈ P in a collection of
passages P that corresponds to the Wikipedia pas-
sages or windows, the Retriever model computes:

EQ(q) = Retriever(q), EP (p) = Retriever(p)

and ranks the most relevant passages with respect
to q using the similarity function sim(q, p) =
EQ(q)

⊤EP (p), where the contextualized hidden
representation of a query q and a passage p are
the average of the encodings for the tokens in
each of the two sequences computed by the same
Retriever(·) Transformer encoder.

We train the Retriever employing a contrastive
cross-entropy loss similar to SimCSE (Gao et al.,
2021) as a training objective. The LRetriever loss
for q is defined as:

−
∑

p+∈P+(q)

log
esim(q,p

+)

esim(q,p+) +
∑

p-∈P -(q) e
sim(q,p-)

(1)
where P+(q) are the gold passages of the entity
present in q, and P−(q) is the set of negative ex-
amples for q constructed using in-batch negatives
from gold passages of other queries.

3.3 Entity Description Generation
We formalize the entity description task as follows:
given a mention m in a query q and a set of pas-
sages P(q) relevant to q, RAED aims to generate a
target description d for the corresponding entity:

P (d | q,P(q)) =

|d|∏

k=1

P (dk | d0:k−1, q,P(q))

Here, q refers to the same query introduced in Sec-
tion 3.2, used as input for retrieving relevant pas-
sages. Specifically, we first retrieve the most rele-
vant passages P(q), and then use those passages,
along with the query q, to condition the generation

of the entity description. The target description d
consists of the Wikipedia title and the article’s open-
ing sentence, separated by a special token <def>,
as shown in Figure 1.

3.4 RAED for Entity Disambiguation

Given that our objective is to generate a mean-
ingful description for a given entity mention, our
system indirectly learns to disambiguate that en-
tity. Hence, here we show that RAED, although
trained against a generative objective, can also be
applied to discriminative tasks such as ED with-
out the need for additional training. ED aims to
identify the correct entity from a set of candidates
E(m) for a given mention m. To directly utilize the
descriptions generated by RAED for ED, we em-
ploy sentence-transformers3 to compute a similar-
ity score between the generated description d̂ and
a candidate reference description de of the entity
e. We first encode both the generated description
and all the candidates provided for m into vector
representations (i.e., embeddings). We then select
the candidate with the highest cosine similarity to
the generated description, as follows:

ê = arg max
e∈E(m)

sim(d̂, de) (2)

4 Experimental Setup

In this section, we outline the experimental setup
for training and evaluating RAED. Specifically, we
describe the training procedures for the retriever
and generator components (Sections 4.1 and 4.2),
the datasets used (Section 4.3), and the evaluation
metrics used (Section 4.4).

4.1 Retriever

We train the E54 (Wang et al., 2022) encoder
directly on our Passage Index described in Sec-
tion 3.1, using a self-supervised approach similar
to Gao et al. (2021). Specifically, we treat the col-
lection of passages P as our set of queries Q. For
each query q ∈ Q, we consider as positive passages
those p ∈ P+(q) that refer to the same entity e as
q. Negative passages are sampled from passages
within the same batch that do not mention the same
entity. We optimize the Noise Contrastive Estima-
tion (NCE) loss (see Eq. 1 in Section 3.2) using
400 negatives per batch. The encoder is trained for

3https://huggingface.co/Alibaba-NLP/
gte-modernbert-base

4https://huggingface.co/intfloat/e5-base
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a maximum of 100,000 steps using RAdam (Liu
et al., 2020) with a learning rate of 2 · 10−5 and a
linear learning rate decay schedule.

4.2 Entity Description Generation
Our experiments explore various text genera-
tion models for the entity description gener-
ation task. Specifically, we evaluate both
encoder-decoder models, including T5-large5 (Raf-
fel et al., 2020) and Flan-T5-large6 (Chung
et al., 2024), and decoder-only models, such as
SmolLM2-360M7 (Allal et al., 2025) and Llama-
3.2-1B8 (Dubey et al., 2024). We provide further
details about the models used in Appendix A. For
each input text in AIDA (referred to here as the
query q), we combine q with its top 10 retrieved
passages to create the input for RAED. We include
an ablation study on the number of retrieved pas-
sages in Appendix C. We fine-tune each model on
the AIDA training split to generate a description for
the mention m within q for 100,000 steps with a
batch size of 32 input texts, using the AdamW opti-
mizer (Loshchilov and Hutter, 2019) and a learning
rate of 1 · 10−6. To assess the impact of retrieved
passages, we train each model to generate descrip-
tions using the same data and setup, once with
retrieval (denoted as ModelRAED) and once without
retrieval (denoted as Model).

Integration of Retrieved Passages For encoder-
decoder models, we integrate retrieved passages us-
ing the Fusion-in-Decoder (FiD) approach (Izacard
and Grave, 2021), in which each retrieved passage
is concatenated with the query, independently en-
coded, and then passed to the decoder. For decoder-
only models, we incorporate the retrieved passages
directly into the prompt. An example of the prompt
used is provided in Appendix A.

4.3 Datasets
Wikipedia As explained in the previous section,
we leverage the entire English Wikipedia to con-
struct our index, which is used both to train the
retriever and as the source of additional context in
our RAED framework.

AIDA CoNLL-YAGO We adopt the experimen-
tal setup of De Cao et al. (2021), utilizing the

5https://huggingface.co/google-t5/t5-large
6https://huggingface.co/google/flan-t5-large
7https://huggingface.co/HuggingFaceTB/

SmolLM2-360M
8https://huggingface.co/meta-llama/Llama-3.

2-1B

standard AIDA-CoNLL splits (Hoffart et al., 2011)
for training (AIDA-train), model selection (AIDA-
testa), and in-domain evaluation (AIDA-testb).
AIDA is a widely used benchmark for ED and EL,
allowing consistent comparison with prior work
and ensuring a robust evaluation framework.

Out-of-Domain (OOD) Datasets For out-of-
domain ED evaluation, we use MSNBC (Cucerzan,
2007), AQUAINT (Milne and Witten, 2008),
ACE2004 (Ratinov et al., 2011), WNED-CWEB
(CWEB), and WNED-WIKI (WIKI), as curated by
Alani et al. (2018) and Gabrilovich et al. (2013).
These datasets span a diverse range of domains and
text styles, providing a challenging benchmark for
assessing model generalization. To ensure consis-
tency with prior work, we use the same candidate
sets originally introduced by Le and Titov (2018).

TempEL We also use TempEL (Zaporojets et al.,
2022) which provides ten yearly snapshots of En-
glish Wikipedia entities, enabling the study of tem-
poral dynamics in EL. These snapshots allow us
to simulate the introduction of new entities into
the knowledge base and to assess our models’ abil-
ity to generate descriptions for entities not seen at
training time. TempEL also provides two types
of entities: continual entities, which appear in all
TempEL temporal snapshots, and emerging entities,
which are newly introduced in specific snapshots
and serve as the focus of our experiments.

4.4 Evaluation Metrics

We evaluate the quality of the generated entity de-
scriptions using the following metrics:

Natural Language Generation (NLG) We em-
ploy traditional metrics like BLEU and ROUGE
(Papineni et al., 2002; Lin, 2004) which measure
n-gram overlap, capturing lexical similarity. How-
ever, these metrics rely on exact string matches
and may not fully reflect the quality of the gen-
erated text. To address this limitation, we assess
the Semantic Similarity (SIM)9 by calculating the
cosine similarity between sentence embeddings of
the generated and reference descriptions, focusing
on semantic alignment. Additionally, we utilize
BERTScore (Zhang et al., 2019), which evaluates
token-level semantic similarity using contextual-
ized embeddings from a pre-trained BERT model.
By incorporating these complementary metrics, we

9We use the same model in introduced in Section 3.4.
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Dataset Model Retrieval BL R-1 BS SIM F-NLI

AIDAtestb

T5 ✗ 58.0 73.5 92.6 93.2 22.1
T5RAED FiD 70.9 82.7 96.2 95.3 49.9
Flan-T5 ✗ 60.5 77.5 93.1 92.9 24.8
Flan-T5RAED FiD 70.6 82.5 96.2 95.2 50.2

SmolLM2 ✗ 61.2 74.1 94.3 92.8 27.4
SmolLM2RAED Prompt 72.1 83.1 95.6 94.3 52.9
Llama-3.2 ✗ 63.2 76.8 95.8 93.7 33.8
Llama-3.2RAED Prompt 73.9 84.0 96.9 95.4 55.5

OOD

T5 ✗ 21.0 45.8 88.1 81.2 -8.2
T5RAED FiD 45.1 63,8 92,4 87.8 25.6
Flan-T5 ✗ 22.9 48.1 89.5 81.9 -3.7
Flan-T5 RAED FiD 45.9 64.4 92.7 88.1 25.9

SmolLM2 ✗ 24.4 47.0 88.7 83.0 -5.5
SmolLM2RAED Prompt 42.8 61.5 97.5 85.1 21.3
Llama-3.2 ✗ 28.4 51.6 90.3 84.5 -2.0
Llama-3.2RAED Prompt 45.1 63.3 92.6 87.5 27.5

Table 1: Evaluation results of various models on the AIDA test split (AIDAtestb) and out-of-domain (OOD) datasets
(MSNBC, AQUAINT, ACE2004, CWEB, and WIKI). Metrics include BLEU (BL), ROUGE-1 (R-1), BERTScore
(BS), Semantic Similarity (SIM), and Factual-NLI (F-NLI). Models with ✗ do not use retrieved passages. Bold
indicates the best performance. All reported models were fine-tuned on the AIDA training set.

aim to provide a comprehensive evaluation of the
quality of the generated descriptions.

Natural Language Inference (NLI) Inspired by
prior work (Chen and Eger, 2023; Scirè et al.,
2024b), we evaluate the logical relationship be-
tween the generated and reference descriptions us-
ing a pre-trained NLI model.10 Specifically, we
compute the difference between the probabilities
assigned to the entailment and contradiction classes
to assess factual consistency. We refer to this met-
ric as Factual-NLI (F-NLI).

InKB Micro F1 This metric, specific to En-
tity Disambiguation (ED), computes the micro-
averaged F1 score over mentions correctly linked
to entities present in the knowledge base (InKB).

5 Results

In this section, we present a three-fold evaluation
of RAED. First, we assess the quality and factual
accuracy of the generated entity descriptions. Next,
we evaluate their effectiveness in downstream tasks,
including ED and EEL. Finally, we conduct a qual-
itative evaluation using an LLM-as-a-Judge frame-

10https://huggingface.co/MoritzLaurer/
DeBERTa-v3-base-mnli-fever-anli

work to compare RAED’s descriptions against de-
scriptions generated without retrieval.

5.1 Entity Description Generation

In Table 1, we present the results of the Entity De-
scription Generation task across various configura-
tions of RAED. Our retrieval strategy consistently
improves performance across all models and sizes,
as evidenced by increases in all NLG metrics. This
indicates that the descriptions generated by RAED
are more lexically and semantically aligned with
the gold descriptions. Notably, we observe an aver-
age increase of 27.5 points in Factual-NLI scores
across RAED models, suggesting that descriptions
generated by RAED are significantly more factu-
ally consistent with the reference descriptions. We
attribute these improvements to RAED’s grounded
generation process, which reduces reliance on para-
metric memory, mitigates hallucinations, and leads
to improved factual consistency. Similar gains
are observed across all metrics for out-of-domain
(OOD) datasets, highlighting RAED’s capability
to generate semantically and factually accurate de-
scriptions for entities unseen during training.

Efficiency RAED provides not only performance
gains but also efficiency benefits. It outperforms
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Retrieval In-domain Out-of-domain AVG

Model AIDA-B MSNBC AQUAINT ACE2004 CWEB WIKI ALL OOD

GENRE - 88.6 88.1 77.1 82.3 71.9 71.7 80.0 78.2
FusionED Candidates 91.7 92.4 82.0 87.1 75.8 78.6 84.6 83.2

T5 - 90.1 91.3 78.4 89.4 74.4 72.2 82.6 81.1
T5RAED Passages 91.7 92.3 82.0 90.7 77.3 78.7 85.5 84.2
FLAN-T5 - 89.4 91.5 79.5 91.4 74.7 73.4 83.3 82.1
FLAN-T5RAED Passages 91.8 93.2 80.3 90.3 77.1 78.1 85.1 83.8

SmolLM2 - 89.1 91.6 82.3 85.8 76.3 77.5 83.8 82.7
SmolLM2RAED Passages 91.0 91.9 83.6 88.3 76.0 77.1 84.5 83.4

Llama-3.2 - 91.0 92.1 82.1 90.7 74.9 75.0 84.3 83.0
Llama-3.2RAED Passages 91.7 92.3 84.3 89.5 78.1 79.0 85.0 83.4

Table 2: InKB Micro F1 comparison of different models fine-tuned on the AIDA training set and evaluated on
both in-domain and out-of-domain datasets. Results for GENRE and FusionED are reported as presented in their
respective publications. Bold values indicate the best performance, while underlined values denote the second best.

both same-sized and significantly larger models
that do not use retrieval. For instance, RAED, with
SmolLM2 (360M parameters) as the generator and
E5-base (109M parameters) as the retriever (total-
ing approximately 469M parameters), outperforms
Llama-3.2 (1B parameters) across all metrics and
achieves a 23.3-point gain in factuality, despite be-
ing less than half its size. This result demonstrates
that incorporating external knowledge while reduc-
ing reliance on parametric memory can improve
both performance and efficiency.

5.2 Entity Disambiguation

Table 2 presents our results using RAED as a dis-
criminator for ED, as detailed in Section 3.4. Com-
pared to models without retrieval, RAED variants
show improvements across nearly all benchmarks,
in both in-domain and out-of-domain settings. The
most notable gains are observed with T5RAED and
FLAN-T5RAED, which outperform T5 and FLAN-
T5 by 2.9 and 1.8 points, respectively.

Remarkably, RAED models not only match but
also slightly outperform systems like FusionED,
which are specifically trained for ED and provided
with candidate entities as input. For example, al-
though it uses the same underlying architecture
(FLAN-T5-large), FLAN-T5RAED outperforms Fu-
sionED on most out-of-domain datasets, achieving
an average improvement of 0.6 points, while also
slightly surpassing it on the in-domain benchmark
(91.8 vs. 91.7). This result is particularly note-
worthy because FusionED is explicitly trained to

select from a set of candidate entities, whereas
RAED relies solely on retrieved passages to gen-
erate descriptions and learns to disambiguate men-
tions implicitly, without any direct ED supervision
during training. Furthermore, our approach enables
models like T5RAED to outperform larger and more
recent models such as Llama-3.2-1B, achieving a
1.2-point overall improvement and a 1.2-point gain
in the out-of-domain setting.

These results, obtained without access to can-
didate entities at inference time, show that RAED
exhibits strong generalizability and versatility. This
highlights a key advantage of our approach: RAED
can generate meaningful and discriminative de-
scriptions using retrieved passages, eliminating de-
pendence on predefined candidates even when the
correct entity is absent from the knowledge base.

5.3 Emerging Entity Linking

In this section, we evaluate the effectiveness of
RAED in handling emerging entities. As detailed
in Section 4.3, we use the temporal splits from
Wikipedia provided by the TempEL dataset. For
each split, we define an entity as emerging if it
did not appear in any of the previous snapshots
(e.g., entities added between 2020 and 2021 for
the 2021 split). Although TempEL includes splits
from 2013 to 2022, we focus our analysis on those
from 2019 onward to better simulate scenarios in
which emerging entities are unseen during model
pre-training, particularly for models such as T5.

We evaluate EL performance on temporal test
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Model Desc 2020 2021 2022

2019
T5 51.2 37.8 44.5

T5RAED 57.0 47.4 53.5

Table 3: We evaluate EL performance (accuracy@64)
on TempEL test sets (2020–2022) using descriptions
generated by T5-Large (T5) and RAED (using T5-
Large). Results in bold indicate the best performance
for generated descriptions.

Model Win Rate

T5RAED 40%
Wikipedia (Gold) 60%

T5 9%
Wikipedia (Gold) 91%

T5RAED 82%
T5 18%

Table 4: Win rates (%) from LLM-as-a-Judge experi-
ments comparing RAED, T5 without retrieval, and Gold
Wikipedia descriptions.

sets using the TempEL model and two types of de-
scriptions: (1) descriptions generated by RAED,
and (2) descriptions generated by models trained
without retrieval. The models used are the same
as those reported in Table 1. Following Zaporojets
et al. (2022), we report accuracy@64 as our evalua-
tion metric, which measures whether the target en-
tity appears within the top-64 retrieved candidates.
Additional details can be found in Appendix D. To
ensure a fair evaluation and prevent data leakage,
we exclude from the index any passages taken from
the Wikipedia pages of the emerging entities.

Table 3 shows that RAED significantly outper-
forms the model with no access to retrieved knowl-
edge, achieving an average improvement of 8.1
points. This shows that by leveraging retrieval,
RAED generates descriptions with stronger seman-
tic grounding, which in turn improves disambigua-
tion and linking. This makes it particularly effec-
tive for the challenging task of EEL.

5.4 Qualitative Analysis

To complement our quantitative evaluation, we
employ a Large Language Model (LLM) as a
judge (Gu et al., 2024) to provide qualitative in-
sights into the quality of generated descriptions.
This approach leverages the LLM’s ability to as-
sess linguistic fluency, semantic coherence, and

relevance without relying on explicit gold refer-
ences (Bai et al., 2023). By comparing descriptions
side-by-side, the LLM determines which one bet-
ter represents the target entity in the given context,
providing win rates for each comparison. For this
experiment, we use Phi-3.5-mini-instruct (Abdin
et al., 2024) as the judge model. The model is
prompted in a pairwise manner to determine which
of the two descriptions better aligns with a given
mention, using the context of an entity from the
unseen splits of the AIDA validation and test sets.
These splits contain only entities that were not seen
during training. An example of the prompt used in
this experiment is shown in Appendix B.

For this experiment, we conduct three sets of
comparisons: (1) T5RAED vs. Wikipedia gold de-
scriptions, (2) T5 without retrieval, vs. Wikipedia
gold descriptions, and (3) T5RAED vs. T5 without
retrieval. The win rates reported in Table 4 reveal
that, as expected, the gold descriptions perform
best overall, RAED’s descriptions are strongly pre-
ferred over descriptions without retrieval with a win
rate of 82%. Interestingly, RAED descriptions are
even competitive with gold descriptions, achieving
a 40% win rate, whereas the non-retrieval defini-
tions win in only 9% of cases.

Finally, in Table 5, we present qualitative exam-
ples from our analysis of RAED, highlighting recur-
ring error types made by models without retrieval,
that RAED effectively avoids. In the first exam-
ple, the T5 model hallucinates the middle name
and birth date of Julia Roberts, whereas RAED
generates factually accurate information and even
includes examples of films she is known for, which
are not mentioned in the gold definition. In the sec-
ond example, the model trained without retrieved
passages incorrectly states that Benghazi is the cap-
ital and largest city of Libya. In contrast, RAED,
using the same underlying generator, correctly iden-
tifies it as the second-largest city and also names
the actual capital, Tripoli. The third example illus-
trates a disambiguation error: T5 fails to resolve
the mention correctly and mistakenly generates a
definition for Japan instead of the intended entity,
the Japan national football team. T5RAED, on the
other hand, correctly disambiguates the entity in
question and generates an accurate definition.

6 Conclusions

In this work, we introduce RAED, a retrieval-
augmented framework for generating entity ti-
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Error Factual
Input [...] The film starring Liam Neeson and Julia Roberts recounts the life of Michael [...]
T5 Julia Roberts <def> Julia Anne Roberts ( born November 17, 1967 ) is an American

actress and filmmaker.
T5RAED Julia Roberts <def> Julia Fiona Roberts ( born October 28, 1967 ) is an American

actress known for her roles in films such as "Pretty Woman" and "Erin Brockovich".
Gold Julia Roberts <def> Julia Fiona Roberts (born October 28, 1967) is an American actress.

Error Factual
Input [...] police officers clash regularly in Benghazi At least [...]
T5 Benghazi <def> Benghazi is the capital and largest city of Libya.
T5RAED Benghazi <def> Benghazi is the second-largest city in Libya, after the capital Tripoli.
Gold Benghazi <def> Benghazi is the second-most-populous city in Libya as well as the

largest city in Cyrenaica, with an estimated population of 859,000 in 2023.

Error Disambiguation
Input Soccer Late Goals Give Japan Win Over Syria [...]
T5 Japan <def> Japan is an island country in East Asia.
T5RAED Japan national football team <def> The Japan national football team represents Japan in

men’s international football and is controlled by the Japan Football Association,
the governing body for football in Japan.

Gold Japan national football team <def> The Japan national football team, also known by the
nickname Samurai Blue, represents Japan in men’s international football.

Error Disambiguation
Input [...] although sixth seeded former champion Agassi had to wriggle out of a dangerous [...]
T5 Michael Agassi <def> Michael David Agassi (born June 29, 1970) is an American

former world No. 1 tennis player.
T5RAED Andre Agassi <def> Andre Kirk Agassi (born April 29, 1970) is an American

former world No. 1 tennis player.
Gold Andre Agassi <def> Andre Kirk Agassi (born April 29, 1970) is an American

former world No. 1 tennis player.

Table 5: Qualitative examples comparing descriptions generated by RAED and the model without retrieval. For
each example, we indicate the type of error, highlighting incorrect parts in red and corrected sections in green.

tles and definitions, i.e., descriptions, to address
the challenge of emerging entities in knowledge-
intensive NLP tasks. Unlike traditional disambigua-
tion systems that rely on predefined knowledge
bases, RAED retrieves relevant passages to gener-
ate informative descriptions, enabling generation
even for entities missing from inventories.

Through extensive evaluations, we show that
RAED effectively combines retrieval and genera-
tion to produce high-quality descriptions, signif-
icantly improving entity disambiguation perfor-
mance. Our results on TempEL highlight RAED’s
ability to handle emerging entities, bridging the
gap between static knowledge bases and evolving
entity representations. Moreover, our qualitative

evaluation using an LLM-as-a-Judge further sup-
ports the advantages of RAED over context-only
approaches.

Despite these advancements, challenges remain.
The gap between generated and human-curated def-
initions suggests that future work should explore
scaling RAED using larger datasets to enhance
adaptability to emerging knowledge. Another key
open problem is identifying emerging entities, i.e.,
entity discovery, rather than only describing them
post-hoc. To address this, future efforts could fo-
cus on integrating entity discovery, retrieval, and
generation into a unified framework. This would
improve robustness in knowledge base completion
and knowledge graph construction.
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7 Limitations

RAED relies solely on Wikipedia as a knowledge
source, which, despite its coverage, is incomplete
and may contain outdated or biased information.
This limits RAED’s ability to describe entities that
are poorly covered or emerging outside of main-
stream documentation. Incorporating additional
sources such as news archives or domain-specific
corpora could improve robustness.

Another limitation is the system’s reliance on re-
trieval quality. If the retriever fails to find relevant
passages, the generated descriptions may be inac-
curate or incomplete. While retrieval reduces hal-
lucinations compared to purely generative models,
errors in retrieved content can propagate through
the generation process.

Finally, RAED does not proactively identify new
entities but rather generates descriptions for given
mentions. Future work could explore integrating
entity discovery into the RAED to enable dynamic
detection of emerging entities.
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A Entity Description Generation Details

For decoder-only models, an example of a prompt
used to generate the entity description (title and
definition) is shown in Table 7.

B LLM-as-a-Judge Details

An example of a prompt used for the LLM-as-a-
Judge experiment is shown in Table 8. We use
Phi-3.5-mini-instruct11 (Abdin et al., 2024) as the
judge model.

C Impact of number of retrieved passages

Table 9 presents the InKB Micro F1 scores of our
T5RAED model using varying numbers of retrieved
passages. The number of passages indicated for
each row is used during both training and evalua-
tion. Table 9 shows that T5 consistently benefits
from additional retrieved context, even when using
only three passages at training and inference time.
We observe steady performance improvements up
to ten passages. Beyond this point, however, per-
formance begins to degrade, particularly at 20 pas-
sages. We hypothesize that this decline is due to the
increasing noise introduced by excessive context,
which becomes difficult for the model to handle in
this challenging disambiguation task.

11https://huggingface.co/microsoft/Phi-3.
5-mini-instruct
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Generate a title and definition seperated by <def> for the mention of an entity between [DEFINE]
and [/DEFINE].
Input Text:
INPUT_TEXT
Passages:
Passage 1 ...
Passage 2 ...
Passage 3 ...
Passage 4 ...
Passage 5 ...
Target Entity Description:
“COVID-19 is a contagious disease caused by the coronavirus SARS-CoV-2”.

Table 7: Prompt for Entity Description Generation by RAED.

Given the context:
INPUT_TEXT
which entity definition better matches the highlighted mention for entity
"WIKIPEDIA_PAGE_TITLE"?
Description 1: ’Desc_1’
Description 2: ’Desc_2’
Answer ’Description 1’ or ’Description 2’."

Table 8: Prompt used for our LLM-as-Judge experiments. It is important to note that the order in which the two
descriptions appear is random.

D Emerging Entity Linking Details

In this section, we provide additional details and
analysis of the Emerging Entity Linking experi-
ment. TempEL (Zaporojets et al., 2022) offers not
only temporal splits of Wikipedia but also Entity
Linking models trained on each yearly snapshot.
For instance, TempEL provides ten bi-encoder
models trained on Wikipedia snapshots from 2013
to 2022, meaning that the 2019 TempEL model was
trained solely on the 2019 Wikipedia split. We use
this model in our experiments to accurately simu-
late the emerging entity setting and to avoid data
leakage from model training. Table 6 shows not
only the performance of the TempEL model when
provided with the generated definitions in its index,
but also with the gold definitions. This would be
considered the ceiling for performance in Entity
Description for Emerging Entity Linking.
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Passages In-domain Out-of-domain AVG

Model AIDA-B MSNBC AQUAINT ACE2004 CWEB WIKI ALL OOD

T5 ✗ 90.1 91.3 78.4 89.4 74.4 72.2 82.6 81.1
T5RAED 3 91.3 91.3 80.2 88.3 74.2 74.4 83.3 81.7
T5RAED 5 91.6 90.4 81.6 88.3 74.2 73.8 83.3 81.6
T5RAED 10 91.7 92.3 82.0 90.7 77.3 78.7 85.5 84.2
T5RAED 20 89.4 91.3 84.0 91.4 76.0 75.1 84.5 83.5

Table 9: InKB Micro F1 comparison of our T5RAED model with varying numbers of retrieved passages. The
0-passage line represents the baseline, while the 10-passage line corresponds to the results in Table 2. Results in
bold indicate the best performance.
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